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ARTICLE INFO ABSTRACT

Keywords: Sound is caused by physical events in the world. Do humans infer these causes when recognizing sound sources?
Invariance We tested whether the recognition of common environmental sounds depends on the inference of a basic physical
Auditory scene analysis variable — the source intensity (i.e., the power that produces a sound). A source’s intensity can be inferred from
ﬁ‘é:ti’f;a“on the intensity it produces at the ear and its distance, which is normally conveyed by reverberation. Listeners could

thus use intensity at the ear and reverberation to constrain recognition by inferring the underlying source in-
tensity. Alternatively, listeners might separate these acoustic cues from their representation of a sound’s identity
in the interest of invariant recognition. We compared these two hypotheses by measuring recognition accuracy
for sounds with typically low or high source intensity (e.g., pepper grinders vs. trucks) that were presented across
a range of intensities at the ear or with reverberation cues to distance. The recognition of low-intensity sources
(e.g., pepper grinders) was impaired by high presentation intensities or reverberation that conveyed distance,
either of which imply high source intensity. Neither effect occurred for high-intensity sources. The results suggest
that listeners implicitly use the intensity at the ear along with distance cues to infer a source’s power and
constrain its identity. The recognition of real-world sounds thus appears to depend upon the inference of their
physical generative parameters, even generative parameters whose cues might otherwise be separated from the
representation of a sound’s identity.

Distance perception

1. Introduction

Just by listening, we can tell that we are walking next to a stream,
that a mosquito is hovering nearby, or that an animal is growling.
Though it is clear that humans can recognize environmental sounds
(Balas, 1993; Giordano, 2003; Gygi, Kidd, & Watson, 2004, 2007; Gygi
& Shafiro, 2011; Leech, Gygi, Aydelott, & Dick, 2009; Lemaitre & Heller,
2013; McDermott & Simoncelli, 2011), the underlying computations
remain poorly understood.

A central challenge of recognition is that similar entities in the world
can produce very different sensory signals, as when an object is viewed
under different lighting conditions, or a sound is heard from near or far
(Fig. 1A). Somehow our sensory systems must generalize across this
variation while retaining the ability to discriminate different objects

(Carruthers et al., 2015; DiCarlo & Cox, 2007; Liu, Montes-Lourido,
Wang, & Sadagopan, 2019; Rust & DiCarlo, 2010; Sharpee, Atencio, &
Schreiner, 2011). One possibility is that listeners separate or remove
unwanted variation from a sound’s internal representation to achieve
invariance, akin to how contemporary machine recognition systems are
believed to associate sets of stimuli with labels (Goodfellow, Lee, Le,
Saxe, & Ng, 2009; Tacchetti, Isik, & Poggio, 2018). In speech, variation
in word acoustics due to speaking speed as well as the pitch and vocal
tract of the speaker (Allen, Miller, & DeSteno, 2003; Hillenbrand, Getty,
Clark, & Wheeler, 1995; Stevens, 2000) is often thought to be normal-
ized or separated from the representation of speech content (Holt, 2006;
Johnson, 2005; Lehet & Holt, 2020; Nusbaum & Magnuson, 1997;
Pisoni, 1997). Similar normalization mechanisms could underlie repre-
sentations of melodies, the recognition of which is also robust to time
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Fig. 1. Overview and hypotheses. (A) Schematic depicting the
impact of source intensity and distance on the intensity at the
ear: while sounds with high-intensity sources (e.g., a truck)
induce a wide range of ear intensities depending on the dis-
tance (due to the inverse-square law), low-intensity sources (e.
g., pepper grinder) never produce high ear intensities. (B) A
graphical model of the interdependencies of the acoustic
features we investigate: solid lines represent causal relation-
ships in the generative process, dashed lines represent hypo-
thetical inferences humans may use to identify the sound
source. One hypothesis is that source identity, intensity and
distance are each inferred separately. Another possibility is
that that these judgments inform each other. We use manip-
ulations of sound intensity and reverberation to investigate
whether source recognition is affected by perceived source
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dilation, pitch transposition, and other transformations (Attneave &
Olson, 1971; Dowling & Fujitani, 1970; McDermott, Lehr, & Oxenham,
2008). Background noise (Ding & Simon, 2013; Kell & McDermott,
2019; Khalighinejad, Herrero, Mehta, & Mesgarani, 2019; Moore, Lee, &
Theunissen, 2013; Rabinowitz, Willmore, King, & Schnupp, 2013; Scott
& McGettigan, 2013), reverberation (Mesgarani, David, Fritz, &
Shamma, 2014; Traer & McDermott, 2016) and intensity (Billimoria,
Kraus, Narayan, Maddox, & Sen, 2008; Sadagopan & Wang, 2008) may
also be partially separated from the representation of a sound’s source.

However, invariant association of labels with stimuli is not the only
goal of perception. In the case of audition, most everyday sounds are
caused by physical interactions (e.g., impacts, scrapes, fracturing, fluid
motion etc.) (Gaver, 1993). Listeners have some ability to describe these
interactions for common sound sources (Conan et al., 2014; Grassi,
2005; Grassi, Pastore, & Lemaitre, 2013; Guyot et al., 2017; Hjortkjeer &
McAdams, 2016; Lemaitre & Heller, 2012; Lutfi, 2008; Rocchesso &
Fontana, 2003; Traer, Cusimano, & McDermott, 2019), raising the
possibility that the inference of the mechanisms that compose the source
might contribute importantly to everyday recognition even if they are
not explicitly part of the verbal label with which a sound is identified.

To investigate these possibilities, we examined the effect of intensity
on sound recognition as a simple test case (Fig. 1B). A sound’s intensity
at the ear depends upon the both the source’s intensity (which depends
on the nature of the source) and the distance to the listener, due to the
inverse-square law (Fig. 1B). These relationships are occasionally
violated in modern listening conditions due to electrical amplification of
sound, but are nonetheless present for most of our daily auditory
experience. It is clear from everyday experience that listeners can
recognize sound sources, and that they have some ability to judge a
source’s intensity, and to estimate source distance. However, the rela-
tionship between the processes underlying these judgments is poorly
understood. They could be largely distinct, with recognition that is
invariant to intensity and distance cues. Alternatively, humans might
jointly infer sources, their intensities, and their arrangement within the
scene (causal inference). The latter hypothesis predicts that inferences of
one parameter should tacitly affect those of another. For example,
inferred distance could affect estimates of source intensity, which in turn
could affect source recognition (Fig. 1C). Some evidence that intensity
might influence recognition comes from the finding that listeners are
biased by intensity in sound memory tasks (Susini, Houix, Seropian, &

Lemaitre, 2019), but to our knowledge the effect on recognition of
everyday sounds had not been explicitly measured prior to this study.

In Experiments 1—9 we investigated how source recognition was
affected by sound intensity at the ear, and by reverberation, which
conveys source distance and could thus indirectly influence the inferred
intensity of a source. We compared the effects for high- and low-
intensity sources (e.g., a truck and a pepper grinder). Our results show
that listeners consistently misidentify low-intensity sources when pre-
sented with either high intensities at the ear or reverberation conveying
distance, both of which entail an implausibly high source intensity. This
result contradicts the hypothesis that recognition is invariant to in-
tensity and reverberation, but is consistent with causal inference,
because neither high-intensity nor distant sounds can possibly be
generated by low-intensity sources. Experiments 1-6 were run with a
large set of sound recordings made in natural scenes. To ensure that our
results were robust to the reverberation intrinsic to these natural re-
cordings, in Experiments 7-9 we replicated key results with a set of
studio-recordings that had minimal reverberation.

To address the possibility that the result could instead be driven by
unfamiliar combinations of acoustic cues, with low-intensity sources
misidentified when they are encountered in conditions that have plau-
sibly not been previously encountered by participants (i.e., at high in-
tensities or with reverberation appropriate for enclosed spaces), we
conducted two follow-up experiments. In Experiments 10 and 11 we
explicitly tested whether the reverberation we applied sounded appro-
priate for our recorded sounds. We found that the reverberation was
heard to be less appropriate for low-intensity sound sources typically
encountered outdoors than low-intensity sources typically encountered
indoors, consistent with the lower reverberation found in outdoor en-
vironments (Traer & McDermott, 2016). However, when the source
recognition experiments (Experiments 4 and 8) were reanalyzed sepa-
rately for indoor and outdoor sounds, low-intensity outdoor sounds were
no more frequently misidentified than indoor sounds. Humans thus
misidentify sources under conditions that are physically impossible in
natural conditions, but not conditions that are acoustically atypical, a
result that provides additional support for causal inference.

Finally, we replicated the key results with experimental variants
designed to rule out various potential confounds. We show that the main
results cannot be explained by intrinsic differences in our sound sources,
such as spectral content, or by the artificial amplification of typically
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Fig. 2. Experiments 1-3: Misidentification of sound sources presented with implausible intensities suggests casual inference. (A) Schematic of the open-set
recognition task used in Experiment 1, which was intended to be more sensitive and ecologically valid than a traditional forced-choice experiment. In-lab partic-
ipants (top) heard sounds at different presentation intensities and typed descriptions of what they heard, here with the sound of a pepper grinder as an example. A
separate group of online workers (bottom) tried to identify the sound the in-lab participants heard from a list of 10 possible choices using only the written de-
scriptions of the in-lab participants. (B) Results of Experiment 1: Recognition accuracy for low-intensity and high-intensity sources as a function of the physical
intensity at which they were presented to the ear. Recognition accuracy reflects the fraction of online graders who correctly guessed the sound from the in-lab
descriptions. Error bars show one standard error of the mean across participants from the in-lab experiment. Recognition declined for low-intensity sources when
presented above 60 dB SPL, which is inconsistent with the hypothesis that listeners are invariant to intensity. (C) Results of Experiment 1 with overall recognition
accuracy equated for low-intensity and high-intensity sources. Difficulty was equated by removing the easiest-to-recognize high-intensity sources and the hardest-to-
recognize low-intensity sources (averaging across presentation intensity). The interaction between source intensity and presentation intensity persisted when con-
trolling for overall difficulty. (D) Results of Experiment 2: multiple-choice source recognition. There was again a significant interaction between source intensity and
presentation intensity, but performance was higher in all conditions, as expected. (E) Schematic of the task from Experiment 3, in which online workers compared the
responses of participants from Experiment 1 to the original sound label and judged which of the two corresponded to a higher-intensity sound. (F) Results of
Experiment 3: The fraction of typed responses from Experiment 1 that were judged to correspond to louder sources than the original label. Results are plotted for low-
and high-intensity sources as a function of the presentation intensity. Dashed line represents chance performance (i.e., the point where the typed descriptions was on
average judged to be no louder or quieter than the correct original sound label).

inaudible structure (Experiment 12).

These results suggest that an interwoven set of inferences underlie
everyday recognition: listeners infer distance from reverberation, judge
source intensity from the inferred distance and intensity at the ear, and
then identify sources in part based on the inferred source intensity
(Fig. 1C). Sound recognition thus appears to be intrinsically linked to
intuitive causal inference of the scene and source properties.

2. Experiments 1 and 2: everyday sound recognition is not
invariant to intensity

We began by measuring the ability of listeners to recognize everyday
sounds presented to the ear at different intensities. We then assessed
whether the typical intensity of the sound source in the world affected
listeners’ performance.

To assess identification accuracy, we first used an “open set” recog-
nition task (Experiment 1): on each trial listeners heard a 2-s sound and
were asked to type a description of it (e.g., “Hand grinder. For spices or
coffee beans.”; Fig. 2A, top). We adopted this methodology because it is
more ecologically relevant than a forced-choice task in which listeners
are presented with a fixed set of options (as have been used in many
previous studies of environmental sound recognition (Gygi et al., 2004;
Gygi & Shafiro, 2011; McDermott & Simoncelli, 2011)). We were also

concerned that affording listeners a set of possible sound identities
might artificially boost performance and mask differences between
conditions that might otherwise be present in real-world conditions. To
assess the accuracy of the descriptions provided by each listener, we had
online workers guess the sound heard by each listener based on these
descriptions (via Amazon’s Mechanical Turk platform; Fig. 2A, bottom).
The online workers, who did not hear the sound, chose the sound label
that best fit the listener’s description from a list of 10 possible choices.
The accuracy of a listener’s descriptions was quantified as the fraction of
trials on which the online workers were able to correctly identify the
sound from their descriptions.

To ensure that the results of Experiment 1 were not specific to the
open set recognition task, in Experiment 2 we ran the same sound
recognition task with a multiple-choice (10 choices), rather than “open
set”, task.

2.1. Method

All experiments were approved by the Committee on the Use of
Humans as Experimental Subjects (COUHES) at MIT, and all participants
gave informed consent. No participant, in-lab or online, took part in
multiple experiments, ensuring that all participants were naive to the
stimuli. In-lab experiments were conducted in soundproof booths with
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Table 1

The 300 sounds used in experiments. Sounds were partitioned into 4 groups based on their rated real-world source intensity on a 1 (lowest-intensity) to 10 (highest)
scale (see Appendix A for details). The rated intensity is shown next to each sound. In Experiments 1-3 and 12 the left column of 75 sounds were classed as “low-
intensity” and the right column of 75 sounds as “high-intensity”. The subset of sounds used in Experiments 4-6 and 10 are marked with asterisks (*). The difficulty
matched-subsets (Fig 2C) are underlined. The distance-matched subsets used in Experiments 4-6 and 11 are listed in Tables S1-S3.

