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Abstract: High-throughput chromosome conformation capture

(Hi-C) has recently been applied to natural microbial communities

and revealed great potential to study multiple genomes simultane-

ously. Several extraneous factors may influence chromosomal con-

tacts rendering the normalization of Hi-C contact maps essential

for downstream analyses. However, the current paucity of metage-

nomic Hi-C normalization methods and the ignorance for spurious

inter-species contacts weaken the interpretability of the data. Here,

we report on two types of biases in metagenomic Hi-C experiments:

explicit biases and implicit biases, and introduce HiCzin, a para-
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metric model to correct both types of biases and remove spurious

inter-species contacts. We demonstrate that the normalized metage-

nomic Hi-C contact maps by HiCzin result in lower biases, higher

capability to detect spurious contacts, and better performance in

metagenomic contig clustering. The HiCzin software is available at

https://github.com/dyxstat/HiCzin.

1 Introduction

High-throughput chromosome conformation capture (Hi-C) is a DNA proxim-

ity ligation approach with many applications in the investigation of genomic

structures, DNA interactions, and even characterizing virus-host interactions

from metagenomes [4, 15]. In Hi-C experiments, chimeric junctions are formed

between pieces of DNAs in close proximity within cells and then subjected

to paired-end sequencing generating millions of paired-end reads linking DNA

fragments [15]. The number of reads connecting two DNA fragments is sig-

nificantly related to the probability of contact between genomic loci in the

three-dimensional structure at a fixed time point. Hi-C technique reveals the

compartment property of the mammalian genomes [15], identifies topologically

associated domains (TADs) [8], and reconstructs haplotypes [19].

Most recently, the Hi-C technique has been applied to the metagenomics

domain (metagenomic Hi-C), and a series of Hi-C experiments have been con-

ducted for microbial communities rather than a single species [7, 18]. Combined

with the traditional shotgun sequencing, metagenomic Hi-C technique has dis-

played a powerful ability to probe virus–host interactions [4], simultaneously re-

trieve multiple genomes [6], deconvolute assembled contigs from whole genome

shotgun (WGS) sequencing data into genome bins in both simulated and real

microbial communities [2], and track horizontal gene transfer [21].
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However, there exist strong experimental biases for the Hi-C interaction

counts [22]; therefore, normalizing Hi-C data is essential to remove these biases.

Though multiple strategies have been put forward [10, 11], most of these nor-

malization methods aim to normalize Hi-C data derived from a single species,

mainly human cells, and are not suitable to be applied on metagenomic Hi-C

data from complex communities. This is mainly because potential factors of

biases for metagenomic Hi-C data are different from those for Hi-C data within

individual species. Additionally, it is not valid to theoretically assume all contigs

should have equal visibility in metagenomic Hi-C data as the relative abundance

levels of the different species can vary. Several relatively simple metagenomic

Hi-C normalization methods have been developed. ProxiMeta [18] applied a

normalization to the raw Hi-C counts by accounting for the estimated abun-

dance of the contigs, and further took the number of restriction sites on the

contigs into consideration [20]. As a proprietary metagenomic genome binning

platform without open-source pipeline, ProxiMeta did not clarify the normaliza-

tion algorithms in detail. Beitel et al. [3] divided raw interaction counts by the

product of the length of two contigs. MetaTOR [2] normalized raw counts by the

geometric mean of the contigs’ coverage. Metaphase [6] and Bin3C [7] divided

raw Hi-C counts by the product of the number of restriction sites and Bin3C

used the Knight-Ruiz algorithm [13] to construct a general doubly stochastic

matrix after the first step correction. We will show that these normalization

methods are not effective in removing all biases. Additionally, the biases of spu-

rious inter-species contacts are ignored for metagenomic Hi-C data by all these

normalization methods, considerably weakening the interpretability of the Hi-C

data [20].

Here we first comprehensively discuss potential experimental biases for metage-

nomic Hi-C data, and then propose HiCzin, a method to normalize metagenomic
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Hi-C data based on the zero-inflated negative binomial regression frameworks

[23]. We also develop a hybrid statistical method to detect spurious inter-species

contacts. We show that the normalized metagenomic Hi-C contact maps by

HiCzin lead to lower biases, higher ability to detect spurious contacts, and bet-

ter performance in metagenomic contig clustering on the published metagenomic

Hi-C dataset.

