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Regularized Trace for Operators

on a Separable Banach Space

Erdal Gül and Tepper L. Gill

Abstract. In this paper we consider a Sturm–Liouville type differential
operator with unbounded operator coefficients given on a finite interval,
with values in a separable Banach space B. In the past, problems of this
type have been mainly studied on Hilbert space. Kuelbs (J Funct Anal
5:354–367, 1970) has shown that every separable Banach space B can
be continuously embedded in a separable Hillbert space H. Given this
result, we first prove that there always exists a separable Banach space
B

∗

z
⊂ H

∗ as a continuous embedding, which is a (conjugate) isometric
isomorphic copy of B. This space generates a semi-inner product struc-
ture for B and is the tool we use to develop our theory. We are able
to obtain a regularized trace formula for the above differential opera-
tor when the problem is posed on B. We also provide a few examples
illustrating the scope and implications of our approach.
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Introduction

The construction of a regularized trace formula for the Sturm–Liouville
operator

L := − d2

dx2
+ q(x) y�(0) = y�(π) = 0

with q(x) ∈ C1[0, 1] was first studied by Gelfand and Levitan [2]. Later, Dikii
[3] obtained trace formulas using a different method. In their studies, Buslaev
and Faddev [4] obtained a number of important expressions for the trace of
the negative part of integer and half-integer powers of a singular differential
operator. These investigations have branched in different directions leading to
many related results. For example, Pushnitski and Sorrell [5] have found trace
formulas for the perturbed harmonic oscillator, while Makin [6] has found a
regularized formula for the Sturm–Liouville operator with irregular boundary
conditions. Recently, new trace formulas for the Lasso-Graph have been found
by Guan and Yang [7] and some regularized trace formulas have been found
using the essentially isospectral transformation by Guliyev [8]. Additional
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studies related to trace formulas for the scalar or differentiable operators
(with bounded or unbounded coefficients) can be found in the following: [9–
17] and references therein.

In a series of interesting recent papers Hu, Bondarenko and Yang con-
sider the following Sturm–Liouville-type problem:

L := −d2y(x)

dx2
+ q(x)y(a) = λy (x) , x ∈ (0, π) , with y(a)(0) = y(b)(π) = 0,

where α, β ∈ {0, 1}, λ is the spectral parameter, a ∈ (0, π), and q(x) is a real-
valued function in W 1

2 (0, π). They call these Sturm–Liouville-type problems
with a frozen argument. It turns out that these problems are nonlocal and
belong to a special class of functional differential equations (see [18] and
references therein).

In another direction, Hu, Bondarenko, Shieh and Yang obtain regular-
ized trace formulas for a class of Dirac-type integro-differential operators on
graphs. Operators of this type have become important because they are used
to describe the motion of quantum particles confined to a class of thin atomic
structures (see [19] and references therein).

1. Background

Let H be a separable Hilbert space and let operators A and Q satisfy the
following conditions:

1. A : D(A) ⊂ H −→ H is a self adjoint, with A ≥ I and A−1 ∈ S∞(H),
the compact operators on H.

2. For every x ∈ [0, π], Q(x) : H −→ H is a self-adjoint trace class operator
(i.e., Q(x) ∈ S1[H]).

3. The functions "Q(i)(x)"S1[H] (i = 0, 1, 2) are bounded and measurable

in the interval [0, π], where Q(i)(x) is the ith derivative of Q(x).
4. For every f ∈ H,

� π

0
(Q(x)f, f)Hdx = 0.

Let

L = L0 + Q , L0 = − d2

dx2
+ A with y(0) = y�(π) = 0.

A regularized trace for L was obtained on the space H1 = L2(H; [0, π]) by
Gül [20]. The purpose of this paper is to use some recent results by Gill and
Gül [21] to consider the same problem when H is replaced by an arbitrary
separable Banach space B. More precisely, let B be a separable Banach space
and let B1 = S2(B; [0, π]) denote the set of all measurable functions f with
values in B such that:

� π

0

"f(x)"2
Bdx < ∞.

