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Abstract

A fundamental question in fluid dynamics concerns the formation of discontinuous
shock waves from smooth initial data. We prove that from smooth initial data, smooth
solutions to the 2d Euler equations in azimuthal symmetry form a first singularity, the

so-called C'3 pre-shock. The solution in the vicinity of this pre-shock is shown to have a
fractional series expansion with coefficients computed from the data. Using this precise
description of the pre-shock, we prove that a discontinuous shock instantaneously
develops after the pre-shock. This regular shock solution is shown to be unique in
a class of entropy solutions with azimuthal symmetry and regularity determined by
the pre-shock expansion. Simultaneous to the development of the shock front, two
other characteristic surfaces of cusp-type singularities emerge from the pre-shock.
These surfaces have been termed weak discontinuities by Landau & Lifschitz [12,
Chapter IX, §96], who conjectured some type of singular behavior of derivatives along
such surfaces. We prove that along the slowest surface, all fluid variables except the
entropy have C! 7 one-sided cusps from the shock side, and that the normal velocity is
decreasing in the direction of its motion; we thus term this surface a weak rarefaction

wave. Along the surface moving with the fluid velocity, density and entropy form C!" >
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one-sided cusps while the pressure and normal velocity remain C2; as such, we term
this surface a weak contact discontinuity.

Keywords Shock formation - Shock development - Weak contact - Weak
rarefaction - Pre-shock - Compressible euler
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1 Introduction

We consider the simultaneous development of shock waves and weak singularities
(contact and rarefaction cusps) from smooth initial data, for the two-dimensional
compressible Euler equations in azimuthal symmetry. This problem consists of:

e the shock formation process, in which we start from smooth initial data and con-
struct the first singularity, the so-called pre-shock;

e the shock development process, in which the pre-shock instantaneously evolves
into a discontinuous entropy producing shock wave, and two other families of
weak characteristic singularities (cusps).

1.1 The Compressible Euler Equations

For shock development, it is essential to write the Euler equations in conservation
form, so as to ensure the physical jump conditions (conserving total mass, momentum
and energy) are satisfied. The system reads

0 (pu) +div(pu @ u + pI) =0, (1.1a)
0;p +div(pu) =0, (1.1b)
OE+div((p+ E)u) =0, (1.1c)

where u : R?> x R — R? denotes the velocity vector field, p : R> x R — Ry
denotes the strictly positive density, £ : R> x R — R denotes the total energy, and
p : R? x R — R denotes the pressure function which is related to (u, p, E) by the
identity

p=@-1(E-ipl),

where y > 1 denotes the adiabatic exponent. For smooth solutions, the conservation
of energy equation (1.1c) can be replaced by the transport of (specific) entropy 9,5 +
u-VS =0, where S : R*> x R — R denotes the entropy function, and the pressure
has the equivalent form

P, 8) = yp'e’. (1.2)

We consider solutions to the Euler equations (1.1) which start from smooth non-
degenerate initial data at time Tp, form a first singularity or pre-shock at time 77, and
simultaneously develop a discontinuous shock wave and surfaces of weak characteris-
tic discontinuities on the time interval (77, 7>]. Solutions on the time interval [Tg, T7)
are classical solutions to (1.1), and only the continuation of these solutions past 7}
requires the introduction of the Rankine-Hugoniot jump conditions.

Suppose that for t € (T, T»], the shock front S C R4 x (Ty, T»] is an orientable
space-time hypersurface across which the velocity u*, density p*, and energy E*
jump. We consider the case where this surface is given by S := {s(¢, x1, x2, ... x4) =
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0} with spacetime normal — (3, V,5)|s := (—$, n). We assume that (u™*, p*, E*) are
defined in the sets Q* (1) C R? separated by the shock front at time ¢. Let n(-, 1) point
from Q7 (¢) to Q7 (¢), which is in the direction of propagation of the shock front.
In two-dimensions, we let 7(-,7) = n(-, 1)+ denote the tangent vector. We denote
[fl = f~ — f+ where f* (sometimes denoted f.) are the traces of f along S in
the regions QF respectively, and u, = u - n|n|~", u; = u - r|r|~!. The shock speed
is denoted by §. The Rankine-Hugoniot jump conditions state that the shock speed §
along with the jumps of the fields across S must simultaneously satisfy

sln| ' punll = Lpuy, + pI1l. (1.3a)
sln| "ol = Dpuall, (1.3b)
sln| "' IET = [(p + E)uall, (1.3¢)

where we have used [[u,]] = 0 for a shock discontinuity.

Definition 1.1 (Regular shock solution) We say that (u, p, E, s) is a regular shock
solution on RY x [Ty, T»] if the following conditions hold:

(1) (u, p, E) is a weak solution of (1.1) and p > pmin > 0;
(ii) the shock front S € R? x R is an orientable hypersurface;
(iii) (u, p, E) are Lipschitz continuous in space and time on the complement of the
shock surface (R? x [Ty, T>]) \ S;
(iv) (u, p, E) have discontinuities across the shock which satisfy the Rankine-
Hugoniot conditions (1.3).

Furthermore, the solution has a weak shock if

sup  ([[u) ] + Lo + [TEOTD < 1.

telTy,T2]

1.2 Prior Results in Shock Development Problem for Euler

For hyperbolic systems in one space dimension, existence (and in some cases unique-
ness) of global weak solutions is well understood using either the Glimm scheme or
compensated compactness techniques (see e.g. [8]). Unfortunately, these methods can-
not provide a description of the surfaces across which weak and strong singularities
propagate. In multiple space dimensions, Majda [14, 15] establishes the short-time
evolution (and stability) of a shock front. This is a free-boundary problem in which
the parameterized shock surface moves with the shock speed given by the Rankine-
Hugoniot conditions. In this problem, the initial data consists of a shock surface and
discontinuous (u#, p, E) which are smooth on either side of the shock. As such, this
framework does not include the shock development problem, in which the surface of
discontinuity must evolve from a Holder pre-shock.

There are very few results on the formation and development of shocks. For the
one-dimensional p-system (which models 1d isentropic Euler), Lebaud [13] was the
first to prove shock formation and development. Following [13], Chen & Dong [4] and
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Kong [11] also proved formation and development of shocks for the 1d p-system with
slightly more general initial data. However, because entropy is created at the shock,
the use of the isentropic 2x2 p-system cannot produce weak solutions to the 1d Euler
equations.! Yin [17] was the first to consider the formation and development problem
for the non-isentropic 3x3 Euler equations in spherical symmetry. Independently,
shock development for the barotropic Euler equations under spherical symmetry was
established by Christodoulou & Lisbach [7]. The use of the isentropic model or the
assumption of an irrotational flow in higher dimensions cannot produce weak solutions
to the Euler equations, and as such has been termed the restricted shock development.
Christodoulou [6] has established restricted shock development for the irrotational
and isentropic Euler equations in three spatial dimensions and completely outside
of symmetry. Yin & Zhu [18] have recently established shock development in two
dimensions for a scalar conservation law.

As previously noted by Landau & Lifschitz in [12, Chapter IX, §96], at the same
time that the discontinuous shock wave develops, other surfaces of singularities are
expected to simultaneously form. Landau & Lifschitz termed these surfaces weak
discontinuities. In the restricted shock development problem, Christodoulou [6, Page

3] constructs C L3 cusp singularities along the characteristic of the fluid velocity
minus the sound speed, emanating from the first singularity (akin to the s; curve
in Theorem 3.2). For the full Euler system (with or without symmetry, even in one
dimension) the analysis of these surfaces of weak discontinuity has been heretofore
nonexistent. In this paper we prove that two such surfaces of weak singularities emerge
from the pre-shock and move with the slower sound-speed characteristic and the fluid
velocity respectively. We shall refer to these two surfaces as a weak contact (s2),
respectively a weak rarefaction (s1). We call the curve s, a weak contact because it
moves with the fluid velocity, and both the normal velocity and the pressure are one
degree smoother than the density and entropy. The curve s is called a weak rarefaction
because the normal velocity to this curve is decreasing in the direction of its motion —
see Section 7.

1.3 Statement of the Main Results

The goal of this paper is to prove the following (we refer to Theorems 7.1 and 7.2 for
a precise statement):

Theorem 1.2 (Main result for 2D Euler — abbreviated version) From smooth isentropic
initial data with azimuthal symmetry, at time Ty, there exist smooth solutions to the
2d Euler equations (1.1) that form a pre-shock singularity at a time Ty > Ty. The
first singularity occurs along a half-infinite ray and the blowup is asymptotically self-
similar, exhibiting a C 3 cusp in the angular velocity and mass density, and a C I3
cusp in the radial velocity. Moreover, the blowup is given by a series expansion whose
coefficients are computed as a function of the initial data.

I we emphasize that the Rankine-Hugoniot jump conditions are not satisfied under the isentropic assump-
tion, see Lemma 2.1.
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Fig. 1 The images represent values of the density written in polar coordinates p(r, @, t), and plotted for
r € [1, 2]. The image on the left represents the smooth data at time 7j. The center image shows the pre-
shock formed at time 77, at one specific value of the angular coordinate; we marked the corresponding line
in red. The image on the right represents the density at time 75, where we have represented in red the line
along which the shock discontinuity occurs, in blue the line containing the weak contact, and in green the
line corresponding to the weak rarefaction

Past the pre-shock, the solution is continued on (T, T2], as an entropy—producing
regular shock solution of the full 2d non-isentropic Euler equations (1.1). The solution
is unique in the class of entropy producing weak solutions with azimuthal symmetry,
with a certain weak shock structure and suitable regularity off the shock (see Defini-
tion 5.3 below). The following properties are established:

e Across the shock curve, all the state variables jump:

Mugll ~ (¢t — )2, [pll ~ (t — T1)2,
[pu, ]~ (t — T2, [ST~ (t — T1)2.

e Across the characteristic emanating from the pre-shock and moving with the fluid
velocity, the entropy, density and radial velocity all have a C L3 one-sided cusp
from the right, while from the left, they are all C? smooth. The second derivative
of the angular velocity and of the pressure is bounded across this curve fort €
(T1, T].

e Across the characteristic emanating from the pre-shock and moving with sound
speed minus the fluid velocity, the entropy is zero while the angular velocity and
density have C 13 one-sided cusps from the right, while from the left, they are all
C? smooth. The second derivative of the radial velocity is bounded across this
curve for t € (T, T»].

We thereby obtain a full propagation of singularities result for regular shock solutions,
capturing both the jump discontinuity and the weak singularities emanating from the
initial cusp in the pre-shock (Fig. I).

Remark 1.3 (Anomalous entropy production) In analogy with Onsager’s conjecture
on anomalous dissipation of kinetic energy by weak solutions of incompressible
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Euler, entropy can be anomalously produced by singular inviscid solutions of the
compressible Euler equations. Theorem 3 of [9] establishes the following L3-based
Onsager-criterion: if u, p, E € L*°(0, T; (B;{;JF N L®)10c(R9)) then there is no
entropy production. Our Theorem 1.2 provides an example of an entropy producing
weak solution resulting from continuing past a finite time singularity. In fact, the solu-
tion we construct lies in u, p, E € (BV N L) C (Bé’/go)loc, for every p > 1,
illustrating the sharpness of the Onsager criterion in this context.

Remark 1.4 (Uniqueness and entropy) With regards to the question of uniqueness, the
recent work [10] established that infinitely many entropy-producing weak solutions
emanating from 1d Riemann data exist (see also the references therein for the rich
history of such convex-integration constructions going back to [5]). The solutions in
[10] break the 1d symmetry and are in general just bounded, and show that the usual
entropy condition cannot ensure uniqueness in the class of bounded weak Euler solu-
tions. By contrast, we establish uniqueness in a class of weak solutions with azimuthal
symmetry, exhibiting weak shock structure, and which have regularity consistent with

the fact that they emanate from a C% pre-shock (see Definition 5.3).
2 Jump Conditions and Entropy Conditions
2.1 The Rankine-Hugoniot Jump Conditions for the Euler Equations
We now return to the Rankine-Hugoniot conditions (1.3). The weak shock regime is
relevant to the development of a discontinuous shock wave from Holder continuous
data (the pre-shock). A key feature of a regular shock solution to the Euler equations
is the production of entropy along the shock surface.
In order to best exemplify this entropy production, we shall set
Sy =0. 2.1

We then define

V=u, — 5. (2.2)

Then noting that u2 = (v + $)? = v? + 25v + % and $u, = $v + 5%, the jump
conditions (1.3) become

0=[pv>+ pl. (2.3a)
0=1[pv], (2.3b)
— 2y 2rp
0=[v"+ ST p]], (2.3¢)
From (2.3b), we know that the mass flux is continuous p_v_ = pyv4 =: j. For a

shock discontinuity j # 0 implying the tangential velocity is continuous across the
shock [[u;]] = 0. In our setup, mass is crossing the shock from the ‘+’ phase to the
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‘—’ phase, so the shock is traveling from ‘—’ to ‘+’. With our choice of orientation
for the normal, this fixes j < 0, which implies that

U -n<s, ut on <s. 2.4)

Thus, the shock speed is greater than the normal velocity of the fluid on both sides of
the shock, consistent with that mass flux being negative j < 0. We will refer to ‘—’
state as behind the shock and the ‘4 state as the front.

2.2 Second Law of Thermodynamics and the Physical Entropy Condition

We now explain the meaning and consequences of the physical entropy condition. The
motion of a viscous compressible fluid in d-spatial dimensions is, to good approxima-
tion, governed by the Navier-Stokes system. In that system, any non-trivial state has
the property that net entropy is increasing

d
— Sdx >0, 2.5
& Qp x> (2.5)

provided u is tangent to €2 (and the boundaries d€2 are insulating if the thermal dif-
fusivity is non-vanishing). Namely, the second law of thermodynamics holds. For the
Euler equations, the entropy satisfies

3 (pS)+ V- (puS) =0 (2.6)

and is thus has conserved average for smooth solutions. We recall here the following
classical result

Lemma 2.1 Let (u, p, E) be a weak shock solution. Then, entropy is produced (2.5)
if and only if [[S]] > 0. Moreover, provided that the specific volume V := 1/p and
enthalpy h = £ + e when viewed as a functions of pressure and entropy are C*, then
the following leading order description of the entropy jump holds

[sp= L2 9%V
21 \apt

The notation “f(x) = O(x)" means, as usual, |f(x)| < (const.)|x| for all suffi-
ciently small x. An immediate implication of equation (2.7) is that entropy variation
is produced once a shock is formed, even if the flow was initially isentropic.

[pI° + O pI*). 2.7)
N

Remark 2.2 (Equations of State) Although we only require finite regularity in Lemma
2.1, away from phase transitions, all thermodynamic functions are smooth in their
arguments. Thus, the specific volume V := V(p, §) and the enthalpy & := h(p, S)
which are used in the subsequent proof are smooth functions of p and S. As such,
our assumption physically is that our medium is far from criticality. Moreover, strict
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convexity 32V /3 p* > 0is a material property. For example, for a ideal gas (the family
we consider) we have explicitly

3’V

ap?
which can be obtained by differentiating the relationship pV? = (const.) (equation
(1.2)). The thermodynamic temperature appearing in (2.7) can also be explicitly related

to p and p in this setting. Specifically, for the ideal gaslaw T = e/c, where the internal

energy e = ()/—Ll)p’ we have the following explicit formula 7 = @

V2
— 4y H~ =0 2.8)
K p

Remark 2.3 (Correlations in jumps) One consequence of Lemma 2.1 is that, if V is a
strictly convex function of the pressure (as it is for the ideal gas), then positive entropy
production implies positivity of the jumps [p]] > O, [po]] > 0 and [[u,]] > 0. This
conclusion is simply the well known fact that pressure and mass density trailing the
shock exceed their values at the front, due to compression. See Landau and Lifshitz
[12], Chapter IX for an extended discussion.