2 Result

2.1 Source of biases in metagenomic Hi-C experiments

In addition to chromosomal contacts of interest, several other factors unrelated

to chromosomal contacts can also influence the number of Hi-C interactions be-

tween contigs [22]. We refer to such factors as biases. We report on two kinds of

biases with substantial influences on metagenomic Hi-C contact maps: explicit

biases and implicit biases. Explicit biases include three potential factors: i)

the number of enzymatic restriction sites on contigs, ii) contig length, and iii)

contig coverage [3, 6, 18], all of which can be observed. Implicit biases include

unobserved interactions and spurious inter-species contacts. Unobserved inter-

actions are chimerical DNA fragments that are missed due to the factors such

as the mappability of contigs and in vivo constraints on accessibility. Spurious

inter-species contacts arise from the ligation of DNA fragments between closely

related species [20]. As implicit biases are unobservable, it is challenging to

detect and correct implicit biases.
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2.2 Analyses of experimental biases in synthetic metage-

nomic yeast samples

We analyzed metagenomic yeast (M-Y) samples, consisting of 16 yeast strains

(BioProject : PRJNA245328) [6]. After processing the raw WGS and Hi-C

reads, we generated raw Hi-C contact maps for 6,196 assembled contigs (Sup-

plementary Material). Reference genomes of these 16 yeast strains were down-

loaded (Supplementary Material: Table S1). To determine the true species

identity of the assembled contigs, contigs were aligned to reference genomes at

the species level by BLASTn [1] (Supplementary Material). Thirty-seven con-

tigs (0.6%) could not be aligned to reference genomes and were not considered

in the following analyses (Supplementary Material: Figure S1).

According to the alignment results to the reference genomes, we refer to

contig pairs from the same species and different species as intra-species pairs

and inter-species pairs, respectively. Interaction counts of intra-species pairs

and inter-species pairs are defined as valid contacts and spurious contacts, re-

spectively. In particular, we denote zero contacts if no interaction was observed

between intra-species pairs; hence the intra-species contacts, corresponding to

intra-species pairs, are composed of valid contacts and zero contacts. Valid con-

tacts imply a high probability of contig pair’s belonging to the same genome,

while spurious contacts confound the interpretation of the Hi-C data.

Raw interaction counts were enriched between pairs of contigs with a high

number of restriction sites, long contigs, and/or contigs with high coverage (Fig-

ure 1), which can be explained by the following reasons. Longer contigs may

have higher ligation efficiencies with other contigs than shorter contigs, more re-

striction sites are likely to increase the probability of enzymatic cuts within DNA

fragments, and higher coverages, representing higher concentration of contigs,

can result in more Hi-C interactions between contigs. The Pearson correlation
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Figure 1: Relationship between raw interaction counts and the product of the
number of restriction sites, length, and coverage between contig pairs.

coefficients between raw valid contacts and the product of the number of re-

striction sites, the length and the coverage for each pair of contigs were 0.429,

0.400, and 0.184, respectively, demonstrating that these three factors were in-

deed highly correlated with valid contacts.

As for implicit biases, one remarkable phenomenon for intra-species contacts

was the presence of excess zeros, which means zero contacts account for a large

proportion within intra-species contacts. The number of valid contacts (i.e.,

nonzero intra-species contacts) only made up 14.9% within all intra-species con-

tacts, suggesting the potential existence of unobserved interactions with high

probability due to the experimental noise. The number of spurious contacts

made up 25.5% of all nonzero contacts, which could not be neglected for the

M-Y samples.

2.3 Normalization methods in the publicly available metage-

nomic Hi-C analysis pipelines

Because of the existence of aforementioned experimental biases, it is necessary

to normalize the raw Hi-C contacts before downstream analysis, such as cluster-

ing and tracking virus-host interactions. Most of the current available pipelines

divided the raw Hi-C interactions by the product of one factor of explicit biases
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to normalize raw Hi-C contacts, which we refer to as naive normalization meth-

ods [2, 3, 18]. These naive normalization methods only corrected part of explicit

biases, and the unnormalized factors of explicit biases might still be highly cor-

related with Hi-C contact maps. As for the two-stage normalization method in

Bin3C [7], equal visibility for all regions is a basic theoretical assumption for

utilizing the matrix balancing algorithm they use to recover normalized Hi-C

matrices [11], yet this assumption is not satisfied for metagenomic assembled

contigs with huge differences in length and abundance. Moreover, all these nor-

malization methods ignored the influence of implicit biases and did not attempt

to detect and remove the spurious inter-species contacts. Therefore, it is imper-

ative to develop new normalization methods to overcome these shortcomings.