We consider the operators L0 and L in B1 with the identical boundary con-
ditions as follows:

L = L0 + Q , L0 = − d2

dx2
+ A with y(0) = y�(π) = 0.
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Here A and Q(x) satisfy the following conditions:

1. A : D(A) −→ B is a self adjoint operator with:
(a) [Au, u]z ≥ [u, u]z,
(b) A−1 ∈ S∞[B],

where self adjoint for operators on B and the bracket [ · , · ]z is defined
in the next section, while S∞[B] is the set of compact operators on B.

2. For every x ∈ [0, π], Q(x) : B −→ B is a self-adjoint compact operator.
It is also a trace class operator (Q(x) ∈ S1[B]).

3. The functions "Q(i)(x)"S1[B] (i = 0, 1, 2) are bounded and measurable

in the interval [0, π], where Q(i)(x) is the ith derivative with respect to
x.

4. For every f ∈ B,
� π

0
[Q(x)f, f ]zdx = 0.

1.1. Summary

The following section is devoted to some new background material on Banach
space operator theory. In particular, we define notions of self-adjointness and
trace class for operators on a separable Banach space. In the third section, we
obtain a few relations for the resolvent using the self-adjoint property of L.
In section four, we derive our regularized trace formula for L and in section
five, we give a few examples.

2. Adjoints and Trace Class Operators for a Banach Space

Let B be a separable Banach space with dual space B∗, let C[B] be the closed
densely defined linear operators and L[B] be the bounded linear operators on
B. The following lemma is the important part of a theorem due to Kuelbs
[1].

Lemma 2.1. (Kuelbs Lemma) Let B be a separable Banach space. Then, there
exist a separable Hilbert space H such that B ⊂ H as continuous dense em-
bedding.

If T is an operator, we let σ(T ) denote the spectrum of T and σp(T ) ⊂
σ(T ) denote the point spectrum of T . The following theorem is due to Lax
[22].

Theorem 2.2. (Lax’s Theorem) Let B be a separable Banach space that is con-
tinuously and densely embedded in a Hilbert space H, and let T be a bounded
linear operator on B that is symmetric with respect to the inner product of
H (i.e., (Tu, v)H = (u, Tv)H for all u, v ∈ B). Then,

1. T is bounded with respect to the H norm, and

"T ∗T"H = "T"2
H ≤ k "T"2

B ,

where k is a positive constant.
2. σ(T ) relative to H is a subset of σ(T ) relative to B.
1. σp(T ) relative to H is equal to σp(T ) relative to B.
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Let J be the (conjugate) isometric isomorphism of H → H∗, and let
JB = J|B (restriction). Since B is densely and continuously embedded in H,
JB is a (conjugate) bijective mapping of B onto JB(B) ⊂ H∗ as a continuous
dense embedding. We want to define a norm on JB(B), so that it becomes a
continuous dense embedding with the same relation to H∗ as B has to H.

Definition 2.3. For u ∈ B let u∗
h = JB(u) and let u∗

z =
�u�2

B

�u�2
H

u∗
h and define

B∗
z = {u∗

z : u ∈ B}, with norm "u∗
z"B∗

z
= "u"B . We call B∗

z the Zachary

representation for B in H∗.

Remark 2.4. Recall that a semi-inner product on a separable Banach space
B is a mapping [·, ·] on B × B such that:

1. [au + v, w] = a [u, w] + [v, w],

2. [u, u] = "u"2
B and

3. | [u, v] |2 ≤ [u, u] [v, v].

Theorem 2.5. Define the functional on [ ·, · ] on B×B, by [v, u] = u∗
z (v), then

this defines a semi-inner product structure on B.