Low-intensity sources
(0-25™ percentile)

25-50™ percentile

50-75™ percentile

High-intensity sources
(75-100™ percentile)

2.44 heart beats*
2.90 cat purring*
2.92 clipping hair
2.97 car idling*
2.98 brushing hair
2.98 drinking*
3.08 rubbing cloth
3.08 salt shaker*

3.18 rubbing hands*
3.21 slicing bread*

3.21 scissors cutting paper*
3.21 leather coat

3.28 peeling*

3.28 peeling

3.28 flag*

3.30 turning a lock
3.31 bees*

3.32 match lighting
3.32 writing on paper*
3.36 coloring*

3.37 opening a letter
3.39 breathing*

3.41 key opening door*
3.45 dove cooing

3.48 car deccelerating
3.51 dice roll

3.52 humming*

3.54 scratching*®

3.56 mac startup sound
3.56 finger tapping*
3.59 screwing off lid*
3.61 spray can spraying*
3.63 can opening

3.67 door sliding shut*
3.67 running on sand
3.67 tooth brushing*
3.67 phone vibrating*
3.67 drawer opening*

3.69 chair rolling*
3.69 coffee machine*

3.70 owl hooting*
3.70 coin in a vending machine*

3.70 camera turning on
3.75 keys jingling*
3.75 wing flapping*
3.77 dial tone*

3.78 drink fizzing
3.79 paper cutter

3.80 water boiling*

3.80 chopping food*

3.81 newspaper page turning*
3.81 opening a soda bottle
3.83 water dripping*

3.87 sighing

3.89 clock ticking*

3.89 drawer closing

3.90 stream*

3.90 shuffling*
3.92 soda pouring into cup*

3.94 writing on whiteboard
3.94 microwave*

3.94 oldfashioned dialer*
3.94 gargling*

3.95 typing*

3.95 fire*

3.95 ice in cup

3.97 bicycle*

3.98 dialing*

4.02 inflating a balloon*
4.03 music box

4.08 pepper grinder*

4.08 car windows*

4.09 camera taking a picture*
4.11 crumpling paper*

4.11 triangle

4.13 spray can shaking*

4.14 acoustic bass

4.17 balloon deflating

4.17 dog drinking*

4.17 jumping rope*

4.19 shoveling*

4.19 wind*

4.20 writing on a chalkboard*
4.21 door opening*

4.21 sipping

4.22 door creaking

4.22 elevator door

4.24 liquid pouring out of a bottle*
4.25 scrubbing dishes*

4.26 coins jingling in a pocket
4.27 bus accelerating*

4.27 fax

4.27 walking on a hard surface*
4.29 window blinds

4.30 chicken cluck*

4.30 cash register*

4.35 shopping cart

4.35 walking on gravel*

4.37 walking on leaves*

4.38 toilet flushing

4.38 grunting and groaning*
4.38 radar beeps

4.38 windows startup sound*
4.40 whale call

4.41 frying*

4.43 biting and chewing*
4.45 chiseling

4.48 skate boarding*

4.48 harp

4.48 knives sharpening*

4.51 bike bell*

4.51 bird song*

4.51 swimming*

4.51 whistling*

4.52 dog panting*

4.53 car driving through a puddle
4.56 French

4.56 Russian

4.57 rattlesnake*

4.62 Arabic

4.63 Hindi

4.67 basketball dribbling*
4.67 screwing in a nail

4.67 cricket*

4.67 frog croaking*®

4.67 stones tumbling

4.68 running on a hard surface
4.69 darth vader

4.72 fan

4.73 cat meow*

4.75 horse galloping*

4.77 bathwater*

4.78 car accelerating*

4.79 record scratching

4.81 ratchet*

4.81 roulette wheel

4.81 ice machine

4.83 man speaking

4.84 wolves howling

4.84 running up stairs*

4.88 bus decelerating*
4.89 wind chimes*

4.89 sheep*

4.89 film reel*

4.93 spanish

4.94 toy squeaks*

4.94 nose blowing

4.94 ping pong*

4.94 turkey gobble*
4.98 rollerblading

5.03 sleigh bells

5.05 flute

5.05 woman speaking
5.06 morse code

5.06 running on gravel*
5.06 tennis volley*

5.07 bassoon

5.08 dog whining*

5.08 duck quack*

5.08 rain*

5.11 giggling

5.11 hawk screech*
5.11 water splashing*
5.11 ringtone

5.11 cartoon sound effects
5.13 a capella singing
5.16 pool balls colliding*
5.17 pig snorting*
5.17 tambourine

5.19 tuba

5.21 locker closing*
5.21 sails flapping
5.22 heart monitor
5.22 pager beeps

5.23 air hockey*

5.24 waves*

5.25 Chinese

5.25 gorilla

5.27 dialup*

5.28 baby babbling
5.29 marching*

5.29 shower*

5.30 sword fighting
5.31 rocking chair*
5.36 reception desk bell*
5.37 piano

5.38 dishes clanking*
5.39 grandfather clock*
5.39 horse neighing*
5.39 knocking on door*
5.40 popcorn popping*
5.41 geese honking*
5.41 cuckoo clock*
5.41 radio static*

5.43 cicadas*

5.43 oboe

5.44 electric bass

5.48 castanet

5.52 printing*

5.53 seal

5.55 bear growling™*
5.56 chopping wood*
5.58 kettle whistling*
5.59 kid speaking

5.59 car engine starting*
5.59 guitar

5.60 violin

5.62 seagulls*

5.63 cow mooing*
5.64 gavel hits

5.76 hand saw*

5.77 witch cackle
5.77 hair dryer*

5.80 crowd noise

5.81 banjo

5.94 accordian

5.98 truck beeping*
6.00 tap dancing

6.05 rooster crowing*
6.08 paper shredder
6.09 hammering a nail*
6.10 pinball*

6.11 telephone ringing*
6.11 slot machine
6.12 bowling*

6.16 applause*

6.24 crying*

6.24 tree falling

6.25 laughing*

6.29 lion growl*

6.30 car skidding*
6.32 orchestra tuning
6.35 bass drum hits
6.37 volcanic eruption
6.38 dentist drill*
6.41 doorbell*

6.42 blender*

6.43 school hallwa
6.48 truck*

6.52 organ

6.53 drum roll

6.59 crowd laughing*
6.64 church bells*
6.65 gong*

6.68 tractor*

6.70 alarm clock
6.70 electric drill*
6.73 vacuum*

6.73 boat horn*

6.74 monkey scream*
6.77 traffic noises*
6.79 whistle*

6.80 baby crying
6.82 bagpipes

6.83 dog barking*
6.86 school bell*
6.91 hammering metal*
6.95 noisemaker
6.95 helicopter*

7.08 gunshots*
7.12 car horn*

7.16 lawn mower*

7.19 glass shattering*
7.19 shouting*

7.22 train whistle*

7.27 train warning bell*
7.28 fireworks*

7.29 drum solo

7.30 chainsaw revving*
7.30 cymbal crash

7.32 sports arena buzzer
7.35 scream*

7.38 thunder*

7.42 motorcycle revs*

7.48 race car*

7.51 fire alarm*

7.56 crowd booing

7.63 siren*

7.68 train passing by*

7.69 explosion*
(continued on next page)




J. Traer et al.

Table 1 (continued)

Cognition 214 (2021) 104627

Low-intensity sources 25-50'" percentile

(0-25™ percentile)

50-75™ percentile High-intensity sources

(75-100™ percentile)

4.84 shaving with electric razor*
4.85 busy signal*

4.85 Italian

4.87 German

4.87 walking with heels*

4.03 windup toy*
4.05 paper tearing*
4.05 zipper*

4.06 coins dropping*
4.08 grating food*

7.72 car alarm

7.89 car crash*

7.91 crowd cheering*
8.16 plane taking off*
8.28 jackhammer*

5.66 cello

5.66 coughing*
5.72 harmonica
5.73 crow*
5.73 clarinet

calibrated headphones (Appendix A).

2.1.1. Participants

For clarity, all participants who listened to sounds and tried to
identify the source are referred to as ‘listeners’, to distinguish them from
the ‘online workers” who graded results. 42 in-lab listeners participated
in Experiment 1 (22 female, 19 male; 1 listener’s gender was not
recorded; mean age = 35.7 years; SD = 13.9 years). The responses from
the 42 listeners from Experiment 1 were scored by 500 online workers.
22 in-lab listeners (12 female, 10 male; mean age = 25.4 years; SD = 8.8
years) participated in Experiment 2. Participants had their hearing
sensitivity assessed to ensure they could adequately hear the stimuli
(Appendix B). A power analysis assuming an interaction effect size of
113:0.2 (which is on the lower end of a “large” effect size as defined by
Cohen (Cohen, 1988)) indicated that 42 listeners would be needed to
detect an effect of this size 80% of the time using a significance threshold
of 0.05. The design (in which each participant heard a sound once, at
one of 7 possible presentation intensities) necessitated a sample size that
was a multiple of 7. We accordingly ran 42 listeners in Experiment 1,
and about half as many listeners in Experiment 2 (which served as
methodological control).

2.1.2. Materials and procedure

Listeners were asked to identify 300 unique sounds (Table 1). The
sounds were sourced from sound effects CDs and the internet, and were
selected to be relatively clean and recognizable (Norman-Haignere,
Kanwisher, & McDermott, 2015) and to include a broad range of natural
sounds heard in daily life. The sound set included some music (34
sounds) and speech stimuli (12 sounds), which might involve recogni-
tion mechanisms distinct from those for other environmental sounds
(Leaver & Rauschecker, 2010; Norman-Haignere et al., 2015), but the
exclusion or inclusion of these sounds did not qualitatively affect the
results of the experiment. All of the sounds were 2 s in duration and were
resampled to 20 kHz with 16-bit resolution (these were the lowest
sampling rates and bit depths across the set of recordings we assembled,
and so we matched all stimuli to these values). Linear ramps (10 ms)
were applied to the beginning and end of each sound. All experiments
manipulating intensity (Experiments 1-3 and 12) used all 300 sounds.

Sounds were presented over headphones at intensities ranging from
low (30 dB SPL) to high (90 dB SPL) in 10 dB increments. Each listener
heard each sound once. Across listeners, each sound was presented an
equal number of times at each of the seven different intensities. Each
intensity condition was presented the same number of times for each
listener.

In Experiment 1, listeners were asked to type their best guess of the
sound’s identity (as a single- or multi-word description), giving as much
detail as possible. Because listeners were asked to identify the sound,
they generally gave semantically meaningful descriptions (e.g., “clock™)
rather than acoustic descriptions (e.g., “tic tic tic”). Trials were
completed in four blocks of 75, between which listeners were encour-
aged to take a break.

To score the responses, we had online workers read descriptions from
the in-lab listeners from Experiment 1. The workers did not know the
task condition nor could they hear the sounds. For each description (e.g.,
“wind instrument playing a melody™), they were asked to identify the
sound being described from a list of 10 choices drawn from the labels of

the sound set used for the experiment (e.g., “Clarinet”, “Seagull”, “Drum
roll”, “Violin”, etc.). The 9 foils were drawn randomly from the other
sounds in the experiment.

Most of the Experiment 1 descriptions (97%) were scored by two
workers. A small number were scored by 1 or 3 workers (due to a
mixture of unanswered questions from the workers and idiosyncrasies in
the way new questions were posted using the Mechanical Turk batch
interface). Although each in-lab description was only scored by
approximately 2 online workers, our analysis was based on the average
recognition accuracy across listeners and across a large collection of
low-intensity and high-intensity sound sources. Since there were 75
sounds for the low-intensity and high-intensity source groups, and since
each sound was described by 6 in-lab listeners for each level tested, the
average performance at a particular presentation intensity for either
low-intensity or high-intensity sources was based on data from 450 in-
lab descriptions and approximately 900 worker scorings. As a conse-
quence, the pattern of mean recognition performance across conditions
(presentation intensity x source group) was stable across independent
sets of Mechanical Turk ratings (split-half Pearson correlation was 0.98).

To assess the typical source intensity for a sound, we had a different
group of online workers rate how “quiet” or “loud” sounds typically are
in the world on a scale of 1 (most quiet) to 10 (most loud) (Appendix C).
The 25% of sounds with the lowest and highest ratings were used as the
low-intensity and high-intensity sources, respectively, in the subsequent
analysis (results for all quartiles are shown in Fig. S1).

2.1.3. Statistics

In all experiments, repeated measures analyses of variance
(ANOVAs) were used to test for main effects and interactions. The
ANOVAs were performed on the proportion of trials that each listener
got correct for each sound group and source condition. Mauchly’s test
was used to test for violations of sphericity, and was never significant,
indicating that the assumptions of the ANOVA were not violated. t-tests
were used to directly compare two conditions of interest. In Experiment
2, in which participants scored above 75% in all conditions, the data
were arc-sine transformed prior to performing statistical tests.

2.2. Results and discussion

If sound recognition is invariant to sound intensity, listener re-
sponses should be little affected by intensity, perhaps improving with
presentation intensity due to better audibility. But if recognition instead
depends upon the inferred source intensity, results should differ for low-
intensity and high-intensity sources. For high-intensity sources, such as
a jackhammer or a lion’s roar, recognition largely increased with the
presentation intensity (Fig. 2B; though there was a non-significant trend
for poorer performance at the highest levels; t(41) = 1.88, p = 0.07 for
comparing 70 and 90 dB). But for low-intensity sources, recognition
peaked at moderate presentation intensities and then declined (t(41) =
2.85, p < 0.01 for comparing 60 and 90 dB) (intermediate trends were
evident for sounds rated as having intermediate source intensities; Fig.
S1). This difference produced an interaction between the effect of pre-
sentation intensity and the source intensity (F(6, 246) = 6.50, p < 0.001,
;13:0.137, comparing low-intensity and high-intensity sources).

The low-intensity sources were less recognizable overall than the
high-intensity sources (F(1, 41) = 294, p < 0.001, 113:0.878). To ensure
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Table 2

Some example source labels and listener text responses for Experiment 1, from
trials in which low-intensity sounds presented at 90dbSPL were misidentified
(proportion correctly identified = 0). The 22 examples here are the trials
encountered by the first 10 participants (of 42) who took part in Experiment 1.