2.4 Removing explicit biases and spurious contacts using

zero-inflated negative binomial regression

The Poisson and negative binomial regression models are widely used in fitting

count data and have been successfully employed in fitting Hi-C interactions of

human cells [10]. Therefore, there is potential to apply frameworks based on

Poisson or negative binomial regression to normalize metagenomic Hi-C data.

Here we model the population of the intra-species contacts using the negative

binomial distribution rather than the Poisson distribution because Hi-C data

are always over-dispersed [10]. In the classical negative binomial regression

model, we can fit the model given sample data of the intra-species contacts

by regarding factors of biases and intra-species contacts as predictor variables

and the response variable, respectively. Then, the residuals of this conventional

model serve as normalized contacts.

However, some underlying interactions may not be observed in Hi-C ex-

periments due to the limited quantity of Hi-C reads and problems in mapping
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Hi-C reads to the contigs. Ignoring such influences may lead to serious biased

estimation and prediction. Additionally, although classical negative binomial

models can capture the property of over-dispersion, they are not sufficient for

modeling the excess zeros observed in Hi-C contact maps. To solve these prob-

lems, we developed HiCzin, a novel metagenomic Hi-C normalization method

based on zero-inflated negative binomial regression frameworks [23], combining

the counting distribution of the intra-species contacts with a mass distribution

of unobserved contacts. The residues of the counting part serve as normalized

contacts (see Methods).

Compared with raw valid contacts, the average value of raw spurious con-

tacts was smaller (Figure 2a), while the average number of restriction sites,

length, and coverage of contigs were significantly larger (Figure 2b,c,d). These

evidences indicated that spurious inter-species contacts were more likely to be

generated for longer contigs with more restriction sites and higher abundances.

Therefore, we expect that the magnitude of the normalized spurious contacts

by the factors of explicit biases to be significantly smaller than that of the nor-

malized valid contacts. Thus, a basic idea is to discard the normalized contacts

whose values are less than a selected threshold as spurious contacts [20]. How-

ever, determining the threshold is extremely challenging. Based on our HiCzin

normalization model, we develop a hybrid statistical method to detect spurious

contacts and determine thresholds (see Methods).

2.5 Applying the HiCzin model to the M-Y samples

To fit the HiCzin model, samples of the intra-species contacts were generated

using TAXAassign1, which assigned 3,441 (55.5%) contigs to the known ref-

erence genomes in the NCBI nt database (see Methods). These 3,441 contigs

were assigned to 10 species by TAXAassign (Supplementary Material: Figure

1https://github.com/umerijaz/TAXAassign
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(a) (b)

(c) (d)

Figure 2: Comparison of (a) the raw counts of spurious contacts and valid
contacts, (b) the number of restriction sites of spurious contacts and valid con-
tacts, (c) the length of spurious contacts and valid contacts, (d) the coverage of
spurious contacts and valid contacts.
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S2). We compared the taxonomy assignment results by TAXAassign with the

corresponding true species identities obtained by BLASTn. Only 21 labels were

different, indicating the high precision of taxonomy assignments at the species

level by TAXAassign. Then, taking advantage of these labeled contigs, we gen-

erated a relationship of intra-species pairs by pairwise combining contigs from

the same species, and corresponding contacts were obtained as sample data to

fit the HiCzin model. A total of 1,492,856 samples of the intra-species contacts

were generated.

All sample data were then utilized to fit the HiCzin model. We compared our

model with naive normalization methods, the two-stage normalization method

in Bin3C and the classical negative binomial regression model. To simplify the

notation, we denote naive normalization methods by site, length, and coverage

as Naive Site, Naive Length, and Naive Coverage, and denote the two-stage

normalization method in Bin3C and the classical negative binomial regression

model as Bin3C Norm and Naive NB.