Proof. The proof of (1) and (2) are clear, so we only need to prove (3). To
prove (3),

|[v, u]|2 =

�

"u"2
B

"u"2
H

�2

|(v, u)H|2 ≤
�

"u"2
B

"u"2
H

�2

"v"2
H "u"2

H

=

�

"u"2
B

"u"2
H

"v"2
H

"v"2
B

�
�

�v�2
B

�v�2
H

(v, v)H

��
�u�2

B

�u�2
H

(u, u)H

�

=

�

"u"2
B

"u"2
H

"v"2
H

"v"2
B

�

[v, v] [u, u] .

For the terms in braces we have
�u�2

B

�u�2
H

≥ 1 and
�v�2

H

�v�2
B

≤ 1, for all u, v ∈ B,

including u = v. It follows that the inequality holds when this term is replaced
by 1. �

Theorem 2.6. The separable Banach space B∗
z ⊂ H∗ is a continuous dense

embedding and a (conjugate) isometric isomorphic copy of B.

Proofs of the following can be found in Gill [23].

Theorem 2.7. If A ∈ C(B) and A� its dual mapping on B∗, then there is a
unique operator A∗ = J

−1
B A�

JB ∈ C[B] that satisfies the following:

1. (aA)∗ = āA∗;
2. A∗∗ = A;
3. (A + B)∗ = A∗ + B∗;
4. (AB)∗ = B∗A∗ on D(A∗)

�
D(B∗);

5. if A ∈ L[B], then "A∗A"B ≤ M"A"2
B, for some constant M and it has

a bounded extension to L[H].



MJOM Regularized Trace for Operators Page 5 of 15   156 

Definition 2.8. Let U be bounded and A ∈ C[B]. Then:

1. U is unitary if UU∗ = U∗U = I.
2. A is said to be self-adjoint if D(A) = D(A∗) and A = A∗.
3. A is said to be normal if D(A) = D(A∗) and AA∗ = A∗A.
4. U is ⊥ to V if and only, for each ∀v ∈ V and ∀u ∈ U , u∗

z (v) = v∗
z (u) = 0.

Theorem 2.9. (Polar Representation) Let B be a separable Banach space. If
A ∈ C[B], then there exists a partial isometry U and a self-adjoint operator
T , with D(T ) = D(A) and A = UT . Furthermore, T = [A∗A]1/2 in a well-
defined sense.

Theorem 2.10. For every φ ∈ B, there exists a ϕ∗
φ ∈ B∗ and a constant cφ > 0

depending on φ such that (f, φ)H = c−1
φ

�

f, ϕ∗
φ

�

B∗

for all f ∈ B.

Let S∞[B] be the set of compact operators on B, let A = U [A∗A]1/2 ∈
S∞[B] and let Ā = Ū [Ā∗Ā]1/2 be it’s extension to H. By Lax’s theorem,
the point spectrum of Ā is unchanged by the extension, so that Ā is also
compact. Thus, without loss of generality there exists a orthonormal family
{φn |n ∈ N} ⊂ B such that

Ā =
∞�

n=1

sn(Ā) (· , φn)H Ūφn.

From Theorem 2.10 and the fact that sn(Ā) = sn(A) by Lax’s theorem, we
can write A as follows:

A =

∞�

n=1

sn(A)c−1
n

�
·, ϕ∗

φn

�

B∗
Uφn.

If Ā ∈ Sp[H] (the Schatten class of order p in L[H]), its norm can be repre-
sented as follows:

�
�Ā

�
�

H

p
=

�

tr
�
Ā∗Ā

�p/2
�1/p

=

�
∞�

n=1

�
Ā∗Āφn, φn

�p/2

H

�1/p

=

�
∞�

n=1

�
�sn

�
Ā
��
�
p

�1/p

.

Definition 2.11. We define Sp[B], the Schatten class of order p in L[B], as
follows:

Sp[B] =

§

¨

©
A ∈ S∞[B] : "A"B

p
=

�
∞�

n=1

|sn (A)|p
�1/p

< ∞

«

¬

­
.