True source label

In-booth listener text response (Exp1)

Velcro

Typing

Flag

Microwave

Grating food

Dial tone

Chair rolling

Slicing bread

Drawer opening

Key opening door

Match lighting

Coloring

Soda pouring into a
cup

Wing flapping

Chopping food

Microwave

Leather coat

Peeling

Opening a letter

Phone vibrating

Slicing bread

Spray can spraying

Rocks

Motor sound

Thunder

Drying clothes

Machine

Horn

Pinball

Fixing a motorcycle

Pully

Bolt action

Automatic inflation or deflation
Scribbling on chalkboard

When you have a nearly empty fountain drink with ice — those
last couple of sips

Shaking something up

Something being stuck/applied to something else
Airplane

Motorbike noise or Velcro ripping
Casino machine

Person noisily going-through a drawer
Horn or fire alarm

Car noises —exhaust or engine
Machine noise —possibly welding tool

that this difference in overall recognizability could not somehow explain
the interaction between presentation intensity and the source type, we
equated overall recognition rates by eliminating the most-recognized
and least-recognized sources in each group, respectively (we removed
25 sounds from each group, leaving 50 sounds per group in total). As is
evident in Fig. 2C, the interaction between the effect of presentation
intensity and the source intensity persisted after this manipulation (F(6,
246) = 7.84; p < 0.001, 72=0.160).

When a multiple-choice task was used to measure recognition
(Experiment 2; Fig. 2D), overall performance was higher, but the
interaction between presentation intensity and real-world intensity
remained (after arc-sin transforming the data: F(6, 126) = 2.29, p =
0.039). However, we note that the effect was weaker with the multiple-
choice paradigm (113:0.098), confirming our initial worry that such
paradigms would artificially inflate recognition performance and
obscure differences between conditions.

3. Experiment 3: sound descriptions are consistent with
inferences about source intensity

If listeners are using the inferred source intensity as a cue to recog-
nition, then when listeners misidentify low-intensity sources presented
at high intensities, their erroneous answer should be a high-intensity
source. To test this prediction, we analyzed the descriptive responses
given for each sound in Experiment 1 (see Table 2 for examples). We
presented a different set of online workers with pairs of sound de-
scriptions: a typed response from a trial in Experiment 1 along with the
corresponding original source label. The online workers were asked to
select the description that described a “louder” sound (Fig. 2E). We then
measured the proportion of trials for which the participant’s description
was judged as louder than the presented sound source, as a function of
whether the source was high- or low-intensity, and the presentation
intensity. If the participants tended to give descriptions of sources with
about the same source intensity as the heard source, the online workers
should produce chance results. This would be expected when the pre-
sentation intensity was appropriate for the source (i.e., low for low-
intensity sources, and high for high-intensity sources). The responses
might then be biased upwards or downwards as the presentation in-
tensity increased or decreased from this level.
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3.1. Method

3.1.1. Participants
210 online workers participated in Experiment 1 (113 female; mean
age = 33.5 years; SD = 14.7 years) — five for each of the 42 participants.

3.1.2. Materials and procedure

Each text description typed by listeners in Experiment 1 was paired
with the original description of the sound (Table 1) and presented to a
second set of Mechanical Turk workers. The workers were told that the
two descriptions were both provided by listeners, and were asked to
choose which of the two sounds being described was the “louder”
source. The order in which the two options were presented (source label
and listener description) was randomized. Workers were instructed that
if the two descriptions were very similar, they should guess. Workers
were not given any other information about the sounds or the experi-
ment details. Five online workers independently performed this judg-
ment for each response from a participant in the original experiment.
Each data point in the results graph thus reflects 2250 worker scorings
(of 450 in-lab typed descriptions). As a consequence, the results graph
(proportion judged louder vs. presentation intensity x source group) was
stable across splits of the Mechanical Turk responses (split-half Pearson
correlation was 0.99).

3.2. Results and discussion

The causal inference hypothesis predicts that a source presented at
an atypically high intensity will be misidentified as a “louder” source —
because the original source could not possibly have created such a high-
intensity sound. Thus, the fraction of sources misidentified as “louder”
should increase with presentation intensity, and should be higher for
low-intensity sources at all presentation intensities (because for any
given presentation intensity, more low-intensity sources will be louder
than normal than high-intensity sources). The results (Fig. 2F) show that
both these effects are observed: the listeners in Experiment 1 were more
likely to describe a high-intensity source when the presentation intensity
was high (F(6,246) = 24.0,p < 0.001,175:0.369), and such errors were
more common for low-intensity sources (F(1,41) = 57.7, p <
0.001,;75:0.584). In addition, chance performance occurred at low
presentation intensities (40-50 dB SPL) for low-intensity sources, and
high intensities (90 dB SPL) for high-intensity sources. These results are
consistent with the idea that listeners infer the intensity of the source,
and give descriptions that are consistent with this inferred intensity.

To assess whether the high-intensity source labels that were
mistakenly chosen by participants tended to identify sounds that were
otherwise acoustically similar to the presented low-intensity source, we
analyzed their acoustics. For each low-intensity source mistakenly
identified by a participant, we measured both the mean power in each of
a set of gammatone filters (commonly termed the “excitation pattern”),
and the mean power in each of a set of spectrotemporal modulation
filters (see Appendix E for details of the filter banks). We then made the
same power measurements in the high-intensity source recording cor-
responding to the erroneously selected label, as well as a distinct high-
intensity source recording with the closest loudness rating (from
Table 1). We then compared the correlation of the power measurements
in the low-intensity source with those for each of the two high-intensity
sources (after subtracting out the mean of the power measurements
across the entire sound set). This analysis revealed that participants
tended to choose high-intensity source labels corresponding to sounds
whose modulation statistics were more similar to those of the presented
low-intensity source than would be expected by chance. Specifically, the
correlation with the chosen label (median = 0.33) was significantly
higher than that with the unrelated label (median = 0.05) by a sign test
(p = 0.009). There was no such relationship for the excitation pattern (p
= 0.33), consistent with the idea that higher-order statistical properties
are more important for sound identification than the spectrum
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Fig. 3. (A) Illustration of the effect of distance on reverberation. When a source is near the listener (top) the direct path (blue) is short (left) and creates a high
amplitude peak in the Impulse Response (right). When a source is distant from the listener (bottom), the direct path is longer, producing a correspondingly lower
amplitude peak in the Impulse Response. In contrast, the total contribution of the reflections, which arrive after the initial peak, is similar for near and distant
sources. We show 2nd-order reflections (i.e., the paths that reflect off of 2 surfaces before arrival), which hit both the near and far wall. For simplicity neither 1st-
order nor higher-order reflections are shown in the room schematic. The acoustic contribution of higher-order reflections is shown in grey at right. Two of the 2nd-
order reflections (near-wall; green) have longer paths and lower amplitude peaks, but two (far-wall; purple) have shorter paths and are correspondingly higher in
amplitude. Thus, the total contribution from 2nd-order reflections is not substantially changed by distance. The same logic applies to all higher-order reflections.
Because the power of direct-path sound decreases with distance, the Direct-to-Reverberant ratio (top right) decreases with source distance. Thus, the presence of
reverberation with small DRR implies greater distance and thus a more powerful source for a given sound intensity at the ear. Note that impulse responses also vary in
the decay time, commonly quantified as the RT60. In simple indoor conditions, the DRR and RT60 can vary independently. The RT60 is typically fairly constant
within a room, and varies across rooms depending on their size and on the material of their walls. By contrast, the DRR varies within a room depending on the
distance of the source to the listener. (B) Cochleagrams of an example environmental sound from Experiment 5 (the sound of walking) without (top) and with
(bottom) added reverberation. The reverberation was synthesized to be typical of a 10 m separation in a large room. (C) Schematic of Experiment 4 (effect of
reverberation on source recognition). (D) Results of Experiment 4: Recognition declined more for low-intensity than high-intensity sources when presented in
reverberation, consistent with causal inference of source intensity. (E) Results of Experiment 4 with difficulty-matched subsets of sources. (F) Schematic of
Experiment 5 task (identical to Experiment 3). (G) Results of Experiment 5: The fraction of typed responses from Experiment 4 which were judged to correspond to
louder sources than the true source label, as a function of the reverberation and source-intensity. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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(McDermott & Simoncelli, 2011).
4. Using reverberation to convey source distance

Another stimulus variable that should affect inferred source intensity
is reverberation. In natural scenes, source-listener distance affects
reverberation in a characteristic way. The direct arrival (i.e., the first
and highest-intensity peak of the impulse response) decreases in in-
tensity with source-listener distance according to the well-known in-
verse square law (Fig. 3A). However, in many cases the average intensity
of reflected sound (i.e., the reverberation) does not change appreciably
with distance because as distance increases, some reflection paths
decrease in length and others increase in length. The Direct-to-
Reverberant Ratio (DRR), which compares the intensity of the direct
sound to that from all the reflections, therefore generally decreases with
source distance both indoors (Bronkhorst & Houtgast, 1999; Mershon &
Bowers, 1979; Zahorik, Brungart, & Bronkhorst, 2005) and outdoors
(Naguib & Wiley, 2001) (Fig. 3A). Once convolved with a source signal,
the DRR is no longer explicitly available in the sound signal. However,
humans can recognize source distance from reverberant recordings, and
are thought to estimate the DRR to do so (Bronkhorst & Houtgast, 1999;
Mershon & Bowers, 1979; Zahorik et al., 2005).

5. Experiment 4: reverberation impairs recognition of low-
intensity sources

In Experiment 4, we asked participants to identify sound sources
both with and without the addition of synthetic reverberation that
implied a distant source. Under the causal inference hypothesis, greater
implied distances via reverberation should be used to infer greater
source intensities, and should produce similar errors as Experiments 1-2
even when intensity at the ear is held constant. Specifically, low-
intensity sources should be misidentified at greater rates than high-
intensity sources when rendered at a distance. By contrast, under an
invariance hypothesis, recognition should be dependent on the extent to
which reverberation could be separated from the sound source. This
need not entail complete invariance to reverberation, but whatever
invariance might be achieved should be similar for low- and high-
intensity sources.

5.1. Method

5.1.1. Participants

16 in-lab listeners (7 female, 9 male; mean age = 40.1 years; SD =
13.5 years) took part. Pilot experiment data (not included in the results
presented here) suggested an interaction effect size ofi1§:0.481. A power
analysis indicated 11 participants were needed to detect an effect of this
size 80% of the time using a significance threshold of 0.05.

5.1.2. Stimuli and procedure

All experiments manipulating reverberation (Experiments 4-11)
used a subset of 192 sounds (Table 1). This subset contained neither
speech nor music but was otherwise a representative and randomized
subsampling of the original 300. The intensity and reverberation ex-
periments were originally begun as separate studies and thus were not
designed to match exactly. In all reverberation experiments (Experi-
ments 4-11) “high-" and "low-" intensity sounds refer to the upper/lower
halves of the 192-sound subset (i.e., 96 sounds) rather than the upper/
lower quartiles that were used in the intensity experiments (1-3 and 12).

Each listener heard each sound once, presented either with or
without reverberation. The reverberation conditions were balanced
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across listeners, such that while each listener only heard each sound
once, each source was equally likely to be presented as reverberant or
anechoic.

We intended for our reverberation manipulations to exceed the
magnitude of any incidental reverberation in the recordings, and so
applied fairly pronounced synthetic reverberation. The reverberation
(used in Experiments 4-11) was synthesized as described in (Traer &
McDermott, 2016) with a Direct-to-Reverberant Ratio (DRR) of 20 dB,
consistent with a source-receiver separation of about 10 m. We gave the
reverberation a broadband decay time (RT60) of 1 s, consistent with a
large interior space such as a subway station, such that the overall
amount of reverberant energy in the resulting sound signal was high.
Fig. 3B shows cochleagrams of an example stimulus with and without
added reverberation.

The in-lab task and online scoring were identical to Experiment 1
(Fig. 3C) except that all the sounds were presented at 70 dB SPL and each
listener’s response was graded by 5 different workers instead of 2.

5.2. Results and discussion

As shown in Fig. 3D, recognition was worse overall in reverberation,
as expected given the substantial distortion imposed by the reverbera-
tion (main effect of reverberation: F(1,15) = 252, P < 0.001, 11[2,:0.944).
However, the effect of the reverberation was less pronounced for high-
intensity sources, producing a significant interaction between rever-
beration and source intensity (F(1,15) = 62.0, p < 0.001, 113:0.805). To
ensure the interaction was not driven by differences in difficulty be-
tween the source classes, we equated overall recognition rates for the
condition without added reverberation, by eliminating the most-
recognized and least-recognized sources when presented without
reverberation in each group. The matched sets were obtained with data
from half of the participants, and the data from the other half is plotted
in Fig. 3E. As is evident in Fig. 3E, the interaction between the effect of
presentation intensity and the source intensity persisted after this
manipulation (F(1,7) = 16.7, p = 0.005, ;13:0.705).

6. Experiment 5: Recognition errors in reverberation support
causal inference

As an additional test of the causal inference hypothesis, we assessed
whether listeners exhibited the pattern of errors predicted by causal
inference, tending to misidentify a low-intensity source in reverberation
as a high-intensity source. The text responses of Experiment 4 were
graded as in Experiment 3, with online graders judging whether the
written responses described a sound that was louder or quieter than the
actual sound listeners heard. Because the sounds were presented at 70
dB SPL, the causal inference hypothesis predicts that low-intensity
sources will be misidentified as “louder” sources (replicating the effect
of Experiment 3). The 10 m source distance implied by the added
reverberation should increase this effect (because increased distance
should imply a higher-intensity source for a fixed presentation intensity
at the ear). By contrast, high-intensity sources are less likely to be
affected by reverberation in this way, as they are not inconsistent with
the intensity implied by distance.

