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ABSTRACT
Data privacy requirements are a complex and quickly evolving
part of the data management domain. Especially in Healthcare (e.g.,
United States Health Insurance Portability and Accountability Act
and Veterans Affairs requirements), there has been a strong em-
phasis on data privacy and protection. Data storage is governed by
multiple sources of policy requirements, including internal policies
and legal requirements imposed by external governing organiza-
tions. Within a database, a single value can be subject to multiple
requirements on how long it must be preserved and when it must
be irrecoverably destroyed. This often results in a complex set of
overlapping and potentially conflicting policies. Existing storage
systems are lacking sufficient support functionality for these critical
and evolving rules, making compliance an underdeveloped aspect
of data management. As a result, many organizations must imple-
ment manual ad-hoc solutions to ensure compliance. As long as
organizations depend on manual approaches, there is an increased
risk of non-compliance and threat to customer data privacy.

In this paper, we detail and implement an automated comprehen-
sive data management compliance framework facilitating retention
and purging compliance within a database management system.
This framework can be integrated into existing databases without
requiring changes to existing business processes. Our proposed
implementation uses SQL to set policies and automate compliance.
We validate this framework on a Postgres database, and measure
the factors that contribute to our reasonable performance overhead
(13% in a simulated real-world workload).

CCS CONCEPTS
• Security and privacy → Privacy protections; Usability in
security and privacy;Management and querying of encrypted data;
Key management.
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1 INTRODUCTION
Data management by an organization is bound to data privacy
regulations that define how the data must be stored (e.g., archived,
preserved in backups, or destroyed). New legislation is often passed
with the specific intent of giving consumers more control over
their data and privacy. Additionally, organizations may choose to
implement additional self-imposed internal policies or policies of
another organization who is a business associate. Having a large
amount of quickly evolving policy sources adds a large element of
complexity to this field. Violating these requirements may poten-
tially result in large fines and a permanent loss of customer data
privacy. Unfortunately, relational database compliance solutions in
the data governance domain has been extremely underdeveloped.

In the data privacy and governance domain, the evolution of
new and evolving requirements has far outpaced the development
of dedicated functionality in data management systems. Although
some current industry tools can be adjusted to create some ad-hoc
compliance procedures, dedicated data privacy compliance func-
tionality has been overlooked. Therefore, organizations are forced
to either repurpose other functionality or depend onmanual compli-
ance solutions. Both options carry a heavy risk of non-compliance
due to the complexity of many data privacy requirements.

Compliance can be complex due to multiple overlapping require-
ments over the same data. For example, per the Office of the Na-
tional Coordinator for Health Information Technology, each state in
the United States has their own requirements for retaining and de-
stroying healthcare data [31]. Adding to the complexity, the data of
minors and adults are sometimes governed by different policies. Dif-
ferent rows or columns of a table belonging to a different healthcare
record could be governed by different requirements. Furthermore,
database administrators must consider the potential conflict be-
tween multiple requirements (e.g., retention versus destruction of
the same data).

Another complication for implementing compliance is consid-
ering how each different database logical layout and capability
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(i.e., relational or NoSQL) has unique challenges. Furthermore, the
read andwrite accessibility adds additional complexity. For example,
any organization relying on manual solutions for their compliance
must consider the high cost of enforcing compliance when records
subject to different requirements are not guaranteed to always be
physically accessible.

Understanding how different platforms affect an organization’s
ability to comply with policy requirements is critical to developing
the necessary functionality to facilitate comprehensive compliance.
To achieve this goal, standardized processes must be developed. Un-
fortunately, current database systems are missing key functionality
to support compliance.

This paper outlines a system for automated data privacy reg-
ulation enforcement which can be integrated into any existing
relational database. This research strives to achieve a more long
term sustainable data management system. Therefore, we begin
by outlining the policy requirements which must be satisfied to
achieve comprehensive compliance. Without automated compli-
ance enforcement, organizations must rely on manual or ad-hoc
solution implementations.

This paper proposes a framework that formalizes data policy
compliance rules regarding retention and purging. This framework
allows database administrators to define policies to automate en-
forcement. Overall, this paper offers the following contributions:

(1) Defining the current state of privacy compliance functional-
ity in databases.

(2) Implementing our retention and purging functionality in a
relational database and demonstrating how these work to-
gether simultaneously to achieve comprehensive automated
compliance.

(3) Evaluating our framework on a relational database that mir-
rors a typical database query workload.

2 BACKGROUND
2.1 Real-World Examples

Example 1: Healthcare Data Violations. As recently as February
2022, organizations are still failing to comply with data governance
requirements and data privacy [30]. In New York, EyeMed Vision
Care was fined $600,000 for failing to comply with New York’s Stop
Hacks and Improve Electronic Data Security Act (SHIELD Act).
Among the violations, EyeMed failed to comply with the SHIELD
Act’s data retention requirements. A large breadth of healthcare
and personal data (including medical diagnoses and conditions)
was included in the findings that lead to the aforementioned fines.
Records were improperly stored and risked exposing customer data.

Example 2: European Illegal Data Retention. In the European
Union, the General Data Protection Regulation (GDPR) greatly ex-
panded consumer power over personal data [8]. Any organization
which offers goods or services or collects the data of EU residents
must comply with GDPR requirements (regardless of whether the
organization is based in the EU). One significant requirement from
GDPR is the “Right to be Forgotten” [15, 37], which allows indi-
viduals to request that companies delete all of their personal data.
Without an automated process, organizations must manually deter-
mine if they can execute requests within a deadline (which must

be as quickly as one month [37]). Although it is one of many laws
which govern data management, GDPR is considered to be one of
the strongest data privacy regulations. We focus on GDPR because
it typically meets or exceeds other legal requirements; an organiza-
tion that meets GDPR requirements will typically be in compliance
with other laws.

