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Abstract:  High-throughput chromosome conformation capture
(Hi-C) has recently been applied to natural microbial communities
and revealed great potential to study multiple genomes simultane-
ously. Several extraneous factors may influence chromosomal con-
tacts rendering the normalization of Hi-C contact maps essential
for downstream analyses. However, the current paucity of metage-
nomic Hi-C normalization methods and the ignorance for spurious
inter-species contacts weaken the interpretability of the data. Here,
we report on two types of biases in metagenomic Hi-C experiments:

explicit biases and implicit biases, and introduce HiCzin, a para-
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metric model to correct both types of biases and remove spurious
inter-species contacts. We demonstrate that the normalized metage-
nomic Hi-C contact maps by HiCzin result in lower biases, higher
capability to detect spurious contacts, and better performance in
metagenomic contig clustering. The HiCzin software is available at

https://github.com/dyxstat/HiCzin.

1 Introduction

High-throughput chromosome conformation capture (Hi-C) is a DNA proxim-
ity ligation approach with many applications in the investigation of genomic
structures, DNA interactions, and even characterizing virus-host interactions
from metagenomes [4, 15]. In Hi-C experiments, chimeric junctions are formed
between pieces of DNAs in close proximity within cells and then subjected
to paired-end sequencing generating millions of paired-end reads linking DNA
fragments [15]. The number of reads connecting two DNA fragments is sig-
nificantly related to the probability of contact between genomic loci in the
three-dimensional structure at a fixed time point. Hi-C technique reveals the
compartment property of the mammalian genomes [15], identifies topologically
associated domains (TADs) [8], and reconstructs haplotypes [19].

Most recently, the Hi-C technique has been applied to the metagenomics
domain (metagenomic Hi-C), and a series of Hi-C experiments have been con-
ducted for microbial communities rather than a single species [7, 18]. Combined
with the traditional shotgun sequencing, metagenomic Hi-C technique has dis-
played a powerful ability to probe virus—host interactions [4], simultaneously re-
trieve multiple genomes [6], deconvolute assembled contigs from whole genome
shotgun (WGS) sequencing data into genome bins in both simulated and real

microbial communities [2], and track horizontal gene transfer [21].



However, there exist strong experimental biases for the Hi-C interaction
counts [22]; therefore, normalizing Hi-C data is essential to remove these biases.
Though multiple strategies have been put forward [10, 11], most of these nor-
malization methods aim to normalize Hi-C data derived from a single species,
mainly human cells, and are not suitable to be applied on metagenomic Hi-C
data from complex communities. This is mainly because potential factors of
biases for metagenomic Hi-C data are different from those for Hi-C data within
individual species. Additionally, it is not valid to theoretically assume all contigs
should have equal visibility in metagenomic Hi-C data as the relative abundance
levels of the different species can vary. Several relatively simple metagenomic
Hi-C normalization methods have been developed. ProxiMeta [18] applied a
normalization to the raw Hi-C counts by accounting for the estimated abun-
dance of the contigs, and further took the number of restriction sites on the
contigs into consideration [20]. As a proprietary metagenomic genome binning
platform without open-source pipeline, ProxiMeta did not clarify the normaliza-
tion algorithms in detail. Beitel et al. [3] divided raw interaction counts by the
product of the length of two contigs. MetaTOR [2] normalized raw counts by the
geometric mean of the contigs’ coverage. Metaphase [6] and Bin3C [7] divided
raw Hi-C counts by the product of the number of restriction sites and Bin3C
used the Knight-Ruiz algorithm [13] to construct a general doubly stochastic
matrix after the first step correction. We will show that these normalization
methods are not effective in removing all biases. Additionally, the biases of spu-
rious inter-species contacts are ignored for metagenomic Hi-C data by all these
normalization methods, considerably weakening the interpretability of the Hi-C

data [20].

Here we first comprehensively discuss potential experimental biases for metage-

nomic Hi-C data, and then propose HiCzin, a method to normalize metagenomic
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Hi-C data based on the zero-inflated negative binomial regression frameworks
[23]. We also develop a hybrid statistical method to detect spurious inter-species
contacts. We show that the normalized metagenomic Hi-C contact maps by
HiCzin lead to lower biases, higher ability to detect spurious contacts, and bet-
ter performance in metagenomic contig clustering on the published metagenomic

Hi-C dataset.