Proof of Lemma 2.1 Integrating the entropy balance (2.6) over the domain one finds

s[oST — [ouSl = —jIST. (2.9)

Thus we must have —j[[S] > 0, to be consistent with the second law of thermody-
namics (2.5) imposed, for example, by the effects of infinitesimal viscosity. Recalling
that, with our conventions the mass flux j = pv is negative (mass is passing the shock
from + to —), we see that the physical entropy condition (2.9) is equivalent to the
condition

[S]>0. (2.10)

We now derive the consequences of (2.10) for weak shocks. In what follows, we will
show that [[S] = (’)([[p]]3). In the calculations below, we anticipate this result in
our expansions. It is convenient to work with the enthalpy 7 = % + e. We regard
h = h(p, S) and Taylor expand to obtain

oSy /|, Ip+

+1 3%h [[]]2+1 33h
2\ap2 )|, T \apd

Recalling the first law of thermodynamics in the form

[rl
S

[p1® + OWSIpn, [p1*, [ST?).
S

dh = TdS + Vdp, @2.11)
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where V := 1/p is the specific volume, we find that

&)= &)

Thus, the Taylor expansion of the enthalpy becomes

=V. (2.12)
N

1 /0V 1 [a%v
[A] = T4 0ST + V-Ipl + 5 (—) [pl*+ - (— || [pI’
2 \0p+ /s 6 apy s
+ OIS pT, [pD*, [ST?). (2.13)

Recalling that the mass flux j is continuous across the shock, we note that by (2.3a)
that

[pll = ~llov*l = —jlvl = =1V, (2.14)
which implies j2 = —[[p]l/[V]. Moreover, from (2.3c), we have

2 2
_ gl _ J 2 _l v
(Al = —[zv 1= —2[[V]]—2[[P]] V1

= [Pl Vave, (2.15)

where Vyye = %(V_ + V,). Combining with (2.13), after some manipulation we find

TLAS1 = 30vael - 3 (32| et - § (%) oy
+OWS T, [pI*, 1ST?). (2.16)

Finally, Taylor expanding the specific volume yields

1% 1 {3%v
Vi= | — +=-|—
v <3p+>s[[p]] 2<8pi)

Upon substitution into (2.16), we obtain the relation (2.7). Note that provided
32V /ap* > 0, for weak shocks [p]] < 1, equation (2.7) shows that [p]] > O.
Hence, by (2.14), we have [p]] > 0 and [, ] > 0. O

[P + O pIlP, [ST).  (2.17)
S

2.3 Lax Geometric Entropy Conditions and Determinism of Shock Development

In this section, we show that the entropy condition implies that the shock discontinuity
is supersonic relative to the state ahead (‘4-’ phase) and subsonic relative to the state
behind (‘—’ phase)

ut n+ct <s<u n+c, (2.18)
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where ¢~ and ¢* are the sound speeds behind and at the front of the shock. In this
way, the {t = 0} hypersurface is the Cauchy surface for the state ahead (4) whereas
{t = 0} together with the shock front serve as the Cauchy surface for the state behind
(—). The region behind the shock is thus determined by the initial conditions together
with data along the shock front which are determined by enforcing Rankine-Hugoniot
conditions.

Equations (2.18) (together with (2.4)) are called Lax’s geometric entropy conditions.
We now show that the Lax geometric entropy conditions are equivalent to the physical
entropy condition (2.10), at least for weak shocks.

Lemma 2.4 In the setting of Lemma 2.1, the physical entropy condition (2.5) holds if
and only if the geometric Lax entropy conditions (2.18) and (2.4) hold.

Proof of Lemma 2.4 Conditions (2.4) hold since the mass flux j < 0. Usingu4-n—5§ =
jV*, (2.18) becomes

S<—j< (2.19)

Thus, when the jump conditions, the Lax geometric conditions hold provided
[[c/V] > 0. (2.20)

We now show how this is implied by [[S]] > O in the weak shock regime. Letting
w = V?/c?, we have

(1 1 _ (1 1 Ie/V1
1 = (= + e ) 1Y/ = = (Grin= + e ) i 22D

Thus, verifying condition (2.20) and thus (2.19) is equivalent to showing [w] < O.
To verify this note first, that viewing p := p(p, §), as an application of the chain rule

we have
1 a 1 [0V
() o2 (&), (2.22)
c? ap/lg v2 \ap/ls
which yields w = — (g—;) ‘S. Appealing to the leading order entropy jump (2.7) of
Lemma 2.1, we obtain
3’V 5 1274 )
[wl=-{==]| [pI+Odpl") = ——==IIST+ Orl"). (2.23)
3p+ s [rl

Thus, we see that [S] > O if and only if [w]] < O which in turn implies the Lax
conditions (2.18), (2.4). O

Remark 2.5 (Determinism of shock development and entropy conditions) We now dis-
cuss an interpretation of the Lax geometric inequalities as they pertain to the issue of
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determinism of the shock development problem. To simplify ideas, we specialize to
1D setting in which the spacetime shock curve is given by {x = s(¢)}. The spacetime
normal to the shock curve is n = (—s, 1). With the notation V; , = (9, dx), the
transport operators for the Riemann invariants are

(d,u—c)- Vi, (1, u) - Vi, (l,u+c) -V . (2.24)

See equations (3.5b), (3.5¢) and (3.5a) respectively. In the front of the shock (4 phase),
the Lax inequalities (2.18) read

ut —ct <3, ut < ur+ct<s (2.25)

all of which follow directly using the fact that the sounds speed is positive. Geomet-
rically, these translate to

n-(Lut—cH <0, n-QuH)<0 n-Qu"+ch)<0, (226

showing that all the associated characteristics in front of the shock (+ phase) impinge
on the shock front, carrying with they Cauchy data from the {t = 0} hypersurface.
This ensures that the front of the shock is causally isolated from shock and determined
solely from initial conditions. On the other hand, behind the shock (— phase) we have
from (2.18) and (2.4) that

u_ —c <35, u- <8, u +c >5 (2.27)
which has the geometric meaning of
n-(lL,u= —c7) <0, n-(l,u) <0, n-(lL,u=4+c¢c7)>0. (2.28)

Unlike the situation in the 4 phase, we see that two of the characteristics corresponding
to wave speeds u~ — ¢~ and u™ are “exiting the shock", carrying with them data from
along shock hypersurface. Only one of the characteristics corresponding to u™ + ¢~
is impinging on the surface, carrying Cauchy data from {r = 0}. The significance of
this is the following: the data along the shock front for the Riemann invariants carried
by characteristics leaving the shock are free and will be chosen to enforce two out
of the three jump conditions for mass, momentum and energy. The third invariant
whose characteristics impinge on the shock enjoys no such freedom — rather the speed
of the shock will be designed to arrange for the last jump condition to be satisfied.
Simultaneously ensuring these constraints hold define a free boundary problem for
the shock development. If additional characteristics were to lack this freedom, the
problem would become overdetermined and no solution could be found in general. As
such, the entropy condition is precisely what is required for the shock development
problem to be “deterministic”.

Remark 2.6 (Shock speed near formation) From the Rankine-Hugoniot conditions, it
follows that the rate of propagation of weak shock waves (relative to the fluid) is the
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sound speed, § & u, + c. This follows from the fact that, at the pre-shock, v_ = v
SO

vo=vy=v=jV =—/-V2@p/aV)s = —/@p/dp)ls = —c. (2.29)

which follows from the identity j2 = —[pl/LV1. Since § = u, — v, the claim
follows.

2.4 The Euler System in Terms of Entropy, Velocity, and Sound Speed

In preparation for reducing the equations to a symmetry class and deriving equations of
motion for the Riemann variables, we reformulate the two-dimensional non-isentropic
compressible Euler equations. First, for classical solutions the energy equation can be
replaced by the transport of entropy

3 (pu) +div(pu @u) + Vp(p,S) =0, (2.30a)
orp +div (pu) =0, (2.30b)
»S+u-vS=0, (2.30c)

where S : R? x R — R is the (specific) entropy. If the initial entropy is chosen to
be a constant Sp € R, then the entropy function satisfies S(-, 1) = Sp as long as the
solution remains smooth. The formulation of Euler given in (2.30) is equivalent to the
usual conservation law form (see (1.1)) up to the pre-shock, and will be used for the
shock formation process.

We introduce the adiabatic exponent

so that the (rescaled) sound speed reads
(,zimzée%pa, (2.31)
With this notation, the ideal gas equation of state (1.2) becomes
p= %poz . (2.32)

The Euler equations (2.30) as a system for (u, o, S) are then given by

oru+ (u-V)u+aoVo = %O'ZVS, (2.33a)
90 +w-Vyo +acdivu =0, (2.33b)
S+ wm-V)S=0. (2.33¢)
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We let @ = V= - u denote the scalar vorticity, and define the specific vorticity by
¢ = %. A straightforward computation shows that ¢ is a solution to

W+ -Vt =22vis . VS. (2.34)

@ g
v

The term term £ 2 V1 - VS on the right side of (2.34) can also be writtenas p > V-1 p-
V p and is referred to as baroclinic torque.

2.5 Jump Formulas for Ideal Gas Equation of State

In this section, we perform some manipulations of the Rankine-Hugoniot conditions
(1.3a)—(1.3¢c) which will be used later in the paper. Combining (2.3) together with
(2.1), we find that

2py
[Pl = —g= =G0 [Pl (2.35)

We can also compute the jump in pressure as
[Pl =5 = Dol + Zl1p" 1. (2.36)

Equating (2.35) and (2.36), we see that

2 Y
pL (€% = 1) = — ot el = o711, (2.37)
where we recall that S_ = [[S]. In order to simplify (2.37), we introduce

i
o—

0 (2.38)

which we expect to be close to 1 on the shock curve, for a short time after the pre-shock.
Then, (2.37) reads

S_ _ _ (0-1p y=D(+y)
e 1= @l (K — (0 - DBy(Q) . (239)
where By, (Q) is a smooth function in the neighborhood of 0 = 1, with B, (1) =
B =2 —Dy(y + Dand B, (1) = Z5(v —=3)(y =Dy — Dy(y + 1.

Wheny =2anda = %, the above formulae simplify. First we note that B, (Q) = 0
for all Q, and in that case, (2.39) becomes

_1\3 3
S22z 1ol (2.40)

1-30  p2@py —p-)
From (2.31) and the fact that S = 0, we have that

_ 1 2,5 _ 12
p—=z0Ze ",  py=z0%,

FN.
FN-.
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from which it follows that
[pll = %e‘s‘ (03 — eS‘ai) .
This allows (2.40) to be rewritten as

3
(€% = Do Botes —o?) = (o2 — 502 . (2.41)

3 Azimuthal Symmetry
3.1 The Euler Equations in Polar Coordinates and Azimuthal Symmetry

The 2D Euler equations (2.33) take the following form in polar coordinates for the
variables (ug, u,, p, S):

(3 + urdr + tugdo) ur — tuj + a0 d,0 = 55079, (3.1a)

(3 + urdr + Lugdo) uo + Lurug + @Z30 = £C8S.  (3.1b)

(at + urar + %u080) o +ao (%Mr + 8rur + %89’49) =0, (310)
(3 + urdy + Lugdp) S = 0. (3.1d)

We introduce the new variables

ug(r,0,t) =rb0,t), u,(r,0,t) =rad,t),
o(r,0,1) =rc0,t), Sr,0,t) =k(0,1). 3.2)

The system (3.1) then takes the form

(0 +bdg)a+a>—b>+ac’> =0 (3.3a)
(8; + bdg) b + acdyc + 2ab = %Czagk (3.3b)
(0 + bdg) ¢ + cdgb + yac =0 (3.3¢)

(0 +bd)k=0. (3.3d)

For simplicity of presentation we shall henceforth focus on the case

1
y=2 and a=3;.
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Note, however, that all the results in this work generalize to the case when y > 1.2
The Riemann functions w and z are defined by

w=b+c, z=b—c, (3.4a)
b=3w+2), c=3w—2). (3.4b)
It is convenient to rescale time, letting 0; +— %87, and for notational simplicity, we

continue to write ¢ for 7. With this temporal rescaling employed, the system (3.3c) can
be equivalently written as

dw + A38pw = —Saw + 5 (w — 2)*k, (3.52)
9z + Mdez = —Saz + 5 (w — 2)? %k, (3.5b)
dk + Aadgk =0, (3.5¢)
dha+ rdpa = —3a* + S(w +2)* — Lw —2)?. (3.5d)

where the three wave speeds are given by
)q:%uw-z, A2=%w+%z, k3=w+%z. 3.6)
We note that (3.3c) takes the form
drc + Madgc + $cdpra = —Sac. (3.7)
Finally, we denote the specific vorticity in azimuthal symmetry by
o =4w+z— Bga)cfzek , (3.8)
which satisfies the evolution equation
o + rdgw = Saw + Sk (3.9)
We supplement (3.5) with initial conditions

wo(0) = w(®, To), z0(0) =2(6,To), ao(®) =a(®,To),
ko(0) = k(6. To), @o(0) =@ (0., To).

2 The pre-shock formation for general y > 1 in (3.3) was already done in [1] for an open set of smooth
isentropic initial data. Using the arguments in [3], the same result may be obtained also for the non-isentropic
problem. The more detailed information required for shock-development can be obtained in analogy with
the analysis in Section 4. The shock development problem for general y > 1 is conceptually the same; see
the outline of the proof in Section 3.4. One of the main differences is that the slightly more complicated
Rankine-Hugoniot condition (2.39) must be used in place of (2.40). Another difference is that for general
y > 1, in the formation part the subdominant Riemann variable is not transported and thus cannot be taken
to equal a constant up to the pre-shock; this issue was already addressed in [1-3], see also [16].

@ Springer



26  Page 18 of 199 T. Buckmaster et al.

We shall study the shock formation process for solutions to (3.5) on the time interval
To < t < Ty, where T} denotes the time of the first singularity, also known as the
pre-shock. One of our main objectives is to provide a detailed description of the pre-
shock w(-, T1). We shall provide the fractional series expansion of w(6, T7) for 0 in
a neighborhood of the blowup location 6.

For the shock formation process, we choose initial data3

ko(0) =0, z0(0) =0,

which is preserved by the dynamics so that k(6,t) = 0 and z(9, t) = O for all time
t up to the time time of the pre-shock. Thus (3.5) is reduced to a coupled system of
equations for @ and w, satisfying

dhw + wipw = —Saw, (3.10a)

dra + %waga = —%az + éwz . (3.10b)

We emphasize however that the theorems in this paper generalize to the case that kg
and zo do not vanish identically, and instead we just assume that z( and kg are small in
the C? topology, and for all y > 1. We refer to the paper [16] for the detailed analysis
of the full system (3.5) during the shock formation process.

3.2 The Rankine-Hugoniot Jump Conditions Under Azimuthal Symmetry

Under the azimuthal symmetry assumptions and using our temporal rescaling 7 + %t,
from (3.2) (fixing y = 2), we have that the shock hypersurface is given as the graph
{(r,0,t) : 6 = s(t)}. The spacetime normal to this curve is n = (—5, %). Thus, s
satisfies the Rankine-Hugoniot conditions (1.3a) and (1.3b)

[[e—kc2b2 + %e—kc4]]

;4

§=3 o= c2b]] s (3.11a)
. —k Zb

5= %%. (3.11b)

We note that the third Rankine-Hugoniot condition (1.3c) has already been employed
to deduce the relation (2.41).

Let us now convert (3.11) and (2.41) into our azimuthal variables as follows. We
denote by w4 (-, 1), z+(-, 1), k+(-, t) the limiting values, from the left (—) and right

3 This choice is made for the following reason: irregardless of the choice of initial entropy function k),
the Rankine-Hugoniot conditions guarantee that a jump in entropy must occur at the shock. As such the
choice of ky = 0 emphasizes the production of entropy in the clearest possible terms. Similarly, the choice
of y = 2 and that kg = 0 allows the equation (3.5b) to reduce to a transport-type equation. Just as we
did for entropy, we can (in this case) choose zg = 0 and up to the pre-shock, the sub-dominant Riemann
variable z will remain zero. Once again the Rankine-Hugoniot conditions ensure that z must experience a
jump discontinuity along the shock, and thus the choice of zg = 0 allows us to most easily demonstrate this
fact.
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(4), of the shock curve s(¢). We also note the fact that k4 = 0 and z+ = 0. Now, from
(3.4), the system (3.11) becomes

sy 2 2o m P 2P et o -zt - Jud
K

3.12
e — 2 Ptz —wl G

2e 7k (w- — z_)z(w_ +z-)— wi

S(I) = § e_k7 (w_ _ Z—)2 — wi

(3.12b)

We note that the jump conditions (3.12a) and (3.12b) for the mass and the momentum
equations are a priori two different equations for the shock speed. To remedy this, we
set the right sides of these equations equal to each other, and instead work with one
evolution equation for &, namely (3.12b), and one constraint

((w_ —z ) (w_+z)*+ %(w_ —z )t - %ek— wi) ((w_ —z)r = wi)
- ((w_ 22 (w_+7.) — e"—wi)2 (3.13a)

Also, we have that (2.41) takes the form

e — DH(w_ — zf)4<3wiek* —(w_ — zf)z> = ((w, —z )t =k wi)3 .
(3.13b)

To summarize, we shall first use the system formed by the Egs. (3.13a) and (3.13b) in
order to solve for z_ and k_ in terms of w_ and w., and then insert these solutions
into (3.12b) and determine an evolution equation for s, solely in terms of w_ and w.
This is discussed in Sect. 5.6.