Since sn(A) = sn(Ā), we have the following:

Corollary 2.12. If A ∈ Sp[B], then Ā ∈ Sp[H] and "A"B

p
=

�
�Ā

�
�

H

p
.
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If A ∈ S∞[B] then, by the polar representation theorem, A∗A is a non-
negative self-adjoint operator and |A| = [A∗A]1/2 ∈ S∞[B] where A∗ is the
adjoint of A. Let s1(A) ≥ s2(A) ≥ · · · ≥ sk(A) (1 ≤ k ≤ ∞) be the non-
zero eigenvalues of |A| with each eigenvalue is repeated as many times as
its multiplicity (s-numbers). When k < ∞, we assume that sj(A) = 0 for
j = k + 1, k + 2, . . ..

If A ∈ Sp[B], 1 ≤ p < ∞, then by Corollary 2.12, A extends to Ā ∈ Sp[H]

with "A"B

p
=

�
�Ā

�
�

H

p
. If A ∈ S1[B], we called it a trace class (or nuclear)

operator on B.

3. Resolvents and Regularized Trace

In this section, we assume that B is fixed separable Banach space and H =
HB is our fixed Hilbert space constructed via Kuelbs lemma and H1 =
L2[H; [0, π]]. Since B is a continuous dense embedding in H, B1 = S2(B; [0, π])
is a continuous dense embedding in H1. With this setup, our approach is to
first pose our problem on B1, then use the known properties of H1 to solve
it and restrict back to B1 to obtain the same result.

By assumption, A is an unbounded self adjoint operator with A−1 is
compact. Thus A−1 and its extension Ā−1 have the same eigenvalues γ−1

1 ≥
γ−1
2 ≥ · · · . Let γ1 ≤ γ2 ≤ · · · ≤ γn ≤ · · · be the eigenvalues of A and

its extension Ā to H. Let {ϕ1, ϕ2, . . . , ϕn, . . .} ⊂ B be the corresponding
orthonormal eigenvectors.

Let D0 denote the set of the functions y(x) in B1 satisfying the
conditions:

(1o)y(x) has second order continuous derivatives with respect to the B norm
on [0, π] .

(2o) Ay(x) is continuous with respect to the B norm.

(3o) y(0) = y�(π) = 0.

The set D0 is dense in B1 and the operator L�
0 : D0 → H1 defined by

L�
0 = − d2

dx2 + A has a closed extension to H1. Since A is self adjoint, L�
0 is

symmetric, as

(L�
0y, z)H1

=

� π

0

(L�
0y, z)H dx =

� π

0

(y, L�
0z)H dx = (y, L�

0z)H1

for each y, z ∈ D0. The eigenvalues of L�
0 and its extension are of the form

( 1
2 + k)2 + γj (k = 0, 1, 2, . . . ; j = 1, 2, . . .) . The corresponding orthonormal

eigenvectors have the form Mk sin(k+ 1
2 )x ·ϕj (k = 0, 1, 2, . . . ; j = 1, 2, . . .) ,

where Mk =
�

2
π for k = 0, 1, 2, . . ..

We assume that the family of eigenvectors for the extension of L�
0 to

H1 is a complete basis for H1. Since, the closed extension of L0 = L�
0 to H1

is self-adjoint, it follows that its restriction to B1 is also self-adjoint.

By the condition (3) on Q(x) , for every x ∈ [0, π], there is a c > 0 such
that

"Q(x)"B ≤ c.
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In this case, for every y = y(x) ∈ B1 we see that

"Qy"2
1 =

� π

0

"Q(x)y(x)"2
B dx ≤

� π

0

"Q(x)"2
B "y(x)"2

B dx

≤ c2

� π

0

"y(x)"2
B dx = c2 "y(x)"2

1

or

"Qy"1 ≤ c "y"1 .