2 Result

2.1 Source of biases in metagenomic Hi-C experiments

In addition to chromosomal contacts of interest, several other factors unrelated
to chromosomal contacts can also influence the number of Hi-C interactions be-
tween contigs [22]. We refer to such factors as biases. We report on two kinds of
biases with substantial influences on metagenomic Hi-C contact maps: explicit
biases and implicit biases. Explicit biases include three potential factors: i)
the number of enzymatic restriction sites on contigs, ii) contig length, and iii)
contig coverage [3, 6, 18], all of which can be observed. Implicit biases include
unobserved interactions and spurious inter-species contacts. Unobserved inter-
actions are chimerical DNA fragments that are missed due to the factors such
as the mappability of contigs and in vivo constraints on accessibility. Spurious
inter-species contacts arise from the ligation of DNA fragments between closely
related species [20]. As implicit biases are unobservable, it is challenging to

detect and correct implicit biases.



2.2 Analyses of experimental biases in synthetic metagenomic yeast samplesb

2.2 Analyses of experimental biases in synthetic metage-

nomic yeast samples

We analyzed metagenomic yeast (M-Y) samples, consisting of 16 yeast strains
(BioProject : PRJNA245328) [6]. After processing the raw WGS and Hi-C
reads, we generated raw Hi-C contact maps for 6,196 assembled contigs (Sup-
plementary Material). Reference genomes of these 16 yeast strains were down-
loaded (Supplementary Material: Table S1). To determine the true species
identity of the assembled contigs, contigs were aligned to reference genomes at
the species level by BLASTn [1] (Supplementary Material). Thirty-seven con-
tigs (0.6%) could not be aligned to reference genomes and were not considered

in the following analyses (Supplementary Material: Figure S1).

According to the alignment results to the reference genomes, we refer to
contig pairs from the same species and different species as intra-species pairs
and inter-species pairs, respectively. Interaction counts of intra-species pairs
and inter-species pairs are defined as valid contacts and spurious contacts, re-
spectively. In particular, we denote zero contacts if no interaction was observed
between intra-species pairs; hence the intra-species contacts, corresponding to
intra-species pairs, are composed of valid contacts and zero contacts. Valid con-
tacts imply a high probability of contig pair’s belonging to the same genome,

while spurious contacts confound the interpretation of the Hi-C data.

Raw interaction counts were enriched between pairs of contigs with a high
number of restriction sites, long contigs, and/or contigs with high coverage (Fig-
ure 1), which can be explained by the following reasons. Longer contigs may
have higher ligation efficiencies with other contigs than shorter contigs, more re-
striction sites are likely to increase the probability of enzymatic cuts within DNA
fragments, and higher coverages, representing higher concentration of contigs,

can result in more Hi-C interactions between contigs. The Pearson correlation
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Figure 1: Relationship between raw interaction counts and the product of the
number of restriction sites, length, and coverage between contig pairs.

coefficients between raw valid contacts and the product of the number of re-
striction sites, the length and the coverage for each pair of contigs were 0.429,
0.400, and 0.184, respectively, demonstrating that these three factors were in-
deed highly correlated with valid contacts.

As for implicit biases, one remarkable phenomenon for intra-species contacts
was the presence of excess zeros, which means zero contacts account for a large
proportion within intra-species contacts. The number of valid contacts (i.e.,
nonzero intra-species contacts) only made up 14.9% within all intra-species con-
tacts, suggesting the potential existence of unobserved interactions with high
probability due to the experimental noise. The number of spurious contacts
made up 25.5% of all nonzero contacts, which could not be neglected for the

M-Y samples.

2.3 Normalization methods in the publicly available metage-

nomic Hi-C analysis pipelines

Because of the existence of aforementioned experimental biases, it is necessary
to normalize the raw Hi-C contacts before downstream analysis, such as cluster-
ing and tracking virus-host interactions. Most of the current available pipelines

divided the raw Hi-C interactions by the product of one factor of explicit biases
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to normalize raw Hi-C contacts, which we refer to as naive normalization meth-
ods [2, 3, 18]. These naive normalization methods only corrected part of explicit
biases, and the unnormalized factors of explicit biases might still be highly cor-
related with Hi-C contact maps. As for the two-stage normalization method in
Bin3C [7], equal visibility for all regions is a basic theoretical assumption for
utilizing the matrix balancing algorithm they use to recover normalized Hi-C
matrices [11], yet this assumption is not satisfied for metagenomic assembled
contigs with huge differences in length and abundance. Moreover, all these nor-
malization methods ignored the influence of implicit biases and did not attempt
to detect and remove the spurious inter-species contacts. Therefore, it is imper-

ative to develop new normalization methods to overcome these shortcomings.