3.3 Main Result in Azimuthal Symmetry

As mentioned in Theorem 1.2, in the formation part of our result, i.e. for t € [Ty, T1),
we have that the solution (w, z, k, a) of the Euler equations in azimuthal symmetry is
smooth, so that the notion of solution is the classical one: the system (3.5) is satisfied
in the sense of C! functions of space and time. On the time interval [T}, 7>], which
covers the development part of our result, the notion of regular shock solution is used,
as defined by Definition 1.1 above. In azimuthal symmetry, this definition becomes:

Definition 3.1 (Regular azimuthal shock solution) We say that (w, z, k, a, s) is a reg-
ular azimuthal shock solution on T x [T, Tp] if

1) (w,z, k,a) are Celyt smooth, and @ is Cg,[ smooth, on the complement of the
shock curve {§ = s(¢)};
(ii) on the complement of the shock curve (w, z, k, a) solve the equations (3.5) point-
wise, and @ solves the integrated form of (3.9);
(iii) (w, z, k) have jump discontinuities across the shock curve which satisfy the alge-
braic Egs. (3.13a), (3.13b) arising from the Rankine-Hugoniot conditions;
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(iv) the shock location s : [T}, To] — T is C,1 smooth and solves (3.12b).

Our main result for the azimuthal 2D Euler equations (3.5) is stated in detail in
Theorems 5.5 and 6; here we only give a condensed statement:

Theorem 3.2 (Main result in azimuthal symmetry — abbreviated version) From smooth
isentropic initial data with vanishing subdominant Riemann variable at time Ty, there
exist smooth solutions to the azimuthal Euler system (3.5) that form a pre-shock sin-
gularity, at a time Ty > Ty. The first singularity occurs at a single point in space, 0,
and this first singularity is shown to have an asymptotically self-similar shock profile
exhibiting a C3 cusp in the dominant Riemann variable velocity and a CL3 in the
radial velocity. After the pre-shock, the solution to (3.5) is continued for a short time
(T, T7] as a regular azimuthal shock solution (cf. Definition 3.1) with the following
properties:

e Across the shock curve s, all the state variables jump

[wl~ (G —T)2, [dall~ -T2, [z~ @—T)3, [kKI~(@—T)?

fort € (Ty, T»].

e Across the characteristic so emanating from the pre-shock and moving with the
fluid velocity, the Riemann variables and the entropy make C'" > cusps approaching
from the right side. Approaching from the left side, are these variables are C>
smooth.

e Across the characteristic 51 emanating from the pre-shock and moving with the
fluid velocity minus the sound speed, the entropy is zero while the subdominant

Riemann variable z makes a C L3 cusp approaching from the right. Approaching
from left, they all variables are C* smooth on (T, T>].

3.4 Outline of the Proof

The proof of Theorem 3.2 consists of five main steps, which we outline next. For
simplicity, in this outline we focus only on the intuition behind the result, and skip
over the technical difficulties which emerge when we turn this intuition into a complete
proof.
Step 1: detailed formation of first singularity, the pre-schock. The formation of
the first gradient singularity for the Euler equations, from an open set of smooth initial
datum, was previously established in [1-3]. In azimuthal symmetry, [1] shows that
that the first singularity is characterized as an asymptotically self-similar C;/ 3 cusp
for the dominant Riemann variable w defined in (3.4); this is the so-called pre-shock.
In order to best illustrate a symmetry breaking phenomenon which occurs after
the formation of the pre-shock, in this paper we consider smooth initial conditions for
(3.5) which are both isentropic (k|;=7, = 0) and have vanishing subdominant Riemann
variable (z|;=7, = 0). Both of these conditions are propagated for smooth solutions
(the interval [Tp, T1] in Figure 2), but we shall prove that this symmetry is broken as
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t
t="1T,
t="1T1 0
t="1T

Fig. 2 At time 7j a smooth datum is given, which forms a first singularity at time 77, at a single angle
Oy this is the pre-shock. For t € (77, T2], we have three curves of singularities emerging from the point
(04, T1): sis aclassical shock curve across which (w, z, k, dga) jump, and the Rankine-Hugoniot conditions
are satisfied; along the characteristic curve s, the quantities (w, z, k) have regularity C L1/2 and no better,
while along the characteristic curve s1, the function z has regularity C 1.1/2 and no better

soon as the shock forms (the interval (77, 73] in Figure 2). From such smooth initial
data, satisfying in addition a genericity condition on the initial gradient of the dominant
Riemann variable, we construct a first singularity occurring at a point (6, 77). For
simplicity of notation, this space-time location of the pre-shock is relabelled as (0, 0),
and the solution (w, z, k, a)|;=7; is denoted as (wo, zo, ko, ap). From [1] we have that
at the pre-shock, the solution takes the form

wo(6) = k —bOF + ..., (3.14a)
ao(0) = a9+ 216 + 63 + ..., (3.14b)
20(0) = 0, (3.14¢)
ko(©) = 0. (3.14d)

asymptotically for |#] <« 1. We note also that specific vorticity @ (see (3.8)) at the
pre-shock is Lipschitz continuous; we denote it as @y.

While for the schematic understanding of shock development the asymptotic expan-
sionsin (3.14) are sufficient, in order to rigorously capture the formation of higher order
characteristic singularities emerging along the curves s; and s; in Figure 2, a much
finer understanding of the pre-shock is required. In particular, we need to show that the
equality (3.14a) holds in a C3 sense; by this we mean that w(’)(Q) = —%b@’% + ...,

that w}j(6) = 2b0~3 + ..., and that w{(®) = —10b0=3 4 .., for 0] < 1. This
information is not provided by our previous work [1] and is established in Section 4 of
this paper; here we combine the information provided by the self-similar analysis in [1]
with a Lagrangian perspective in unscaled variables for (3.10), and the characterization
of the pre-shock as the point in space time where the characteristic associated with
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0(t) 0. (1)

Fig.3 The shock curve is represented in bold red, while the paths {ng(6+(7), s)}s¢[0,] are the cyan paths

the speed A1 has a vanishing first and second gradient (with respect to the Lagrangian
label).

Step 2: emergence of shock front. By Remark 2.6, for short time § ~ u, + c.
Accounting for the temporal rescaling done in Section 3.1 (see paragraph above (3.5)),
this says § &~ b + ¢ = w close to the pre-shock, so that from (3.14a) we have

s5(t) ~ kt.

Entropy is produced as soon as the shock has developed, cf. Lemma 2.1. However,
this contribution is small at small times, and thus the dynamics of w (cf. (3.5a)) near
the pre-shock can be roughly thought of as

d;w + wdgw = (small amplitude error involving entropy gradients), (3.152)

W= = kK — be% + (small error near pre-shock). (3.15b)

Note that the characteristics of this equation, the flow of d; + wdg, are to leading order
in time tangent to the shock, if initiated at the pre-shock location. Otherwise, these
characteristics impinge upon the shock from either the left or right sides, since the
pre-shock data ensures that the Lax entropy conditions (2.18) are satisfied. As such,
we can view the dominant Riemann variable w as being a perturbation of an inviscid
Burgers solution:

we(ns(0,1),1) = wo(0), 10, 1) =0+ rwo(6). (3.16)

A large part of the proof of Theorem 5.5 is indeed dedicated to proving that the errors
made in approximating equation (3.15a) with the Burgers equation can indeed be
controlled, in a C! topology of a suitable space-time. This part of the analysis uses
in a crucial way the specific transport structure of the entropy gradient present on the
right side of (3.15a) or (3.5a), and the evolution equations for the good unknowns g
and ¢* defined in (3.29) below, which relate the gradients of entropy to those of the
Riemann variables and the sound speed (Fig. 3).
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The outcome of this analysis is that indeed we may approximate [w] =~ [wg]l
where

[well(2) = wo(6—(1)) — wo(O+(2)), (3.17)

where 64 (t) = 7)3_1 (s()*, 1) are the locations of the labels of the particles which
fell into the shock at time ¢. To find how these labels depend on the elapsed time, we
use the expression for the Burgers flowmap (3.16) near the pre-shock

80, 1) — Kt ~ 0 — bt03 (3.18)
when ng(0, t) = s(¢). This yields 604 (¢) =~ & (bt)% and returning to (3.17) we find
[wl() ~ 2. (3.19)

Step 3: jumps of entropy and the subdominant Riemann variable on the shock
front. In analogy to Lemma 2.1, by choosing the smallest root of the system (3.13a)—
(3.13b) it can be shown that in the weak shock regime |[w]]| < 1 which corresponds
to short times after the pre-shock, the Rankine-Hugoniot conditions imply

—[z() ~ [wlP @) ~ 2, (3.20)

for the subdominant Riemann variable, and similarly

IKT() ~ [wlP() ~ 17, (3.21)

for the jump in entropy along the shock front. As such, entropy and the subdominant
Riemann variable are produced instantaneously along the shock in order to enforce
that mass, momentum and total energy are not lost. This is a manifestation of symmetry
breaking associated to physical shocks, and emphasizing this point is the reason for
the choice (3.14¢)—(3.14d).

At this point we note that since a is being forced in (3.5d) by both z and w, which
themselves jump across s(t), the function a too exhibits a singularity on s(¢). Ordinar-
ily, this singularity might be expected to appear in a itself, but since the characteristics
of a are transversal to the shock, together with the special structure of the specific
vorticity evolution (3.9), we prove that a is continuous across the shock, and that its
derivative exhibits a jump discontinuity:

[Bpall(t) ~ [wll(t) ~ 12 . (3.22)

An extended discussion of this point will appear in the next step.

Step 4: development of weak singularities. We use equations (3.5) to determine the
solution away from the shock curve. In front of the shock (to the right in our case), the
solution is determined by its initial data on the Cauchy surface {# = 0}. This is because
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> 0
Fig. 4 The characteristic curves of A3 = w in front of the shock curve are represented in red, those of
l = %w are in blue, and those of 1| = %w are plotted in green

all of the characteristic curves moving with velocities A;, i = 1, 2, 3, as defined in
(3.6), impinge upon the shock front in that region, since the shock is supersonic there.
As such, in that region z and k are identically zero since they are zero initially and
(3.5b)—(3.5¢) have no forcing when z = k = 0 (Fig. 4).

On the other hand, behind the shock (to the left side in our case), this is not the
case. As discussed in Step 3, along the shock front z and k must be produced in order
to enforce the three Rankine-Hugoniot jump conditions. These values z_ and k_ are
propagated off the shock along their characteristics with speeds A1 and A, which are
both slower than the speed of the shock §(#). As such, the surface {# < 0,1 = 0}U{0 =
5(t),t > 0} serves as a new Cauchy surface for the z, k, a equations (3.5) once the
shock has formed. Schematically, the initial data on this new Cauchy surface is

- 0 on{f <0,t =0}

20@)~ 1. 3 , (3.23a)
7002 +... on{0 =«t, t > 0}

~ 0 on{f <0, =0}

ko) ~ {~ 3 , (3.23b)
kof2 +... on {0 =«t, t > 0}
~ ~ 4

Do) ~ af +2103 +... on{f <0,t =0} ’ (3.230)
smooth on{f =«t, t > 0}

for some constants Zy, g, Eo, and for |f], t < 1. Asdiscussed above, this data is carried
away from the shock surface along characteristics which are slower than the shock. The
entropy is simply transported cf. (3.5¢), whereas the subdominant Riemann variable is
transported, self-amplified and forced by the entropy cf. (3.5b), and the radial velocity
is forced by a, w, and z cf. (3.5d).

We begin by discussing what happens to the entropy. Since its data (3.23b) is smooth
away from the point & = 0, the solution in the domain of influence of this region is
likewise smooth. Only across one single curve can the entropy be non-smooth: the A,-
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52 /75

0

Fig. 5 The entropy k is propagated off the shock curve along the A, characteristics represented by blue
curves. The subdominant Riemann variable z is also propagated off the shock curve s, but along the A
characteristics represented in green. The A3 characteristics initiated at {t = 0}, represented in red, impinge
on the shock curve from the left side, determining w in terms of wq

characteristic curve s, (f) emanating from the pre-shock location (0, 0); see Flgure 5.
Along this curve, one may expect that the E—Holder regularlty of the Cauchy data ko

is transported. Since at the initial time we have A,(0) ~ % wo, due to (3.14a) at short
times we expect

s2(1) ~ 3K

The entropy exhibits a cls cusp singularity across {6 = s»(t)}, taking the approxi-
mate form

0, 0 < 5(1)
k©.1) ~ 135K (0 — 52(1))>, s2(1) <0 < (1) - (3.24)
0. 6 > s(t)

Note that along the shock curve s(¢) (for ¢+ > 0) the entropy k smoothly matches its
generated values along shock given by (3.23b); this is because s(¢) — s2(f) = %Kt.
We emphasize that equation (3.24) gives quite an accurate picture of the entropy for
short times, even in the fully nonlinear problem; this fact is established in Sections 5
and 6, and the proof uses a precise understanding of the second derivative of the A;
wavespeed in the region between s, and s.

With the structure of the entropy understood, we can study the behavior of w, z and
a which evolve according to (3.5). First note that, since the shock is subsonic relative
to the state behind it, the A3 characteristics impinge upon the shock front, and therefore
the initial data for w is determined entirely by the values on the surface {r = 0}, i.e. by
wo as given in (3.14a) (see Figure 5). As such, w is smooth away from the pre-shock
and we are able to precisely quantify how the the bounds degenerate as (6, 1) — (0, 0).
On the other hand, the characteristics of the subdominant Riemann variable and radial
velocity are slower than the shock and thus the solutions in the region s (1) < 6 < s(¢)
are determined entirely by their data along the shock curve. Near the shock curve s(),
approaching from the left, the solution fields z and a smoothly match their values
along the shock (see Figure 5).
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Since away from s, (¢) the entropy given by (3.24) is smooth, in spite of both w
and z being forced by an entropy gradient, it can be shown that w and z are smooth
away from s;(¢); this also uses the fact that both wq (see (3.14a)) and Z (see (3.23a))
are smooth away from (0, 0).

The most interesting behavior happens along s> (¢), from the right side. Here, we
have determined that the entropy exhibits a cusp-type Holder singularity in its deriva-
tive; by (3.24) we have that dpk ~ (0 —52(1)) 3 . This singularity is seen by the Riemann
variables w and z and radial velocity a through their forcing terms (w — z)2dpk which,
naively, are just C > across 5,. However, the fact that the entropy has a specific cusp
structure (3.24) near the curve s, together with the fact that the wavespeeds of w and z
are strictly different from the wavespeed of k, actually provides a regularization effect
for w and z. The situation with the radial velocity a is more challenging because it
shares the same wavespeed as the entropy; here, the evolution for the specific vorticity
is used crucially in our analysis.

In order to explain this regularization effect in greater detail, let us denote the A;
characteristics by

L0, 1) = ki@, 0,0,  10:(6,00=8,

for every i € {1, 2, 3} (in the proof, we in fact denote by 1 the characterstic of 13, but
for the A1 and X, we need to use backwards in time flows, denoted by v, and ¢, see
Section 5.7 for details). Since for || < 1 the wave speeds at the pre-shock are given
by A1 & %/c, A R %K and A3 = k, to leading order in time and for small values of
|6], we have that

M. 1)~ 0 +rt~0+Jct, om0, <0+ dat X0+ 3kt
n3(0,1) 0 4 A3t ~ 0 4 «t.

We are interested in the behavior near the curve s,. Thus, we seek labels 6; () such

that n; (0;(¢),t) = s2(t) + y, where 0 < y < 1. Since s7(¢) & Aot, we have 0;(t) ~
y + (Az — X;)t. The flowmaps are

ni0i(1),s) ®y+ (k2 — At +2is,  s€[0,7], i=13. (3.25)

Ignoring the integrating factors e5 o am®.0).08% & | ¢ short times, the solutions of
(3.5a) and (3.5b) take the form

w(s2() +y,1) = wo(y + (A2 — A3)1)
t
+ 3 / ((w — 2)29k)(y + (A2 — A3 + Azs, s)ds,  (3.26a)
0
2(52() +y, 1) ® zo(y + (A2 — A1)

t
+ 3 fo (w — 2)29k)(y + (A2 — A + Ars, s)ds.  (3.26b)
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As discussed above, since A3 ~ Ay + %K > A2, the characteristic curves of w impinge
on 5, (¢) from the left, carrying up initial data wg from {r = 0}. On the other hand,
the characteristics of z impinge from the right of s, since A; =~ Ay — %K < Ao
Therefore, the data for z is carried from the shock surface {s(t) = 6}. Although this
data is singular at (0, 0), this point is not sampled by the characteristics above since
t > 0is fixed, and thus (A — A1)f > 0. Regarding the forcing terms appearing on the
right sides of (3.26), from the asymptotic description of k in (3.24), the approximation
sy(t) ~ %Kt ~ Aot, and the fact that by (3.4) w — z equals twice the azimuthal sound
speed ¢, which we expect to remain bounded from above and below in terms of k, we
obtain that

t

t
/ (W — 2)289k)(y + (g — )t + Ais, $)ds ~ f (y — At — 5))2ds ~ y2
0 t+ y

A=A

(3.27)

for 0 < y, ¢t <« 1. Thus, the forcing gains one derivative, expressed above by an extra
power of y, due to the fact that it is integrated along curves which are transversal (since
Xi # A2) to the characteristics of the entropy (namely, the flow of 9; + A29y). Thus,

from (3.26) and (3.27), we expect that w and z are both Cl’% across the curve s, (1),

rather than just C > which is the naive expectation.