On January 15, 2020, a AC27.8 million fine was issued to the Ital-
ian telecommunications company TIM [2] for violations of GDPR
Article 5 (processing personal data) and Article 6 (right to erasure
and excessive data retention). The right to erasure allows customers
to request that all of their personal data is deleted; if no retention
requirement exists, companies must delete all requested records.
Data was retained past the amount of time allowed by law in some
instances (10 years) as well as by what was set in internal company
policies (5 years) in spite of customers requesting to be removed
and not contacted. Furthermore, TIM admitted their internal coding
lists did not accurately determine the individuals to contact for a
promotional campaign. Moreover, they admitted they did not have
the knowledge necessary to implement a compliant system.

Example 3: Adapting to changing regulations. It is a long-standing
rule when litigation is anticipated, a party is obliged to preserve
all evidence that may be relevant to the ligation [20]. This obliga-
tion is known commonly as a litigation hold. Between 2003 and
2004 in New York, the case of Zubulake v. UBS Warburg elaborated
on the application of a litigation hold to electronically stored in-
formation [38]. Accordingly, once a party is informed or has the
expectation of an impending lawsuit, they must begin retaining
and protecting all relevant records, regardless of storage medium
or accessibility.

2.2 Terminology
Business Record: Organizational rules and requirements for data
management are defined in units of business records. United States
federal law refers to a business record broadly as any “memorandum,
writing, entry, print, representation or combination thereof, of any
act, transaction, occurrence, or event [that is] kept or recorded [by
any] business institution, member of a profession or calling, or any
department or agency of government [...] in the regular course of
business or activity” [32]. In other words, business records describe
any interaction or transaction resulting in new data.

Business records can be represented using different logical lay-
outs. A business record may consist of a single document for an
organization (e.g., an email message). However, in a database, a busi-
ness record may span many combinations of rows across multiple
tables (e.g., a purchase order consisting of a buyer, a product, and
the purchase transaction from three different tables). The process of
mapping business records to underlying data can vary depending
on an organization’s requirements and their data storage platforms.
In relational databases, business records are defined using Select-
Project-Join SQL syntax.

Policy: A data policy is any formally established rule for or-
ganizations. Policies can originate from a variety of sources such
as legislation or as a byproduct of a court ruling (e.g., Zubulake v.
UBS Warburg in Example #3). Companies may also establish their
own internal data retention policies to protect confidential data. In
practice, database administrators work with domain experts and
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sometimes with legal counsel to define business records and re-
tention requirements based on the written policy. Policies can use
a combination of time and external events as the criteria for data
retention and destruction.

Retention: Retention defines the conditions when a business
record must be preserved. Some retention requirements, such as
HIPAA,may require a complete historical log of any and all business
record updates (e.g., current address and full history of address
changes for a patient) [5]. Organizations subject to this level of
retention must archive the complete business record before every
update to ensure a complete audit trail history was preserved.

Purging: Purging is the permanent and irreversible destruction
of data in a business record [16]. A business record purge can be
accomplished by physically destroying the device which stored
the data, encrypting and erasing the decryption key (although
the ciphertext still exists, destroying the decryption key makes it
irrecoverable), or by fully erasing data from all storage. If any part
of a business record’s data remains recoverable or accessible in
some form, then the data purge is not considered successful. For
example, if a file is deleted through a file system, but can still be
recovered from the hard drive using forensic tools, this does not
qualify as a purge [16]. Similarly, records deleted through a database
are recoverable through forensic analysis [33]; such records can be
retained indefinitely within database backups [21]. Some policies
require an organization to purge business records purely when the
data is no longer needed. GDPR requires organizations to purge
business records at the request of a customer; organizations must
be prepared to comply with purging policies as well as ad-hoc
requests.

Verification: Database administrators must be able to query
the policies and the status of all business records in storage. Data
storage systems must support a standard mechanism for defining
the policies, listing or modifying current policies, and checking for
potential conflicts (e.g., policies requiring retention and destruction
of the same data) or overlap between different policies. For example,
if an organization is unable to destroy data when requested by a cus-
tomer, their refusal must be justified, lest they face non-compliance
penalties.

Enforcement: Enforcing policies includes archiving and delet-
ing data as required as well as guaranteeing consent is verifiedwhen
processing data. Enforcing a policy maintains an organization’s
compliance. Current database management systems do not incorpo-
rate automated robust data policy features; as a result, organizations
are forced to develop manual solutions for policy compliance.

2.3 Current Industry Tools
Amazon S3 offers an object life-cycle management tool. One sig-
nificant limitation is S3’s object life-cycle management is limited
to time criteria only. Moreover, S3 is file-based and therefore lacks
sufficient granularity to map policies to individual business records.
S3 is a prime example of how industry tools are currently unable
to facilitate policy compliance.

Oracle’s Golden Gate (GG) [9] and IBM’s Change Data Capture
(CDC) [13] allow changes to be replicated from one database to
another. However, these software packages are not specifically
designed to support data retention requirements (although they

could be expanded to support it). GG operates by inspecting REDO
logs, making it difficult to incorporate the concept of business
records (which are critical in defining policies for verification and
enforcement).

Mimeo [25] provides similar functionality for Postgres; and like
CDC and GG, Mimeo would have to be revised to support retention
in terms of business records since it operates on a per-table basis.
IBM InfoSphere Optim Archive [14] has archiving functionality
which can be used for retention. It archives data from an active
database, removing data from active storage. A major limitation of
IBM’s solution is the archiving must be initiated manually or by
a script. Overall, all of the industry tools exemplify that current
tools do exist which can be used to create ad-hoc processes that will
satisfy only some requirements of compliance. Unfortunately, these
do not provide a process that can scale and adapt to the the evolving
domain, let alone satisfy all current requirements in harmony.

3 RELATEDWORK
Shrasti et al. [29] analyzed the impact that GDPR requirements
have imposed on database performance. The amount of new policy
requirements has resulted in databases needing a large amount of
additional support functionality. These requirements also tend to
scale poorly as the volume of data subject to compliance increases.
For example, they noted in some instances of retention in their
studied Postgres system incurred “a 30-40% overhead” while at
times requiring over quadruple the storage space to log and store all
necessary metadata. Therefore, implementing a compliant system
which does not limit performance is a very difficult challenge.

Ataullah et al. [4] described some of the challenges associated
with record retention implementation in relational databases; the
authors propose an approach that uses a view-based structure to
define business records for retention rules. This provided the guid-
ance on how VIEWs can be used to define business records which
can be referenced for retention compliance. We expand on these
techniques to define query-based policies for purging compliance.