2.4 Removing explicit biases and spurious contacts using

zero-inflated negative binomial regression

The Poisson and negative binomial regression models are widely used in fitting
count data and have been successfully employed in fitting Hi-C interactions of
human cells [10]. Therefore, there is potential to apply frameworks based on
Poisson or negative binomial regression to normalize metagenomic Hi-C data.
Here we model the population of the intra-species contacts using the negative
binomial distribution rather than the Poisson distribution because Hi-C data
are always over-dispersed [10]. In the classical negative binomial regression
model, we can fit the model given sample data of the intra-species contacts
by regarding factors of biases and intra-species contacts as predictor variables
and the response variable, respectively. Then, the residuals of this conventional
model serve as normalized contacts.

However, some underlying interactions may not be observed in Hi-C ex-

periments due to the limited quantity of Hi-C reads and problems in mapping
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Hi-C reads to the contigs. Ignoring such influences may lead to serious biased
estimation and prediction. Additionally, although classical negative binomial
models can capture the property of over-dispersion, they are not sufficient for
modeling the excess zeros observed in Hi-C contact maps. To solve these prob-
lems, we developed HiCzin, a novel metagenomic Hi-C normalization method
based on zero-inflated negative binomial regression frameworks [23], combining
the counting distribution of the intra-species contacts with a mass distribution
of unobserved contacts. The residues of the counting part serve as normalized
contacts (see Methods).

Compared with raw valid contacts, the average value of raw spurious con-
tacts was smaller (Figure 2a), while the average number of restriction sites,
length, and coverage of contigs were significantly larger (Figure 2b,c,d). These
evidences indicated that spurious inter-species contacts were more likely to be
generated for longer contigs with more restriction sites and higher abundances.
Therefore, we expect that the magnitude of the normalized spurious contacts
by the factors of explicit biases to be significantly smaller than that of the nor-
malized valid contacts. Thus, a basic idea is to discard the normalized contacts
whose values are less than a selected threshold as spurious contacts [20]. How-
ever, determining the threshold is extremely challenging. Based on our HiCzin
normalization model, we develop a hybrid statistical method to detect spurious

contacts and determine thresholds (see Methods).

2.5 Applying the HiCzin model to the M-Y samples

To fit the HiCzin model, samples of the intra-species contacts were generated
using TAXAassign!, which assigned 3,441 (55.5%) contigs to the known ref-
erence genomes in the NCBI nt database (see Methods). These 3,441 contigs

were assigned to 10 species by TAXAassign (Supplementary Material: Figure

Lhttps://github.com/umerijaz/TAX Aassign
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Figure 2: Comparison of (a) the raw counts of spurious contacts and valid
contacts, (b) the number of restriction sites of spurious contacts and valid con-
tacts, (c) the length of spurious contacts and valid contacts, (d) the coverage of
spurious contacts and valid contacts.
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S2). We compared the taxonomy assignment results by TAXAassign with the
corresponding true species identities obtained by BLASTn. Only 21 labels were
different, indicating the high precision of taxonomy assignments at the species
level by TAXAassign. Then, taking advantage of these labeled contigs, we gen-
erated a relationship of intra-species pairs by pairwise combining contigs from
the same species, and corresponding contacts were obtained as sample data to
fit the HiCzin model. A total of 1,492,856 samples of the intra-species contacts

were generated.

All sample data were then utilized to fit the HiCzin model. We compared our
model with naive normalization methods, the two-stage normalization method
in Bin3C and the classical negative binomial regression model. To simplify the
notation, we denote naive normalization methods by site, length, and coverage
as Naive Site, Naive Length, and Naive Coverage, and denote the two-stage
normalization method in Bin3C and the classical negative binomial regression

model as Bin3C_Norm and Naive NB.