This means that Q is a bounded operator from B1 to B1. Its self-adjointness
on B1 follows from the same argument used to establish the self-adjointness
of L�

0. Hence, we conclude that the operator L = L0 + Q is a self-adjoint
operator from D(L) = D(L0) to B1.

Let R0
λ and Rλ be resolvents of the operators L0 and L respectively

and let µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · be the eigenvalues of operator L0. Here
each eigenvalue is accounted as many times as its multiplicity number. Since
the eigenvalues of operator L0 are ( 1

2 +k)2+γj (k = 0, 1, 2, . . . ; j = 1, 2, . . .)
and limj→∞ γj = ∞, we have limn→∞ µn = ∞.

This means that

lim
n→∞

1

µn − µ
= 0 (µ != µn; n = 1, 2, . . .).

On the other hand, for every real µ which is not an eigenvalue of L0 , the
operator R0

µ is self-adjoint and the system of orthonormal eigenfunctions,

Mk sin(k + 1
2 )x · ϕj (k = 0, 1, 2, . . . ; j = 1, 2, . . .) is complete. In this case,

it is known that R0
µ is a compact operator. By the Hilbert identity

R0
λ − R0

µ = (λ − µ)R0
λR0

µ

it follows that the operator R0
λ is also compact for every real number λ !=

µn (n = 1, 2, . . .). Therefore, the operator L0 has pure discrete spectrum.
Again, since the operator Q is a bounded self-adjoint operator, the spectrum
of operator L = L0 + Q is also pure discrete, (see [24]).

Let λ1 ≤ λ1 ≤ · · · ≤ λ1 ≤ · · · be the eigenvalues of operator L. In
a similar way above we find that the self-adjoint operator Rλ is a compact
operator for every λ != λn (n = 1, 2, . . .). Now, if γj ∼ ajα (a, α > 0) then it
is not difficult to see that as n → ∞

µn, λn ∼ d0n
2α

2+α , (3.1)

where d0 is a constant. Using these asymptotically approaches (3.1), it follows
that the sequence {µn}∞

n=1 has a subsequence {µnm
}∞

m=1 such that

µk − µnm
≥ d1

�

k
2α

2+α − n
2α

2+α
m

�

, (k = nm, nm + 1, nm + 2, . . .)

where d1 is a positive constant.
With this property, the limit

lim
m→∞

nm�

k=1

(λk − µk)
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is called the regularized trace of operator L. Note that the operator functions
(QR0

λ)j for j = 1, 2, . . ., are analytic with respect to the norm of S1[H1] in
the resolvent region ρ(L0) of the operator L0 (see [20]). From here, by the
relation

tr(Rλ − R0
λ) = trRλ − trR0

λ =

∞�

k=1

�
1

λk − λ
− 1

µk − λ

�

of the trace class operators R0
λ and Rλ we conclude that

nm�

k=1

(λk − µk) =

p
�

j=1

Dmj + D(p)
m , (3.2)

where

Dmj =
(−1)j

2πij

�

|λ|=bm

tr[(QR0
λ)j ] dλ (3.3)

and

D(p)
m =

(−1)p

2πi

�

|λ|=bm

λ tr[Rλ(QR0
λ)p+1] dλ. (3.4)

Let {ψq(x)}∞
q=1 be the system of orthonormal eigenvectors corresponding

to the eigenvalues {µq(x)}∞
q=1 of operator L0 respectively. Since for k =

0, 1, 2, . . . and j = 1, 2, . . .

Mk sin
�1

2
+ k

�
x · ϕj

is the system of orthonormal eigenvectors corresponding to the eigenvalues
�

1
2 + k

�2
+ γj of operator L0 respectively, we have

ψq(x) = Mkq
sin

�1

2
+ kq

�
x · ϕjq

(q = 1, 2, ...). (3.5)

Theorem 3.1. If the operator function Q(x)satisfies the conditions (2–4) and
if as j → ∞ γj ∼ aα

j (0 < a < ∞, 2 < α < ∞) then

lim
m→∞

Dm1 = −1

4
[trQ(0) − trQ(π)]. (3.6)

Proof. According to the relation (3.3) we just get:

Dm1 =
−1

2πi

�

|λ|=bm

tr(QR0
λ) dλ.