Scope et al. [27] expanded on Ataullah et al.’s work by developing
an archiving system in relational databases via triggers. A retention
policy defines the records which must be preserved with an associ-
ated trigger that archives a copy of a deleted record. The DELETE
query proceeds whether or not the deleted record is covered by a
retention policy; when the deleted record is protected by a policy,
it is stored in an “archive” table. If the transaction aborts, archive
tables can be asynchronously purged of data archived by this trans-
action. This paper also evaluated the impact various factors (e.g.,
policy size, the scope of a query) play in a retention framework
overhead.

Kraska et al. [19] proposed a system designed to track customer
personal information to facilitate purging compliance. Before a
system can purge all necessary information, it first must know
which data requires purging. Although this solution does provide
many significant benefits to guarantee deletion of customer data
in an accessible database, it does not address how to purge data
stored in physically inaccessible backups.

Kamara and Lauter’s [17] research has shown using cryptogra-
phy can increase storage protections. Furthermore, their research
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Figure 1: Process Overview

has shown that erasing an encryption key can fulfill purging re-
quirements. This provided the original evidence of how properly
implementing purging across business records would properly en-
force purging policy requirements.

Scope et al. [28] presented a generalized data purging workflow
which supports “remote” destruction of expired data (e.g., inac-
cessible records stored in a backup) in a relational database via
cryptographic erasure. Encryption keys are chosen based on the
purging duration and policy; records not subject to purging are
stored without encryption. When the purge date arrives, the en-
cryption key is deleted, rendering all encrypted data permanently
irrecoverable (i.e., purged). In this work, we also focus on destroying
data in backups. Although deleted database records can temporar-
ily survive in storage, purging of deleted records can be expedited
through rebuilding of database tables and indexes [34].

All of the aforementioned solutions attempt to address require-
ments regarding data privacy compliance. None of these approaches
work to address purging and retention simultaneously, nor do they
discuss how these requirements must work together to achieve
compliance. For example, retained data (which is typically archived
in a separate location) is also subject to purging policies once all
retention periods expire. In this paper, we take many of the previous
contributions to develop a comprehensive framework which refer-
ences both retention and purging policies to achieve full compliance
across both requirements.

4 THE GENERALIZED FRAMEWORK FOR
POLICY IMPLEMENTATION

This framework builds upon previous approaches, merging the ca-
pabilities of solutions in [28] and [27] within the same database. We
evaluate our approach in PostgreSQL, but the same solution applies
to any relational database (as long as it supports basic functionality
such as triggers). Figure 1 provides an overview of our DBMS policy

framework. We first define the building blocks of how our approach
is integrated into a database.

Throughout this paper, we develop this framework using a trigger-
based approach to move data within a DBMS. In databases which do
not support triggers (e.g., columnar stores or NoSQL databases), the
same functionality must be executed at the application level (see
Section 6.2). Once an application level implementation of trigger
replacement is developed, the overall framework will maintain its
ability to achieve compliance.

The scope of this paper is limited to the non-forensically recover-
able data in databases. Values from businesses records may still be
found in logs and underlying database pages for a certain amount
of time [36]. In order to fully remove the underlying data from all
database pages and hardware, additional forensic tools and APIs
(similar to [35]) are required.

Additionally, file content that resides outside of the database
API access (i.e., flat files) requires an OS application-level approach.
Examples include audit logs and transaction logs which are not
typically accessed using SQL. Because these files cannot be accessed
via a database API, we also consider these out of scope.

Active tables are the regular tables in the database schema,
accessed by user queries. In order to guarantee that our changes
do not impact database users, active tables are not altered by im-
plementing the framework.

Shadow tables serve as the purging mechanism for data in
other tables. These tables are backed up instead of the original ac-
tive tables. Every data element that needs to be eventually purged
in the original table is stored encrypted in the shadow table. All
other values are stored unencrypted. Encryption is used to meet the
requirement of purging data, even when this data is not physically
accessible (e.g., off-site backup). Any approach to achieving purg-
ing compliance must be able to purge data that is both physically
accessible and inaccessible.

The encryption key is chosen based on the purging policy that
applies to the value and the required purging date. Purging is per-
formed by destroying the corresponding encryption key. By destroy-
ing the encryption key, all associated encrypted data is rendered
permanently and irreversibly irrecoverable.

Shadow Archive tables serve as the retention mechanism for
data in active tables. Any time data that is covered by a current
retention policy is deleted or updated, a copy of this data is stored
in the shadow archive (also inheriting any encryption that was
already applied). Thus, a user still deletes the data from the active
tables but a copy is preserved to satisfy any retention requirement.
Once data is deleted from both the shadow archive and active tables,
it cannot be recovered from any backup or the active live database
(although forensic tools may potentially access some purged data
in an active database).

All of the the components within the rectangle in Figure 1 are
transparent to the user interacting with active tables. Archived
data request is a custom feature described in Section 4.4. Purging,
retention, and archive access functionality is automated by our
framework.
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4.1 Shadow Purging
Purging policies require that business records are made irreversibly
irrecoverable. Data that is not physically accessible (e.g., stored
on tapes in a warehouse), must still be purged when it expires.
Storage backups contain a mix of data that must be retained and
data that must be purged. Thus, instead of physically destroying the
entire storage medium, purging compliance requires a mechanism
to purge only targeted data without compromising other records.

Our framework builds upon prior research by Scope et al. [28]
by leveraging encryption as a means of remotely purging data. We
creates shadow tables that mirror the original tables with addi-
tional columns to enable cryptographic erasure functionality. The
shadow tables replace active tables in database backup; during re-
store, shadow tables are decrypted into the active table (minus the
purged values). Each original column is augmented by an additional
column [original column]EncryptionID. Because a table row
may be subject to different encryption keys, this allows our system
to uniquely identify the encryption key used for encrypting each
value.