We first calculated the Pearson correlation coefficients between normalized
valid contacts and the product of each of the three factors of explicit biases to
gauge the bias effects (Table 1). The Naive Site and Naive Length approaches
increased the Pearson correlation coefficients between valid contacts and the
product of the coverage from 0.184 to 0.559 and 0.694; the Naive Coverage
approach increased the correlation coefficient between valid contacts and the
product of the site from 0.429 to 0.515 and increased the correlation coefficient
between valid contacts and the product of the length from 0.400 to 0.481. These
results proved that the naive normalization methods only corrected part of ex-
plicit biases, and the unnormalized factors of explicit biases showed even higher
correlation with Hi-C contact maps. In contrast, the two-stage normalization

method in Bin3C decreased all three correlation coefficients to 0.024, 0.025,
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Table 1: Pearson correlation coefficients (absolute value) between normalized
valid contacts and the product of each of the three factors of explicit biases.

site length coverage
Raw Contacts 0.429 0.400 0.184
Naive Site 0.004 0.004 0.559
Naive Length 0.004 0.004 0.694
Naive Coverage 0.515 0.481 0.006
Bin3C_Norm 0.024 0.025 0.011
Naive NB 0.023 0.024 0.154
HiCzin 2x 1074 0.002 0.069

Table 2: Area under the discard-retain curve for different normalization meth-
ods. Higher AUDRC score indicates better performance in spurious contact
detection.

Normalization method AUDRC
Naive site & Bin3C_Norm 0.682
Naive length 0.712
Naive coverage 0.757
Naive NB 0.792
HiCzin 0.804

The optimal values of the results are in bold.

0.011, indicating that the matrix balancing algorithm can assist in correcting ex-
plicit biases to some extent. These three correlation coefficients were decreased
t0 0.023, 0.024, 0.154 using Naive NB, and further decreased to 2 x 1074, 0.002,
0.069 using HiCzin. Therefore, HiCzin achieved better performance than all

other normalization methods in removing explicit biases.

The other objective of metagenomic Hi-C normalization is to identify valid
contacts from all observed contacts. Although raw values of spurious contacts
were significantly smaller than those of valid contacts, the distribution of spuri-
ous contacts mixed with the distribution of valid contacts (Figure 3a), making
it challenging to separate spurious contacts from valid contacts. After normal-
ization, the distribution of normalized spurious contacts deviated considerably

to the left from the distribution of normalized valid contacts (Figure 3b), facil-
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itating the distinction from spurious contacts to valid contacts.

Therefore, we adopted our hybrid statistical approach based on the HiCzin
model to detecting and then discarding spurious contacts (see Methods). The
main procedure of our approach is to select thresholds of the enrichment score
and the p-value, respectively, and any contacts whose enrichment score or p-
value are below the thresholds would be identified as spurious contacts. A per-
centage reflecting the acceptable fraction of losses of the valid contacts was pre-
selected and thresholds were determined such that less than the preselected per-
centage of valid contacts in sample data were incorrectly identified as spurious
contacts. Noticeably, both thresholds increased with the preselected percent-
age, and larger thresholds could detect more spurious contacts while incorrectly
identifying a higher number of valid contacts. Though there existed a ‘trade-
off’, the proportion of discarded spurious contacts increased much faster than
that of discarded valid contacts (Figure 3c¢), indicating that we could remove
a large fraction of spurious contacts while keeping most of the valid contacts.
For instance, if we set the preselected percentage as default 10%, which means
that we could withstand the losses of around 10% of valid contacts, about 60%
of spurious contacts were detected while only 13% of valid contacts were incor-
rectly removed. In addition, the percentiles of the enrichment score and p-value
of the valid contacts in our sample data were indeed close to those in the whole
data (Figure 3d,e), ensuring that our method to determine the thresholds by
utilizing the sample data could make the proportion of incorrectly discarded
valid contacts in the whole data under control. These results supported the

feasibility of our spurious contact detection method.

According to our basic idea of spurious contact detection, naive normaliza-
tion methods and the Naive NB method could also be used to detect spurious

contacts by regarding normalized contacts less than certain thresholds as spuri-
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Figure 3: (a) Comparison of the distribution of raw valid contacts and raw spu-
rious contacts. (b) Comparison of the distribution of normalized valid contacts
and normalized spurious contacts by HiCzin. (c) The proportions of discarded
valid contacts and discarded spurious contacts. (d) The percentiles of the en-
richment score of the valid contacts in the sample and in the whole data. (e)
The percentiles of the p-value of the valid contacts in the sample and in the
whole data. (f) The discard-retain curve using all sample data.