Turning this intuition into a proof requires a C2-type analysis of the characteristics
of {ki}?zl, including an understanding of the times at which the A; and A, char-
acteristics intersect the shock curve s; see for instance Lemmas 5.24, 6.7, and 6.9.
Additionally, in this stage of the proof we need to analyze the time integrals of d,w
and 9y, w (objects which do blow up rather severely as one approaches the pre-shock)
when composed with the flows of 1| and A»; here the transversality of these flows with
respect to s plays a crucial role, along with a precise understanding of the function wg
in the vicinity of the pre-shock; see Lemmas 5.11, 5.23, and 6.12. This is one of the
principal reasons why the pre-shock obtained in Step 1 needs to be analyzed in a C3
sense.

The intuition behind the gain of regularity for the radial velocity a is less direct.

The data for a along the new Cauchy surface (including the shock curve) is C 15 due
to the formula (3.23c). Thus, such a singularity would be expected to propagate along
its characteristic emanating from the pre-shock location. To see this, we recall that the
specific vorticity at the pre-shock is Lipschitz. Since by (3.9) it is transported by the
velocity X, it is forced by dpk, and because the wavespeed for @ is the same as that
of k, we conclude from (3.9) only that @ is C 3 across the curve s,. Since k, z and w
are all 17 across this curve, by (3.8) we deduce that dpa € C %, and consequently
that a € Cl'% across s7. Thus, for positive times ¢t > 0, the radial velocity becomes
smoother than its initial condition (C L3 vs C 1'%). This regularization effect is in
essence a consequence of Lemmas 6.5 and 6.6.

Finally, we discuss the region to the left of s, (¢). In this region the entropy is trivial
(k = 0) since it is determined solely by its data on the surface {§ < 0, t = 0},
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t=T

51 592 S

t=0 > 0

Fig. 6 The Ay characteristics, represented here by the green curves, propagate information about z from
the shock curve s into the region between s1 and s

see (3.24). The equations reduce to

orw + A3dgw = —%aw,
&z + r1doz = —Saz,
0ra + Apoga = —%az + %(w + z)2 — %(w — Z)z.

The object z has singular data as in (3.23a), which will be propagated along the A;-
characteristic curve (Fig. 6). Specifically, we have that at the pre-shock A; ~ %wo ~
%K, so that the curve s; along which z is transported from the pre-shock is given by

s51(1) ~ Lkt

The %—H(‘jlder singularity in the Cauchy data for z (3.23b) is morally speaking
transported along these X -characteristics for short times ¢ < 1, resulting in

0, 0 < s1(t)

5 . (3.28)
20 (0 —51(2))2, 51() <0 K 52(0)

z(0,1) ~ :

The difficulty in showing that the intuitive behavior (3.28) is indeed true lies in the
fact that the A|-characteristics emanating from the shock curve do spend some time in
the region between s, and s, and in this region the entropy gradient present in (3.5b)
causes the first and second derivatives of z to behave badly. By using the transversality
of the A1 and A characteristics, we are nonetheless able to show in Section 6.6 that
(3.28) is morally correct.

Note that in this region, the relevant initial data for w and a is far away from the
pre-shock, and so the fields w and a are as regular as their forcing for short times. This
forcing involves the field z, which makes a C 13 cusp along s1(¢). However, again the
wave speeds for w and a are different than that of z, and as such their characteristics
are transversal to 51 (¢). This means that the solution fields gain a derivative relative to

1
the forcing, similar to (3.27). It thus seems reasonable to conjecture that w, a € Cc%2
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on the right side of s;. Establishing this fact would in turn require us to show that

(3.14a) holdsina C 3.3 sense, a regularity level which we did not pursue in Step 1. As
such, in this paper we only prove that w, a € C? on s;, which is nonetheless a better
regularity exponent that the naively expected C L3,

Step 5: returning to basic fluid variables. There is a certain regularization effect
along the curve s, when returning to the original fluid variables, as we now explain.
A straightforward calculation shows that the good unknowns

q" = dgw — ycdgk,  q° := sz + jcipk, (3.29)

satisfy the evolution equations

(@ + 2300)g" + pra + S)g” = —3opaw + ($ac + Ledorz)opk,  (330a)

(O + 230)q° + (r1 + Sa)g® = —Edpaz — (glac n %Cag)»z)a@k. (3.30b)

The remarkable feature of the system (3.30) is that the second derivatives of k£ do not
appear in the equations; indeed, if one naively considers the evolution equation for
dpw or dyz alone, then from (3.5a) and respectively (3.5b) we note the emergence of
the forcing term 2—14(w — 2)23pk. The unknowns ¢ and g%, and the system (3.30), is

useful because it involves only dgk, and this forcing makes a C 2 cusp along the curve
s7. However, since the characteristic speed of & is A3, and the characteristics of g% and
q* are Az and respectively A1, and are thus transversal, we again have a regularization
effect akin to (3.27), and we find that the (Lagrangian) force is actually C L3 across
s7. Now, the initial data relevant to the behavior of g% and ¢* comes from different
places. For ¢%, it originates along the {t = 0} surface and so it is easy to see that it
is smooth for positive time (away from the pre-shock). On the other hand, the data
for ¢* originates on the shock curve itself and once again, away from the pre-shock
it is smooth. It follows that, for # > 0 the regularity is set by the forcing, resulting in
bounds consistent with g%, g* € C L, Again, in the proof we only establish the C!
regularity of ¢ and ¢%, due to the C3 expansion of the pre-shock; this argument is made
rigorous in Sections 6.5 and 6.6. The outcome is that g% + g* = dpz + dpw = %89 Ug

1
is smoother than the naive expectation C2: we prove that it lies in C! across s, (which
translates into C? regularity for the angular velocity ug), and conjecture that the sharp

regularity is C 53 Similarly, the improved regularity for g and g° shows that the
second derivative of the pressure is bounded on 55, see (7.1).
Summary. In terms of the Riemann variables in azimuthal symmetry, we find

e Across the shock curve s(¢), we have
1 1 3 3
[wll ~t2,  [Gpall ~12, [zl ~z2, [kl ~12.

e Across the curve s;(¢), the functions dygw, dga, dgk, dgz all behave as C% cusps
approaching s, from the right. Approaching from the left, they are all smooth, in
positive time.
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e Across the curve 51 (), the entropy is zero, dgw and dpa are C' (expected to be

C 1’%) and dyz behaves as a C 2 cusp approaching s; from the right. Approaching
from the left, dypz is C Uin positive time.

In terms of the physical variables, we find

e Across the shock curve s(¢), all state variables jump
lugll ~re2, Mol ~ 72, Mgl ~re2,  [SI~13. (33D)

e Across the curve s, (%), the entropy, density and radial velocity derivatives all make

C: cusps approaching s, from the right. Approaching from the left, they are all
smooth. The second derivative of the angular velocity and the pressure are bounded

1
for ¢ > 0, and are expected to be C2 smooth.
e Across the curve s1(¢), the entropy is zero while the angular velocity and density
1

derivatives make C2 cusps approaching s; from the right. Approaching from the
left, they are all smooth for # > 0. The second derivative of the radial velocity is

bounded and is expected to make a C% cusp.

4 Detailed Shock Formation

In [1], it was established that for an open set of C 4 initial data, solutions to (3.5) form
a generic, stable, asymptotically self-similar pre-shock at time r = T, and that the

dominant Riemann variable w(-, 7,) € C 5. The primary objective of this section is
to provide a precise description of w(-, T) in the vicinity of the pre-shock. We shall
prove the following

Theorem 4.1 (Detailed shock formation) For ko > 1 taken sufficiently large and
e > 0 sufficiently small, and for initial data (w, z,k, a)|;=—e = (wp, 0,0, ay) €
C3(T) satisfying (4.17)—(4.26) below, there exists a blowup time t = T,, where
T, = O(S%), a unique blowup location &, and unique solutions (w, a) to (3.5) in
CO%[—e¢, T, CH(T)) N C*([—¢, Ty), CO(T)) such that

w(-, T,) € C3(T), a(,T,) € C 3(T), w(,T)eCON(T). (@1

Furthermore, there exists a unique blowup label x, satisfying

lxs| < 20k0s*  such thar  lim n(x,, 1) = &,
t—>Ty

where 1 is the 3-characteristic defined by (4.40). The pre-shock w(-, Ty) has the
fractional series expansion

(WO, T) — ey —a1(0 — )% —a2(0 —£.)5 —a3(0 —£)| S |0 — S*I% (4.2)
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forall 6 € n(By, (€3)), where

8 (T
oy = o3 /5 Bt dr

and
7

6 4 eT10
lcx — kol < 26x0, —3 < a1 < —3, |a2| 0, |a3’ < & (4.3)

In fact, the expansion (4.2) is valid in a C3-sense, by which we mean that the bounds

2
w®, Te) — a1(0 —£)7F — 30 — )73 S 1, (4.42)
4
‘agw(e, T)—2a1(0—£) 3| Se %07, (4.4b)
3 - -3
‘ng(G,T*) SeT R0 &, (4.4c)

hold for all 6 € n(By, (€3)). Moreover, the C* regularity away from the pre-shock is
characterized by

sup max(|89a(n(x 0. 0]+ |8 wn(x, 1), 1))

te[—e,Ty) y<4
Ce (T =0 +3e3 e+ —x0%) " Ix—xil <e
, 4.5)
Ce |x —xy| > €

where C; > 0 is a sufficiently large constant depending on inverse powers of €. Lastly,
the specific vorticity satisfies the bounds

10 28 70
S<o@n<®. |awen| <2 (4.6)

forallx € Tandt € [—¢, Ty).

The proof of this theorem makes use of detailed estimates for the characteristic
families and their derivatives. As we will detail below, we let n(x, ¢) denote the flow
w. Here x denotes a particle label, and n(x, ¢) provides the location of x at time t;
specifically we have the formula n(x,t) = x + fis w(n(x, s), s)ds. Moreover, we

8 rt N o) e
see that w(n(x,1),1) = e 3 Joe atn(x.s).5)ds wo(x) and hence that
8 rt —
w(O, 1) = ¢ 3 e a0 T 0099571 (g, 1)

It follows that a power series expansion of w(6, T) about the blowup location 6 = &,
requires a series expansion for the inverse flow map 1~!(6, 1) about = &,. The
formula for n~'(0, T,) requires us to first compute 7(x, T%), and then invert the
polynomial equation n(x, T,) = 6 for 6 in a neighborhood of &,.
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We shall write n(x, T) as a Taylor series about the blowup label x,. To do so,
we prove the existence of a unique blowup trajectory n(x,, t) which converges to &,,
and study the behavior of 8}/ n(x,t), y < 4. Our analysis makes use of self-similar
coordinates only for the purpose of isolating the unique blowup trajectory n(x., t),
whereas all of our estimates for 37 n(x, 1), 8gw(n(x, t),t), and 8ga(n(x, t),t) are
obtained in physical coordinates. With these bounds in hand, we establish the Taylor
expansion for n(x, ¢) about the blowup label x,, proceed to invert this relation, and
then obtain a detailed description of the pre-shock.

4.1 Changing Variables to Modulated Self-similar Variables

We shall make use of self-similar coordinates (y, s) that rely upon time dependent
modulation functions « (¢), £(¢) and 7 (¢), which are introduced to enforce three point-
wise constraints. Specifically, we map the physical coordinates (6, ¢) to self-similar
coordinates (y, s) by the following transformations:

s(1) 1= —log(r(t) — 1), y(0.1) == =50 — 035 —£(1)) .
(t()—1)2

It follows that

T—t=e", E=(1-1), 4.7)
and thus
doy = 3%, 3y = : *i% = 3”;“(?;) — i3 -y, (48
T—t T—t

We then transform the physical variables (a, w) to self-similar variables (A, W) by
w(,1) =e7%W(y,s)+K(t), a@,t) = A(y,s). 4.9
Introducing the parameter
Br = B:() = =555 » (4.10)

a simple computation shows that (W, A) solve

W = 1W + (3y+ B W+ 3Bl — ) o, W

= —e_%,B,fc — %e_%ﬂrA(e_%W + k), (4.11a)
A5 A + (%y + 28 W +e2 B Cic — é)) dy A
= —3Be A2 4 e (eI W 4102, (4.11b)
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with initial conditions given at self-similar time s = — log ¢ by
1
W(y, —loge) = ¢ 2(wo(0) — ko),  A(y, —loge) =ao(®), (4.12)
and
Kk(—&) =Ko, t(—e) =0, E(—e)=0. 4.13)

For notational brevity, we introduce the transport velocities and forcing functions

Vw =3y + B W +e2 Bk — ),

Fy = —3¢7 36, A(e™IW +x) (4.14a)
Va =3y + 2B W+e2p G — ),
Fai=—3Be™ A%+ e (e72W + 1), (4.14b)

so that (4.11) takes the form

W — LW + Vo, W = —Bre 3k + Fy (4.152)
35 A +VadyA=Fy. (4.15b)

We shall also consider the perturbation of the stable self-similar stationary solution
W (y) of the Burgers equation?; the function W = W — W solves

WW + (=% + B, W+ Se™ B A) W + Vya, W
= (1= BOWIW — 8™ B AW — e 73 B,k . (4.16)
4.2 Bounds on the Solution
In order to obtain the necessary quantitative bounds on characteristics and their deriva-
tives, we shall make use of the bounds on W provided by Theorem 4.4 of [1] for the

shock formation process. As such, we give a precise description of the initial data used
for the asymptotically self-similar shock formation.

4.2.1 Initial Data in Self-similar Variables
It is convenient to describe the initial data in terms of the self-similar variables
(W(, —loge), A(-, —loge)) defined in (4.12), which may be equivalently written

as

wp(0) = 8% W(y, —loge) + ko, ap(@) = A(y, —loge). 4.17)

4 Recall that W (y) is the solution of 7%W + (% + W) dy W = 0 and has an explicit formula which is

obtained by inverting the cubic polynomial W3 +W=—y.
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We choose wg € C*(T) so that for all § € T:
fko <wo(0) < gko,  where kg > 3. (4.18)

We assume that the initial data (W (-, —loge), A(-, —loge)) has compact support in
the set

Xo = Hlyl < 28‘1] :
In order to obtain stable shock formation, we require that
W, —loge) =0, 09,W(0, —loge) =—1, 8}2,W(O, —loge)=0. (4.19)

As in [2], there exists a sufficiently large parameter M = M (ko) > 1 (which is in
particular independent of ¢), a small length scale ¢, and a large length scale £ by

C=(ogM)™>, L=gT. (4.20)
The initial datum of W = W — W is given by
~ — 1 1
W(y, —loge) = W(y, —loge) — W(y) = &7 2 (wo(0) — we(0)) =: &~ 2wo(0),

where we have defined w,(0) = S%W(S_%G) + ko. We consider data such that for
Iyl < £,
(1+y2)*%|VT’(y,—log8)| <el, (4.21a)

€1

(14230, W(y, —loge)| < eTr (4.21b)

for |y| < £ (equivalently |0 < 8%6), we assume that

39
8

oW (v, —loge)| <e¥ e |afio@)] <e ¥, (4.22)
and at y = 0, we have that
WO, ~loga)| <ef & [T < T (4.23)
For y in the region {|y| > £} N Xy, we suppose that
(14278 |W(y, —loge)| < 1 +&Tr, (4.242)

5 As shown in Corollary 4.7 in [1], the conditions (4.19) on the initial data are satisfied by any data in an
open set (within azimuthal symmetry) in the ct topology, as long as a global non-degenerate minimal slope
is attained at a point.
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1

1+ |, W(y, —loge)| < 1+, (4.24b)

while for Wy, globally for all y € X(—log¢) we shall assume that

0, W(y, —loge)| < (1+yH)73, (4.252)
|02W (3. —loge)| < 7(1+ %) 75, (4.25b)
|0y W(y, —loge)| < (1 £33 for y =3,4,5. (4.25¢)

For the initial conditions of A(y, —loge) = ag(0), we require that ag € C*(T),
and that

laollco < e,  lldvaollco < 74,  laolles S 1. (4.26)

4.2.2 Bounds on W and A

The following facts are established in [2]. The spatial support of (W, A) is the s-
dependent ball

1

X(s) = {|y| < 25755} forall s > —loge . 4.27)
It follows that
2 3s 2,1 L
1 + y= < 40¢ge = (14 y9)3 <4de3e’. (4.28)
We have the following bounds for W (y, s) forall y € Rand s > —loge:

(14 2eM)(1+y)5, ify =0,
|07 W(y, )| < {201 + y») 3, ify =1, (4.29)
M3(1+ y?)73, ify =2.