The encryption keys are stored in the policyOverview table;
Table 1 describes policyOverview schema. We can delete encryp-
tion keys when their expirationDate passes. Although deleting
the keys using a specialized form of secure delete is beyond the
scope of this paper, regularly deleting expired keys can easily be
automated using a cron-like DBMS job (e.g., [6] in PostgreSQL)
which removes expired encryption keys from policyOverview.

The table containing the keys must be stored and backed up
separately from the database to avoid the problem of having the
encryption keys stored with the backup; otherwise the encryption
keys could not be truly purged. In our proof-of-concept experiments,
the policyOverview table is stored in the database. However, in
a production system the key management tables will be stored in
a separate database. Access to these tables could be established
via a database link or in a federated fashion, allowing the keys
to be kept completely separate from the actual data. Since the
policyOverview table is much smaller than the database itself, it
is practical to physically purge the encryption keys to maintain
purging compliance.

Our framework uses a time-based policy criteria for purging,
bucketed per-day by default. A bucket represents a collection of
data, grouped by a time range and policy that is purged together
as a single unit. All data in the same bucket for the same policy
uses the same encryption key. Our default bucket size is set to one
day because, for most purge policies, daily purging satisfies the
requirements (e.g., GDPR: Article 25 [8]).

policyOverview
encryptionID Int
policy Varchar(50)
expirationDate Date
encryptionKey Varchar(50)

Table 1: policyOverview Table Column Definitions

4.2 Archive Retention
Our proposed framework copies data to shadow archive tables
when it is no longer needed (e.g., deleted) but still requires reten-
tion. By having a separate storage space for archived data and by
moving data from shadow tables to the shadow archive tables, our
framework is able to maintain compliance without imposing a high
performance overhead.

Our framework combines elements of previous work, such as
[4, 27, 28], by using triggers to transparently move data into the
archive (shadow archive) which stores both encrypted and non-
encrypted data to achieve retention compliance. This enables our
framework to offer the benefits of retention and purging compli-
ance simultaneously. Shadow archive tables match the schema of
the shadow tables with the additional columns of transactionID,
sequenceNo, archivePolicy, and retentionDate (all of which
are added to the primary key of the table to guarantee database
transactional integrity). Whenever a row is deleted from the active
tables, a copy of the business record’s data requiring retention (if
any) is first archived in the shadow archive. Whenever a transaction
aborts, we asynchronously delete all of the retained records with
this transactionID.

The archived values are stored until the expiration of the corre-
sponding retentionDate, when they can be deleted without the
risk of non-compliance. Because the archive is used to preserve busi-
ness records until retention is no longer necessary, the archive does
not allow updates of any archived data. If any archived records
require updating, that would be accomplished by retrieving the
archive records (see Section 4.4), re-inserting them into the active
tables, and re-archiving.

4.3 Defining Policies
Our method of defining policies for both retention and purging
uses SQL queries to define the underlying business records and
the retention or purging criteria (pioneered by Ataullah et al. [4]).
With retention, we require that the date column used to determine
the criteria must not contain a NULL. With purging, a NULL in the
date column is equivalent to a “purge immediately” requirement.
Whenever the purge date is set to NULL, our framework will purge
the data as soon as possible (i.e., at the expiration of the retention
policy). To calculate the purge date, our framework computes the
expiration of the longest applicable retention policy. If no retention
policy applies to the value, we use today’s date as the expiration
date.

With retention policies, we propose new SQL syntax, CREATE
RETAIN, to define the set of business records that must be protected
from deletion. All policies must be defined using SELECT-PROJECT-
JOIN (e.g., SQL queries cannot use aggregation).

CREATE RETAIN requires the SELECT clause to contain the pri-
mary key of every table appearing in the policy. Moreover, any
columns referenced in the WHERE clause must also be included.
These constraints are required to verify the retained copy in the
archive against the relevant policy criteria. Each retention policy is
handled independently, which may incur redundancy when policies
overlap.

For example (using the schema shown in Figure 2), let us say a
company has a requirement to retain all the data from both tables
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Figure 2: Example Schema

where the payment date is within the last 90 days. This would be
accomplished by creating a policy using the syntax below.

This example customerOrderRetain policy definition uses Mi-
crosoft SQL Server syntax:

CREATE RETAIN customerOrderRetain AS
SELECT *
FROM customerPayment NATURAL JOIN orderShipping
WHERE DATEDIFF(day, orderShipping.paymentDate,

date_part(‘day’, CURRENT_DATE)) < 90;

Due to the standardization of SQL, minimal changes would be
required to define a similar query in other relational databases. For
example, PostgreSQL does not have an explicit DATEDIFF function.

For purging policies, we use the corresponding new syntax
CREATE PURGE. When defining a purge policy, if any one primary
key attribute is included in a purge policy, all other columns must
be included. The purge definition must also include all child foreign
keys of the table to maintain referential integrity.

Consider a policy for a company (Figure 2) that requires purging
all shipping addresses where the shipping date is over 90 days old:

CREATE PURGE addressPurge AS
SELECT orderShipping.shippingAddress
FROM orderShpping
WHERE DATEDIFF(day, orderShipping.shippingDate,

date_part(‘day’, CURRENT_DATE)) > 90;

In this example schema, the shippingDate columnmust not con-
tain NULL; therefore, at least one column can be used to determine
the purge expiration date, satisfying our definition requirements.

4.4 Queries and Policies
SELECT. SELECT queries data in the active tables (which are not

modified in our approach). Therefore, our framework does not in-
troduce any additional overhead in SELECT queries. Retrieving data
from the archive tables uses SELECT ARCHIVE (a new syntax that
we introduce). Our framework automatically extends the SELECT
ARCHIVE query with necessary join fields (to accommodate the ad-
ditional archive-only fields such as transactionID). The retrieval
of data from the shadow archive is preceded by a custom func-
tion (e.g., PL/pgSQL in PostgreSQL) which decrypts the shadow
archive into a non-encrypted archive table. Depending on the size
of the shadow archive, this could result in a significant number
of decryptions, which could introduce a significant performance
penalty.

In practice, organizations would only archive data when it is
no longer actively needed. Therefore, it is unlikely that this func-
tionality would be frequently used and, therefore, performance of

archive retrieval is not a primary concern. Archive retrieval func-
tionality would likely be invoked to retrieve data which has either
been archived by accident or to comply with a legal request (e.g., a
lawsuit).