14 2 RESULT

ous contacts. We employed the same technique proposed in our hybrid statistical
spurious contact detection method to determine thresholds for other normaliza-
tion methods. For the two-stage normalization method in Bin3C, as the matrix
balancing algorithm in the second step may amplify the influence of certain spu-
rious contacts, it is better to remove the noise of spurious contacts after the first
step correction. Since the first stage of Bin3C_Norm is equivalent to the Naive
Site approach, the spurious contact detection result of Bin3C_Norm is the same
as that of the Naive Site approach. To evaluate the capability of normalization
methods to detect spurious contacts while retaining the valid contacts, we de-
sign the discard-retain curve (DR curve). In the graph of a DR curve, the x-axis
is the proportion of discarded spurious contacts among all spurious contacts in
the whole data, and the y-axis represents the proportion of retained valid con-
tacts within all valid contacts in the whole data. We denote the area under the
DR curve as AUDRC. Larger AUDRC indicates that the normalization method
can retain more valid contacts while discard more spurious contacts. Therefore,
we plotted the DR curve to evaluate the performance of different normalization
methods (Figure 3f). AUDRC was subsequently calculated for each of the nor-
malization methods (Table 2), and our HiCzin model achieved the best result

with respect to AUDRC.

2.6 Evaluation of the impact of the number of labeled

contigs and detected species on the HiCzin model

The above results showed that the HiCzin model achieved outstanding perfor-
mance in Hi-C normalization and spurious contact detection by utilizing all
sample data to fit the normalization model. Around half of the contigs cor-
responding to 10 out of 13 species were labeled by TAXAassign, providing us

with enough samples to fit the model. However, in real situations, we sometimes
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Table 3: Number of remaining species, number of remaining contigs and the
proportion of assigned contigs in each step.

# of remaining species # of remaining contigs Proportion of assigned contigs

6 2156 34%
) 1122 18%
4 994 10%
3 369 6%

Note: # of remaining species and remaining contigs mean the number of remaining species
and remaining contigs.

can only label a small number of contigs at the species level and detect a low

quantity of species.

To explore how the HiCzin model performs with only a small number of
labeled contigs and detected species, we consequently removed labeled contigs
belonging to certain species step by step. Specifically, we first removed three
species (S.mikatae, P. pastoris, L. kluyveri) to which only a small number of
contigs ( <20 ) were assigned. The remaining seven species were sorted in
descending order by the number of contigs assigned to these seven species. Then,
we removed the labeled contigs of one species at a time in the above species’
order until fewer than 10% of all contigs remained. In this way, we could simulate
both situations where some species are unknown, and only a small number of

contigs can be labeled (Table 3).

Although the performance of normalization and spurious contact detection
became slightly worse as the number of labeled contigs and detected species
decreased, the results were still better than the naive normalization methods
and the two-stage normalization methods in Bin3C for the different sample
sizes (Table 4). The HiCzin model also obtained better performance in the
spurious contact detection (Figure 4). Therefore, the HiCzin model can achieve
good results even when the number of labeled contigs and detected species are

relatively low.
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Table 4: Pearson correlation coefficients (absolute value) between normalized
valid contacts and the product of each of the three factors of explicit biases and
AUDRC for different proportions of labeled contigs.

Proportion of labeled contigs site length coverage AUDRC

34% 0.004 0.006 0.059 0.801
18% 0.003 0.005 0.099 0.793
10% 0.011 0.010 0.065 0.771
6% 0.014 0.014 0.037 0.794
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Figure 4: The discard-retain curve using (a) 6 species and 2156 contigs, (b) 5
species and 1122 contigs, (c) 4 species and 594 contigs, (d) 3 species and 369
contigs.
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2.7 Generalizing the HiCzin model

Our HiCzin model can be generalized to consider different independent variables
and do normalization without labeled contigs (see Methods). Here, we explore

three significant scenarios.

2.7.1 HiCzin LC

In some real situations, the specific enzymes utilized in Hi-C experiments are
unknown; thus only the length and the coverage of contigs can serve as inde-

pendent variables.

2.7.2 HiCzin_GC

GC-content is sometimes considered as one source of biases in Hi-C experiments
[10, 22]. Therefore, we explored the influence of adding GC-content as a new
predictor variable to our HiCzin model, though we did not observe a strong
correlation between raw valid contacts and GC-content (Pearson correlation

coefficient: 0.032) for the Hi-C contact maps of the synthetic M-Y samples.

2.7.3 TUnlabeled HiCzin

In the real application of HiCzin, some extreme difficulties may be encoun-
tered. For example, there may not be enough computational resources to run
TAXAassign or an extremely small number of contigs can be labeled. To solve
these problems, a HiCzin normalization mode without labeled contigs (Unla-

beled HiCzin) is designed.

2.7.4 Applying the generalized HiCzin models on the M-Y samples

We applied these three generalized HiCzin models on the M-Y samples (Table 5).