For the perturbation function W(y, s) = W(y,s) — W(y)andfor |y| < L.=¢"T0,

|VT’(y, 5)| < ZEﬁ(l + y2)é , (4.30a)
0y W (v, 5)| < 2672 (1 + y?) 73, (4.30b)
while for |y| < £ = (log M),
07 W (v, 9)| < Qog M)*eT0 [y|*7 + Met |yP7 | y<3,  (43la)
04 W (y, 9)| < e, (4.31b)
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andat y =0,

1

193W (0, 5)| < &7, (4.32)

for all s > —loge. With wy satisfying (4.18), as shown in [1] via the maximum
principle, we have that

W Cw@.n< B, rel-e T, (4.33)
4.2.3 Bootstrap Assumptions on 690 Y <

Bounds for a and dga were previously established in [2]. In this paper, we revisit these
estimates and establish the following sharp bootstrap bounds

a0, 1) < 2K08 (4.34a)
|0pa (6, 1)] < 2k0 (4.34b)
0a(0.1)] < 1263’ (4.34¢)

forall® € T and t € [—e¢, T). The bootstrap bounds (4.34) are closed in Section 4.6
below.

4.3 Evolution Equations and Bounds for the Modulation Variables

The modulation variables t(t), £(¢), and « (¢) are used to impose the following con-
straints at y = 0

W(0,s) =0, yW(,s) =—1, BfW(O, 5)=0. (4.35)

Imposing 9, W (0, s) = —1 in the first derivative of (4.11a) at y = 0, and using (4.35),
shows that

tr)=e 28 (K(t)A 0, 5) — e~ 3 A0, s)) (4.362)

Next, requiring that ByZW(O, s) = 0 holds, by taking the second derivative of (4.11a),
evaluating the resulting equation at y = 0 and using (4.35), we obtain

E) — k() =S5ty (2e 3A,(0, 5) — kA (0, s)) (4.36b)

and finally with W (0, s) = O used in (4.11a), we find that

. Ay (0, _s A0,
e = -4 (K(I)A(O, §) + W;;}f(ofs)) — e h gt (0‘;))

—$()A©,5) — ' ¢ — 1)) (4.36¢)
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The equations (4.36) are ODE:s for the modulation functions. From (4.34), it follows
that for ¢ taken sufficiently small, for all ¢ € [—¢, T,) we have

[1()] < 9kgee™, k)| <6rge,  |EW®)] < ko + 8kge?. 4.37)

For the last bound, we have used that since f_TZ(l — 1(t"))dt’ = ¢, then

T, < Txle’. (4.38)
It follows that
Ik — kol < Tige®, |l <Tige’ . |El <20, 11— Bl < Tigee .
(4.39)

4.4 Characteristics in Physical Variables (x, t)
4.4.1 3-Characteristics n Associated to 13
We let (x, t) denote the characteristics of A3 = w so that

on(x,t) = wn(x,t),t) for —e <t < Ty, (4.40a)
n(xs _8) =X, (440b)

for all labels x.
4.4.2 2-Characteristics ¢b Associated to A,
We let ¢ (x, t) denote the characteristics of Ay = %w so that (Fig. 7)

hp(x, 1) = Zw(g(x, 1), 1) for —e <t <Ty, (4.41a)
p(x,—e) =x, (4.41b)

for all labels x.

4.4.3 Identities Involving the 3-Characteristics n

From (4.40) it follows that

t
nix,t) =x+ f wn(x,t), tHdt 4.42)

and from (3.5a) that
Jwn@x, 0, 1) =—=3amx. 0, HDwh(x, 1), 1).
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Ty

T T X Xx Ex 0

pre-shock location (€4, T )

Fig. 7 Characteristic evolution during the pre-shock formation. The blowup point is &, the blowup time
is Tk, and the blowup label xy satisfies n(xx, Tx) = &x. In red, we display the 3-characteristics n(-, 1)
originating from the blowup label x, and a nearby label x, while in blue we display the 2-characteristics

¢ (-, t) originating from the label x4 = ¢_1 (&4, Tyx) and a nearby label yx

We define the integrating factor

L(x) = ¢35 Jcatn.ndr
Integration yields

w(n(x, 1), 1) = I (x)wo(x) .

We make use of the following identities:
T
I;It_lz—%/ a onnedr,
T 2 T
%/ a'onnxdr> —%/ (a”onnf—i—a’onnm)dr

T 3
Ié"l;l = —¥ (f a’onnxdr)
—&
T T
+63—4</ a/onr]xdr>/ (a"onni—l—a’onnm)dr

—& —&

't =

|
/N

T 4
I;’"Ir_1 = @ (/ a onn, dr)
—&
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T
—%/ (@ onnt+6a" onnine +3d" onni,

—&

+4a" on N +a on nxxxx)dr

and from (4.42),

'
n:x+wo/ I.dt,

—&

t t
anzl—i—w(')/ Itdr+wof Ildt,
—& —&

t t 1
3%y = wO/ I,dt+2w(’)/ I{dr—l—wo/ Ildr,

—& —& &

t t
o0 = wg/f L df+3w(>/ Idt + 3w / ”dr+wo/ 1'dr,
. i 3

3y = w””/ I.dt +4w”’/ Ildt + 6w / Ildt
—&
+4w0/ 1"dx +w0/ 1]"ds .

4.4.4 ldentities Involving the 2-Characteristics ¢
We write (3.5a) as
orw + %waxw + %waxw = —%aw,
and define the Lagrangian variables
W=wo¢, V= %woqb:atcﬁ.
Then it follows from the chain-rule that (4.47) can be written as
IW+ 1) ' WW=-3Waog.
We multiply (4.48) by (8,¢)? to find that
0,((0:0)2 W) = —8((0:) W) a0 ¢,
and hence that

2y 16
e (5. 1) = pred o= B [ a0

It follows from (4.18), (4.33), (4.34), and since is ¢ small enough, that

BF<ho(r,n<2, <o, <H, rel-5T).

(4.45d)

(4.46a)
(4.46Db)
(4.46¢)

(4.46d)

(4.46¢)

(4.47)

(4.48)

(4.49)

(4.50)
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Differentiating (4.41a), we see that 9,0,¢ = %axw o ¢ dy¢ and that 0, (x, —g) = 1
Hence we have that

12

12 ¢ o3 [l dw@.ds < ]

2 rt
P Lm0t < B e e, T3,

4.51)
Differentiating (4.49), we have that

5 L sy, eds W)
0yp(x, 1) =e 3 wZ(@(x.0),1)
t ’
(_g / d9a o ¢ pyds + 2350 — ZM)

wog
&

4 4
= g (x, t)(—% / d9a o ¢ pyds + 250 — WLl O "’X) . 452

wo wogp
—&

Using that |w6(x)| < &7!, and the bounds (4.18), (4.34), and (4.50), we see that

026 (x.0)| < L+ dpw(@x.0).0)].

(4.53)
Finally, differentiating (4.52),
3¢ (x, 1) = ¢>xx(—13—6 /I Bpa 0§ fuds + 220 — 2“’913—254;1’*')
e
+ ¢y (—%” /[ (83a 0 ¢ ¢ + dpa o § by )ds
e
n 2wow3w—(2)<w5)2 ) <39uliioo(€ﬁ¢x )2>
g, et dﬁ?fw dur @.54)

We will make use of the fact that by (4.7), the change of variables formula, and (4.61),

t s
/ |dgw(p(x,1,1")|dt’ = f |0y W(Pa(y,s").s")| Brds’ .
—e —loge

As we will show in (4.62), [*, . [dyW(®a(y,s"),s")| Brds’ < 1. Together with
(4.19), (4.23), and (4.34), we see that

030 (. 0] < 5 + [wg ()]
+ Hogw(@(x, 1), )| + [dow (@ (x. 1), t)|2 +|gw(g(x, 1), 1]
13
+ | |9galex, 1)), 1)|dt . (4.55)
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4.5 Characteristics in Self-similar Coordinates
4.5.1 3-Characteristics in Self-similar Coordinates

Having defined the 3-characteristics n(x, t) in (4.40), we now let @y (v, s) denote the
3-characteristic of the transport velocity for Vi which emanates from the label y so
that

sPw(y,s) =Vw(@w(y,s),s) for —loge <5 < 00, (4.56a)
Pw(y, —loge) =y, (4.56b)

where the velocity Vyy is defined in (4.14a). Before stating the next lemma, we recall
from (4.13) that £(—e) = 0 and that particle labels are assigned att = —¢ & 5 =
—loge.

Lemma 4.2 (3-characteristics in physical and self-similar coordinates) With particle
labels related by

x=¢ly, (4.57)
we have that

N, 1) = e Dy (y,s) +ED), (4.58)
or equivalently

Oy (y,5) = 3 (nx, 1) — £(1)) . (4.59)

Proof of Lemma 4.2 From (4.56a), we have that
3 s .
o (e How(,9) = (W @w( ). ) 4k — &) e

Using (4.7) and (4.10), we see that

3 _s

o (eFOWL ) +8) = e EW @ (.5, 5) + .
Then, from (4.9), we have that e 2 W(y,s)+«x() = w(e_%sy + &£(t), t), and hence
o (T Fow0. 9 +8) =w (T +80.1) .

On the other hand, from (4.40a) we have 9;n(x, t) = w(n(x, t), t), which then proves
the identity (4.58). O
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4.5.2 2-Characteristics @, in Self-similar Coordinates

Having defined the 2-characteristics ¢ in (x, ) coordinates, we now define their self-
similar counterparts in (y, s) coordinates. We define the 2-characteristics ® 4 by

0sPA(y,s) =Va(Da(y,s),s) for —loge <s < 00, (4.60a)
Dy(y, —loge)=y. (4.60b)

where the transport velocity V4 is given in (4.14b). In the same way that we established
(4.59), we have that

OA(y.s) = e (P, 1) — E(1) . (4.61)

where x = ¢2 y. The following integral bound was proven in Corollary 8.4 in [2]:

N
sup / |Wy(P4(y,s"),s)|ds S 1. (4.62)
yeX(—loge) J—loge

4.5.3 The Unique Blowup Trajectory Associated to 3-Characteristics
A basic advantage of the use of self-similar coordinates is that the blowup trajectory

can be isolated. In particular, all but one of the trajectories ®w (y,s) “eventually
escape” exponentially fast towards infinity.

Lemma 4.3 (The unique blowup trajectory) There exists a unique blowup label y,
such that

D (v, 5) = €2° (e 1) = £(1))
is the unique trajectory which converges toy = 0 as s — 00. Moreover,
[Pw (v, 8)| < 20/{06_%5 foralls > —loge, (4.63)
and
Iyel <20k0e> & [xa] < 20Kps* . (4.64)

Proof of Lemma 4.3 Using (4.56a), we can write the evolution equation for @y as

Js P (y.5) = Vw o @y = 30w (y.9) + Go(y.s) + h(s), (4.65)

where
Go =Gody, (4.662)
G=(W+y)+1—B)W+pW, (4.66b)
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h=elf(k —&). (4.66¢)
The particular form of G ¢ in (4.66b) is chosen to make use of the fact that for all y,
Y+ Wl <y, (4.67)

which follows from the identity |y + W (y)| = |W (y)|> and the bound |W (y)| < |y|.
Hence, we integrate (4.65) to obtain

s
Ou(es) =lebn b el [ e Golus) HHEO) s @69
logs

Ife™ = (Go(y«, s") + h(s)) is integrable on [— log &, 00) then, we can rewrite (4.68)
as

o0

Dy (Vs 5) = €2 <8éy* +/ -5 (Go(yw, s +h(sh)d )

—loga

/

_e%/ e (Go(yu s + h(s)) ds (4.69)

Together with (4.32), (4.34), and (4.90), the identity (4.36b) shows that
& — k| < 38koe™, 4.70)
so that using (4.66¢) and (4.70), we have the bound

Ih(s)] < 393, @.71)

so the integrability of e 7Go (y«, s) will be of paramount importance.

We additionally note that since the first term on the right side of (4.69) is a constant
multiplying e%, in order for @y (y,, s) — 0 as s — oo, this constant must vanish,
and thus, we must insist that

o0 ¥
yo= e [ (Golns) + i) ds (4.720)
—loge
which then implies
s 00 S
Sy (i 5) = —¢ / % (Golye.s') + h(s)) ds (4.72b)
N

Notice that (4.72) implies that as long as e IG o (s, 8') is integrable,

Dw (v, —loge) =y, and lim Oy (ys, s) =0.
§—>00
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We shall now establish the existence of a unique trajectory @y (ys, s) solving
(4.72b). We define the set

T={p e CO—loge,0)) : |o(s)] < 20kpe™ 7'},

with norm given by H(pHT = SUPge[—loge,o00) e3s |¢o(s)|, and consider the map W,
which maps ¢ € Tto ¢, given by

9(s) = W(@(s)) = —e%/ % (Gp(s) + h(s)) ds

We note that for ¢ € 7, |[p| < oucoez ¢ for ¢ small enough, so that we may apply
the bounds (4.31a) to the function G(p(s’). Doing so, we see that the bounds (4.67),
(4.31a) and (4.39) show that for ¢ taken small enough,

1 1 .
|G)] < B@F + (1 + 66 ((log My*eT0 [B(s)I* + Me |¢(s>|3) a0
< (20k0)3e™ 35 + £1263%(20k0) e 1% 1 120kgse™2* < 122kp8e™ 2" .
Together with (4.71), we have that
¢ 7 (|G(s)]| + [n(s)]) < 40kge™" .

By the fundamental theorem of calculus, s — @(s) is continuous, and satisfies the
bound

lp(s)] < 18/(06_%5 forall s > —loge.

Therefore, ¥ : 7 — 7.
Letus now prove that W is a contraction. Suppose that o1 = W (@) and g2 = W (9,).
We then have

lp1(s) — @2(s)| < e%/ e—%|G¢](s/)—G¢2(s’)|ds’. (4.73)

From the identity in footnote 4 (in a similar fashion to (4.67)), we have that

(WD +y1 = W) — yf < )yf -5

so that

(@1 6) +715) = (W@2(6)) + 926))|
<piw -7
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<7162 +71678:06) + 7267| [716) — 225)|
<% [7165) = 20| (4.74)

where we have used that both ¢ and @, are in 7. Next, since |W(y1) - W(y2)| <
[y1 — y2l, by (4.39),

11— Bel [W@1(5) = W(@a(s))| < 6ee™ [@1(5) — @r(s)

, 4.75)

and finally, employing the mean value theorem together with the bound (4.31a), for
some a function s — a/(s) € (0, 1) and

1Bl [W @1 (5). ) — W@s(s). 9]
<20, W((1 — ()P (5) + a©)@a(s), )| [1(5) — B (s)|
<2 ((log M)*e ™ (20k0)*e™ 2% + Me’ 2060)%e™™ ) [1(5) = 7a(s)|

e @1(5) — P (s)] - (4.76)

<¢

Combining the bounds (4.74), (4.75), and (4.76), and taking ¢ sufficiently small, we
have that

|Gy, (s) — Gg,(s)| < Tee™ |71 (s) — Ba(s)

)

and thus from (4.73), we see that

5 oy,
e |p1(s) — 2(s)| < €3S/ e 2" |G, (s") — Gy, (s)| ds’
S

o0
< Tee® / e [71(s) — Ba(s)| ds”
N

<lde  sup €2 [§y(5) — Bals)

s€[—loge,00)

)

so that

lgr — e2ll7 < 14 @) — @2 -

which shows that W is a contraction. By the contraction mapping theorem, there exists
a unique trajectory ¢ € 7 such that for all s > —loge,

p(s) = —6%/ e (W) +¢(5)) + (1 = B)W(g(s))

+B W (p(s).5) + h(s)) ds’.
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or equivalently

s

oo 7
e 2¢9(s) = —/ e" 2 (p(s) + B W(p(s),5) + h(s)))ds".
N
Differentiating this identity in self-similar time shows that

s =Vwogp.