INSERT. Whenever data is inserted into the database, our frame-
work uses triggers to check if any of the values fall under a defined
purging policy. If any purging policies apply to any data, the neces-
sary values are encrypted and the values (regardless of encryption
status) are inserted into the shadow tables (with the correspond-
ing encryption key ID added in the [column name]EncryptionID
columns). For values that do not require encryption, a value of -1
is used for the [column name]EncryptionID columns.

UPDATE. UPDATE queries require updating the original values in
the active tables as well as the shadow tables. In the shadow tables,
this may require decrypting the encrypted values, updating them,
and then re-encrypting them. If the UDPATE targets a date field
that is used as the criteria for purging, this may require applying a
different encryption key (due to the changing period length), to all
updated values. If so, the framework decrypts all of the business
record’s values, determines the new key, and re-encrypts. Archived
data cannot be targeted by UPDATEs.

With respect to retention compliance, whenever any value of a
business record (subject to a retention policy) is updated, the entire
business record is first archived. This action guarantees retention
compliance by both providing a complete audit trail history of the
business record and by assuring that UPDATEs will not be used to
circumvent the retention policy. The sequenceNo column facilitates
sorting the audit trail history of business records.

If a DELETE query targets any values belonging to a business
record with retention requirements, we first check to see if any of
those values also belong to a record requiring purging. If so, the
encrypted values from the shadow copy are moved into the shadow
archive tables. If a record does not have any purging requirement, it
is still moved from the shadow table to the shadow archive (due to
all data being contained in the shadow tables regardless of purging
requirement status).

DELETE. Before a DELETE query is executed, our framework
checks for any retention policies that apply to the target data. If no
values require retention, the query proceeds as normal. We then
run the same query targeting the values in the shadow tables. If any
of the values are subject to a retention policy, the entire business
record is inserted from the shadow tables into the archive tables
(thereby inheriting the encryption and purging dates). Once the
business record has been added to the shadow archive, the delete
proceeds as normal.

4.5 Reconciling Policy Date Conflicts
Policy compliance dictates that retention takes priority over purg-
ing. If any value is subject to both a purging and retention policy,
the value must first be retained until it is no longer subject to a
retention policy; values may not be purged if there is still an active
retention requirement. Therefore, a purging date must be greater
than or equal to the retention date.

Consider the following example: Company X is required to delete
customer financial data after five years. At some point in time,
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Company X is sued, and they retain financial data for their pending
court case. They now have an active retention policy on all data
relevant to the court case. If Company X were to delete the data
due to it being subject to a purge policy, while the case is pending,
it would be in violation of procedural law, as explained in [38].
Sanctions by the court may include the prohibition of introducing
certain evidence of its defense, or the court may strike its defense
altogether. Therefore, retention must take priority over any purging
policy requirements.

When a business record is subject to both retention and purging,
the first potential conflict that must be resolved is determining how
long to save the data and when the business record must be purged.
If the retention period is less than or equal to the purging date,
there is no conflict, and therefore no changes are required. On the
other hand, if the retention period’s date is later than the purging
date, we must delay the purging date until the retention policy’s
expiration.

This conflict resolution is achieved by determiningwhich encryp-
tion key to use. If a retention policy dictates the purging date must
be delayed, the new date will be used when determine which policy
and purging date’s encryption key must be used. Choosing which
encryption key to apply is still determined on a per-value granu-
larity. Because business records are defined by policies, individual
values may contribute to multiple business records and would po-
tentially be subject to multiple policies. Therefore, a purge policy’s
business record may only have a subset of its values purge peri-
ods postponed due to a retention policy’s protection. In relational
databases, in order to avoid violating a key constraint, delaying the
purge of a non-key value in a tuple also requires delaying the purge
of the tuple’s primary key (although other non-key attributes can
be purged earlier).

4.6 Backup and Restore Process
We define partial backups as either incremental or delta. For exam-
ple, if we took a full backup on Sunday and daily partial backups
and needed to recover on Thursday, database utilities would restore
the full backup from Sunday and then either 1) apply delta backups
fromMonday, Tuesday, andWednesday or 2) applyWednesday’s in-
cremental backup. Because the trigger-based approach of this frame-
work, delta and incremental backups are still possible, and there-
fore, organizations will not have to overhaul their backup processes
if they depend on different backup types. Only the shadow and
shadow archive tables are backed up and restored during a backup
process. During a restore, our framework restores the backup with
shadow and shadow archive tables. If any row in the shadow archive
table has a retention date that has passed, this row is ignored during
the restore.

Recall that the shadow tables include additional columns with
encryption ID for each value. A -1 entry in an encryption ID column
indicates that the column is not encrypted and, therefore, does not
require decryption and would be restored as-is. Our framework
decrypts all values with non-expired encryption keys into the cor-
responding active table. For any encrypted value associated with
a purged encryption key our system restores the value as a NULL
in the active table. Thus, non-primary-key columns subject to a
purge policy must not prohibit NULLs, including any foreign key

columns. We automatically expand the purging policy to include
all child foreign keys of the table in order to maintain referential
integrity. When all columns are purged from a row, the entire tuple
will not be restored (i.e., ignored on restore).

For example, consider a database at a university where a student
has a single advisor referenced by a foreign key. At this university,
there is a policy that requires all faculty information to be purged
when they leave the university. In that scenario, policy definition
will be automatically extended by our framework to include the
advisor column in the student table; the advisor column in the
student table must be NULL-able.

4.7 Schema Change Limitations
Our framework prohibits any changes to the schema of any table
with an active policy. This limits the ability to circumvent policy
requirements by making changes to a table’s logical layout. For
example, if we were to allow a user to make changes to a table, a
user could accidentally violate retention requirements by dropping
a table column with protected values. In order to make schema
changes, table policies must first be removed and reinstated after
the changes have been made. This is similar to how other data-
base constraints operate (e.g., it is not possible to drop a column
belonging to a primary or a foreign key).