For the HiCzin_LC and HiCzin_GC, the Pearson correlation coefficients between
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Table 5: Pearson correlation coefficients (absolute value) between normalized
valid contacts and the product of each of the three factors of explicit biases,
and AUDRC for different generalized HiCzin models.

site length coverage AUDRC
HiCzin_LC 0.006 0.002 0.097 0.812
HiCzin_GC 0.008 0.003 0.131 0.816
Unlabeled HiCzin 0.114 0.105 0.079

normalized contact counts and the three factors increased compared to those of
the HiCzin in Table 1, though the AUDRC was slightly higher than that of the
HiCzin in Table 2. For the unlabeled HiCzin, detecting spurious contacts was
tough as it was challenging to determine thresholds without specific samples of
the intra-species contacts. Although the normalization results were worse than
those of the HiCzin model using labeled contigs, unlabeled mode of HiCzin still
performed better than naive normalization methods and it is more applicable
and requires fewer computational resources than the HiCzin model using labeled

contigs.

2.8 Clustering of contigs by the Louvain algortihm

The Louvain algorithm has been widely employed to cluster contigs based on
metagenomic Hi-C data [2, 17]. We applied this algorithm to the Hi-C data
normalized by different methods. We set the preselected percentage of maximum
incorrectly identified valid contacts in sample data as 10% for all HiCzin models
and regarded groups above 500 kbp as effective bins to evaluate the clustering
performance.

As shown in Table 6, the original HiCzin model achieved the best clustering
performance by the Louvian algorithm. Although the matrix balancing algo-
rithm in the second stage could improve the clustering quality, Bin3C_Norm
grouped much fewer contigs compared to Naive Site. The Naive NB approach

also grouped a relatively small number of contigs. The performance of both
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Table 6: Comparison of the clustering results of contigs using the Louvain
Algorithm.

# of contigs F-score ARI NMI

Naive Site 5997 0.763 0.724 0.783
Naive Length 6092 0.791 0.758 0.788
Naive Coverage 6131 0.752 0.706 0.791
Bin3C_Norm 5266 0.791 0.761 0.793
Naive NB 4783 0.783 0.748 0.764
Unlabeled HiCzin 6105 0.794 0.761 0.806
HiCzin_L.C 6044 0.802 0.771 0.807
HiCzin_GC 6039 0.799 0.767 0.803
HiCzin 6065 0.807 0.776 0.810

Note: # of contigs represents the number of contigs in groups; F-score, ARI, and NMI are
Fowlkes Mallows score, Adjusted Rand Index, and Normalized Mutual Information, respec-
tively. The optimal values of the results are in bold.

correcting biases and clustering by HiCzin_GC was worse than that of the orig-
inal HiCzin model; hence it is not necessary to consider the GC-content in
the regression process. One potential explanation for the poor performance of
HiCzin_GC is that the genomes in the community have similar GC-content and
the Hi-C contact maps are not dependent on GC-content. The clustering re-
sults of the HiCzin_LC and the unlabeled HiCzin were significantly better than
all naive normalization methods and the two-stage normalization method in
Bin3C, indicating that our normalization model still performed well when the
restriction enzymes of Hi-C experiments or the labels of any contigs were un-
known. These results ensure that the HiCzin models are widely applicable with

excellent normalization effects under different circumstances.
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Figure 5: Workflow of HiCzin utilized in metagenomic Hi-C analysis
3 Methods

3.1 Framework of applying HiCzin to metagenomic Hi-C

experiments

The workflow of HiCzin utilized in the metagenomic Hi-C analysis is shown
in Figure 5. In metagenomic Hi-C experiments, short reads are obtained by
shotgun sequencing from microbial communities. At the same time, metage-
nomic Hi-C sequencing reads are generated from the same sample. Contigs
are assembled from the shotgun short reads and Hi-C reads are mapped to the
assembled contigs to construct raw contact maps consisting of the number of
Hi-C reads mapped to contig pairs. Then, HiCzin is employed to normalize raw
contact maps and discard spurious contacts. Finally, downstream analysis can

be conducted on the basis of normalized contact maps by HiCzin.

3.2 Calculating the coverage of assembled contigs

The coverage of contigs was computed using MetaBAT [12] v2.12.5 script: ‘jgi

_summarize_bam_contig_depths’.