Setting

Vo= —&77 / 1 et (W) + o))
—loge
+(1 = BOW () + B: W ((5), 9) + h(s)) ds’,
we see that ¢(—loge) = y, from which it follows that

Dy (vy, s) = @(s) foralls > —loge,

and @y (v, 8) is a solution to (4.72). Clearly |y, | < 20k0e2 and by (4.57), it follows
that | x| < 20k0e*.

We next show that y, is the only blowup label. From (4.14b) and (4.56), we have
that

% (Pw (s, 8) — Pw (3, 9) = 3(Pw (s, 8) — Pw (¥, 5))
+ ,BIW((DW()’*’ S)v S) - ,BTW(q)W(yv S), S) .

Suppose that y, > y. By the mean value theorem and the bound (4.39), we have that
1B W (Pw (ys. 5),8) = B W(Pw (y,5), )| < (1 +68)(Pw (¥, s) — Pw(y,s)).

Here we have used the global bound ]8y W(y, s)‘ < 1 and the fact that characteristics
cannot cross so that @y (yy, s) — Pw(y, s) = 0. Therefore,

U (Pw (¥, 5) — Pw(y,s)) = (% - 5%)((DW()’*, 5) —@w(y,s)),
and then

3
1 1 I
Dy (vs,8) — P (y,s) = 2278 (y, —y).

3
If y > y,, in the same way we, we obtain Py (y, s) — Py (yy, s) = a%e(%_ﬂ)s(y —
Vi) O

@ Springer



Simultaneous Development of Shocks . . . Page470f199 26

4.6 Bounds for a,]{a,y <4
4.6.1 Improving the Bootstrap Bound for a
We note here that from (3.8) and (3.9), the specific vorticity @ = % (w — dga) solves
0w + %wagw = %aw, w(x, —¢) = wo(x),
and hence
(G (x, 1), 1) = 3 [ a@EN O gy (4.77)

We also have from (3.10b), that
13
a(@(x.0).1) =ag(x) + [ (—3a*+ tw?) o pds (4.78)
—&

so that assuming the bootstrap bound |a(0, t)} < 2/(38 and using (4.26) and (4.33),
we find that for ¢ taken sufficiently small,

laG, 0], < 3k3e. tel—e T, (4.79)

which improves the bootstrap bound (4.34a).

4.6.2 Improving the Bootstrap Bound for 8ga
From (4.50), we see that ¢ (-, t) is a diffeomorphism with a well-defined inverse map,
so that for each ¢ € [—¢, Ty) and for ¢ small enough, the identity (4.77) and the bound
(4.79) show that

(I =e)mwo0) < w(90,1),1) < (1 +e)mo(0), te€l[-¢e Ty, (4.80)

From (4.18), §xo < wo(6) < gro. Since mo = 15 (wy — dpap), by (4.26),
0

101 27
0k < w_O(g) < X0 °

and by (4.80), for ¢ small enough,

D<m@ <2, 0eT rel-¢T. (4.81)
Again using that
dpa=w— Lo, (4.82)
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we then have that

|dga(0,0)| = |w — L | < 3k0, 0T, te[—e T,

which improves the bootstrap bound (4.34b).
4.6.3 Improving the Bootstrap Bound for 6§a

Differentiating (4.77), we have that

B (9 (x,1), 1) = (Qup(x, 1)~ e @0

t
<89w0(x)+ §wo/ dpalp(x, 1), 1) (x, 1)dt’

—&

= (3¢ (x, 1)) ' (p(x, 1), 1)

t
("fgg‘gg‘) +8 / dpa(gp(x.1'), 1) (x, t)dt'

—&

It follows from (4.50), (4.80), (4.83), and (4.84) that for ¢ small enough,

|9 (@ (x, 1), )| < 34| dgmo(x)| + 500e .
Using the formula

16 2 32
dpo = 5 (dpwo — drao) — 25 (wo — dpao)dpwo
0 0

and the bounds (4.18), 1 < dgwo(x), and (4.26), we estimate that

&

[demo ] < 3
and hence from (4.85),
|dpe (x, 1) < 1(70708 xeT,tel[—eT.
We shall use the fact that
89241 = dpw(l — %ww) — ’f—;agw,
so that combined with the above estimates,
|9ga(x, | < F|dpw(x, 0| + 21,
and hence by (4.9), we have that

’8§A(y,s)‘ < %e_zs‘ByW(y,s)’ +e_3sg < %e_zs
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where we have used that |8y W (y, s)| < 1 as proven in [2]. This then implies that
[a(x. 0] = e*|0; Ay, s)| < Be'. xeT.te[—& T, 4.91)

which improves the bootstrap bound (4.34c).

4.6.4 ABound for 83a

We next differentiate (4.84) to obtain

t
e @00, 0 = (87 0w 09— 6760w 00) (%ﬁjw%/ aeaowxdﬂ)

—&
@082 wo— (39 0)>

+¢;zw°¢< )

@g

t
+3 / (83a o ¢ ¢? + dpa o ¢ ¢xx)dz’) . (4.92)

R(x,t)

We first bound the integral R. By (4.50), (4.53), and (4.89), we have that

t
IR(x, 1) 5/ (1 + |dga o p|)(L + [dpw o |)dt’ . (4.93)
—&
We note that by (4.61),

dpw(p(x,1),1) = Wy(Pa(y,s),s).

The identity (4.7) then shows that dt = Bre*ds so that by the change of variables
formula, we have that

t N
|dow (@ (x, 1), 1)|dt" = / |Wy(®a(y.s"),s")|Beds” S 1, (4.94)

loge

where we have used (4.62) for the last inequality. Hence, with (4.34) and (4.93), we
have that

R(x, 1) S 1. (4.95)

With (4.95), the formula (4.92) and the bounds (4.34) and (4.86) allow us to estimate
agw o ¢ in the following way:

[ (@, 1), )] S 1+ L (x, )| + [95m0 ()|
S S+ Hawpt. ). 0| + [8Fmo)] (4.96)

where we have used (4.53) for the last inequality.
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Differentiating (4.88) yields the identity
da = Pw(l — fww) — lf_gagw — Jwihwdpw — fo (dw)? (4.97)
so that

|95a(x, )| < 8w, 0] + [0 (x, )] + [dew(x, t)|2 + Hapw(x, 1)
S b+ ogwx, 0] + [05mo@ ™" (x. 1), 1))
+dpw(x, [ + Ldgwix, 1) (4.98)

where we have used (4.96) for the last inequality.
Restricting the identity (4.97) to t = —e, we see that

2
%3921270 = —8361() + agwo(%wowo —-1) - %wo@gwoagw — %(aewo)zwo(‘,‘- %)

and so
|95m0] < & + |95a0] + |95wo| £ & + |95 wol (4.100)

since we assumed that |893a0(x)| < 1 in (4.26). Using the bound (4.100) in (4.98)
shows that

|aga(n(x, 1), 1)]

S S+ [Fwme 0. 0|+ [0Fwo@ ((x. 1), 1), 1)]
+dewn@, 0, 0> + L|dewn(x, 1), ). 4.101)

By (4.25b), we have that for x € T, 892w0(x)| < 8_% and therefore

03w~ (n(x, 1), 1), )] S &3 4.102)

Using this bound in (4.101), for all t € [—e¢, Ty),

la3a(n(x, 1), 0)] < e |03wn(x, 0), )| + |dgwn(x, 1), t)|2 + Hapwx, 1), 0.
(4.103)

4.6.5 ABound for 85a

As we will now explain, the bound for 8;‘ a(x, t) does not depend on B;‘r), 8;‘ ¢, or 83 w,
and as such is merely a consequence of the bounds that have already been established.
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To obtain this bound, we make one final differentiation of (4.92) and obtain that

R (p(x,1),1)
= (070w 00+ 367707, 09 — b b 06— 26 G0y 0 ¢)

t
<—3f§§° + %/ dpa o ¢ ¢xdt’)
—&
@082 wo—(3pw0)>

+ (2620w 09— 307 e 09) ( ;

@

t
+3 / (a0 92 +dpacd g.)dr)

w'gagw'()fi’)w'oﬁg w08§w0+2(89 w'())3

+¢;3ZU0¢)(

3
@5

t
+3 f (Faod ¢ +395a0¢ dxtrr + dpaod ¢m)dz’). (4.104)

S(x,t)

Our goal is to bound |83 o (p(x,1),1) | using the identity (4.104). The time integral in
the first line is O(e) due to (4.34) and (4.50). The time integral in the second line is
the term R(x, t) in (4.92), which was estimated in (4.95). It thus remains to establish
the bound for the integral term S(x, ¢) on the third line. We write S = S| + S + 83,
where

t

Si(x, 1) = f daop gldr’, (4.105a)
—&
t

So(x, 1) = / 3050 o ¢ Pyprrdt’ (4.105b)
—&
t

S3(x, 1) = / dpa 0 ¢ Pryrdt’ (4.105¢)

and we shall first estimate the integral S3. The key idea in estimating S3 is to use the
identity (4.54) for ¢+, and isolate the term

Pwod @2 + dgw o ¢ Py = dx(dpw 0 P By,

and estimate its integral in a very careful manner.
The identity for ¢y, in (4.54) and the bound (4.55), together with the estimates
(4.89) and (4.94), and the integral bound (4.62), we conclude that

1
1S3, 0| S L+ ewf@)| + [ |ow(@x, ), )| d’ + [Satx, 0|, (4.106)
—&
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where the term S4 contains the important term on the last line of (4.54), and is given
by

t
Su(x, 1) = / A (aod)(wod) ' a,(dgw o ¢ py)drt . (4.107)

—&

We now rewrite the evolution equation (4.47) as d9;(w o ¢) + %(aw) o¢p =
—H(wdpw) o ¢ which yields

dpwo ¢y = —3¢x (wod) 'd(wod) —8aod,.
Differentiating this equation, we have that

A (dpw o P dy) = —3¢x (wo ) '3 (dgw o ¢ py)
—3¢7 2252 (3a 0 ¢+ J0hw 0 ¢) + puxdow 0 ¢ — 8dya o p 47 .

We can then write the term Sy in (4.107) as Sy = Sy + Sap, Where

1
Saa(x, 1) = —3/ dx(a o )y (w o §) 20 (Jpw o ¢ pr)dt’

—&

t -
Sup(x, 1) = —/ A (@ o) (3¢§fgj—;§ (Baop—Lapwog)

&

—Pxx ai)u;;¢ + 8%(@%) dt’ .

The term Sy4,(x, t) requires a careful analysis; meanwhile, the bounds (4.18), (4.33),
(4.34), (4.38), (4.50), (4.94) together with (4.53) show that

t
S0, 0| S L+ | [dgw o p|’dr’.
—&

To estimate Sy, (x, t) we integrate by parts, appeal to the identities (3.10b), (4.41a),
and (4.47), to obtain that

Sua(x, 1) = 3afwy 2wl — 30, (a 0 $)¢2 (w o ¢) 2dpw o ¢

t
+4f B(a 0 $)(w o )2 (Bgw o $)* $2d1’

t

+3/ de(—3a% o p + tw? 0 9)g? (w o ) 2w o pdt’
t

+ 16/ de(ao@)p? (wo @) 2aopdpwopdt .

—&
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From the above identity and the bounds (4.18), (4.33), (4.34), (4.50), (4.94), we obtain
that

t
[Saa e, )] S L+ [Bpwipe. 0. 0]+ [ [dow(e(x. 1), 1) |*dr’.
—&
Using the above bound in (4.106) shows that

t
1S3, )] S 1+ e|wg ()| + [dow (@ (x, 1), 1) +/ |39w(¢(x,r’),t’)|2dﬂ.

(4.108)
Having estimated S3 in (4.105), it remains to bound Sy and S;.
For S, we return to the identity (4.88) and write
20
Baogp = (Bewodpy) ¢y (1 — tww)op — Lo o ¢,
so that after differentiation in x
3 _ -1 1
dyaod ¢y =0 (dgwodgy) ¢y ' (1 — gwew) o
— (9pw 0 px) By *prr (1 — gwem) 0 ¢
20
— £ (90w 0 ¢y) dp(wem) 0 ¢ — UL 0 ¢ b
—fwog Jwodpdhw og. (4.109)

Due to (4.109), the integrand Z)ga o (;5)% in S has the same structure to the integrand in
&3, with one additional type of term in the form of — wfgd) 892w o ¢ ¢, which requires
us to use the already established bounds (4.96) and (4.100). We therefore can show

that S is bounded as

t
1S1Ge, D] S 1+ e|wg )] + [Bow(@(x, 1), 1) +/ \agw(qs(x,t’),t’)}zdz’.
(4.110)

The integral S in (4.105) is relatively straightforward to bound. We use the inequalities
(4.53) and (4.89) together with (4.62), and find that

t
S50 S+ | |dew(o(x. 1), t’)|2dt’. 4.111)

Combining the bounds (4.108), (4.110), and (4.111), we have shown that the S(x, )
integral in (4.104) satisfies

t
1SCe, )| S L+ e]dgwo ()| + [Bow (@ (x, 1), 1)| +/ \agw(¢(x,t’),t’)|2dr’.
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It thus follows from (4.53), (4.55), (4.89), and (4.104) that

0 (@, 1), 0| < & + |95 mo(x)] + L|95wo(x)]|

+ L lopw@ . 0. 0]+ Hogw(d (x, 1), )|

t
+ HZw@ o, 0.0|+ | |spw@ . ). dr'.
—e
Therefore, we have that

g (n(x, 1), 0| S &5 + [05mo@™ x, 0, )] + +[dFwo@™ (n(x, 1), 1)
+ S| dwn(x, 1), 1)
+ Lagwx, 0, 0 + Hown(x, 1), 1)

t
+ [ dew@@ .0, 00, 1), [Pt (4.112)
—&
In order to bound the first term in the above inequality, we differentiate (4.99) to obtain

W a3 1 2 4 301 142
Eag wo = —§w039w089w0 — dyap + 9 wo(gw()wo -1+ 539 wodg (Wowg)

— 39 (3wodg wode ™o + §(dewo)>w0) .
With (4.100), we see that

05m00)] S & + 1[05wo®)] + [85wo(O)] + [95a0(0)|
< &+ Hogwo®)| + [05wo®)] (4.113)

where we have used that ]E)gao(x)’ < 1 by (4.26). From (4.25c), for all x € T,
|33wo(x)| < ¢4, so that

[gwo(¢™ x, 1), 0. 0)| Se7?,
and hence by (4.113),
3mo(e (n(x.1). ). 0] S et
With this bound and using (4.102), estimate (4.112) becomes
3 (n(x. 1), 0] S e+ Sldpwn. 1), 0] + Hapwnx, 0, 0

t
+ 3w, 0, 0]+ | |dew@ @ e, ), 0,1, ) dr’ .
(4.114)
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Having established a bound for the third derivative of @, we are now ready to
estimate the fourth derivative of a. We differentiate the identity (4.97) and obtain

da = Rwwo — 1) + LRwiw’o) — Lajw

— twdpwdio — §3Qwdwdhm + Bew) @), (4.115)
so that

l0ga(0.0)| < |83 0. 0] + |w®@. D] + (L + [dw(@. 1)])
(Laow(®. 0| + [33w(®. )| + |85 (6. 1)]) .

and with (4.114), we have that

loga. 0.0 < e+ Llagwn. 0. 0] + Hagwn. ). 0] + [ wnx. 1), )]

+ (L 4 dgwmee, 0, 0)(|83winx, 0, 0] + [03@ ((x, 1), 1))

t
+ [ |oow@@ . n.0.1). ) dr’.
—&
We observe that by (4.96), (4.100), and (4.102),

’

03w (n(x, ), O] S 73 + &7 dpwnx, 1), 1)

and thus

laga(n(x, 1), )] Se™? +s—%yagw(n(x,z), D] + e dpwn(x, 1), t)|2
+e aFwn(x, 1), 1)
+ 3w x, 0, D] [8Fwn(x, 0, 0] + [BFwrn(x, 1), )]

t
+ | [dpw@ @ (x, 0,0, 1), )| 7dr’. (4.116)

4.7 Bounds on Derivatives of 3-Characteristics

4.7.1 Identities for 6’9/w on

With the integrating factor /;(x) defined in (4.43), the equation (4.44) is written as
w o n = I;wp, and differentiation yields

dow on ny = Lwy + I/wo, (4.117a)
32w on n? = Lwy + 21wy + 1]'wo — dgw 0 Ny , (4.117b)

"

dwonnd = Lwy +31w) + 31wy + 1wy

- 33921“ O NNxMxx — JgW © NNxxx (4.117¢)
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dfwon it = Lw + 4wl + 61w + 41w} + 1" wy
- 6agw ° nn)zcn)fx - 489211) O NMxMNxxx
- 339211) °© nn)zcx — 0pW O MMxxxx - (4.117d)

4.7.2 Bounds for axn

We shall now obtain the precise rate at which 0,1 (x,, ) — 0ast — T, as well as a
global bound for d,n(x, 7).