6.1. Participants

80 online workers participated in Experiment 5 (44 female; mean
age = 37.2 years; SD = 16.3 years). 5 workers graded each text response
collected in Experiment 4 (the same number used in Experiment 3).
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Fig. 4. Natural reverberation affects the perceived distance of the stimuli, but
does not drive the source recognition effects from Figs. 2 and 3. (A) Schematic
of Experiment 6: online listeners heard sounds with and without added rever-
beration and estimated the distance between the source and microphone. (B)
Results of Experiment 6: Judged distance for sounds with and without rever-
beration, plotted separately for high- and low-intensity sources. The dashed line
shows the distance that synthetic reverberation was designed to emulate (10
m). For all sources, adding synthetic reverberation increased perceived dis-
tance. However, high-intensity sources were judged as more distant than low-
intensity sources, likely due to reverberation in the original recordings. The
dashed line shows the distance that synthetic reverberation was designed to
emulate (10 m). (C) The distribution of distance ratings from Experiment 6 for
“distance-matched” subsets of the stimuli. The subsets were chosen by elimi-
nating the most distant high-intensity and the least distant low-intensity sour-
ces. Data from half of the Experiment 6 participants were used to choose the
sounds, and data from the other half are plotted here. (D-E) The results of
Experiment 1 (D) and Experiment 4 (E) with analysis restricted to the distance-
matched subsets. The results are similar to those for the full sets of sounds
(shown transparent), indicating that differences in the perceived source dis-
tance between the two sets of sounds do not account for the recognition
differences.
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6.2. Method

Experiment 5 was identical to Experiment 3 (Fig. 3F), except that it
was performed on the text responses from Experiment 5 (reverberation
manipulation), rather than those of Experiment 1 (intensity
manipulation).

6.3. Results and discussion

As shown in Fig. 3G, there was an overall tendency for written de-
scriptions of low-intensity sources to suggest higher-intensity sources
than the original source labels (t-test against chance: t(15) = 49.5, p <
0.001), with no such effect for the high-intensity sources. This result
without the added reverberation replicates the effect of Experiment 3 for
the 70 dB condition. Moreover, as predicted by causal inference, there
was an interaction with reverberation (F(1,15) = 28.4, P < 0.001,
113:0.654): for low-intensity sources there was larger difference between
the conditions with and without reverberation (t(15) = 8.95, p < 0.001,
Cohen’s D = 2.71)), than for high-intensity sources (t(15) = 3.56, p =
0.003, Cohen’s D = 0.802). This result supports a causal inference
interpretation of Experiment 4: it appears that reverberation increases
perceived distance which in turn increases the inferred source intensity,
causing systematic errors for the low-intensity sources.

7. Experiment 6: Effect of reverberation on perceived distance in
natural recordings

In Experiment 4 we found that reverberation impaired recognition of
low-intensity sources more than high-intensity sources, plausibly
because it implies distance, and thus implies a higher-intensity source
for a given intensity at the ear. To further assess this explanation, we
evaluated the distance attributed to the sound sources in our stimuli.

Measuring perceived distance seemed particularly important given
our use of real-world recordings. The use of such recordings enabled a
large and diverse stimulus set, but came at the cost of occasional back-
ground noise and unavoidable reverberation. As a consequence, the
stimuli used in Experiments 1-5 all had some reverberation from the
space in which they were recorded. At present, there is no available
method to quantify such reverberation from a recording. However, we
can instead assess the perceptual effect of potential reverberation by
having participants estimate the distance of the sound sources.

Because this experiment was quite short in duration, it was con-
ducted online. Our lab has previously found that listening experiments
run online generally replicate data collected in the lab, qualitatively and
quantitatively (McPherson et al., 2020; McPherson & McDermott, 2020;
McWalter & McDermott, 2019; Woods & McDermott, 2018), provided
steps are taken to ensure participants comply with instructions
(McPherson & McDermott, 2020; Woods, Siegel, Traer, & McDermott,
2017).

7.1. Method

7.1.1. Participants

80 online listeners participated in Experiment 6 (36 female, 42 male,
2 did not report; mean age = 43.2 years; SD = 10.01 years) via Amazon’s
Mechanical Turk. We had no pilot data with which to run an a priori
pilot analysis, but data collection was fast and inexpensive, so we ran a
relatively large number of online participants to err on the side of being
over-powered. All online listeners in this and other experiments in this
paper self-reported normal hearing. All online listening tasks included a
test at the start of the experiment to help ensure that listeners were
wearing headphones (Woods et al., 2017). The participants analyzed
and reported for each online experiment all passed this test.

7.1.2. Stimuli and procedure
The stimuli and procedure for Experiment 6 were identical to that of
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Fig. 5. Replication with studio-recorded sources with minimal reverberation. (A) Recording environment: sources were recorded in an acoustically damped sound
booth with a 10 cm source-microphone spacing. The image shows the setup for recording a hair-dryer. (B) Example recorded sources (from top-left): chainsaw,
hammering nails into wood, bicycle freewheeling, walking in dry leaves, chopping wood with a hatchet, chopping and peeling vegetables, sawing wood, an electric
drill, clattering of dishes, walking on stones and sand, rustling branches, shoveling sand, wheeling a suitcase, and glass shattering. (C) Results of Experiment 7:
Judged distance for sounds with and without reverberation broken down by whether the source intensity was low or high. (D) The distribution of distance ratings
from Experiment 7 for two “distance-matched” subsets of the natural recordings (data that are plotted are distinct from those used to choose the subsets). (E) Results
of Experiment 8 (source recognition of studio-recorded sources) with all data (left), distance-matched sounds (middle), and sounds matched in both distance and
difficulty (right). The difficulty-matched sets were selected with data from half of the participants; graph shows data from the other half (hence the different sample
size compared to the left and middle graphs). (F) Results of Experiment 9 (Loudness judgments of the written descriptions from Experiment 8. Analysis was restricted
to the distance-matched subsets. In both E and F, the interaction effects are similar to those of the natural recordings, suggesting that the interactions in Experiments
1-5 are not driven by contaminant reverberation.

Experiment 4 (same sounds, reverberation, and balancing of classes), 7.2. Results and discussion
except instead of describing sounds, listeners were asked to guess the
distance of the sound source from microphone (Fig. 4A). There were As shown in Fig. 4B, the added reverberation increased the perceived
seven logarithmically-spaced response options: 10 cm (4 in.); 30 cm (1 distance of the sound source in all cases, as intended, but there were also
ft); 1 m (3 ft); 3 m (10 ft); 10 m (30 ft); 30 m (100 ft); 100 m (300 ft). pronounced differences between sound categories. Specifically, high-
Listeners were not given any other information (e.g., the source identity) intensity sources were judged to be further away than low-intensity
and they were told in advance that all sounds were artificially con- sources. This likely reflects practical constraints on sound recording,
strained to have the same intensity level, such that intensity was not a whereby high-intensity sound sources (e.g., a truck backing up, freight
reliable cue to distance. train, etc.) must be recorded at a distance, with concomitant reverber-
Due to the constraints of running the experiment online, we could ation cues in the recorded sound. By contrast, low-intensity sources are
not control the absolute presentation level of the stimuli, but all stimuli often recorded in quiet environments with a close microphone. Two
had the same rms level, and participants were instructed to adjust their other factors could also contribute. First, if listeners use knowledge of
volume setting using a calibration sound such that the experimental typical source intensities to calibrate distance judgments, high-intensity
stimuli were comfortably audible. sources would be expected to seem further away, all other things being

equal (as they were here, with all sounds presented at the same

10
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Table 3

Sounds recorded in a studio with minimal reverberation. The sound level (in dB
SPL) as measured 10 cm from each source is given in parentheses. In compari-
sons of high-intensity vs. low-intensity sources (Fig. 5) the 15 sounds from the
left- and right-columns are used. In comparisons of indoor vs. outdoor sources
(Fig. 6) the 15 sounds from the top and bottom rows are used. The Medium-
Intensity sources marked with an asterisk or dagger were classed as high- or
low-intensity sources, respectively, in the analyses shown in Fig. 6 to increase
the pool of sources.

Low-Intensity (<64 Medium-Intensity (64- High-Intensity (>82

dB) 82 dB) dB)
Indoor Scissors (62) Clanking dishes* (78) Vacuum (95)
Chopping Stapler* (75) Hair dryer (92)
vegetables (60) Boiling kettle* (74) Blender (88)
Peeling vegetables Electric shaver (72) Coffee-bean grinder
(59) Crumpling paper’ (69)  (88)
Pepper Grinder (56) Electric can opener
Typing (42) (83)
Either Pouring liquid (59) Hammering metal
Hands rubbing (59) (112)
Zipper (58) Glass smashing
Biting into an apple (102)
(57) Drill (101)
Suitcase rolling (52) Hammering a nail
©7
Spray can spraying
(95)
Outdoor Shoveling sand (59) Hatchet striking a log* Lawnmower (119)
Splashing water (78) Leaf blower (114)
(57) Spray can shaking* Chainsaw (113)
Footsteps in sand (76) Stones clattering
(55) Bicycle freewheeling (92)
Branch trimmer (53) (72) Bicycle bell (92)
Rustling branch (52)  Footsteps (pebbles)*
(69)
Footsteps (dry-leaves)™
(69)

intensity). Second, listeners could plausibly have learned source-
distance associations (e.g., because high-intensity sources might be
more often encountered at far distances) and might be influenced by
them when estimating distance, thus judging the high-intensity sources
to be further away irrespective of reverberation.

The distance cues in the original recordings remained present when
synthetic reverberation was added: the synthetic reverberation was
designed to simulate a 10 m source-microphone separation in a large
room, and although judged distances were in the neighborhood of this
value (between 5 and 20 m), the high-intensity sounds were judged as
substantially more distant than the low-intensity sounds even with
added synthetic reverberation.

These results are consistent with the possibility that the reverbera-
tion present in typical real-world recordings interferes with the ability to
manipulate perceived distance with reverberation. Given this, it seemed
important both to attempt to control for the differences in distance in
our recordings, and to make more controlled recordings in which dis-
tance cues would be minimal (and fixed across the sounds to be
compared).

8. Distance-matched sound sets

Given the variation in perceived distance across the stimuli in the
absence of added reverberation, we sought to use “distance-matched”
subsets of high-intensity and low-intensity sources with which we could
test the effect of distance on source recognition in a more controlled
manner. From the original sets of sounds used in Experiments 4-6, the
most distant high-intensity source and the least distant low-intensity
source were iteratively excluded until the distributions overlapped (.
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e., until the difference in the mean rated distance for the two groups was
less than 0.1 on the 1-7 scale used in the rating, corresponding to a

distance ratio of % < 10%1 ~ 1.26 of the two mean distance ratings, d;

and dy). This selection procedure was performed using data from half the
participants of Experiment 6 (N = 40). To verify the success of the
procedure, we used the data from the other half of participants to
measure the average perceived distance of the resulting groups of
sounds (Fig. 4C)). This yielded distance-matched subsets of 26 high- and
26 low-intensity sounds (Table S1).

The distribution of distance ratings for these subsets of recordings are
shown in Fig. 4C, with and without synthetic reverberation. Without
added reverberation, the rated distance was matched across source
types, as intended. With synthetic reverberation, perceived distance
increased, as intended, and to a similar extent across source types.
Moreover, distance ratings with the added reverberation were close to
10 m, demonstrating a reasonable quantitative match between intended
and perceived distance. These results indicate that we achieved the
desired manipulation of perceived distance.

To assess whether the key results were robust to the incidental dis-
tance cues present in the sound recordings, we replotted the results of
Experiments 1 and 4 including only the distance-matched subsets
(Fig. 4D-E). As we found with the full set of sounds, source-recognition
was impaired when low-intensity sources were presented at high in-
tensities (again producing a significant interaction: F(2,82) = 4.09; p =
0.020; ;13:0.091; because the number of sounds was reduced we binned
the presentation intensity groups into three bins (less than 50 dB;
50—70 dB; greater than 70 dB) to ensure all participants encountered at
least 3 sounds per condition (average of 7.4)). Source recognition for
low-intensity sources was also impaired by reverberation, again pro-
ducing a significant interaction (F(1,15) = 16.0, p = 0.001, n§:0.516).
These results suggest that the variation in apparent source distances
present in the original stimulus set cannot explain the different effects of
intensity at the ear and reverberation on the recognition of high- and
low-intensity sound sources.

9. Studio recordings with controlled reverberation

Although our main results were reproduced with distance-matched
subsets of sounds (Fig. 4), the distance ratings (Experiment 6) showed
large and systematic differences between the perceived distance of
different types of sound, probably due to differences in reverberation
contaminating the original recordings. Given that the results of Exper-
iments 4 and 5 suggest that reverberation affects source recognition, we
sought to replicate our main findings with an additional set of sounds
recorded in a soundproof studio to minimize reverberation (see Ap-
pendix D). The studio had damped walls and we used a fixed small (10
cm) source-microphone distance (Fig. 5A). The sound sources were
chosen to span different source intensities (15 each of high- and low-
intensity sources; see Table 3 and Fig. 5B) and to include both indoor
and outdoor sound sources, as this distinction was important for
Experiment 11. In addition to recording the sound we measured its
sound pressure level at the microphone, using a sound level meter. These
controlled recordings allowed us to more carefully test the effect of
reverberation on perceived source distance (Experiment 7) and source
recognition (Experiments 8 and 9).

10. Experiment 7: Effect of reverberation on perceived distance
of studio-recorded sources

To test the effect of added reverberation on perceived source distance
for our studio-recorded sounds, we repeated Experiment 6 (distance
estimation) but with the new set of recorded sounds (Fig. 6C).
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Fig. 6. Interactions between reverberation and typical source location support
causal inference. (A) Typical frequency-dependent reverberation times (RT60)
for indoor and outdoor spaces, measured with a 2 m source-microphone sep-
aration. Measurements were obtained in a survey of ecological reverberation
(data replotted from Traer & McDermott, 2016) and the three lines for each
location group show the 25th, 50th, and 75th percentiles of RT60 at different
frequencies. Thus, for equivalent source-listener distances, indoor sounds would
be more commonly encountered with reverberation than outdoor. (B) Sche-
matic of the task used in Experiments 10 and 11, in which participants judged
the typicality of a sound’s audible environment with and without application of
synthetic reverberation, for natural recordings (Experiment 10) or studio re-
cordings (Experiment 11). (C) The results of Experiments 10 and 11: low-
intensity outdoor sources suffered a greater decrement in rated typicality of
their environment when reverberation was applied than low-intensity indoor
sources. The difference between indoor and outdoor sounds was not observed
for high-intensity sounds, plausibly because loud sources can be heard from
great distances, and over a large enough distance outdoor environments can
exhibit significant reverberation. (D) Results of Experiments 4 and 8 (source
recognition) with the results plotted separately for indoor and outdoor sources.
There is no evidence that reverberation impairs recognition more for low-
intensity outdoor sources than low-intensity indoor sources, despite the dif-
ference in the appropriateness of the reverberation observed in Experiments 10
and 11. This suggests that misidentification of sources is not being driven by the
atypicality of the reverberation, but rather is caused by the physical implausi-
‘t‘)ility of a reverberant low-intensity source.