We first calculated the Pearson correlation coefficients between normalized

valid contacts and the product of each of the three factors of explicit biases to

gauge the bias effects (Table 1). The Naive Site and Naive Length approaches

increased the Pearson correlation coefficients between valid contacts and the

product of the coverage from 0.184 to 0.559 and 0.694; the Naive Coverage

approach increased the correlation coefficient between valid contacts and the

product of the site from 0.429 to 0.515 and increased the correlation coefficient

between valid contacts and the product of the length from 0.400 to 0.481. These

results proved that the naive normalization methods only corrected part of ex-

plicit biases, and the unnormalized factors of explicit biases showed even higher

correlation with Hi-C contact maps. In contrast, the two-stage normalization

method in Bin3C decreased all three correlation coefficients to 0.024, 0.025,
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Table 1: Pearson correlation coefficients (absolute value) between normalized
valid contacts and the product of each of the three factors of explicit biases.

site length coverage

Raw Contacts 0.429 0.400 0.184
Naive Site 0.004 0.004 0.559

Naive Length 0.004 0.004 0.694
Naive Coverage 0.515 0.481 0.006

Bin3C Norm 0.024 0.025 0.011
Naive NB 0.023 0.024 0.154

HiCzin 2× 10−4 0.002 0.069

Table 2: Area under the discard-retain curve for different normalization meth-
ods. Higher AUDRC score indicates better performance in spurious contact
detection.

Normalization method AUDRC

Naive site & Bin3C Norm 0.682
Naive length 0.712

Naive coverage 0.757
Naive NB 0.792

HiCzin 0.804

The optimal values of the results are in bold.

0.011, indicating that the matrix balancing algorithm can assist in correcting ex-

plicit biases to some extent. These three correlation coefficients were decreased

to 0.023, 0.024, 0.154 using Naive NB, and further decreased to 2×10−4, 0.002,

0.069 using HiCzin. Therefore, HiCzin achieved better performance than all

other normalization methods in removing explicit biases.

The other objective of metagenomic Hi-C normalization is to identify valid

contacts from all observed contacts. Although raw values of spurious contacts

were significantly smaller than those of valid contacts, the distribution of spuri-

ous contacts mixed with the distribution of valid contacts (Figure 3a), making

it challenging to separate spurious contacts from valid contacts. After normal-

ization, the distribution of normalized spurious contacts deviated considerably

to the left from the distribution of normalized valid contacts (Figure 3b), facil-
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itating the distinction from spurious contacts to valid contacts.

Therefore, we adopted our hybrid statistical approach based on the HiCzin

model to detecting and then discarding spurious contacts (see Methods). The

main procedure of our approach is to select thresholds of the enrichment score

and the p-value, respectively, and any contacts whose enrichment score or p-

value are below the thresholds would be identified as spurious contacts. A per-

centage reflecting the acceptable fraction of losses of the valid contacts was pre-

selected and thresholds were determined such that less than the preselected per-

centage of valid contacts in sample data were incorrectly identified as spurious

contacts. Noticeably, both thresholds increased with the preselected percent-

age, and larger thresholds could detect more spurious contacts while incorrectly

identifying a higher number of valid contacts. Though there existed a ‘trade-

off’, the proportion of discarded spurious contacts increased much faster than

that of discarded valid contacts (Figure 3c), indicating that we could remove

a large fraction of spurious contacts while keeping most of the valid contacts.

For instance, if we set the preselected percentage as default 10%, which means

that we could withstand the losses of around 10% of valid contacts, about 60%

of spurious contacts were detected while only 13% of valid contacts were incor-

rectly removed. In addition, the percentiles of the enrichment score and p-value

of the valid contacts in our sample data were indeed close to those in the whole

data (Figure 3d,e), ensuring that our method to determine the thresholds by

utilizing the sample data could make the proportion of incorrectly discarded

valid contacts in the whole data under control. These results supported the

feasibility of our spurious contact detection method.

According to our basic idea of spurious contact detection, naive normaliza-

tion methods and the Naive NB method could also be used to detect spurious

contacts by regarding normalized contacts less than certain thresholds as spuri-
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) Comparison of the distribution of raw valid contacts and raw spu-
rious contacts. (b) Comparison of the distribution of normalized valid contacts
and normalized spurious contacts by HiCzin. (c) The proportions of discarded
valid contacts and discarded spurious contacts. (d) The percentiles of the en-
richment score of the valid contacts in the sample and in the whole data. (e)
The percentiles of the p-value of the valid contacts in the sample and in the
whole data. (f) The discard-retain curve using all sample data.
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ous contacts. We employed the same technique proposed in our hybrid statistical

spurious contact detection method to determine thresholds for other normaliza-

tion methods. For the two-stage normalization method in Bin3C, as the matrix

balancing algorithm in the second step may amplify the influence of certain spu-

rious contacts, it is better to remove the noise of spurious contacts after the first