3.3 Applying TAX Aassign to generate sample data of the

intra-species contacts

The taxonomic assignment of contigs was resolved using NCBI’s Taxonomy and

its nt database by TAXAassign(v0.4) with parameters ‘-p -¢ 20 -r 10 -m 98
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-q 98 -t 95 -a “60,70,80,95,95,98” -f’. Assignment results with ‘unclassified’ at
the species level were discarded, and only deterministic results of taxonomic
assignment at the species level were kept. Intra-species pairs were subsequently
generated by pairwise combining contigs assigned to the same species, and cor-

responding contacts were treated as samples to fit the HiCzin model.

3.4 Normalization via the HiCzin model

Based on the zero-inflated generalized linear mixed framework [14], the HiCzin
is a two-component mixture model combining a mass point at zero with a count
distribution. Specifically, within the intra-species contacts, zero contacts may
come from two sources: the count distribution, showing that these zeros are
observations of the population of the intra-species contacts and no interactions
happened, or the zero mass points, indicating that Hi-C interactions happened,
but the observations of the interactions were lost due to certain kinds of exper-
imental noise.

Formally, denote the population of the intra-species contacts as a random
variable Y. The basic assumption of the HiCzin model is that Y follows the
negative binomial distribution. Let m;; denote the probability of unobserved
contacts and Z;; denote a zero-inflated random variable of the intra-species
contacts between the ith contig and the jth contig. Then the random variable

Z;j is given by

Zij ~0, with probability ;;,

~ NB(,U,”, gij)a with probablhty 1-— Tij s (1)

where NB(p;j,0;;) is negative binomial distribution with mean p;; and shape
parameter 6;;.

Therefore, the zero-inflated density of Z;; is the result of mixing a negative
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binomial distribution and a degenerate distribution at zero as

0,
mij + (1 - Wij)(mj#eij )%, ) zij =0 @)
Wi gl
v = Zij:1727"'7

Pr(Zij = zi5) =

(1— ..)F(Z1.7‘+97:.7‘) .
)T (045) ziz! (Mij+9ij)zq,j+91,j’

where I'(+) is the gamma function. The random variable Z;; will be degenerated

to negative binomial distribution when m;; = 0.

We assume that the parameters p;; and m;; depend on the three factors of
explicit biases while 6;; is an independent parameter as a constant parameter 6
in our model. Define si, [, and ¢ as the number of restriction sites, the length
and the coverage of the kth contig, respectively. As Lord et al. [16] suggested,
link functions in generalized linear models are used to model the dependence of
parameters f;; and m;; on the three factors of explicit biases. To be specific, we

propose that p;; is related to three factors by the logarithmic link, i.e.,
log(pij) = Bo + Bs - log(si - s5) + By -log(li - 1j) + Be - log(ci - ¢j).  (3)

We also propose that 7;; is related to three factors by the logistic link, i.e.,

7Tij
1-— g

log( ) =0 + s - log(s; - 85) + v - log(ls - Ij) + e - log(ei - ¢5).  (4)

Let pz,. denote the mean of random variable Z;;. Then, the corresponding
ij J

regression equation for pz,; is

log(pz,,;) = log(1 — ;) + Bo + Bs - log(si - 55)

+ By -log(li - 1) + Be - log(c; - ¢5). (5)

The overall model parameters /8 = (5075376%/80)’ Y= (’YOa’strylv’YC) and

additional dispersion parameter 6 can be estimated by maximum likelihood



3.5 Spurious contact detection by a hybrid statistical method based on HiCzin23

(ML) using the latest R package ‘glmmTMB’ [5].

Finally, the residuals of the counting part are the normalized metagenomic

Hi-C contacts, i.e.,
€ij = Zij/ llij- (6)

Hence, given sample data of the intra-species contacts, our HiCzin model
can integrate all three factors of explicit biases. The influence of unobserved in-
teractions is also taken into account simultaneously to ‘unbiased’ the estimation

and prediction.

3.5 Spurious contact detection by a hybrid statistical method
based on HiCzin

From the HiCzin model, the intra-species contact Y;; follows the negative bi-
nomial distribution with mean f;; and shape 9. Given any contig pairs with
nonzero contacts, we denote the value of the observed raw contacts as O;; and
the expected contacts under condition that the two contigs come from the same
species as E;j, where E;; = E(Y;;) = ﬁl\j We define the enrichment score as
Sij =10g(0y;/Eyj).