10.1. Method

10.1.1. Participants

160 online listeners participated in Experiment 7 (92 female, 7 did
not report; mean age = 29.4 years; SD = 9.00 years). We ran twice as
many participants as in Experiment 6 (192 sounds), because there were
fewer sounds in this experiment (45 studio recordings, along with 72
natural recordings as controls to ensure performance was comparable to
that of in-lab participants).

10.1.2. Stimuli and procedure

The experiment was identical to Experiment 6 except that the natural
recordings (Table 1) were replaced with a set of studio recordings
(Table 3), with a sampling rate of 44.1 kHz and a bit depth of 24.

10.2. Results and discussion

As expected, the studio recordings (before synthetic reverberation
was added) were rated overall as less distant than the natural sound
sources of Experiments 1-6 (2.84 m vs. 4.86 m, on average). And as
intended, the synthetic reverberation increased distance judgments to
approximately 10 m. In addition, the difference in perceived distance
between high- vs. low-intensity sources without added reverberation
was much smaller for the studio recordings than for the natural re-
cordings used in Experiment 6 (1.80 m vs. 6.27 m). This difference
suggests that the large differences between the source types in Experi-
ment 6 were in part driven by reverberation in the natural recordings.
However, high-intensity sources were nonetheless rated as more distant
than low-intensity sources (t(159) = 5.19, p < 0.001, paired t-test).
Moreover, the distance estimates without added reverberation consis-
tently exceeded the actual source-microphone distance of 10 cm (t(159)
= 66.4; p < 0.001, t-test vs. 10 cm). These differences suggest a role for
the additional factors noted earlier. Given that the sounds were all
presented at the same intensity, distance could be calibrated by
knowledge of typical source intensities, causing high-intensity sources
to seem further away. Alternatively, the difference between high- and
low-intensity sources could reflect learned source-specific priors on
distance.

Overall, these results indicate that the distance manipulation largely
works as expected when applied to recordings with minimal reverber-
ation. But given that there were still small differences in rated distance
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between the different sound classes before reverberation was added, we
ran the distance matching procedure again, yielding subsets of 13 high-
and low-intensity sounds (Fig. 5D; Table S3).

11. Experiments 8 and 9: effect of reverberation on recognition
of studio-recorded sources

To confirm the source-recognition results of Experiments 4-5, we
replicated both experiments with the distance-matched subsets of
studio-recordings. Because the set of studio recordings was much
smaller than the set of natural recordings, Experiment 8 was run online
to obtain a large number of participants and thus sufficient power.

11.1. Method

11.1.1. Participants

72 online listeners participated in Experiment 8 (37 female, 34 male,
1 did not report; mean age = 31.25; SD = 14.28). Pilot experiment data
(not included in the results here) suggested an interaction with effect
size of ;13:0.109. A power analysis indicated that 67 participants were
needed to detect an effect of this size 80% of the time using a signifi-
cance threshold of 0.05.

360 online workers participated in Experiment 9 (174 female, 8 did
not report; mean age = 33.2 years; SD = 16.8 years). This number
resulted in 5 workers grading each text response of Experiment 8, the
same number as in Experiments 3 and 5.

11.1.2. Materials and procedure

Experiments 8 and 9 were identical to Experiments 4 and 5, except
that studio-recorded sources were used instead of natural recordings.
See Table S2 for a list of distance-matched studio-recordings. The
grading procedure was also identical to that used in Experiments 4 and
5.

11.2. Results and discussion

As shown in Fig. 5E (left), recognition was again worse overall in
reverberation, as expected given the substantial distortion imposed by
the reverberation (main effect of reverberation: F(1,71) = 48.44, P <
0.001, 115:0.406). However, the effect of the reverberation was less
pronounced for high-intensity sources, producing a significant interac-
tion between reverberation and source intensity (F(1,71) = 8.85, p =
0.004, ;13:0.111), replicating the effect observed in Experiment 4. The
interaction persisted when the analysis was restricted to distance-
matched subsets of sounds (Fig. 5E, middle): F(1,71) = 7.74, p =
0.007, np2=0.098.

The lower overall performance for the studio recordings compared to
the natural recordings appears to reflect idiosyncrasies of the set of
sources (chosen based on practical constraints of being able to record
them in a small studio). It could in principle reflect differences between
in-lab and online performance, but the online participants also per-
formed a small number of “sanity-check” trials with a subset of the
natural recordings. For these trials, their overall mean performance was
71%, which was comparable to that of the in-lab participants (69%).
This suggests the studio recordings are intrinsically more difficult to
recognize and describe than the natural recordings. We note that the low
recognition rates are still well above chance (10%).

It was also the case that the high-intensity studio sources were
overall more recognizable than the low-intensity studio sources. To
control for this difference we selected subsets of 8 high- and 8 low-
intensity sources that were matched for both recognizability and dis-
tance without reverberation. The difficulty-matched sources were
selected using the data from half the participants and the data from the
other half is plotted in 4E. Because of the small number of stimuli, it was
not possible to perfectly equate recognizability in this way, but the
difference between conditions was substantially reduced compared to
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the main analysis. These difficulty-matched subsets still showed a sig-
nificant interaction between source intensity and reverberation (F(1,35)
=5.43, p = 0.026, 75=0.134).

Experiment 9 replicated Experiment 5 but with the descriptions of
the distance-matched subset of studio recordings. As shown in Fig. 5F,
there was an overall tendency for the written descriptions of low-
intensity sources to suggest higher-intensity sources than the original
source labels. However, there was an interaction between source in-
tensity and reverberation (F(1,35) = 9.19, p = 0.005, ;13:0.208), with a
larger effect of reverberation on low-intensity sources than high-
intensity sources. This result replicates the effects observed in Experi-
ment 5 and again provides further support for the causal inference
interpretation.

12. Causal inference vs. Acoustic familiarity

The results of Experiments 1-9 are inconsistent with the invariance
hypothesis, and are consistent with the idea that listeners use inferred
source intensity as a recognition cue. We refer to this possibility as
causal inference. However, the key result — that low-intensity sources
are misidentified when presented at unusually high-intensities or dis-
tances — is consistent with at least one other hypothesis: that recognition
is constrained by whether a listener has previously heard a source in the
presentation conditions (as might be expected if listeners learn a set of
templates of their previous sensory experience, and recognize sounds via
matches with these templates). The causal inference hypothesis could
explain the results given that neither high-intensity nor reverberant
sounds could be caused by a low-intensity source. The acoustic famil-
iarity hypothesis could also explain the results because low-intensity
sources would never be encountered as such in natural scenes.

To distinguish these two hypotheses, we reanalyzed the data from
the source-recognition experiments in reverberation (Experiments 4 and
8) and compared the effect of reverberation on recognition of sources
typically encountered outdoors against those typically encountered in-
doors. Although extremely distant outdoor sources can be very rever-
berant (e.g., thunder, fireworks, or distant gunshots), it is plausible that
for sounds of moderate intensity, which are only audible at moderate
distances, outdoor scenes would yield shorter reverberation decay times
than indoor scenes, as shown for empirical measurements in Fig. 6A
(data from (Traer & McDermott, 2016)). The shorter decay times reduce
the overall amount of reverberant sound energy in the signal reaching
the ears, all other things being equal. Under the acoustic familiarity
hypothesis, low-intensity outdoor sounds should be more often mis-
identified than low-intensity indoor sounds when our synthetic rever-
beration is applied, whereas under the causal inference hypothesis, there
should be no difference.

13. Experiments 10 and 11: reverberation is unnatural for
outdoor sources

Before re-analyzing the recognition results, we conducted an
experiment to test whether added reverberation would be heard as “less
typical” for outdoor compared to indoor sound sources, and thus test the
key assumption motivating the re-analysis (Fig. 6A). As with Experi-
ments 6 and 7, this experiment was short in duration and was thus
conducted online. Participants were presented with an audio recording
and its label, and were asked to rate, on a scale from 1 to 5, how typical
the environment seemed for the named sound source. Participants heard
each sound only once, with half the sounds presented unaltered and the
other half with added synthetic reverberation. The reverberation had a
direct-to-reverberant ratio (DRR) appropriate for a 10 m distance, and a
long decay time (RT60) appropriate for a large room, as in Experiment 4.
Under the assumption that outdoor spaces do not exhibit such long
RT60s, as has been demonstrated for nearby sources (Traer & McDer-
mott, 2016), this reverberation is inappropriate for outdoor sounds.
Experiment 10 used the natural recordings of Experiments 1-6, while
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Fig. 7. Source recognition effects from Figs. 2 and 3 are not driven by differences in standard acoustic features. (A) The average spectral power distribution for low-
intensity and high-intensity sources, measured using a Gammatone filter bank model of cochlear responses. We computed the envelope of each frequency band,
converted the envelopes to a dB scale, averaged across time, and averaged across the sounds from each source intensity group. The graph plots the mean and standard
deviation for each frequency band across the sounds from each group. (B) The strength of temporal and spectral modulations for sounds from each intensity group.
Spectrotemporal modulations were computed by convolving a cochleagram with filters tuned to different rates of spectral/temporal modulation. Here we plot
standard deviation of the filter responses over time, averaged across audio frequency. (C) To ensure that the differences in the spectral power distribution for low-
intensity and high-intensity sources could not explain the differences in the effect of presentation intensity on their recognition, we selected a subset of 50 sounds
from each group with closely matched excitation patterns. The graph plots the mean and standard deviation for each frequency band for these subsets. Note that the
curves match well enough (as desired) that the blue curve is obscured by the red curve. (D&E) Results of Experiment 1 and Experiment 4 for subsets of low-intensity
and high-intensity sources approximately equated for their spectral power distribution. The results are similar to those for the full sets of sounds (shown transparent),
indicating that differences in the excitation patterns between the two sets of sounds do not account for the recognition differences. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.)

Experiment 11 used the studio recordings of Experiment 7-9. We well as high—/low-intensity (Table S3; Appendix C). The sound set in

separately analyzed the results for high- and low-intensity sources Experiment 11 comprised the distance-matched indoor and outdoor

because the assumption that the synthetic reverberation is incongruous studio-recordings (Table S4).

with outdoor scenes is less obviously justified for distant sources, which In both experiments, each listener heard each sound once, presented

must necessarily be high-intensity. either with or without reverberation. The reverberation conditions were
balanced across listeners, such that while each listener only heard each

13.1. Methods sound once, each source was equally likely to be presented reverberant
or anechoic.

13.1.1. Participants Listeners were shown the name of each source and were given the

following instructions:

80 online listeners participated in Experiment 10 (43 female, 36 ) )
How “typical” does the space sound for this sound source? Would you

male, 1 did not report; mean age = 28.2 years; SD = 15.43 years). 240

online listeners participated in Experiment 11 (111 female, 122 male, 7 expect the. listed sour.ld to sound like this? Or does it seem like the source was

did not report; mean age — 32.2 years; SD — 12.09 years). As with Ex- recorded in an atypical place? Rate on a scale from 1 (least typical) to 5

periments 5 and 6, we had no pilot data for an a priori power analysis (most typical).

but the experiment was fast and inexpensive, and so a large number of

participants were run to err on the side of being over- rather than under- 13.2. Results and discussion

powered. More participants were run in Experiment 11 because the

experiment contained fewer sounds than Experiment 10. As shown in Fig. 6C, the results differed for high-and low-intensity

sources. Low-intensity sources with added reverberation showed the

13.1.2. Stimuli and procedure expected interaction. The sounds were overall heard as less natural in
The sound set in Experiment 10 was the distance-matched set of reverberation, but the rated typicality decreased more for outdoor than

natural recordings, with each source categorized as indoor/outdoor as indoor sounds, as predicted, producing a significant interaction between

14
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Fig. 8. Audibility does not explain intensity-dependent recognition. (A) Illustration of the effect of overall sound intensity on audibility, and the use of masking noise to
create stimuli with equal audibility profiles across different intensities. Each panel plots the maximum energy across time in each of a set of frequency channels
(computed using a Gammatone filter bank model of cochlear responses) for a natural sound (“crumpling paper”) presented at two different overall intensities.
Frequency-dependent audibility thresholds are plotted for comparison. At low intensities (left), some frequencies are below threshold. At high sound intensities
(middle), these frequencies become audible. Such frequencies are presumably rarely heard for low-intensity sources, and could in principle interfere with their
recognition when they become audible at high presentation intensities. Masking noise was used to keep these frequencies from becoming audible by elevating the
threshold of audibility (right) (see Fig. S2). We note that the filtering of the cochlea is dependent on level, with bandwidths becoming somewhat broader with level
(Glasberg and Moore, 2000), such that the excitation pattern at high levels is not simply a translated copy of the excitation pattern at low levels. However, we
confirmed that the masking noise had the intended effect in a control experiment shown in Supplementary Fig. S4, indicating that the assumption of a constant
excitation pattern was sufficient to derive masking noise that had the intended effect. (B) The effect of masking noise on the recognition of low-intensity and high-
intensity sources (same task as Experiment 1). Error bars show one standard error of the mean across subjects. The noise had no significant effect on the recogni-
tion of low-intensity sources, suggesting that audibility of normally inaudible frequencies was not the cause of their poor recognition at high presentation intensities.
The noise impaired recognition of high-intensity sources, presumably due to the masking of frequencies that are often heard in daily life.