step correction. Since the first stage of Bin3C Norm is equivalent to the Naive

Site approach, the spurious contact detection result of Bin3C Norm is the same

as that of the Naive Site approach. To evaluate the capability of normalization

methods to detect spurious contacts while retaining the valid contacts, we de-

sign the discard-retain curve (DR curve). In the graph of a DR curve, the x-axis

is the proportion of discarded spurious contacts among all spurious contacts in

the whole data, and the y-axis represents the proportion of retained valid con-

tacts within all valid contacts in the whole data. We denote the area under the

DR curve as AUDRC. Larger AUDRC indicates that the normalization method

can retain more valid contacts while discard more spurious contacts. Therefore,

we plotted the DR curve to evaluate the performance of different normalization

methods (Figure 3f). AUDRC was subsequently calculated for each of the nor-

malization methods (Table 2), and our HiCzin model achieved the best result

with respect to AUDRC.

2.6 Evaluation of the impact of the number of labeled

contigs and detected species on the HiCzin model

The above results showed that the HiCzin model achieved outstanding perfor-

mance in Hi-C normalization and spurious contact detection by utilizing all

sample data to fit the normalization model. Around half of the contigs cor-

responding to 10 out of 13 species were labeled by TAXAassign, providing us

with enough samples to fit the model. However, in real situations, we sometimes
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Table 3: Number of remaining species, number of remaining contigs and the
proportion of assigned contigs in each step.

# of remaining species # of remaining contigs Proportion of assigned contigs

6 2156 34%
5 1122 18%
4 594 10%
3 369 6%

Note: # of remaining species and remaining contigs mean the number of remaining species
and remaining contigs.

can only label a small number of contigs at the species level and detect a low

quantity of species.

To explore how the HiCzin model performs with only a small number of

labeled contigs and detected species, we consequently removed labeled contigs

belonging to certain species step by step. Specifically, we first removed three

species (S.mikatae, P. pastoris, L. kluyveri) to which only a small number of

contigs ( <20 ) were assigned. The remaining seven species were sorted in

descending order by the number of contigs assigned to these seven species. Then,

we removed the labeled contigs of one species at a time in the above species’

order until fewer than 10% of all contigs remained. In this way, we could simulate

both situations where some species are unknown, and only a small number of

contigs can be labeled (Table 3).

Although the performance of normalization and spurious contact detection

became slightly worse as the number of labeled contigs and detected species

decreased, the results were still better than the naive normalization methods

and the two-stage normalization methods in Bin3C for the different sample

sizes (Table 4). The HiCzin model also obtained better performance in the

spurious contact detection (Figure 4). Therefore, the HiCzin model can achieve

good results even when the number of labeled contigs and detected species are

relatively low.
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Table 4: Pearson correlation coefficients (absolute value) between normalized
valid contacts and the product of each of the three factors of explicit biases and
AUDRC for different proportions of labeled contigs.

Proportion of labeled contigs site length coverage AUDRC

34% 0.004 0.006 0.059 0.801
18% 0.003 0.005 0.099 0.793
10% 0.011 0.010 0.065 0.771
6% 0.014 0.014 0.037 0.794

(a) (b)

(c) (d)

Figure 4: The discard-retain curve using (a) 6 species and 2156 contigs, (b) 5
species and 1122 contigs, (c) 4 species and 594 contigs, (d) 3 species and 369
contigs.
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2.7 Generalizing the HiCzin model

Our HiCzin model can be generalized to consider different independent variables

and do normalization without labeled contigs (see Methods). Here, we explore

three significant scenarios.

2.7.1 HiCzin LC

In some real situations, the specific enzymes utilized in Hi-C experiments are

unknown; thus only the length and the coverage of contigs can serve as inde-

pendent variables.

2.7.2 HiCzin GC

GC-content is sometimes considered as one source of biases in Hi-C experiments

[10, 22]. Therefore, we explored the influence of adding GC-content as a new

predictor variable to our HiCzin model, though we did not observe a strong

correlation between raw valid contacts and GC-content (Pearson correlation

coefficient: 0.032) for the Hi-C contact maps of the synthetic M-Y samples.

2.7.3 Unlabeled HiCzin

In the real application of HiCzin, some extreme difficulties may be encoun-

tered. For example, there may not be enough computational resources to run

TAXAassign or an extremely small number of contigs can be labeled. To solve

these problems, a HiCzin normalization mode without labeled contigs (Unla-

beled HiCzin) is designed.

2.7.4 Applying the generalized HiCzin models on the M-Y samples

We applied these three generalized HiCzin models on the M-Y samples (Table 5).