4.8 Key Management Overview
For our experiments we store encryption keys in a table within the
same database. However, in a production environment, we require
separating the policyOverview table from the main database to
ensure that purged data cannot be decrypted. The keys must be
kept in a separate database and exposed to the main database via
a database link or a REST Service call. A database link allows ta-
bles from external database to be exposed to the current database
as if the tables were co-located in the same database. This func-
tionality (transparent data encryption) already exists by default or
supplemental functionality in Postgres, SQL Server, Oracle, Db2,
and newer versions of MySQL when using a Federated storage
engine.

By keeping the encryption key data in a separate database which
uses a separate backup methodology, targeted destruction of the
encryption keys (associated with the purged records) is simplified.
Keeping the keys separate ensures that the amount of correspond-
ing meta-data that needs to be destroyed is significantly smaller
than the primary database. The backups of the encryption key data-
base can be relegated to regular drives rather than tape storage,
making it easy to overwrite data as key ranges expire. Depending on
organizational purging requirements, the key database can also be
backed up to smaller external drives (e.g., USB drives) which could
be physically destroyed rather than overwritten. Furthermore, one
should partition the encryption keys based on a time range so the
media to be erased or destroyed would be isolated to that expired
range. Once the media is physically destroyed, the encrypted data
would be unrecoverable.

Because business records are intermixed within files, there are
values belonging to multiple business records subject to multiple
policies (of both retention and purging). A full erasure of a file may
at times satisfy purging requirements, but this would come at the
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cost of violating retention policy requirements. Therefore, a tar-
geted erasurewithin a single file is required. On the other hand, with
encryption keys, we must fully guarantee they are permanently
irrecoverable. Because we store the encryption keys independently,
a media-level or entire file erasure is possible.

For the purposes of choosing to overwrite (rather than destroy)
the media, we need to consider what file erasure actually means.
When a file is deleted in a most file-systems, the entry to the file’s
data is simply de-referenced, leaving the file content intact. In
order to securely delete the file by overwriting the data several
times, we recommend using a file-system which does not perform
an update of a block by doing an insert and delete of the block.
On Linux platform there are several tools to facilitate file erasure
functionality, such as shred, secure-delete, wipe. The United
States Department of Defense (5220.22-M) recommends 2 passes of:

(1) Writing all zeros
(2) Writing all ones
(3) Writing all random characters

After steps three and six (which is after each pass of the original
three steps), a verification is conducted before proceeding [1]. In
practice, this may not be necessary, but instead would depend on
the discretion of the DBA and legal department.

To thoroughly cover the topic of securely deleting files, we need
to discuss the differences between magnetic and solid state disks
(SSD). Magnetic disks allow explicitly overwriting the same areas
of disk, whereas SSDs write the changed block to a new location
(due to hardware limitations and wear leveling of each cell) and
then reset the block for reuse by the mechanisms of trim and active
garbage collection[18]. We point out this difference out because,
while unlikely, it is possible to disable garbage collection by ma-
nipulating the SSD’s firmware and harvest the deleted/overwritten
data. This would be more likely on an individual drive and not an
SAN system due to the the LUN being spread across multiple drives
and checks of the SAN system such as firmware validation.

5 EXPERIMENTS
We implemented a prototype of our framework in a PostgreSQL 14.1
database. The test database used the schema from Figure 2 and
the example policies noted in Section 4.3 to demonstrate how our
method supports retention and purging policies. This schema re-
flects only the tables needed for the policies that we evaluate and
not all tables stored in the database. In practice, we expect most
policies to cover data in one or two tables. Additional tables which
do not directly apply to a policy will not impact query performance.
The database VM server consists of 8GB of RAM, 8 vCPUs, 1 x vNIC
and a 25GB VMDK file on an SSD. The VMDK file was partitioned
into: 350MB/boot, 2GB swap, and the remaining storage was used
for the / partition; this was done with standard partitioning and ext4
filesystem running CentOS 8 Stream on VMware Workstation 16
Pro. We demonstrate the viability of our approach by showing that
it can be implemented without changing the original (user-facing)
database schema and by extending backup procedures using only
existing DBMS backup functionality.

We generated 30,000 test business records that would fall under
1) neither policy, 2) only the retention policy, 3) only the purging
policy, and 4) both policies for the time period simulated in our

Figure 3: Framework Overhead Factor During INSERTs

experiments. Each of the four groups had approximately an equal
amount of records. Our experiment confirmed our proposed frame-
work facilitates retention and purging compliance. In Section 5.6,
we verify that our framework successfully purged and retained the
required business records.

5.1 Evaluating INSERT Performance
Because our framework adds data to the shadow tables during
INSERTs, in this experiment we analyze the overhead of our trig-
ger implementation. To determine the overhead costs, we inserted
30,002 business records (corresponding to two tables in our schema)
in batches of approximately 3,000. For each batch, we measured the
time the insertion took with and without our framework activated.
While the framework was active, it automatically encrypted and
added the business records to the shadow tables and encrypted the
business records that required purging.

The distribution of our framework’s overhead is shown in Fig-
ure 3. Overall, the INSERTs with our framework activated took
an average of 2.15𝑥 times (see red line in Figure 3) compared to
runtime without policy compliance (measured per 3,000 inserts).
Specifically, our framework averaged 2.1 seconds per batch while
a non-compliant database averaged 0.98 seconds per batch. Our
experiment was designed so that every inserted row contained at
least one value which required purging. In practice, not all rows
in a table will contain values requiring purging and therefore will
have a lower overhead cost. Overall, the overhead does increase as
the number of rows requiring purging and encryption increases.