Since the functions {ψq(x)}∞
q=1 given by (3.5) is an orthonormal basis of the

space H1 then, for every λ ∈ ρ(L0), the equality

tr(QR0
λ) =

∞�

q=1

(QR0
λψq, ψq)1
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holds. Considering this equality, a straight-forward calculation gives

Dm1 =

∞�

q=1

(Qψq, ψq)1
1

2πi

�

|λ|=bm

dλ

λ − µq
=

nm�

q=1

(Qψq, ψq)1

=

nm�

q=1

π�

0

(Q(x)ψq(x), ψq(x))z dx

=
1

2

nm�

q=1

M2
kq

π�

0

(1 − cos(2kq + 1)x)(Q(x)ϕjq
, ϕjq

)z dx.

From here, it follows that

lim
m→∞

Dm1 =
−1

π

∞�

r=1

∞�

j=1

π�

0

(Q(x)ϕj , ϕj)z cos rx dx

+
1

2π

∞�

j=1

∞�

k=1

� π�

0

(Q(x)ϕj , ϕj)z cos kx dx

+ (−1)k

π�

0

(Q(x)ϕj , ϕj)z cos kx dx

�

or

lim
m→∞

Dm1 = − 1

2

∞�

j=1

�
∞�

r=1

�

2

π

π�

0

(Q(x)ϕj , ϕj)z cos rx dx

�

cos k0

�

+
1

4

∞�

j=1

�
∞�

k=1

� 2

π

π�

0

(Q(x)ϕj , ϕj)z cos kx dx
�

cos k0

+

∞�

k=1

� 2

π

π�

0

(Q(x)ϕj , ϕj)z cos kx dx
�

cos kπ

�

.

The terms in second {·} above are the values of the Fourier series of the
function (Q(x)ϕj , ϕj)z having the derivative of second order continuous
derivatives at the points 0 and π respectively, with respect to the functions
{cos kx}∞

k=0 in [0, π] . The term in first {·} is the value at 0 in the same sense.
Therefore, we have:

lim
m→∞

Dm1 = −1

2

∞�

j=1

[(Q(0)ϕj , ϕj)z] +
1

4

∞�

j=1

[(Q(0)ϕj , ϕj)z + (Q(π)ϕj , ϕj)z].

This gives the limit Eq. (3.6). �
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4. Regularized Trace Formula of the Operator L

In this section, we obtain a formula for the limit {limm→∞

�nm

k=1(λk − µk)}
that we called the regularized trace of the operator L in the previous section.
Following Gül [20], it is not difficult to show that

Dmj =
(−1)j

2πij

∞�

k1=1

∞�

k2=1

· · ·
∞�

kj=1

∗
�"

�

|λ|=bm

j
"

q=1

(µkq
− λ)−1dλ

"

·
j
"

q=1

(Qψkq
, ψkρ(q)+1

)1

�

(4.1)

where the symbol “∗” denotes that there are numbers among µk1
, µk2

, . . . , µkj

less than or greater than bm.
Observe that the Eq. (4.1) gives the estimations for Dm2 and Dm3,

respectively

|Dm2| ≤ "Q"2
1Ωm, (4.2)

|Dm3| ≤ "Q"3
1Ωm(Ωm + 4d−1

1 n1−δ
m ), (4.3)

where

Ωm

∞�

j=nm+1

(µj − µnm
)−1, d1 =

d0

4
and δ =

α − 2

α + 2
.

Moreover, if γj ∼ ajα as j → ∞ (0 < a < ∞, 2 < α < ∞) then the
inequality

"R0
λ"S1(H1) < const.n1−δ

m (δ =
α − 2

α + 2
) (4.4)

holds on the circle |λ| = bm.

Theorem 4.1. Suppose that γj ∼ ajα as j → ∞ (0 < a < ∞, 2 < α < ∞).
Then, with the conditions (3.2) and (3.3) on the operator function Q(x), for
j ≥ 2 we have limm→∞ Dmj = 0.