Lemma4.4 For —e <t < Ty, at the blowup label x,, = e%y*,

™ < omln, 1) < e, (4.118)

and for all labels x, we have that

sup dyn(x, 1) <1(6— 1) +6e for |x — x| <e?, (4.119)
t'e[t,Ty)

and
Te <, 1) <3 for |x —x.| > e’ (4.120)

Proof of Lemma 4.4 Step 1. Bounds at the blowup label y,. From (4.57) and (4.58),
we have that

dn(x, 1) = e 1e 29Dy (y,s), y=e 2x. 4.121)

We will use the following identity, which may be derived from (4.58), the x-
differentiated version of (4.40a), and the y-differentiated version of (4.9):

BedyW(®w (y,r),r)dr

353
dyPw(y,s) =e2’g2e’~loge (4.122)

We consider the blowup trajectory ®w (ys, s). For this, we decompose B;3, W as
BroyW =, W — (1 — Br)d, W + Bro, W . (4.123)

By (4.64), [vs] < 20k0e? and by (4.63), |®w (ys, 5)| < 20kpe™3* and as such, this
unique trajectory stays in the Taylor region |y| < £ for ¢ sufficiently small. Using the
Taylor remainder theorem, we have that 9 yW( y) = —14b>ry?%, where by = %8 SW@)
for some y between 0 and y, so that |b2 — 3| < &2, Substitution of this expansion into
(4.123) gives

BroyW = —1+byy? — (1 — B)dy W + Brd, W . (4.124)
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Hence,

efi loge By W(Pw (yx,r),r)dr

1 7Seb2 fi]ogg CDW(Y*J)zdrefi]Ogg(ﬂr*1)ayW((bW(Y*ar)er)drefibgg ﬁ,a,W@w(y*,r),r)dr

= Ee
(4.125)

From (4.31a), (4.39), the fact that |8yW| < 1, and (4.63) we have that for ¢ small
enough,

1—¢ ebz filogg q)W(y*vr)zdrefj]ogs(ﬁf_l)ayW(q)W(y*vr)vr)drefilogg ﬂrayVT/(fbw(y*,r),r)dr

<
<l+4e,
and therefore

lé‘;é‘e—s < ef;loge ﬁrayw@w(y*,r),r)dr < laﬁe—s . (4126)

The bound (4.126) and the identity (4.122) then shows that for ¢ sufficiently small,
(1 —e)eZe? < dyPy (v s) < (1 +e)eZe? . (4.127)

It follows from (4.121) that (4.118) holds.
Step 2. A bound for d, 7. The identity (4.46b) together with (4.45a) show that

' ' T
ne =1 +/ Idtw) — %wo/ I / a onndrdt. (4.128)
—¢ —¢

—&

From (4.34),
la@®,1)| < 2ge and |dpa(d,1)| < 2o . (4.129)
Therefore, for ¢ taken sufficiently small, we have that
l—e<I;(x) <1l+e. (4.130)
By (4.31a), for ¢ taken sufficiently small,

<e?, (4.131a)
> 62, (4.131b)

From (4.38), (4.128)—(4.130), we have that for ¢ taken sufficiently small,

sup ne(x, 1) < 3 +7e%G sup ne(x,1)
te[—e, Ty) te[—e, Ty)
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and hence

sup 7y (x,1) <3 (4.132)
te[—e, Ty)

which is the upper bound in (4.120) when |x — x| > &2. We also have that from
(4.38), (4.128)—(4.130), and (4.132) that for ¢ taken sufficiently small,

sup ne(x, 1) <1 — 21 —e)(e +1) + 21, lx — xi < &2,
t'elt,Ty)
and hence
16— +6 — x| < &2
sup max, i)y < 1O @) ToE ‘. (4.133)
1'€lt,Ty) 3 lx — x| > €

which establishes (4.119).

Notice also from (4.128) that with the bound (4.25a), for all |x — x| > & and for
¢ taken small enough, |w(’)(x)| < (11— Z—j)s‘l, and hence for all t € [—loge, Ty), we
have the lower bound

8)677()(’[) 2 %7

which gives the lower bound in (4.120). Note that here we have used that | I (x) — 1] <
€2, which follows from (4.43) and (4.34a). O

4.7.3 Bounds for 62

We establish the rate at which Bfn(x*, t) — 0ast — T, and obtain bounds for
afn(x, t) for all labels x.

Lemma4.5 Forall —e <t < Ty, we have the decay estimate

821 (xs., z)) < 62kpe" (4.134)

and for any label x, we have the bound

(4.135)

871 |x — xy
|02n(x, )| < { *I

Proof of Lemma 4.5 Step 1. A bound for 8%7] along the blowup label x,. Since n, =

1
el dgwondr \ue have that

t
Mex (6, 1) = e, 1) | gwn(x, ), )y (x, 1')dt’

—&
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s
= e (x. 1) / e3" B Wyy (@ (y. s, s, 1)ds’ . (4.136)
log e

where we have used the change of variables formula together with the identity (4.7)
which shows that dt’ = Bre” s'ds’. By Lemma 4.3, }@W(y*, s)| 20kpe” 35 and

[yl < 2OK082 , so that together with (4.31a), we have that for ¢ taken small enough
and for all —loge < s’ <,

|Be Wy (@ (s, 81), 5| < 122607 (4.137)
Hence, with (4.118) and the identity evaluated at the label x,, we have that
[1xx (i, )] < 6260 ",
which proves (4.134).

Step 2. A bound for 8317 for all labels x. Using the identity in (4.46c) and (4.45b), we
have that

13
3)%77=/ Irdrw(’)’— —wO/ / a’ onnedrdt
—& —& —¢
t
+w0/ I ((%/ a onnxdr) —%/ (a” onn?+d onnxx)dr>dt

I3
(4.138)
From (4.89) and (4.117),
la"(n(x, 1), D] < Fdpwn(x, 1), 0)| + I < Thw) + Hwoyny' + 1. (4.139)

It follows from (4.133) that

—_
—_

< 2
|la" (nCx, 1), O] < 3| Lw) + Lwo|ny + Int < { ; 82 . (4.140)
> ¢

s

By (4.25b) and (4.31a), for ¢ small enough,

Te72  |x — x4l
lwg ()| < {7 s *l

£72  |x — x4

(4.141)

It follows from (4.18), (4.129)—(4.133), (4.138)—(4.141) that

(1 —7ige?) sup |8 n(x, )| <

L -1+O<e> Ix — x| < &2
te[—e,Ty) | > 82

15 £ 406 |x—x,
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and thus taking ¢ sufficiently small,

<Le¢
3 2
872 |x—x4|>¢

871 |x — x4l
sup [a7n(x, 1) < { ’
te[—e, Ty)

which proves (4.135). O

Remark 4.6 We have shown in the proof of Lemmas 4.4 and 4.5 that for ¢ taken
sufficiently small,

)| < 1+e,

(4.1422)
3 t — xy| < &2
1| < “o(e+1)  |x = x ‘. (4.142b)
14kge [x —x4| > &
64k L — x| < €2
| < {770, e = S (4.142¢)
A0kpe™2  |x —x4| = &
4.7.4 Bounds for 83
Lemma4.7 Forall —s <t < Ty, we have that
(6+c6) >
3
sup  |83n(x, r)‘ <] & Prouls<e (4.143)
tel—e, Ty) % Ix — x4 > &2
&
and for |x — x| < g2,
1 1
(EA00=28) < in(x, 1) < S (4.144)

Proof of Lemma 4.7 We first note that the bounds (4.119) and (4.135) show that

16—1)+6c |x—x,<e?
x, )| < € and
|77x( )l {3 |x_x*|>82
nex(x, 1)] < Bem h-ml<e (4.145)
X, X . .
xx 88_% Ix — xy| > €2

The identities (4.45¢c) and (4.46d) give

t t t
830 = wy / Iodt + 3u]] / I'dz + 3u) / Idx

—& —& —&
t T 3
+wo/ I,(—% </ a/onnxdr)
—& —&
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T T
+%</ a’onnxdr>/ (a”onn%—i—a’onnxx)dr
—& —&

T
-3 / (@ onni+3d" onnune +a on nxxx)dr)dr : (4.146)

—&

From (4.117), we have that
Gwn(x, 0, 1) =n > Trwg + 2wy + 1'wo — 1 (ol + Hwo)ne) . (4.147)
From (4.103), (4.117), and (4.147),
3 < o3 2 2.1
|dgatx, 1), 0| S e 2+ |dgwnx, 0, 0] + |dewr(x, 1), H]" + L|ewn(x, 1), 1)|
5
< e 4 2wl + 21wy 4+ 1w — 17 ' (wh I + T wo)nyx)

2
+ n;1(1,w6+1,’w0)‘ +1

i (g + Lwo) | (4.148)

We will use (4.131), (4.141), and the fact that by (4.23) and (4.25c¢),

1 1
6=ed Cwp'(e) < for |x — xi| < &2, (4.1492)
lwg' ()] S e for |x — xe| > &2. (4.149b)
Then, with (4.141), (4.142) and (4.148), we have that
" 3 e [x — x4 <82
@ (e, 1), 0m| 1 s ) (4.150)
€72 x—xil2>¢

With these bounds, and with (4.142), (4.145)—(4.148) applied to (4.146), we have
that

sup Bgn(x,t)‘

te[—e,Ty)

1
2y (6+ed) | C 2,2
(e + 62) 6D si ) 4 &+ 7%y SUPe[_e.1,)

R, 0] — x| <&
| > ¢?

Ce™*+ 782Kg SUP;e[—e.T,) dn(x, t)| |x — x4
(4.151)
It immediately follows that for ¢ small enough,
(6+66) >
£
otes) — x| <
Sup [ (6,0 < Lo b — x| < . (4.152)
re[—e,Ty) = [x — x4 > €

which establishes (4.143).
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For labels |x — x*| < &2, we can easily see that agn(x, t) is positive. With (4.149),
we have that the first term on the right side of (4.146) has the lower bound

1 t
n€-e’) o f Ldtw] .
—&

&

Thus, with (4.131), (4.141), (4.142), (4.145)—(4.148), in the same way that we obtained
(4.151), we find that

1 1
6—¢6 3 6+¢c6
(EADG=22) < aln(x, 1) < 52

’

which establishes (4.144). O

4.7.5 A Sharp Bound for 8,1 and 82n

Proposition 4.8 For |x — x| < &2, we have that

1 1
(T - ) + S - x)” 0 )

1 1
<HE(T -0 + B (e — 27,
(4.153)

and

1
—Te (T, — 1) + EHO2E0 (v — x) <20 (x, 1)

1
<Te 2T — )+ BE(x —x0) for x > x,,
(4.154a)

1
—T7e (T — 1) + BZ5 (x — x,) < 37 (x, 1)

£
<7e (T, — 1)

1
+ %(x —x4) for x <x.. (4.154b)

Proof of Proposition 4.8 By Lemma 2.1 in [1], there exists a short time 7 > —e¢, such
that (w, @) is a unique solution to (3.10) with initial data (wog, ag) and

(a, w) € CO([—&, T1; C*M) N C'([—&, T1; C*(T)). (4.155)
By the logal existence and uniqueness theorem for ODE, n € C Y[=e, T]; C3(T) N
C2([—s, Tl; C2(T)). Given the uniform bounds (4.143) and (4.145), the standard
continuation argument shows that

n e Cl([—e, T,l, C3(T) N C*([—e, Ty, C*(T)).
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By the Taylor remainder theorem, there exist a point x; between x and x,, and a point
t1 between r and T such that

den(x, 1) = 33xn (s, Tt — To) + S35 n(x1, 1) (x — x)°
+ 5820 (x1, 1) (¢ — T.)?
+ 00 (x1, 1)t — T (x — x,) . (4.156)

Note that we have used (4.118) and (4.134) which give
90, T) =0, 07n(xs, T) =0, (4.157)
From (4.46b), we have that
Q0 (x, 1) = I (x)wy(x) + I (x)wo(x) . (4.158)

We use the bounds (4.38), (4.129)—(4.133) to find that for ¢ small enough,

—”— < BBy (s, To) < —1*:% : (4.159)
Differentiation of (4.158) with respect to 9, yields
8,02 = Lwl 4+ 21wy + 1w ,
while differentiation of (4.158) with respect to 9; gives
320,m = I wy + 1wy .

We again use the bounds (4.38), (4.129)—(4.131), (4.141), and (4.142) to obtain that

820, (x1, tl)‘ < 5062, (4.160)
a0z, )| <8672, (4.161)
From (4.144), we have that
1 1
G < Jana, 1) < B2 (4.162)

Since t < Ty, |x — x| < &%, and (T, — 1)* < 2¢?, the bounds (4.159)~(4.162)
used in the identity (4.156) show that for ¢ taken sufficiently small,

1 |
_e2 —8
1 582 (Te — 1) + (a+t)S 3 )(x _ x*)z

1 1
< On(x, 1) < (T — 1) + 35 (x — x)?,
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which establishes (4.153).
We can again apply the Taylor remainder theorem to find that for a point x| between
x and x, and a point 7 between ¢ and T,

2n(x, 1) = 30y, i) (x — x4) + 8,020 (Fr, )t — Ty) .

It then follows from (4.161) and (4.162) that (4.154) holds. O

4.7.6 Bounds for dgw

Lemma 4.9 (Bound for dpw) Fort € [—loge, Ty),

2 < g2
[Bow(n(x, 1), 1)] < (T*:2t)+3s’3(8+t)(x—x*)2 e =l 5 (4.163)
5¢ lx — x| = &
Proof of Lemma 4.9 From (4.117), we have that
dpw(n(x, 1), 1) = (L (x)wh(x) + I (x)wo(x))ng ' (x, 1) (4.164)

Using the bounds (4.18), (4.120), (4.131), (4.142), and (4.153), obtain the bound
(4.163). O

4.7.7 Bounds for 83 n
In order to obtain a bound for the fourth derivative of 1, we shall appeal to the identity

(4.46e). Before estimating the terms on the right side of (4.46e), we first record a
useful estimate:

Lemma4.10 For |x — x| < &2 it holds that
t
_ 2 _
nr, 0 [ [dew(@@ (nx, 1), 0,1, )| 7dr’ S e nx, ). (4.165)
—&

Proof of Lemma 4.10 Fix a label x which is within &2 of x,, and a time ¢ € [—e, T,),
throughout the proof. In order to estimate the integral in (4.165) we use the bound
on Jgw obtained in (4.163). Note however that this estimate is obtained when we
compose with the flow 7; as such we first define the label (Fig. 8)

X, ) =¢ ' (n(x,0),1), (4.166)

and then for each ' € [—¢, t], we also define the label
g, 1) =" @ (x(x, 1), 1), 1). (4.167)
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T, pre-shock location (€4, T )
: L

€z L Q(‘r7t/) X(I,t) X(I*aT*) f*

Fig. 8 The identity (4.168) is explained. The 3-characteristics n are shown in red and 2-characteristics ¢
are shown in blue. The worst case scenario is depicted: the label x is to the left of the blowup label x. For
each such label x and each ¢t € [—e¢, Ty), x (x, t) denotes the label which satisfies ¢ (x (x, 1), 1) = n(x, ).
For each ¢’ € [—e, t], we define the label ¢(x, t") such that n(g(x, t'),t") = ¢(x(x,1),t"). Ast’ — ¢,
q(x,t") — x. A particle moving up the dashed blue curve is equivalent to that particle moving by the
3-characteristic but emanating from the moving label g (x, t)

0

The definitions (4.166) and (4.167) show that

dw(@ @ (x, 1), 0,1, 1) = Jw(d(x(x,1), ), 1)) = Jwn(g(x, 1), 1), 7).
(4.168)

Therefore, g(x, —&) = x(x,t), g(x, ") — x from the right as ¢ — ¢, while from
(4.163) we have that

2
wn(q(x, 1), 1), 1)| < § T+ Erglen=x)?
5S¢~

2

}q(x,t/) _x*} <e€

g (x, 1) — xu| > &
(4.169)

We will assume first that x, € [x, x (x4, #)]. The proof is based on decomposing the
interval [—e, t) into three different sets

Iyant = {t' € [=£,1): |q(x, 1) — xi] = &% ort’ < —%e) (4.170a)
Imiadle = {1’ € [=5. 1) |q(x, 1)) — x4] < g2 and x, — %(x* —x) < q(x, 1) < x4+ &%)
(4.170b)
Iena = {t' €[5, q(x, 1)) —x,] < e®and x < g(x, 1)) < xyp — S(x — X)}.
(4.170c)

From (4.169) we immediately have that

1,

T,
2 4 4 / *25
dgw(n( (x,t/),t/),t/) dt g/ ——dt +/ —dt
~/;S[arl| P | —& (T — t/)z —& et

4 25(T,+e)
ST+ % g4

<5072 (4.171)
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since T, = O(&) and ¢ is sufficiently small.