For the HiCzin LC and HiCzin GC, the Pearson correlation coefficients between
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Table 5: Pearson correlation coefficients (absolute value) between normalized
valid contacts and the product of each of the three factors of explicit biases,
and AUDRC for different generalized HiCzin models.

site length coverage AUDRC
HiCzin LC 0.006 0.002 0.097 0.812
HiCzin GC 0.008 0.003 0.131 0.816

Unlabeled HiCzin 0.114 0.105 0.079

normalized contact counts and the three factors increased compared to those of

the HiCzin in Table 1, though the AUDRC was slightly higher than that of the

HiCzin in Table 2. For the unlabeled HiCzin, detecting spurious contacts was

tough as it was challenging to determine thresholds without specific samples of

the intra-species contacts. Although the normalization results were worse than

those of the HiCzin model using labeled contigs, unlabeled mode of HiCzin still

performed better than naive normalization methods and it is more applicable

and requires fewer computational resources than the HiCzin model using labeled

contigs.

2.8 Clustering of contigs by the Louvain algortihm

The Louvain algorithm has been widely employed to cluster contigs based on

metagenomic Hi-C data [2, 17]. We applied this algorithm to the Hi-C data

normalized by different methods. We set the preselected percentage of maximum

incorrectly identified valid contacts in sample data as 10% for all HiCzin models

and regarded groups above 500 kbp as effective bins to evaluate the clustering

performance.

As shown in Table 6, the original HiCzin model achieved the best clustering

performance by the Louvian algorithm. Although the matrix balancing algo-

rithm in the second stage could improve the clustering quality, Bin3C Norm

grouped much fewer contigs compared to Naive Site. The Naive NB approach

also grouped a relatively small number of contigs. The performance of both
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Table 6: Comparison of the clustering results of contigs using the Louvain
Algorithm.

# of contigs F-score ARI NMI

Naive Site 5997 0.763 0.724 0.783
Naive Length 6092 0.791 0.758 0.788

Naive Coverage 6131 0.752 0.706 0.791
Bin3C Norm 5266 0.791 0.761 0.793

Naive NB 4783 0.783 0.748 0.764
Unlabeled HiCzin 6105 0.794 0.761 0.806

HiCzin LC 6044 0.802 0.771 0.807
HiCzin GC 6039 0.799 0.767 0.803

HiCzin 6065 0.807 0.776 0.810

Note: # of contigs represents the number of contigs in groups; F-score, ARI, and NMI are
Fowlkes Mallows score, Adjusted Rand Index, and Normalized Mutual Information, respec-
tively. The optimal values of the results are in bold.

correcting biases and clustering by HiCzin GC was worse than that of the orig-

inal HiCzin model; hence it is not necessary to consider the GC-content in

the regression process. One potential explanation for the poor performance of

HiCzin GC is that the genomes in the community have similar GC-content and

the Hi-C contact maps are not dependent on GC-content. The clustering re-

sults of the HiCzin LC and the unlabeled HiCzin were significantly better than

all naive normalization methods and the two-stage normalization method in

Bin3C, indicating that our normalization model still performed well when the

restriction enzymes of Hi-C experiments or the labels of any contigs were un-

known. These results ensure that the HiCzin models are widely applicable with

excellent normalization effects under different circumstances.
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Figure 5: Workflow of HiCzin utilized in metagenomic Hi-C analysis

3 Methods

3.1 Framework of applying HiCzin to metagenomic Hi-C

experiments

The workflow of HiCzin utilized in the metagenomic Hi-C analysis is shown

in Figure 5. In metagenomic Hi-C experiments, short reads are obtained by

shotgun sequencing from microbial communities. At the same time, metage-

nomic Hi-C sequencing reads are generated from the same sample. Contigs

are assembled from the shotgun short reads and Hi-C reads are mapped to the

assembled contigs to construct raw contact maps consisting of the number of

Hi-C reads mapped to contig pairs. Then, HiCzin is employed to normalize raw

contact maps and discard spurious contacts. Finally, downstream analysis can

be conducted on the basis of normalized contact maps by HiCzin.

3.2 Calculating the coverage of assembled contigs

The coverage of contigs was computed using MetaBAT [12] v2.12.5 script: ‘jgi

summarize bam contig depths’.