sound class and reverberation for both experiments (Experiment 10, 14. Sound recognition results (Experiments 4 and 8) support
natural-recordings: F(1,79) = 11.9; P = 0.001; ;1[2,:0.131; Experiment causal inference
11, studio-recordings: F(1,239) = 7.06, P = 0.008, ;73:0.029). These

effects were not observed for high-intensity sounds, which were rated as When reanalyzed separately for typically indoor and outdoor sounds,

about equally typical with or without reverberation for both indoor and the results from Experiments 4 and 8 showed no evidence that low-

outdoor sources (no significant effect of reverberation in Experiment 10, intensity outdoor sounds were misidentified more in reverberation

natural-recordings: F(1,79) = 0.087; P = 0.366; ;15:0.011; no significant than indoor sounds (Fig. 6C; Experiment 4, natural-recordings (Table

interaction in Experiment 11, studio-recordings: F(1,239) = 0.580, P = S3): F(1,15) = 0.127, p = 0.727, 113:0.008; Experiment 8, studio-re-

0.580, 175:0.002). One explanation is that outdoor environments can cordings (Table S4) showed a significant interaction in the opposite

exhibit substantial reverberant energy provided a source is sufficiently direction: F(1,71) = 4.22, p = 0.044, r]g:0.056), even though the

high-intensity and far away (e.g., a jack-hammer heard from a neigh- reverberation we applied was heard as more atypical for the outdoor

boring street through a window) (Padgham, 2004; Wiener, Malme, & than indoor sounds in Experiments 10-11. There was also no interaction

Gogos, 1965). Our reverberation had a decay time that was atypical for for the high-intensity sources (Experiment 4, natural-recordings: F

nearby sources (e.g., several meters away) in outdoor spaces (Traer & (1,15)=0.115,p =0.739, ;1;2,:0.008; Experiment 8, studio-recordings: F

McDermott, 2016), but the reverberation of distant sources in outdoor (1,71) =1.97, p = 0.164, 713:0.027), though none was expected given

spaces (Knudsen, 1946) is less well characterized and it is possible that the results of Experiments 10 and 11.

our reverberation is consistent with sufficiently distant sources in out- Overall, these results are consistent with the idea that humans are

door spaces. using implicit causal inference to interpret and identify sources, with the
Overall, these results provide support for the idea that listeners have distance cue from reverberation being used to infer source intensity,

some degree of implicit knowledge of the reverberation that is typical which then influences recognition judgments.

for a sound source, such that low-intensity sources can be divided into

subsets of outdoor and indoor recordings that might be used to distin- 15. Evidence for causal inference is robust to variations in

guish familiarity-based recognition from causal inference. For low- choice of sound sources

intensity sounds, which are only audible when close, reverberation is

less commonly associated with outdoor than indoor sounds, even though Here, and in Section 16, we present additional analyses and a control

it is no less physically possible. experiment to address various alternative explanations of our key

results.
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We first examined whether the different results for the two groups of
sources could be explained by differences in standard acoustic properties
(see Appendix E for more details). For each sound, we computed a
“cochleagram”, which is similar to a spectrogram but is computed using
a filter bank designed to mimic cochlear frequency tuning. We then
compared the average spectral power distribution from this filter bank
(Fig. 7A) (also known as the excitation pattern, obtained by averaging
the cochleagram across time) as well as the power in a set of modulation
filters that measure the strength of fluctuations in the cochleagram
across time and frequency (Fig. 7B) (Chi, Ru, & Shamma, 2005; Singh &
Theunissen, 2003).

We found that low-intensity and high-intensity sources had fairly
similar modulation spectra, but that there were differences in the
average excitation pattern, plausibly due to greater reverberation in the
high-intensity sources, which tends to enhance mid-frequencies (Traer &
McDermott, 2016). However, the interaction between presentation in-
tensity and source intensity persisted for subsets of low- and high-
intensity sources selected to yield matched average excitation patterns
(Fig. 7C&D; F(6, 246) = 6.15; p < 0.001;n§i0.130) (matching was
performed by greedily discarding sounds so as to minimize differences in
the excitation pattern). The interaction between reverberation and
source intensity also persisted for the sound subsets matched in average
excitation patterns (Fig. 7E; F(1, 15) = 81.7; p < 0.001;7]3:0.845). In
addition, we ensured that our sound presentation system was linear over
the range of intensities we presented, such that the results are unlikely to
reflect distortion of sounds at high intensities. The results thus seem
unlikely to reflect acoustic differences in the sounds tested.

16. Experiment 12: sound recognition results are not driven by
audibility

For low-intensity sources, many of the constituent frequencies may
be inaudible in real-world listening conditions (Fig. 8A). If a recording of
a low-intensity source is presented at a high intensity these frequencies
may become audible and could potentially interfere with recognition by
creating an unfamiliar acoustic profile. To test whether the unmasking
of typically inaudible frequencies could explain our results, we used
masking noise to prevent sound elements that were inaudible at low
intensities from becoming audible at high intensities (Fig. 8A).

Experiment 12 was similar to Experiment 1 except that each sound
was presented with and without masking noise. Sounds were presented
at one of 6 intensities (40, 50, 60, 70, 80, and 90 dB SPL). Unlike in
Experiment 1, we did not present sounds at 30 dB because performance
was poor for both classes of sounds in this condition of Experiment 1.
The masking noise was designed such that sound components that would
normally be inaudible at 40 dB would remain inaudible at higher in-
tensities (Fig. 8A). We confirmed that the masking noise had the
intended effect in a supplementary experiment (described in the Ap-
pendix F).

16.1. Method

Experiment 12 was similar to Experiment 1 except that half of the
trials included background noise designed to mask frequencies that were
inaudible at the lowest presentation level. All other differences between
the experiments are noted below.

16.1.1. Participants

72 in-lab listeners participated in the experiment (44 female; mean
age = 25.0, SD = 5.9) and had pure tone detection thresholds at or below
30 dB HL at all frequencies tested.
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16.1.2. Procedure

Each listener was presented with each of the 300 sounds once, at one
of six presentation intensities (40, 50, 60, 70, 80, or 90 dB SPL) and
either with or without masking noise. Across the 72 in-lab listeners, each
sound was presented an equal number of times at each intensity (as in
Experiment 1) and in each of the two noise conditions (with and
without). The 21,600 descriptions provided by these 72 listeners (72 x
300 trials) were scored by 923 Mechanical Turk workers, each of whom
scored 50 descriptions. As a consequence, most descriptions were scored
by approximately two workers as in Experiment 1. The pattern of mean
recognition performance across all conditions was again stable across
independent sets of Mechanical Turk scorings (split-half Pearson cor-
relation was 0.96).

16.1.3. Masking noise

The goal of the noise was to elevate the threshold of audibility such
that frequencies that would be inaudible in quiet when sounds were
presented at 40 dB (the lowest intensity condition in the experiment)
would remain so at higher presentation intensities (see Fig. S2 for a
schematic). We adapted threshold equalizing noise (TEN) (Moore, Huss,
Vickers, Glasberg, & Alcantara, 2000), which equalizes the threshold of
audibility for all frequencies (Fig. S2, middle panel). In our case, we
wanted to elevate the threshold of audibility but maintain its depen-
dence on frequency, and thus we shaped the spectrum of threshold-
equalizing noise by the audibility threshold contour in quiet (Glasberg
& Moore, 2006). The spectral shaping was accomplished in the fre-
quency domain (using FFT/iFFT, interpolating the audibility contour to
the grid of values sampled by the FFT, and multiplying the noise spec-
trum by the interpolated audibility contour). The overall level of the
masking noise was set such that the resulting audibility threshold was
(X-40) dB above the audibility threshold in quiet, where X is the overall
intensity level of the stimulus. For the 40 dB condition, we would expect
the noise to have little to no effect on audibility (although the noise itself
was audible), and indeed the noise had no significant effect on perfor-
mance in our discrimination task at this sound intensity (Fig. 8B; Fig. S3;
F(1, 71) = 0.09, p = 0.76). The effect of the masking noise was further
validated in Experiment S1.

The noise had power between 50 Hz and 10 kHz (the Nyquist limit).
We attenuated (by 60 dB) frequencies in the natural sounds that fell
below the lower frequency cutoff of the noise. This attenuation was
implemented in the frequency domain (using the FFT/iFFT), and we
used a gradual roll-off rather than a sharp cutoff at 50 Hz to avoid un-
wanted time-domain effects (implemented by smoothing the ideal step
filter with a Gaussian on a logarithmic frequency scale; FWHM = 0.1
octaves).

16.1.4. Stimulus Spectrum

In all other in-lab experiments (Experiments 1, 2, and 4), we used the
audio transfer function of the headphones to adjust sound waveforms to
have the desired overall level at the eardrum, but we did not otherwise
compensate for the transfer function of the sound presentation system (i.
e., so that the level of each frequency at the eardrum would correspond
to its level in the recording). In Experiment 12 (and Experiment S1), we
filtered the natural sounds and the masking noise in the frequency
domain so that the power spectrum at the eardrum would match that of
the original sound waveform. In practice, we found that the filtered
natural sounds were perceptually very similar to the unfiltered natural
sounds, and we observed similar effects of stimulus intensity in the
absence of masking noise, suggesting that compensating for the system
transfer function is not critical.
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16.2. Results and discussion

In the absence of masking noise, we replicated our findings from
Experiment 1 (Fig. 8B, solid lines). Recognition of high-intensity sources
was good at moderate to high presentation intensities, while recognition
of low-intensity sources declined at high presentation intensities, lead-
ing to an interaction between source intensity and presentation intensity
(F(5, 355) = 4.70; p < 0.001;173:0.062). If poor performance for low-
intensity sources at high presentation intensities was due to unmask-
ing of frequencies that are normally inaudible, then we would expect
masking noise to eliminate this impairment. Alternatively, if the
impairment reflects the inference of the source intensity, the masking
noise should have little effect, as the overall sound intensity is what
should matter. Under either account, it seemed plausible that the
masking noise would impair performance for typically loud sources
because the noise masks frequencies that, for high-intensity sources, are
normally heard and could be used to aid recognition.

As shown in Fig. 8B (dashed lines), there was no significant effect of
the masking noise for low-intensity sources (F(1, 71) = 0.33; p = 0.57;
n§:0.002), indicating that the recognition impairments we observe are
not driven by audibility of normally inaudible sound components. By
contrast, there was a small decrement in overall performance for high-
intensity sources when masking noise was present (F(1, 71) = 20.00;
p < 0.001; ;13:0.057; we observed intermediate results for sources with
intermediate typical intensities; Fig. S3). As a consequence, the inter-
action between source intensity and presentation intensity remained
even with the masking noise (F(5, 355) = 2.25; p < 0.05; ng:0.031).
Thus, our findings suggest that the unmasking of inaudible frequencies
cannot explain our results.

17. General discussion

A hallmark of human recognition is its robustness to the substantial
acoustic variation created by different real-world environments. As a
case study of how human listeners achieve robust recognition, we
measured the extent to which recognition is invariant to sound intensity
and reverberation, two variables that could plausibly be separated from
the representation of a sound’s identity. A first set of experiments sug-
gested that humans are not invariant to intensity (Experiments 1-3;
Fig. 2). Sounds that do not normally occur at high intensities were often
misidentified when presented at high intensities. This basic result
replicated across several different experiments and could not be
explained by simple acoustic features (Fig. 7) nor by changes in the
audible frequency content of the sounds (Experiment 12; Fig. 8).

A second set of experiments revealed that reverberation implying a
distant source had a similar effect on human recognition as high pre-
sentation intensity (Experiments 4-9; Figs. 3, 4 and 5). Low-intensity
sources were misidentified in reverberation, while recognition of high-
intensity sources was relatively robust. However, these failures of
invariance were systematic: most errors were due to listeners mistakenly
identifying low-intensity sources as high-intensity sources. By contrast,
there was no evidence that sounds were misidentified more when pre-
sented with reverberation implying an atypical location for the source (i.
e., when typically outdoor sources were convolved with reverberation
typical of indoor spaces; Experiments 10&11, Fig. 6). Collectively the
results indicate that sound recognition is not invariant to intensity or
reverberation. Instead, the results are consistent with intuitive causal
inference, in which the intensity of a sound source is implicitly inferred
and used to constrain recognition judgments. Although not producing
invariance across arbitrary stimulus manipulations of intensity or
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reverberation, this strategy likely aids accurate recognition in everyday
settings, in which observed sounds must be physically consistent with
their sources in the world.

We note that the experimental conditions were intended to maximize
the chances of observing invariance. In experiments manipulating pre-
sentation intensity (i.e., Experiments 1, 2 and 12), listeners were told
that sounds would be presented over a wide range of intensities, and in
reverberation experiments (i.e., Experiments 4, 6-11), listeners were
told that levels were artificially normalized, such that listeners should
have been maximally inclined to benefit from any invariance mecha-
nisms, and from decision strategies that accounted for the unrealistic
presentation intensities. The fact that listeners were informed of the
experimental design, and then experienced a wide range of intensities
during the experiment (for Experiments 1, 2, and 12) makes it unlikely
that listeners mistakenly assumed that sounds were played at veridical
intensities, such that their mistakes reflect a counterproductive decision
strategy. If anything, the effects we documented may have been weak-
ened as a consequence of listeners’ knowledge of the experiment
structure. One might also expect listeners to be somewhat adapted to
variation in presentation intensities due to the common presence of
electrical audio amplification in modern listening conditions, where
playback levels of radios, televisions and other devices are independent
of lawful physical relations related to a scene in the world. Such adap-
tation would also have weakened the effects described here. The dif-
ferences we observed between low-intensity and high-intensity sources
also do not appear to be due to differences in recording conditions
(Fig. 4D,E).

17.1. Prior work on invariance

Prior work suggests several reasons why listeners might be invariant
to intensity. Gain control mechanisms exist as early as the cochlea
(Darrow, Maison, & Liberman, 2006; Guinan, 2006) and midbrain
(Dean, Harper, & McAlpine, 2005) that partially attenuate the effects of
sound intensity. Moreover, mechanisms for level-invariant representa-
tion have been proposed at the level of the cortex in non-human animals
(Billimoria et al., 2008; Sadagopan & Wang, 2008). In addition, many
sounds occur over a wide range of levels in everyday experience
(because we encounter them at a range of distances, or because the
source can vary in physical intensity), such that a general normalization
mechanism might be expected to emerge during auditory development.
The fact that recognition is nonetheless influenced by cues to a source’s
intensity is thus suggestive that inferred physical variables figure
prominently in environmental sound recognition.