Under our statistical framework, we also design a hypothesis test to detect
spurious contacts. Since observations of Hi-C interactions need to be protected,
the null hypothesis of the test is that O;; belongs to the intra-species contacts
while the alternative hypothesis is that O;; belongs to the spurious inter-species
contacts. We directly regard O;; as the test statistic and O;; ~ Y;; under null

hypothesis. We choose one-tailed test and calculate the p-value of O;; as

pij = Pr(Yy; < Oy). (7)
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Then, we develop a hybrid statistical method to detect spurious contacts.
We choose a threshold ¢ for the enrichment score and a significance level « for
the hypothesis test. Contacts of contig pairs whose enrichment score is less
than t or p-value is less than « will be regarded as spurious contacts and then

discarded.

To determine the threshold and the significance level, we assume that the
percentiles of the enrichment score and the p-value of the valid contacts in our
sample data are similar to those in the whole data and preselect a percentage
(default 10%) reflecting the acceptable fraction of losses of the valid contacts.
Taking advantage of our generated sample data of the intra-species contact, we
can determine the threshold ¢ and significance level « such that less than the
preselected percentage of valid contacts in sample data are incorrectly identified
as spurious contacts for both methods, respectively. Based on our assumption,
we suppose that around the same percentage of valid contacts in the whole data
might be mistakenly discarded. Therefore, thresholds can be strictly restricted
to detect most of spurious contacts while avoid incorrectly identifying a large

proportion of valid contacts in the whole data.

3.6 Generalizing the HiCzin by selecting different inde-

pendent variables

Let {xk}zzl denote the set of factors. Then, we modify the regression equation

in (5) as

log(pz,,) =log(1 — mi;) + Bo + Y _ Br - log(af - ), (8)
k=1
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where 7;; in (4) is modified as

7'('7;]'

log( ) =0+ Y v - log(af - ). 9)

1= k=1

Then, ‘glmmTMB’ [5] package is employed to estimate {8k }7_q, {V%}r—os

and 6, and residuals of the counting part are considered as normalized contacts.

3.7 HiCzin normalization without labeled contigs

As samples of the intra-species contacts cannot be obtained in some scenarios,
we just regard all nonzero raw contacts as our sample data. Although these
samples contain both valid contacts and spurious contacts, the number of valid
contacts is supposed to be much larger than that of spurious contact and thus we
suppose that spurious contacts will not result in significant biases in parameter
estimation. Moreover, as we don’t have zero contacts to fit the zero-inflated

part, one option to solve this problem is to set m;; as a constant parameter, i.e.,

7T'ij

logit(m;;) = log( ) =7 (10)

1_7Tij

Unknown parameters are estimated by maximum likelihood using ‘glmmTMB’

[5] package and residuals are considered as normalized contacts.

4 Conclusions and Discussions

We put forward two types of experimental biases for metagenomic Hi-C data.
Explicit biases include the number of restriction sites, contig length, and con-
tig coverage and implicit biases include unobserved interactions and spurious
inter-species contacts. Both types of biases could be obviously observed in the

metagenomic yeast samples. Naive normalization methods could only correct
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part of explicit biases, and the unnormalized factors of explicit biases showed
even higher correlation with Hi-C contact maps. Based on the basic assump-
tion that the population of the intra-species contacts follows the negative bi-
nomial distribution, we have presented HiCzin, a parametric model applying
zero-inflated negative binomial regression framework to normalize metagenomic
Hi-C data, and have introduced a hybrid statistical method to detect and re-
move the spurious inter-species contacts. The HiCzin model takes the impact of
unobserved interactions into account. We have shown that normalized metage-
nomic Hi-C contact maps by HiCzin lead to lower biases, higher ability to detect
spurious contacts, and better metagenomic contig clustering performance, com-
pared with all naive methods and two-stage normalization method in Bin3C.
In case that the specific enzymes utilized in Hi-C experiments are unknown or
there are not enough computational resources to run TAXAassign, we come
up with the generalized HiCzin by only selecting the length and the coverage
of contigs as predictor variables, and a HiCzin mode without labeled contigs.
We have shown that these two models also performed well in normalization,
spurious contact detection and metagenomic contig clustering. Although we
can remove a large fraction of spurious contacts by our hybrid statistical ap-
proach, it is inevitable to lose a small quantity of useful valid contacts. Directly
modeling the spurious contacts may separate the spurious contacts from valid
contacts even better. As the Hi-C technique will be increasingly utilized upon
the metagenomics domain in the near future, we expect that the normalization
model we propose here can facilitate the downstream analysis, and improve
results in retrieving metagenome-assembled genomes, identifying virus-host in-
teractions, tracking horizontal gene transfer and all other areas making use of

metagenomic Hi-C data.
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