Proof. From Eq. (3.3) we find:

|Dmj | ≤ 1

2πj

�

|λ|=bm

"Q"j
1"R0

λ"S1(H1)"R0
λ"j−1

S1(H1)
|dλ|. (4.5)

Since, in the case Q(x) ≡ 0 , Rλ = R0
λ then we have

"Rλ"1 <
d1

4
n−δ

m ,

�

δ =
α − 2

α + 2

�

. (4.6)

This last inequality (4.6) together with the inequalities (4.4) and (4.5) implies
that

|Dmj | ≤ const.

�

|λ|=bm

n1−δ
m n−δ(j−1)

m |dλ| ≤ const. µnm
n1−δj

m .
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Since µnm
≤ const. n1+δ

m we have

|Dmj | ≤ const. n2−δ(j−1)
m .

Clearly, if j > 1 + 2δ−1 then

lim
m→∞

Dmj = 0.

For j = 2 since limm→∞ Ωm = 0 , from (4.2) we obtain that

lim
m→∞

Dm2 = 0.

Similarly, from (4.3) we see that

lim
m→∞

Dm3 = 0.

It follows that for j = 2, 3, . . . , |2δ−1| + 1

lim
m→∞

Dmj = 0.

Now, we state the regularized trace formula of operator L on Banach space
B with the next theorem. �

Theorem 4.2. Suppose that γj ∼ ajα as j → ∞ (0 < a < ∞, 2 < α < ∞).
Then, with the conditions (3.2)–(3.4) on Q(x) , we have the formula

lim
m→∞

nm�

k=1

(λk − µk) = −1

4
[tr Q(0) − tr Q(π)]. (4.7)

Proof. By Theorems 3.1 and 4.1, we write

lim
m→∞

nm�

k=1

(λk − µk) = −1

4
[tr Q(0) − tr Q(π)] + lim

m→∞
D(p)

m . (4.8)

Since

D(p)
m =

(−1)p

2πi

�

|λ|=bm

λtr [Rλ(QR0
λ)p+1] dλ

we can have shortly

|D(p)
m | ≤ bm

�

|λ|=bm

"Rλ"1"Q"p
1"R0

λ"p
1"Q"1"R0

λ"S1(H1) |dλ|.

Thus, taking into account inequalities (4.4) and (4.6) we obtain

|D(p)
m | ≤ const. b2

mn−(p+1)δ
m n1−δ

m .

Since bm ≤ const. n1+δ
m then we have

|D(p)
m | ≤ const. n−(p+2)δ+1

m n2(1+δ)
m = const. n3−pδ

m .

It follows that for p > 3δ−1

lim
m→∞

D(p)
m = 0.

Substituting this result into Eq. (4.8) one obtains the required formula
(4.7). �
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5. Examples

In this section, We will consider a few examples related to our theory.

Example 1. Let B = C[0, π] where C[0, π] is the set of continuous functions
on [0, π] and let D(A) denote the set of all functions u = u(t) satisfying the
following conditions:

• u(t) ∈ C2[0, π],
• u(0) = u(π) = 0,
• u��(t) ∈ B.

Define the operator A : D(A) → B by Au(t) = u��(t). It is easy to check that
A is self-adjoint, with eigenvalues γn = −n2 (n = 1, 2, . . . ) and corresponding

orthonormal eigenvectors ψn(t) =
�

2
π sin nt, t ∈ [0, π]. In this case, for every

y = y(x) = y(x, t) ∈ D0, the operator L�
0 can be defined by:

L�
0(y) = −∂2y(x, t)

∂x2
+

∂2y(x, t)

∂t2
.

Example 2. Take B as a continuous dense embedding in l2 = {{fn} :
�∞

n=1

|fn|2 < ∞} and let D(A) denote the set of vectors f = {fn} ∈ l2 with the
condition

�∞
n=1 n2|fn|2 < ∞. Define the operator A : D(A) → B by

Af = {nfn} = {f1, 2f2, 3f3, . . .}.