17.2. Limitations

The use of real-world sounds increases the relevance of our results for
everyday hearing, but also presents methodological challenges (Shafiro,
2008; Shafiro & Gygi, 2004). Many real-world sound sources cannot
practically be recorded in an anechoic environment (e.g., plane taking
off, shower, truck, crowd cheering, gunshots, stream, traffic, rain, etc.),
and are thus inevitably “contaminated” with reverberation and back-
ground noise. We dealt with this issue by using two sets of sounds: a
large and diverse set of natural recordings, and a set of controlled studio
recordings that was necessarily more limited in size and scope.

The uncontrolled reverberation in the natural set is likely to have
affected listeners’ distance judgments (Experiment 5) and interfered
with the use of added reverberation to manipulate distance. We were
able to partially mitigate this by using distance-matched subsets of
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sources, and by replicating the results of some experiments using studio
recordings. The similar effects evident across both sound sets suggest
that our main results are robust to the reverberation originally present in
the natural recordings (once equated for distance) and to the idiosyn-
crasies of the particular sounds in our studio recording set.

The studio recordings were limited by practical constraints. Many
high-intensity and outdoor sounds were impossible to record, and many
sounds we did record nonetheless entailed practical difficulties (e.g.,
chainsaw, lawnmower, chopping wood, walking on sand, shoveling,
glass smashing). We were pleased to complete these recordings while
avoiding damage to life or limb, or to our sound booth.

The studio recordings all had similarly minimal reverberation, but
nonetheless produced variation in rated distance. This variation pre-
sumably reflects the influence of source knowledge, demonstrating
another challenge of using recognizable sounds for which listeners have
expectations and prior knowledge. We controlled for these effects again
by using distance-matched subsets of sounds.

Another challenge was that we could not obtain measurements of the
intensities with which most real-world sounds are encountered in the
world. In lieu of this we had humans rate whether sounds were typically
soft or loud. These ratings are surely not perfectly reflective of actual
source intensities. However, our analyses relied on very coarse divisions
of sounds based on these ratings (e.g., into the loudest and quietest
sources), and it seems likely that these divisions indeed capture sub-
stantial differences in source intensity. Moreover, we replicated our
results using studio recordings where the true source intensities were
known.

Similar issues were present for reverberation, where we asked
humans to rate whether sounds are typically encountered indoors or
outdoors in lieu of measuring reverberation. Typical outdoor environ-
ments have much less reverberation (i.e., shorter RT60s) than typical
indoor spaces when source-listener distance is moderate (i.e., several
meters) (Traer & McDermott, 2016). However, extremely high-intensity
sources can be heard over kilometer-scales (e.g., thunder, gunshots,
helicopters) and reverberation over such scales can have long decay
times, possibly due to atmospheric turbulence as well as reflections
(Knudsen, 1946). Although outdoor reverberation over such scales has
not been characterized in detail, it is plausible that humans may
encounter very distant, high-intensity sources in outdoor settings with
reverberation that is similar to the “indoor” reverberation that we
simulated. This may explain the typicality ratings we obtained in Ex-
periments 10 and 11, in which added reverberation did not decrease the
perceived appropriateness of the acoustic environment for high-
intensity outdoor sounds (Fig. 7B). Nonetheless, for lower-intensity
sources, our synthetic reverberation produced a larger decrement in
appropriateness for outdoor than indoor sources, presumably because
low-intensity sources are typically encountered with such reverberation
only when indoors. It would clearly be ideal to eventually substantiate
this argument with measurements of reverberation from a large corpus
of real-world audio and more thorough investigations of reverberation
over large distances in outdoor scenes.

We note also that our manipulations of reverberation did not explore
the full space of reverberation, instead using a single decay time and
direct-to-reverberant ratio. We have no reason to think that the results
are specific to the particular reverberation we used, but there is clearly
room for a more exhaustive exploration of the effects of reverberation on
recognition.

We relied exclusively on recognition accuracy and analyses of
recognition confusions, but note that other experimental measures
might give further insight. For instance, listening effort (Winn, Wendt,
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Koelewijn, & Kuchinsky, 2018) might also vary depending on whether
sounds are presented in ecologically valid conditions, and might be more
sensitive than accuracy. Inferred source properties might also be
decodable from neurophysiological measurements.

17.3. Environmental sound perception

In general, human perception of environmental sounds has been
little studied in comparison to speech or music, even though such sounds
figure prominently in everyday behavior. Past studies have begun to
characterize human environmental sound recognition, and have iden-
tified some of the acoustical features underlying this recognition (Balas,
1993; Gygi et al., 2004, 2007; McDermott, Schemitsch, & Simoncelli,
2013; McDermott & Simoncelli, 2011; McWalter & McDermott, 2018).
In some cases listeners prefer to categorize environmental sounds ac-
cording to their source than to acoustical features (Gygi et al., 2007;
Lemaitre, Houix, Misdariis, & Susini, 2010). This latter finding is
consistent with our hypothesis that recognition involves estimation of
the properties of a sound source.

Our work also brings to light the importance of using ecologically
valid intensities and reverberation in experiments with environmental
sounds. By default one might be inclined to equate intensity (and/or
reverberation) across experimental stimuli, but our results suggest this
could have unintended consequences (e.g., if low-intensity sources are
presented at moderate SPL levels, or with reverberation implying an
implausibly large distance). We also highlight some of the challenges
involved in using real-world sounds as stimuli. The distance judgments
(Experiment 5, when compared with Experiment 7) suggest that real-
world recordings likely carry reverberant cues to distance. Our experi-
ments show that these cues indirectly affect the perceived source in-
tensity. Source recognition in turn, may affect distance judgments
(Fig. 5C). These implicit interactions merit consideration in experiment
design when using natural sound recordings.

It is plausible that analogous effects exist for other properties that are
associated with a source. For instance, some sounds tend to occur in
particular locations relative to the listener (e.g., birds that mostly fly
overhead (Parise, Knorre, & Ernst, 2014), or footsteps, which tend to
come from below). Similarly, some sounds are much more likely to occur
far from a listener than nearby. Such properties may also constrain
recognition, and may also need to be considered when designing
experiments.

17.4. Causal inference in audition

Our results suggest that listeners infer the underlying physical pa-
rameters that produce environmental sounds and use these parameters
to recognize them. In the case of source intensity, the auditory system
appears to jointly infer the distance and source intensity of a sound, and
then infers a type of source consistent with this estimated source in-
tensity. The role of distance cues has been previously noted in loudness
judgments, which are proposed to reflect inferred source intensity
(Zahorik & Wightman, 2001). However, the importance of such in-
ferences for recognition, whether due to intensity or reverberation, had
not been addressed prior to this paper. Our main contribution is to
demonstrate that causal inferences have objectively measurable conse-
quences on auditory recognition (arguably the most important auditory
behavior), even for the simplest physical attributes of sound that one
might naively think would be ignored for the purposes of recognition,
particularly given the ubiquity of normalization processes in sensory
systems (Carandini & Heeger, 2011; Schwartz & Simoncelli, 2001).
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Appendix A. Headphone calibration

For the first three in-lab listening experiments (Experiments 1, 2, and 4), sounds were presented through Sennheiser HD280 Pro headphones, which
we calibrated using a Svantek 979 sound meter attached to a GRAS microphone with an ear and cheek simulator (Type 43-AG). We used this setup to
estimate the transfer function of our entire sound presentation system (from the computer to the eardrum), by playing pink Gaussian noise and
comparing the input spectrum with the spectrum measured by the microphone. We used this frequency response to calculate the overall sound
pressure level of a sound for a given input waveform (by computing the power spectrum of the original waveform, multiplying by the gain at each
frequency, and then summing the adjusted power across frequencies), and then scaled the waveform so as to yield the desired sound pressure level at
the ear. For Experiments 12 and S1, we additionally compensated for the transfer function of the sound presentation system (as described in section
16.1.4) to make the effective transfer function flat, but otherwise set the presentation level as in the other in-lab experiments.

All other experiments were conducted entirely online because they either had no listening component (Experiments 3, 5, and 9), or because they
were very short (Experiments 6-8 and 10-11), which made in-lab recruitment difficult.

Appendix B. Pure tone detection thresholds

A majority (56%) of listeners in Experiment 1 had pure tone detection thresholds at or below 30 dB HL at all frequencies tested (0.25 to 8 kHz), but
some of the older listeners had elevated thresholds, typically at higher frequencies. In Experiment 12, we tested a younger cohort all of whom had
hearing thresholds below 30 dB to ensure that the results were robust to incidental hearing impairment.

In other in-lab experiments where all sounds were presented at 70 dB, and in all online listening experiments, we did not measure detection
thresholds as sounds were intended to be well above threshold. All listeners in these experiments self-reported normal hearing. All online listening
tasks included a test to ensure that listeners were wearing headphones (Woods et al., 2017).

Appendix C. Source Intensity and Location Ratings
C.1. Intensity

As a proxy for the typical physical source intensity for each sound in our set of real-world recordings (which we did not have access to given the
diverse origins of the recordings), we asked a second set of online workers to rate the typical intensity of a sound on a scale of 1-10 using the following
instructions:

Listen to each of the sounds presented below and indicate how loudly you typically hear each sound in your daily life on a 1 (quiet) to 10 (loud) scale. For
example, sounds typically heard at very quiet sound level such as writing (pen on paper) or typing would be rated as a 1, while sounds that are typically very loud,
such as a jet engine or a jack-hammer would be rated as a 10. For sounds that can be heard at a variety of sound levels, indicate the level at which you most
frequently hear that sound.

We collected ratings from 389 online workers, which was sufficient to produce split-half correlations of the average rating for a sound that
exceeded 0.9.

We chose to present the online workers with both the sound and a description of the sound so that they would have a good sense for the type of
sound about which we were asking. In this experiment, all sounds were normalized to have the same root-mean-square amplitude. The absolute
intensity was set individually by workers because they listened to sounds on their own devices.

These ratings were averaged across online workers and used to classify sound clips into low-intensity and high-intensity sources, on the assumption
that sounds that are typically loud in everyday life tend to be produced by high-intensity sources, whereas those that are typically quiet tend to be
produced by low-intensity sources.

C.2. Location
The sounds were also divided into two groups of typically indoor and typically outdoor sounds. To do this we asked a set of online workers to listen

to each of the 300 recorded sounds and rate (on a scale of 1-10) how likely the sound was to be encountered indoors as opposed to outdoors. Workers
received the following instructions:
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Listen to each of the sounds presented below and indicate how likely you are to encounter this sound in an indoor environment as opposed to an outdoor
environment. Use a 1 (only heard outdoor) to 10 (only hear indoor) scale. For sounds that can be both indoors or outdoors, indicate how likely you think the
sound is to be heard indoors.

We collected ratings from 50 online workers. We presented the online workers with the sound recording as well as a description of the sound. The
sounds were categorized by dividing them into two groups (typically indoor and typically outdoor sounds) around the median value.

Appendix D. Studio recordings

Forty-five sound sources (Table 3) were recorded in a soundproof booth that was heavily-damped to minimize reverberation. All recordings were
made with a microphone positioned 10 cm from the sound source (a Rode NT1A with a Focusrite Scarlett 6i6 Analogue-to-Digital-Converter). SPL
measurements were made for each source with a Svantek SVAN 979 Sound & Vibration Analyzer (also positioned with a 10 cm source-recorder
separation). The sources were chosen to span a range of SPL levels and typical source locations. The gain settings were adjusted for each
recording to capture an appropriate dynamic range for the sound. From several minutes of recordings for each sound, 5-s snippets were extracted.
Where possible the snippet was chosen without truncating the sound (e.g., for the hatchet striking a log a snippet might contain one or two impacts).
For continuous sounds (e.g., lawnmower) the snippet was given 200 ms linear fades in and out. In each experiment one of these snippets was randomly
selected for each source. For each recording, several hours were spent preparing, cleaning, and ventilating the soundproof booths.

In addition to the sounds shown in Table 3, five additional sounds were recorded that were intermediate in both intensity and location (Sawing
wood (81 dB); Ratchet wrench (75 dB); Drawing a nail from a box (nails scraping and sliding) (69 dB); Velcro (66 dB); Coin dropped on hard surface
(65 dB)). These sounds were presented in experiments but omitted from analysis because we settled on a 2 x 2 (rather than 3 x 3) design for the sake of
simplicity.

Appendix E. Acoustic analyses

We assessed the extent to which low-intensity and high-intensity sources differ on standard acoustic features (Fig. 7). We first measured the
average simulated cochlear “excitation pattern” for the different source-intensity groups, i.e., the average power across a filter bank that simulates
cochlear filtering. Each sound waveform was convolved with a Gammatone filter bank (Slaney, 1998) (128 filters, with center frequencies between 20
and 10,000 Hz). We then computed the envelopes of the filter responses over time (via the Hilbert transform), converted these envelopes to a dB scale,
and averaged these values across time and across sounds from the same source intensity group. We found that the differences between groups in their
excitation pattern were modest relative to the variation within a group (Fig. 7A).

To ensure that the modest differences in the mean excitation patterns of the sound groups could not explain the differences in their recognition, we
analyzed recognition performance for subsets of the sounds that were approximately equated in their excitation patterns. We selected a subset of 50
low-intensity and 50 high-intensity sources with approximately matched excitation patterns by greedily discarding sounds from each group (starting
from an initial pool of the full set of 75 sounds per group). At each iteration, we discarded the sound that led to the biggest reduction in the mean
squared error between the average excitation patterns for the low-intensity and high-intensity source groups. We ran this algorithm for 50 iterations,
alternating between discarding low-intensity and high-intensity sources, so as to discard 25 sounds per group. This was sufficient to produce similar
average excitation patterns for the two groups (Fig. 7C).