3.3 Applying TAXAassign to generate sample data of the

intra-species contacts

The taxonomic assignment of contigs was resolved using NCBI’s Taxonomy and

its nt database by TAXAassign(v0.4) with parameters ‘-p -c 20 -r 10 -m 98
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-q 98 -t 95 -a “60,70,80,95,95,98” -f’. Assignment results with ‘unclassified’ at

the species level were discarded, and only deterministic results of taxonomic

assignment at the species level were kept. Intra-species pairs were subsequently

generated by pairwise combining contigs assigned to the same species, and cor-

responding contacts were treated as samples to fit the HiCzin model.

3.4 Normalization via the HiCzin model

Based on the zero-inflated generalized linear mixed framework [14], the HiCzin

is a two-component mixture model combining a mass point at zero with a count

distribution. Specifically, within the intra-species contacts, zero contacts may

come from two sources: the count distribution, showing that these zeros are

observations of the population of the intra-species contacts and no interactions

happened, or the zero mass points, indicating that Hi-C interactions happened,

but the observations of the interactions were lost due to certain kinds of exper-

imental noise.

Formally, denote the population of the intra-species contacts as a random

variable Y . The basic assumption of the HiCzin model is that Y follows the

negative binomial distribution. Let πij denote the probability of unobserved

contacts and Zij denote a zero-inflated random variable of the intra-species

contacts between the ith contig and the jth contig. Then the random variable

Zij is given by

Zij ∼ 0, with probability πij ,

∼ NB(µij , θij), with probability 1− πij , (1)

where NB(µij , θij) is negative binomial distribution with mean µij and shape

parameter θij .

Therefore, the zero-inflated density of Zij is the result of mixing a negative
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binomial distribution and a degenerate distribution at zero as

Pr(Zij = zij) =


πij + (1− πij)( θij

µij+θij
)θij , zij = 0

(1− πij)Γ(zij+θij)
Γ(θij)·zij ! ·

µ
zij
ij ·θ

θij
ij

(µij+θij)
zij+θij

, zij = 1, 2, · · · ,
(2)

where Γ(·) is the gamma function. The random variable Zij will be degenerated

to negative binomial distribution when πij = 0.

We assume that the parameters µij and πij depend on the three factors of

explicit biases while θij is an independent parameter as a constant parameter θ

in our model. Define sk, lk, and ck as the number of restriction sites, the length

and the coverage of the kth contig, respectively. As Lord et al. [16] suggested,

link functions in generalized linear models are used to model the dependence of

parameters µij and πij on the three factors of explicit biases. To be specific, we

propose that µij is related to three factors by the logarithmic link, i.e.,

log(µij) = β0 + βs · log(si · sj) + βl · log(li · lj) + βc · log(ci · cj). (3)

We also propose that πij is related to three factors by the logistic link, i.e.,

log(
πij

1− πij
) = γ0 + γs · log(si · sj) + γl · log(li · lj) + γc · log(ci · cj). (4)

Let µZij denote the mean of random variable Zij . Then, the corresponding

regression equation for µZij is

log(µZij ) = log(1− πij) + β0 + βs · log(si · sj)

+ βl · log(li · lj) + βc · log(ci · cj). (5)

The overall model parameters β = (β0, βs, βl, βc), γ = (γ0, γs, γl, γc) and

additional dispersion parameter θ can be estimated by maximum likelihood
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(ML) using the latest R package ‘glmmTMB’ [5].

Finally, the residuals of the counting part are the normalized metagenomic

Hi-C contacts, i.e.,

eij = zij/µ̂ij . (6)

Hence, given sample data of the intra-species contacts, our HiCzin model

can integrate all three factors of explicit biases. The influence of unobserved in-

teractions is also taken into account simultaneously to ‘unbiased’ the estimation

and prediction.

3.5 Spurious contact detection by a hybrid statistical method

based on HiCzin

From the HiCzin model, the intra-species contact Yij follows the negative bi-

nomial distribution with mean µ̂ij and shape θ̂. Given any contig pairs with

nonzero contacts, we denote the value of the observed raw contacts as Oij and

the expected contacts under condition that the two contigs come from the same

species as Eij , where Eij = E(Yij) = µ̂ij . We define the enrichment score as

Sij = log(Oij/Eij).

Under our statistical framework, we also design a hypothesis test to detect

spurious contacts. Since observations of Hi-C interactions need to be protected,

the null hypothesis of the test is that Oij belongs to the intra-species contacts

while the alternative hypothesis is that Oij belongs to the spurious inter-species

contacts. We directly regard Oij as the test statistic and Oij ∼ Yij under null

hypothesis. We choose one-tailed test and calculate the p-value of Oij as

pij = Pr(Yij ≤ Oij). (7)
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Then, we develop a hybrid statistical method to detect spurious contacts.