We can check that A is self-adjoint, with eigenvalues γn = n (n = 1, 2, . . . )
and corresponding orthonormal eigenvectors

ψn = {0, 0, . . . 0,

nthslot
����

1 0, · · · } , n ∈ N.

In this case, for every {yn(x)} ∈ D0, the operator L�
0 can be defined by:

L�
0(y) = −y��(x) + Ay(x) = −{y��

n(x)} + {nyn(x)}.

Example 3. Take B1 = S2(B; [0, π]) where B is separable Banach space which
is continuous dense embedding in a separable Hilbert space H. Consider the
operator function Q(t) = π−1tT , t ∈ [0, π], where for every x ∈ B, T : B −→ B
is given by

Tx =
∞�

i=1

i−2(x, φi)zφi

with the o.n.b. {φi}i≥1 in H. Here (·, ·)z is the Zachary functional on B. We
first want to show that for every t ∈ [0, π] the operator function Q(t) is a
trace class operator on B. To see this, it is enough to show that T is a trace
class operator. For every x, y ∈ B we have

(Tx, y)z =

"
∞�

i=1

i−2(x, φi)zφi, y

"

z

=

∞�

i=1

i−2(x, φi)z(φi, y)z

=

∞�

i=1

�
x, i−2, (y, φi)zφi

�

z
=

"

x,

∞�

i=1

i−2(y, φi)zφi

"

z

= (x, Ty)z.
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Since T has eigenvalues λi = si = i−2 (i = 1, 2, 3, . . .), T is a trace class
operator. Moreover, Q�(t) = π−1T and Q(i)(t) = 0 for i ≥ 2 with respect
to the norm of S1[B]. This implies the self-adjointness of Q(i)(t) for (i =
0, 1, 2, . . .), that is,

[Q(i)(t)]∗ = Q(i)(t) ; (i = 0, 1, 2, . . .).

Here, we can also see that Q is a self adjoint, trace class operator from B1 to
B1.

Example 4. Let B = C[0, 1] and H = L2[0, 1] and take D(A) as a set of
functions φ(t) satisfying the following conditions:

(i) φ���(t) is absolutely continuous on [0, 1] and φ(iv)(t) ∈ C[0, 1],
(ii) φ(0) = φ��(0) = φ(3.1) = φ��(3.1) = 0.

Define the operator A : D(A) −→ B by Aφ(t) = d4φ(t)/dt4. Then A is
an operator such that A = A∗ ≥ I and A−1 ∈ S∞[B]. Its eigenvalues are
of the form γj = (jπ)4 (j = 1, 2, 3, . . .),with the corresponding orthonormal

eigenfunctions φj(t) =
√

2 sin jπt. Consider the operator function Q(x), for
every x ∈ [0, π], from B to B defined by

Q(x)φ(t) = cos x

� 1

0

(t + s)2φ(s)ds.

One can check that this operator satisfies all conditions in our main problem.
Moreover, we notice that B1 = S2(B; [0, π]) = C([0, π] × [0, 1]) as continuous
dense embedding in H1 = L2(L2[0, 1]; [0, π]) = L2([0, π] × [0, 1]). Now, by
letting D(L0) = D(L) = B1 we define the self-adjoint linear operators L0

and L, respectively, as

L0 = − ∂2

∂x2
+

∂4

∂t4
,

L = L0 + cos x

� 1

0

(t + s)2φ(s)ds

with the identity boundary conditions

ux(0, t) = u�
x(0, t) = 0,

u(x, 0) = u��
tt(x, 0) = u(x, 1) = u��

tt(x, 1) = 0.

By applying our current theory here, we find the right side of the regularized
trace formula to be zero.

6. Conclusions

In this paper, we have introduced a new tool for the study of differential
equations on Banach spaces. In particular, we have extended the study and
computation of regularized trace formulas to Banach spaces. We have also
provided a few interesting examples to show our approach works in the new
setting.
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