We next measured the amount of temporal and spectral amplitude modulation, using a standard set of spectrotemporal modulation filters (Chi
et al., 2005). Modulation was measured in cochleagrams computed using a filter bank similar to the Gammatone filter bank described above (116
filters between 50 and 10,000 Hz, with frequency responses shaped like the positive portion of a cosine function, with 87.5% overlap between adjacent
filters; we used this filter bank for convenience because the modulation model was implemented using these filters). The envelopes of the cochlear
filter responses were compressed to capture the effects of cochlear amplification at low intensity levels (by raising them to the power of 0.3). The
resulting cochleagram was then convolved in time and frequency with spectrotemporal filters tuned to each of 9 different temporal modulation rates
(0.5 to 128 Hz in octave steps) and 6 different spectral modulation scales (0.25 to 8 cycles per octave in octave steps). All of the filters were bandpass,
and their properties have been described previously (Chi et al., 2005). The output of the modulation filter bank was a 4D tensor measuring energy in
the sound as a function of time, audio frequency, temporal modulation rate and spectral modulation scale. We computed the standard deviation across
time of this tensor (as a measure of the strength of the temporal fluctuations in each filter’s response), averaged across audio frequency, and averaged
across sounds from a given intensity group. The result is a 2D matrix which represents the average energy of fluctuations at different temporal and
spectral modulation rates (Fig. 7B). We found that the pattern of temporal and spectral modulations was similar between the different real-world
intensity groups.

Appendix F. Experiment S1: verifying the masking effects of the noise from Experiment 4

The masking noise in Experiment 12 was designed using pure tone audibility thresholds (Moore et al., 2000), and thus it was not obvious a priori
that it would have the desired effect when used with natural sounds. We therefore performed a control experiment to verify that the noise had the
desired effect.

We tested the effectiveness of the masking noise using a discrimination paradigm in which we attenuated low-intensity frequencies from natural
sounds (details below) and assessed whether listeners could detect their absence with and without masking noise (Fig. 9A). On each trial listeners were
asked to judge which of two intervals contained different sounds: in one interval, the same unaltered natural sound was presented twice, and in the
other interval, the unaltered version was followed by a filtered version with low-intensity frequencies attenuated (by 30 dB). We expected that the
change to the spectrum would be most noticeable at higher overall sound intensities, where more of the spectrum would be audible (Fig. 9B). The goal
of Experiment S1 was to test whether this anticipated improvement at higher sound intensities would be eliminated by the use of masking noise
designed to prevent additional frequencies from becoming audible at high intensities.
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Experiment S1: Verifying the effect of masking noise
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Fig. 9. Design and results of Experiment S1: Validation of masking noise. (A) Schematic of the task used to assess the efficacy of the masking noise. Each trial
comprised two intervals. In one interval the same natural sound was presented twice. In the other interval, one of the sounds was filtered to attenuate low-intensity
frequencies. Listeners were asked to detect which interval contained a change between the two sounds. (B) The experiment was designed such that suppressed
frequencies should be easier to detect for higher-intensity stimuli due to greater audibility. The masking noise was designed to eliminate this benefit by raising the
audibility threshold. (C) Frequencies were attenuated that fell below a certain intensity cutoff relative to the threshold of audibility (see text for details). Higher
cutoffs cause more frequencies to be attenuated, making the task easier. (D) Discrimination performance as a function of the cutoff for stimuli presented at 40 dB
without noise, at 90 dB without noise, and at 90 dB with noise. Error bars show one standard error of the mean across subjects. As predicted, performance was
substantially better for higher-intensity stimuli without noise, but this benefit was eliminated by the masking noise, demonstrating that the masking noise had the
intended effect.

We presented sounds at three intensities (40, 75, 90 dB) with and without noise. For the lowest-intensity condition (40 dB), we attenuated fre-
quencies based on their maximum power over time (computed from a cochleagram, described below) relative to the threshold of audibility (Fig. 9B).
We used the maximum power over time (rather than, for example, the mean) because in principle listeners might detect energy in a frequency band
any time it exceeds the audibility threshold. For the higher-intensity conditions (75 & 90 dB), we instead attenuated frequencies based on their
maximum power relative to the elevated audibility threshold we intended to produce with noise. If the noise had the intended effect then it should
have reduced performance on the high-intensity conditions to that of the 40 dB condition.

We measured the time-varying power of different frequency bands using a Gammatone filter bank designed to mimic the frequency tuning in the
cochlea. We then attenuated (by 30 dB) all frequency channels whose maximum power over time fell below an “audibility-relative” cutoff (see Fig. 9C
for an illustration). We manipulated difficulty by varying the cutoff, with higher cutoffs causing more of the spectrum to be suppressed and thus

making the task easier. This approach allowed us to measure discrimination accuracy as a function of the cutoff for each condition in the experiment
(Fig. 9D).

F.1. Participants

Twenty-two listeners participated in the experiment (12 female; mean age = 25.4 years, SD = 3.3 years). All but one listener had pure tone

detection thresholds at or below 30 dB HL. One listener had a threshold of 40 dB HL in their left ear at 3 and 4 kHz; the exclusion/inclusion of their data
did not affect the results.

F.2. Stimuli and procedure

On each trial, listeners heard four presentations of a natural sound, divided into two intervals (Fig. 9A). In one interval, one of the two sounds was
filtered to attenuate frequencies below an “audibility-relative” cutoff. Listeners were instructed to indicate the interval in which the two sounds
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differed. Each sound was 2 s in duration. There was a 600 ms gap in between sounds from the same interval, and a 1-s gap between the two intervals.
Linear ramps (100 ms in duration) were applied to the beginning and end of each sound.

Sounds were presented at one of three intensities (40, 75, and 90 dB), with or without background masking noise, and with 5 different audibility-
relative cutoffs (0, 5, 15, 25, and 35 dB). The masking noise was the same as that used in Experiment 12. The noise lasted throughout the duration of
each trial (starting 500 ms before the first sound of the first interval and ending 500 ms after the offset of the last sound of the second interval). Each
listener heard a different subset of 12 of the natural sounds from Experiments 1 and 12. This relatively small number of sounds was chosen so that each
sound could be presented once in each of the 30 different conditions (3 intensities x 5 cutoffs x 2 noise conditions — with and without), yielding 360
trials. We excluded sounds in which the power at most frequencies fell below the maximum audibility relative cutoff (35 dB; since this would have
caused nearly the entire spectrum to be filtered out), leaving a pool of 186 sounds. The set of 12 sounds used for a listener was randomly drawn from
this set of 186.

The experiment was divided into 12 sections of 30 trials, and after each section the listener was given the option to take a short break.

FE.3. Filtering

We used a Gammatone filter bank to model cochlear responses as a function of time and frequency (128 filters with center frequencies between 20
Hz and 22,050 Hz) (Slaney, 1998). Sound waveforms were sampled at 44,100 Hz. We measured the Hilbert envelope of each filter’s output, and
converted this envelope to dB SPL. For each filter, we computed whether its envelope for a given sound/condition fell above or below the audibility-
relative cutoff, yielding a binary vector of zeros and ones indicating which frequencies to attenuate. To avoid time-domain artifacts (e.g., ringing), we
smoothed this binary vector using a Gaussian kernel on a logarithmic frequency scale (FWHM = 0.1 octaves), yielding a new vector with smoothed
values between 0 and 1. This vector was multiplied by 30. We then attenuated each frequency by the number of decibels specified in the corresponding
element of the vector. The frequency attenuation was implemented in the frequency domain (using FFT/iFFT and interpolating the attenuation vector
to the frequencies sampled by the FFT).

F.4. Results

Fig. 9D shows performance for all conditions. As expected, performance increased as the cutoff was increased (F(4, 84) = 88.47, p < 0.01), and, in
the absence of masking noise, performance increased with stimulus intensity (F(2, 42) = 37.61, p < 0.01). However, performance at 90 dB with noise
was very similar to performance at 40 dB without noise. As a consequence, there was no significant effect of intensity on performance with noise (F(2,
42) = 1.63; p = 0.21), and there was a significant interaction between the effect of intensity and the effect of masking noise (F(2, 42) = 11.92, p <
0.01). These results suggest that most of the frequencies that became audible at 90 dB were masked by our noise, as intended.

Appendix G. Supplementary data

Sound stimuli and responses from listeners and online graders for all experiments are available at https://github.com/jt-uiowa/causal-inferen
ce-in-environmental-sound-recognition_data. Supplementary data to this article can be found online at [https://doi.org/10.1016/j.cognition.20
21.104627].
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Supplementary Information

Experiment 1: Effect of intensity on recognition accuracy
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Figure S1. Same as Figure 2A but showing performance for all 4 partitions of the sound set based on
their rated
real-world source intensity.

Experiment 12: Design of the masking noise
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Figure S2. The goal of the masking noise was to elevate the audibility threshold so that frequencies
that would normally be inaudible at low sound intensities remain inaudible at higher intensities. This
goal was accomplished by starting with threshold equalizing noise (TEN) (41), which equates
thresholds for all frequencies. We then shaped TEN with the contour of audibility in quiet so that the
audibility threshold would be elevated rather than flattened. This figure plots the power spectrum
(computed with the FFT) and expected audibility threshold for TEN and our spectrally shaped noise.
In the experiment, the overall intensity of the masking noise was yoked to the intensity of the stimuli,
causing the audibility threshold to shift up and down with the intensity of the stimulus. In this figure we
show the spectrum and audibility curves corresponding to a single high-intensity stimulus (90 dB).



Experiment 12: Effect of audibility on intensity-dependent recognition
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Figure S3. Same as Figure 8B but showing performance for all 4 partitions of the sound set based on
their rated real-world source intensity.



Low-intensity sounds

High-intensity sounds

car idling 2.97

bus decelerating 4.88

slicing bread 3.21

sheep 4.89

finger tapping 3.56

Ping pong 4.94

chair rolling 3.69

turkey gobble 4.94

coffee machine 3.69

rain 5.08

owl hooting 3.70

water splashing 5.11

dial tone 3.77 pool balls colliding 5.16
stream 3.90 pig snorting 5.17
gargling 3.94 marching 5.29

fire 3.95 shower 5.29

typing 3.95 rocking chair 5.31

grating food 4.08

reception desk bell 5.36

jumping rope 4.17

dishes clanking 5.38

shoveling 4.19

cuckoo clock 5.41

wind 4.19

printing 5.52

elevator door 4.22

kettle whistling 5.58

walking on gravel 4.35

cow mooing 5.63

walking on leaves 4.37

coughing 5.66

grunting and groaning 4.38

hair dryer 5.77

bike bell 4.51 crying 6.24
swimming 4.51 laughing 6.25
rattlesnake 4.57 dentist drill 6.38
frog croaking 4.67 doorbell 6.41
basketball dribbling 4.67 blender 6.42

horse galloping 4.75

vacuum 6.73

car accelerating 4.78

dog barking 6.83

Table S1: Distance-matched groupings of low- and high-intensity sounds obtained from Experiment 6

and used in Figure 4. The numbers show the intensity ratings as given in Table S1.




Low-intensity sounds

High-intensity sounds

rustling branch (52dB)

electric can opener (83dB)

suitcase rolling (52dB)

coffee bean grinder (88dB)

branch trimmer (53dB)

bicycle bell (92dB)

footsteps in sand (55dB)

hair dryer (92dB)

pepper grinder (56dB)

dropping stones on stones (92dB)

biting into an apple (57dB)

compressed air spray 95dB

splashing water (57dB)

vacuum cleaner (95dB)

zipper (58dB)

hammering a nail into wood (97dB)

shoveling sand (59dB)

drill (101dB)

pouring liguid (59dB)

glass smashing (102dB)

peeling vegetables (59dB)

hammering metal (112dB)

chopping vegetables (60dB)

chainsaw (113dB)

scissors (62dB)

leaf blower (114dB)

Table S2: Distance-matched groupings of low- and high-intensity studio-recorded sounds obtained

from Experiment 7 and used in Figure 5.




Indoor sounds

Outdoor sounds

slicing bread 3.21

breathing 3.39

finger tapping 3.56

spray can shaking 3.61

coffee machine 3.69

stream 3.90

chair rolling 3.69

fire 3.95

dial tone 3.77

jumping rope 4.17

gargling 3.94

shoveling 4.19

grating food 4.08

walking on gravel 4.35

elevator door 4.22

walking on leaves 4.37

grunting and groaning 4.38

bike bell 4.51

running up stairs 4.84

dog panting 4.52

ping pong* 4.94

rattlesnake 4.57

shower* 5.29

frog croaking 4.67

dishes clanking* 5.38

ratchet 4.81

cuckoo clock* 5.41

walking with heels 4.87

coughing” 5.66

bus decelerating* 4.88

hair dryer* 5.77

sheep* 4.89

applause 6.16

rain* 5.08

crying* 6.24

water splashing* 5.11

laughing* 6.25

pig snorting* 5.17

dentist drill* 6.38

marching* 5.29

doorbell* 6.41

horse neighing* 5.39

blender* 6.42

cicadas* 5.43

vacuum® 6.73

cow mooing* 5.63

crowd laughing* 6.59

crow* 5.73

glass shattering* 7.19

whistle* 6.79

fire alarm* 7.51

train warning bell* 7.27

Table S3: Distance-matched groupings of indoor and outdoor sounds used in Fig 6. The numbers
show the intensity ratings as given in Table S1. “High-intensity” sounds are marked with an asterisk.




Indoor sounds

Outdoor sounds

peeling vegetables (59dB)

rustling branch (52dB)

chopping vegetables (60dB)

branch trimmer (53dB)

scissors (62dB)

footsteps in sand (55dB)

crumpling paper (69dB)

splashing water (57dB)

electric shaver (72dB)

shoveling sand (59dB)

stapler” (75dB)

footsteps in pebbles (69dB)

clanking dishes™ (78dB)

walking in dry leaves (69dB)

electric can opener* (83dB)

spray can shaking* (76dB)

hair dryer* (92dB)

hatchet striking a log* (78 dB)

vacuum® (95dB)

leaf blower* (114dB)

Table S4: Distance-matched groupings of indoor and outdoor sounds obtained from Experiment 7 and

used in Fig 6. “High-intensity” sounds are marked with an asterisk.
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