We choose a threshold t for the enrichment score and a significance level α for

the hypothesis test. Contacts of contig pairs whose enrichment score is less

than t or p-value is less than α will be regarded as spurious contacts and then

discarded.

To determine the threshold and the significance level, we assume that the

percentiles of the enrichment score and the p-value of the valid contacts in our

sample data are similar to those in the whole data and preselect a percentage

(default 10%) reflecting the acceptable fraction of losses of the valid contacts.

Taking advantage of our generated sample data of the intra-species contact, we

can determine the threshold t and significance level α such that less than the

preselected percentage of valid contacts in sample data are incorrectly identified

as spurious contacts for both methods, respectively. Based on our assumption,

we suppose that around the same percentage of valid contacts in the whole data

might be mistakenly discarded. Therefore, thresholds can be strictly restricted

to detect most of spurious contacts while avoid incorrectly identifying a large

proportion of valid contacts in the whole data.

3.6 Generalizing the HiCzin by selecting different inde-

pendent variables

Let {xk}nk=1 denote the set of factors. Then, we modify the regression equation

in (5) as

log(µZij ) = log(1− πij) + β0 +
n∑
k=1

βk · log(xki · xkj ), (8)
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where πij in (4) is modified as

log(
πij

1− πij
) = γ0 +

n∑
k=1

γk · log(xki · xkj ). (9)

Then, ‘glmmTMB’ [5] package is employed to estimate {βk}nk=0, {γk}nk=0,

and θ, and residuals of the counting part are considered as normalized contacts.

3.7 HiCzin normalization without labeled contigs

As samples of the intra-species contacts cannot be obtained in some scenarios,

we just regard all nonzero raw contacts as our sample data. Although these

samples contain both valid contacts and spurious contacts, the number of valid

contacts is supposed to be much larger than that of spurious contact and thus we

suppose that spurious contacts will not result in significant biases in parameter

estimation. Moreover, as we don’t have zero contacts to fit the zero-inflated

part, one option to solve this problem is to set πij as a constant parameter, i.e.,

logit(πij) = log(
πij

1− πij
) = γ (10)

Unknown parameters are estimated by maximum likelihood using ‘glmmTMB’

[5] package and residuals are considered as normalized contacts.

4 Conclusions and Discussions

We put forward two types of experimental biases for metagenomic Hi-C data.

Explicit biases include the number of restriction sites, contig length, and con-

tig coverage and implicit biases include unobserved interactions and spurious

inter-species contacts. Both types of biases could be obviously observed in the

metagenomic yeast samples. Naive normalization methods could only correct
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part of explicit biases, and the unnormalized factors of explicit biases showed

even higher correlation with Hi-C contact maps. Based on the basic assump-

tion that the population of the intra-species contacts follows the negative bi-

nomial distribution, we have presented HiCzin, a parametric model applying

zero-inflated negative binomial regression framework to normalize metagenomic

Hi-C data, and have introduced a hybrid statistical method to detect and re-

move the spurious inter-species contacts. The HiCzin model takes the impact of

unobserved interactions into account. We have shown that normalized metage-

nomic Hi-C contact maps by HiCzin lead to lower biases, higher ability to detect

spurious contacts, and better metagenomic contig clustering performance, com-

pared with all naive methods and two-stage normalization method in Bin3C.

In case that the specific enzymes utilized in Hi-C experiments are unknown or

there are not enough computational resources to run TAXAassign, we come

up with the generalized HiCzin by only selecting the length and the coverage

of contigs as predictor variables, and a HiCzin mode without labeled contigs.

We have shown that these two models also performed well in normalization,

spurious contact detection and metagenomic contig clustering. Although we

can remove a large fraction of spurious contacts by our hybrid statistical ap-

proach, it is inevitable to lose a small quantity of useful valid contacts. Directly

modeling the spurious contacts may separate the spurious contacts from valid

contacts even better. As the Hi-C technique will be increasingly utilized upon

the metagenomics domain in the near future, we expect that the normalization

model we propose here can facilitate the downstream analysis, and improve

results in retrieving metagenome-assembled genomes, identifying virus-host in-

teractions, tracking horizontal gene transfer and all other areas making use of

metagenomic Hi-C data.
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