5.2 Evaluating Encryption Cost
The purpose of this experiment is to evaluate the impact of apply-
ing encryption (we used the PostgreSQL pgcrypto module func-
tion PGP_SYM_ENCRYPT()) and policy size has on our framework’s
overhead. Our testing policy requires purging all addresses, and
therefore, every row requires a value to be encrypted. Note that
within the simulated duration of time only 50% of the addresses are
actually purged. However, all addresses are encrypted, with the re-
maining 50% to be purged in the future. To evaluate the encryption
overhead cost, we eliminated the encryption step before inserting
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Figure 4: Encryption Overhead Analysis

the data into the shadow tables. We also considered a different
purging policy that would only subject 50% of the business records
to purging (i.e., 50% of the records would be exempt from purging
altogether). Thus, for our evaluation, we considered five different
combinations of policy and framework settings:

(1) With encryption function applicable to every record
(2) With encryption function applicable to 50% of the records
(3) Without encryption function applicable to every record
(4) Without encryption function applicable to 50% of the records
(5) Framework functionality disabled

These combinations allow us to evaluate the cost of both the en-
cryption function and the size of the purging policy (comparing
policy where 50% of the rows must be purged to the policy where
100% of the rows must be eventually purged). Figure 4 provides an
overview of the runtime overheads, normalized with respect to the
baseline (framework disabled).

From our analysis, we conclude that the overhead of the en-
cryption function’s application is the largest contributor to the
overall runtime compared to the runtime of the triggers to check
for encryption and insert the data into the shadow tables. When
the policy applied to every row and encryption was applied, the
average overhead is 2.15𝑥 the runtime compared to a database with-
out our framework. In instances where encryption was applied to
only half the rows, the framework overhead dropped to 1.64𝑥 on
average. We then ran our no encryption variant on the data for all
and half the data which returned average overheads of 1.20𝑥 and
1.15𝑥 respectively.

Therefore, we are able to conclude that the majority of the frame-
work’s overhead cost is associated with the encryption function.
Although there is always going to be an associated performance
cost with checking for applicable policies and inserting the data
into the shadow tables, in practice, a lower cost function would
greatly reduce the overhead associated with the framework.

5.3 Evaluating DELETE Performance
Our framework archives retained data whenever a DELETE is exe-
cuted against it. If a table does not have applicable retention policies,
there is no need to check whether archiving is required. On the

Figure 5: Framework Overhead Factor During DELETEs

other hand, if a policy is linked to a table, our framework must (at
a minimum) check if archiving is necessary. Therefore, regardless
of whether deleted data is archived, there is some performance
overhead introduced by our framework.

For this experiment, we ran 10 DELETEs with and without our re-
tention functionality activated. Each delete targeted approximately
200 rows in the orderShipping table. With our framework enabled,
rows without retention would be deleted from both the active and
shadow tables. For when our framework was not activated, rows
were only deleted from the active tables without running any addi-
tional checks or shadow table INSERTs.

Our framework on average took 13𝑥 (red line in Figure 5) times
longer to execute a DELETE targeting roughly 200 records. Note
that a typical database warehouse workload contains fewer than 1%
of DELETE queries [11]. Therefore, the delete compliance overhead
would have a limited overall impact on the day-to-day performance
of a typical database in production (this is further evaluated in
Section 5.5). Furthermore, in order to identify the to-be-deleted row,
our prototype decrypts the key columns (rather than match the
encrypted value by equality). This is a PostgreSQL-specific imple-
mentation constraint, which may not be needed in other databases.

5.4 Database Storage Overhead
With all of our experiments, the size of the databases can be seen in
Table 2 (the size does not include the transaction log). Compared to
the size of the Postgres database the research conducted by Shrasti
et al. [29], our framework imposes less storage overhead. The total
database size with our framework after running our experiments
(containing data in both the shadow and shadow archive tables)
was 1.3𝑥 larger than a database that did not contain any compliance
functionality (after the experiments have been completed). On the
other hand, Shrasti et al.’s database with compliance functionality
was noted at times to be up to 4𝑥 larger than the non-compliant
databases.

Ultimately, storage overhead can greatly fluctuate depending
on number and coverage of policies. For example, if the database
contains more business records subject to purging or retention
policies, this can greatly increase the size multiplier. Therefore, it is
difficult to perform a complete equivalent comparison of the two,
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Database Size (MB)
After INSERTs With Framework 12.866
After INSERTs Without Framework 10.457
After DELETEs With Framework 13.309
After DELETEs Without Framework 10.474

Table 2: Experiment Database Size

but overall, our framework size requirement compares well to a
state-of-the-art compliance system.

5.5 Evaluating Performance Using Real-World
Transaction Frequencies

Recall that none of SELECT queries incur any overhead in our frame-
work. Because real-world data warehouse workloads are typically
90% SELECTs [11], the compliance overhead would apply only to
a small fraction of database queries. As we have previously evalu-
ated the overhead of our framework on specific query transaction
types, in this experiment we consider the overhead on a database
whose workloads mirrors real-world transactions. For the UPDATEs,
we continued to use a policy that requires purging a value in ev-
ery row using the function PGP_SYM_ENCRYPT() to encrypt the
data. Because our framework runs the same process for UPDATEs
and INSERTs, we use UPDATEs for performance evaluation. Table 3
shows the frequency of each transaction type for this experiment.
We ran the same query workload in the same order on two identical
databases, one with our framework enabled and one without any
additions.

These queries were run with the different types mixed randomly.
We measured the elapsed time every 1000 transactions to evaluate
performance. After running the above queries, our proposed frame-
work on average had a 13% overhead compared to the database
without the compliance framework activated. The overall perfor-
mance can be seen in Figure 6. In smaller samples, the performance
will depend on the types of queries run. Therefore, we believe that
our framework can be implemented without causing an unreason-
able decrease in overall performance.

5.6 Validating the Framework
At the beginning of our validation experiment, we inserted 10,002
business records into a new database. During the insertions, all
records were encrypted with their corresponding encryption key
(aligned to a specific date) and added to the shadow tables. We
then executed DELETEs to force our system to archive necessary
data before executing the query. This resulted in 1161 business
records moved from the shadow tables to the shadow archive ta-
bles. Next, we created a backup, deleted required encryption keys

Query Type Transactions
SELECT 9000
UPDATE 700
DELETE 300

Table 3: Query Transactions by Type

Figure 6: Framework Overhead in Practice

(corresponding to the simulation of time), and restored the data-
base from the backup. During the restoration, 1859 records were
ignored due to their encryption keys being removed and the val-
ues being purged (confirming compliance). Additionally, no other
records were purged during this process. Finally, we validated that
the shadow archive retained the necessary 563 business records
(maintaining retention compliance) and the database kept exactly
the 7,580 records as expected.

When comparing our archive to the types of data accessibility
outline in Zubulake v. UBS Warburg, our archiving system would
facilitate satisfactory recovery of data [38]. Additionally, when
comparing our purging system to the accessibility options described
by the judge in the case, our purging solution (via cryptographic
erasure) at minimum renders the data inaccessible (per the judge’s
standards); in reality, it is considered irreversibly irrecoverable.

6 DISCUSSION
6.1 Implementation Challenges
Many organizations leverage multiple database platforms. Since
data compliance is enforced at an organizational level, organizations
need consistency in the tools that they use. Having a standardized
process will help ensure consistent policy enforcement and avoid
compliance violations such as the one discussed in Example 1.

Laws dictating policy are formulated from a privacy perspec-
tive, often before technology and implementation considerations
are taken into account. Therefore, many organizations must have
their legal and technology experts partner to discuss compliance
processes. Having a well-defined process for implementation and
enforcement of policies is necessary to bridge the gap between the
legal and technology domains. Subject matter experts must be able
to understand the compliance system to verify that policies are cor-
rectly interpreted and enforced. Ad-hoc solutions and systems risk
misapplication of policy enforcement tools and inaccurate policy
mappings, potentially leading to policy violations.

6.2 Considerations for Other Database
Logical Layouts

The challenge of implementing standardized processes across sys-
tems is translating the policy requirements into platform-dependent
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implementations. Outside of the SQL standard adopted in RDBMS
platforms, there is little consistency between the different data-
base platforms. As we discussed, SQL standard offers the most
consistency. Although SQL language extensions have more variety,
they generally offer functionality necessary for data retention and
purging support.

With NoSQL databases, each platform has its own assortment
of processes and idiosyncrasies. From this analysis, we concluded
that NoSQL systems have greater implementation variability; all
compliance solutions must work within these limitations caused
by the platform idiosyncrasies. Although the basic process remains
the same in NoSQL as in RDBMS platforms, additional effort is
necessary during the implementation of a system-specific solution
(e.g., the retention trigger enforcement mechanism must be moved
into the application layer).

In columnar stores, such as Db2 BLU [12] and SAPHana [26], trig-
gers are not universally supported like in the row-based databases.
Db2 BLU, IBM’s columnar store, does not support the use triggers
on its tables [7], however SAP Hana does support the use of trig-
gers. In Db2 BLU, a trigger-like functionality would be achieved
by moving the same logic into the application level (for example,
deploying Db2 SQL/PL in parallel to a Db2 BLU database). In other
words, INSERTs, UPDATEs, and DELETEs must be funnelled through
a SQL/PL function to ensure compliance rules are implemented.

Regarding in-memory databases, many of the major platforms
provide ACID guaranties, SQL language and joins, and triggers.
Oracle Times Ten is an in-memory database where the transac-
tion and or the data are shipped to a traditional Oracle database
for long term storage [23, 24]. Similarly, VoltDB is an in-memory
ACID database with data and transaction logs shipped to traditional
databases for long-term storage. Since these databases have niche
uses, the deployment of the workflows would be dependent on
where long-term data is held. Therefore, our outlined compliance
workflows (see Section 4) would be implemented on the long-term
storage database instead of the in-memory systems.

Because cloud storage solutions leverage the databases discussed
above, from a data management perspective, no special considera-
tions would need to be added to facilitate compliance. Enforcing
compliance over the network traffic is beyond the scope of this
paper.

6.3 Future of Data Governance
Additional regulations are continually being enacted by various
legislative bodies. Many governments (such as New York) are still
actively debating expanding data privacy law requirements [22].
Furthermore, Colorado and Virginia have fully enacted new laws
to require additional customer data privacy [3]. As organizations
are subject to an increasing number of policies from differing gov-
ernment bodies, the need for a comprehensive compliance system
will only grow.

Although GDPR covers all of Europe, countries like the United
States pass laws at the individual state level. Laws on privacy and
business matters are generally considered matters of state legisla-
tion. With the exception of interstate commerce (which is feder-
ally regulated), requirements can greatly differ from state-to-state.
Therefore, the Uniform Law Commission is attempting to create a

uniform standard that simplifies the requirements for businesses
to increase consistency and facilitate compliance [10]. Because the
compliance domain is still maturing, systems must adapt to the
changes of existing policies and evolve as the data privacy field
advances.

6.4 Future Work
In this paper, we outlined a framework which can support retention
and purging policy compliance in relational databases. For future
research, we believe there is a large opportunity for improving
runtime performance and usability. While our current framework
generates PL/SQL functions and triggers to support this functional-
ity, we would like to develop an integrated language in which the
policies can be represented, modified, and validated. While we be-
lieve the performance overhead from our framework is practical, we
would like to explore overhead mitigation techniques for large-scale
databases and applications that are latency sensitive; for example,
using a cloned copy to offload the additional work. Additionally,
exploring the individual components most strongly contributing
to the performance overhead would provide guidance for further
optimization. Furthermore, we feel the need to explore having the
archive copy in an independent database for environments subject
to separation of duties, such as in a banking environment.

Another significant element of many new data governance leg-
islation is to require customer consent before processing personal
data. This requires filtering out data which has not been permis-
sioned for certain uses (e.g., marketing). This functionality must
also be implemented into databases to ensure complete compliance.

Overall, this paper focuses on data residing in a DBMS. Files cre-
ated by databases which reside outside of the DBMS (e.g., logs) are
also subject to retention and purging requirements. Therefore, ad-
ditional operating system level compliance tools must be developed
to ensure compliance outside of the DBMS.

7 CONCLUSION
Data management research must address the current shortcomings
of compliance functionality in relational databases. Organizations
can no longer depend onmanual or ad-hoc solutions to address their
compliance obligations. As organizations are increasingly being
subjected to more policies, this will only increase the complexity
of maintaining compliance. This proposed framework provides
the necessary critical functionality for an automated compliance
solution. As compliance only continues to grow in importance,
developing and implementing a non-intrusive solution will be key
to protecting the privacy of individuals and organizations alike.
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