For the remaining two time intervals, since %e <t +e < 2¢,and |g(x, 1)) — x| <

&2, we will use that

where

NN 4 1
|dpw(n(q(x, 1), 1), 1)] < Gx, 1)’

Gx, 1) i= (Te — 1) + 37 2(q(x, 1)) — x)%. (4.172)
The second important fact that we will use frequently is that (4.153) implies
LG, 1) < @en(gx, 1), 1) < 2G(x, 1) (4.173)

The third important ingredient is an estimate for the time derivative of the label ¢ (x, ).
Using that n~! solves the transport equation (3, +wdg)n~' = 0, upon differentiating
(4.167) with respect to ¢’ we obtain

drq(x,t) =9 N (P(x(x, 1), ), ) + 8om (P (x (x, 1), ), N (x (x, 1), 1)
=0 ((g(x, ), ), ) + F0om~ (g (x, 1), 1), Hw(n(g(x, ), 1))
= —Lagn (g (x. ), O Nw(g(x, 1), 1), 1)
_ w1, 1), 1)
3nx(g(x, 1), 1)

(4.174)

From the above identity, using the bounds (4.33) and (4.173) we conclude that

ek
Gx, 1)’

&K
<
20G (x, 1)

—dpq(x,1') < (4.175)

With (4.172), (4.173), and (4.175) in hand, we return to the two remaining cases
described in (4.170). First, we note that (4.175) shows that the function ¢ (x, ') is
strictly decreasing, as a function of ¢/, and thus when ¢ is sufficiently small there
exists a unique time e [—%8, t) such that

g, 1)) = x, — S, — x).

As such, Ieng = [#7, £], and Imigdqle C [—%8, t%]. Since q(x,t) = x, the fundamental
theorem of calculus, (4.175), and the definition of I.,q show that

t
ﬂm—wﬂ=q@J%—q@J)=/h—&q@J@Mﬂ
1

t
</ 2ekp .
i G(x,t)
2eko(t — 17)
T (T — )+ Fe 2, — x)2
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g 8eko(t — t7)
G(x,1)

The purpose of the above estimate is to provide the lower bound

r—tt> (x5 —x)G(x,1). (4.176)

16¢xq
With (4.172), (4.175) and (4.176), since Inidgdle C —%5, "] we may then estimate
/ |Bgw(n(g(x. 1), ). 1) dr’ < / b

Imiddie B Imiage G(X5 1 "?
1 —200, /
< / Oal‘q('xat)dt/
T = 1% Jiaate €K

20 () = (e — 30 — X))
ek0 (Ty — 1) + 1o (X — )G (x. 1)
306 1

K0 (T =) + b (0 = V)G (x, 1)

30¢ {ﬁ . i G 1) > 24k0e™ ! (xs — x)

2
% , ifG(x,1) < 24x0e " (xe — x)

N

N

N

Ko

- 12000ex9 _ 1080000
TG, 0?2 T ene(x, )2’

(4.177)

where in the second-to-last inequality we have used that 0 < G(x,t) < ¢, and in
the last inequality we have appealed to (4.173). Lastly, since Ieng = [¢%, 1], a similar
argument and the bound (4.173) shows that

1

2
dpw(n(g(x, 1), 1), 1) dt/</ ————dt’
/;end| i | Iend G()C, t/)z
r_ , /
< 31 / 208tq(x,t)dt,
(T — 1) + 5672 (xs — )2 Ji £KQ

< 40 1
I m <(x* - E(X* — X)) —x)

20(xx — x) 60(xx — x) 60
< < < .
eoG(x, 1)~ &2kony(x, 1) Kone(x,1)

(4.178)

Combining (4.171), (4.177), and (4.178), we arrive at

t
ntonn | [dew@ @ nx, 0,0, 1), )| dr’
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Sentenn +e T 2 Fdx ),

and then by appealing to the first case in (4.119), concludes the proof of the lemma in
the case that x, > x.

For the other case, x, < x, we have that (g (x, t’) — x*)2 > (x — x*)z, and then we
simply have

t
25 1
dpwn(gx,1),1"), )| dr </ d
/[—e,mzm | | e (T = 1) + 3672(xx — x)?)2

1
S 3
(T —1)+ 3872()5* —x)?
3
< [
€0xn(x, 1)

(4.179)
in light of the definition of G and of (4.173). The estimate (4.165) follows as before
(it is in fact better in this case). O

Lemma 4.11 For labels x, we have that

31

367F  x—xy <&
sup |94, z)‘ <1363c* |x—x.|<s?, (4.180)
et Ce™?  x—x>s?

where Cg denotes a positive constant that depends on inverse powers of €.

Proofof Lemma4.11 We shall first consider the case that the label x satisfies
lx — xi| < &2. The identity (4.117) shows that

Rwn(x, 0, 1) =0 Trwy + 3Lwg + 31w + 1]"wo)
= 30 e (Bpwfy + 20w + I wo — 17 wo i + [{wo)rne)
_77;477xxx(11w6+1;w0)- (4.181)

We next use the inequality (4.116) together with the identities (4.164), (4.181), and
(4.147),

logan(x, 0, 0| S e~ + 672 ns Towh + Lwo)| + L[ (Towp + Lwo)|?
+ L0 2wg + 20w + 1'wo — 0 (wh I + 1 wo) )|
+ g (Towh + Lwo)| n7 2 (Towg + 21wy,
+ 1 wo — 0y (wo i + 1 wo) ) |
+ | g Tewy + 31wy + 31wl + 1" w)|
3 e (g + 20 {wg + 1'wo = 1, ol + Lwo)nw)|
+ |15 e (Twfy + I wo)|
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t
|agw(¢(¢—1(n(x,t),t),t/),t/)|2dt/. (4.182)

By (4.22) and (4.25¢), for ¢ sufficiently small, we have that

| " -3 3

)] <267 for |x — x| <é&, (4.183a)
lwg” ©)] < 3616~ for |x — x| < &2, (4.183b)
wy ()| S e % for [x — x| > &2, (4.183¢)

Using the identity (4.45¢) together with (4.140), (4.143), (4.145), (4.150)

—1 _ 2
1] < { roxlse (4.184)
&

Then, with (4.142) and (4.131), (4.141), (4.149), (4.165), and (4.182), we have that
for ¢ taken sufficiently small,

—4
&
9ga(nx, ), m}| < {8_7 (4.185)

Using the identities (4.45d) and (4.46e), we have that

t t
3y = w(’)’”/ I.dt —|—4w6”/

—& —&

T
—i—wo/ I; (4096(/ a onn, dr)4
—& —&

T 2 1
_%(/ a/onnxdr> / (a"onng—i—a’onnxx)dr

1 1

I7dr + 4w, / 17dz

—&

Lldt + 6w(’)’/

—&

—_

—& —&

N

T 2
+T4< (a//onn;zc+a/°7777xx)d’”)
—e

3 ]

T T
+ 26 </ aon 77de> ( @ onni+3a" onnne+a on nxxx)dr)

—& —&

i

T
—%/ (@" onnt+6a" onmnine +3a" onni,

—&
+4a" o N NxNxxx + a o n nxxxx)dr>d77 .
Notice that from (4.153) and (4.154), for |x — x| < &2, we have that
77;171)2”( < 100e73
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Then, together with the bounds (4.139), (4.140), (4.142), (4.145)—(4.150), (4.153),
(4.154), (4.183)—(4.185), and with (4.142), (4.145)—(4.148), we find that for ¢ suffi-
ciently small,

3
%8 8 + 782K§ SUP;e[—e,T,) dtn(x, t)| Ix — x, < &3
sup  |8¢n(x, t)‘ < {3626 + 7%} SUD;c[—e.T,) |adn(x, )] Ix —x ] <&,
te[—e, Ty) C _9 22 4 > 2
€72 + Te Ky SUpse[_e.1,) |0 N(X, t)| |x — x4 > €
(4.186)
and hence
3% —x] <6
sup [t 0| < 1363 x—wl <2, (4.187)
—&, Ty )
relmety) Ce 3 Ix—xﬂFI}e2
which proves (4.180). O

4.8 C* Regularity Away from the Blowup

Lemma 4.12 For labels x, we have that

sup max (|8) a(n(x, 1), )] + [9f wn(x, 1), 1)])
T,) ¥ <4

te[—e,

_ —4
e ((Te = 1) + 3673 (e + 1) (x — x,)?) Ix — x4 z C@1s)
Ce [x — x4
where C, denotes a generic positive constant depending on inverse powers of €.

Proof of Lemma 4.12 We use the identities (4.117) for 85/ w o 1. The bounds on the
initial data (4.131), (4.141), (4.149), (4.183), the bounds on derivatives of 1 given
in (4.119), (4.135), (4.143), (4.153), (4.154), and (4.180), the bounds on I; and its
derivatives given in (4.142) and (4.184) prove the stated bound for 8g wonin (4.188).

The additional inequalities (4.34), (4.139), (4.148), and (4.182) then proved the
stated bound for 8] a o 1 in (4.188). ]

Proposition 4.13 (Taylor expansion for n(x, t)) The 3-characteristics n satisfy
neCl(—e T, CH(D)),
and at the blowup time, 1n(x, Ty) has the Taylor expansion about x,. given by
n(x, T) = n(xs, To) + 29300, T (x — x2)° + Ladn(x, T (x — x)*, (4.189)

for some X between x, and x.
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Proof of Proposition 4.13 By Lemma 2.1 in [1], there exists a short time T > —¢, such
that (w, @) is a unique solution to (3.10) with initial data (wg, ap) and

(a, w) € CO([—e, T]; CH(T)). (4.190)

for any open set U which does not intersect &,. By the local existence and unique-
ness theorem for ODE, n € Cl([—&, T]; C*(T)). Given the uniform bounds (4.119),
(4.135), (4.143), and (4.180), the standard continuation argument shows that

ne Cl([—e, T], CH(T)).

The Taylor remainder theorem provides the expansion (4.189). O

4.9 Newton Iteration to Solve Quartic Equations in a Fractional Series

We wish to invert the polynomial equation n(x, T,) = z. As given by (4.156), this
requires inversion of a quartic polynomial. We shall derive the root that yields a
Hélder—% solution for n_l(-, T,) and satisfies n_l &y, Ty) = x4.

Lemma 4.14 (Quartic inversion) If
[ y) = —x+asy’ +asy’,

and a3z > 0, then the solution y(x) to f(x,y) = 0 such that y(0) = 0 is given by the
fractional power-series

-3 L 1 =32 1 39 4
y(x) = a3 *x3 — Jasay *x3 + a5 azx + O(|x|3). (4.191)

Proof of Lemma 4.14 We will first obtain an approximate solution using the Newton
polygon method. Each term of the polynomial f(x, y) is written as cx?y”, and the
Newton polygon for f(x, y) is constructed as the smallest convex polygonal set that
contains the points be; + aes. This polygon consists of a finite set of segments, and
we consider the segment I'1, such that each of the points (b, a) = be + ae is either
above or to the right of this segment.

We will construct a fractional-series solution to f(x, y) = 0 as

Y(x) = c1x? + xR o oax 1T (4.192)

The first fractional power y is chosen as minus the slope of I'. For —x +a3 y> +as y* =
0, the points (b, a) are given by (0, 1), (3, 0), and (4, 0), and thus it is easy to see
that the two lower segments of the Newton polygon have slopes —% and 0, but that
the segment with slope O exists only if a4 # 0. We first consider the segment Iy with

slope —l, in which case y; = % We thus factor x% from (4.192), and write
1
y(x) =x3(c1+y1(x), yi(x) =cox”? +c3x”? 4
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We compute

1 4
Fo,x3 (e +y1) = —x +azx(er + 1) +asx3(er +yn?.
The coefficient of the monomial x must equal to zero, so we can determine cy:

x(— 1+a;cl)—0 — cl—a3 "

1 . . .
We next define f1(x, y1) = x~%! f(x, x3(c; + y1)) where « is the intersection of the
segment I'1 and the vertical a-axis, so that oy = 1. We have that

Aiee v =x7"f x5 @ 4 )
= a4a;4/3x% + 3a]3/3y1 + 4a4a3_1x%y1
+3aly} + 6a4a3_2/3x%y12 +azy; + 4a4a;%x%yf +agxdyt,
The Newton polygon for fi(x, y;) = O shows that the segment I'>, whose slope is

equal to minus the exponent y», connects the points (0, %) and (1, 0), so that y» = 3
We next write

1
Y1) = x3(c2+y2(0)), y2(x) = c3x?? 4 egxPT 4

1
We compute fi(x, x3(c2 + y2)) and cancel the coefficients in the lowest-order term

_s
to find that ¢, = —%a4a3 3. We then define

m

G y2) =27 fi(x, x5 (e + y2) = x 73 fix, x5 (—Lagay 4 ),

where oy = % is the a-intercept for the segment I';. A computation reveals that

_8
fr(x, y2) = —djas fxs +3a3 2+ o(x[5)

and the Newton polygon for f>(x, y) shows that the exponent y3 = % which in turn

shows that y»(x) = C x% + - - -. Continuing one more step in the iteration to f3(x, y3)
(whose details we omit), we ﬁnd that C = éa; 3af We thus determined the first two
non-trivial terms of this fractional series expansion (4.191). The result follows by an
application of the implicit function theorem to the approximate solution that we have
just determined.

We now return to the case in which the first fractional power uses the segment of

the Newton polygon with slope 0. In this case, we begin the iteration with y; = 0, we

find that y(x) = ——4 — 3x + O(x?). Note however that y(0) # 0 in this case. O
a3
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4.10 Proof of Theorem 4.1

Having established the expansion for n(x, T) we can now prove the main result of
this section.

Proof of Theorem 4.1 We consider labels x satisfying |x — x,| < &3. By Proposition
4.13, we have that n(x, T) has the Taylor series expansion (4.156), which we write
again as

N0, Ty) = & + 2030, T (x — 307 + 550X, T (x —x)*, (4.193)

where &, = n(x, Ty), and X is a point between x, and x. By (4.144), the coefficient
for the cubic monomial cannot vanish:

1
£ 0, T) = 855 > 0. (4.194)
Setting n(x, Tyx) = 0, we find that

Lo = x)300n 0 T + (e — x)*aln (@, T = 0 — &,

We define the constants®

1
o= (3317()?*,7*))3 >0, (4.195a)
1 & T 6 3
o = =325 (mnm) (4.195b)
1 6 3 08T \2
a3 = 5(35?77(36*,7})) ( 24 ) s (4.195¢)

where clearly the positivity condition (4.195a) is merely a restatement of (4.194).
Using Lemma 4.14, we have that

X=Xy =10 —£)F +on® — )5 +a3(0 —£) + 00 —£,]3)  (4.196)

We define the function

T*
I(x) = —§/ a(n(x,r), rydr.

&

6 Note that, as defined by (4.195), p and o3 actually depend on x through the intermediate point X, and
thus are not truly “constants”. Nevertheless, in our proof we need only upper and lower bounds on « and
a3 which are independent of x, bounds which are indeed available here; no information on the regularity
of these functions with respect to x is needed. The same comment applies to b3 defined in (4.199). It is
however crucial that 1, b1 and by are independent of x, which holds true. We emphasize that since the
initial data (wo, ag) is taken to be C 5 smooth instead of just c*, we may use arguments similar to those
in Lemma 4.11 and Lemma 4.12 to show that n, w o n, and a o n are in fact bounded uniformly in time
with values in W>:%°; as such the expansion (4.193) can be developed to fifth order, and this does make
a1, oy, bz constant in x. We omit these computations which do not require new ideas but are quite involved,
and instead refer to the paper [16] for these details (the paper [16] includes these details even when z and
k do not vanish identically).
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Taylor expanding wo(x) about x, in the identity (4.44), we have that

wn(x, 1), Ty) = &

wo(x)
= T (wo(x*) F B wo(r) (x — x) + L02wo(r) (x — x,0)?

+ Fuo() 0 — xS otwe @ - x0t), @197)

for some x between x, and x.
By Proposition 4.13, @ o n € C*, so we can apply the Taylor remainder theorem to
the function eZ™, expanding about about x,, and obtain

0 = T (14 T () = 2) + 3T 0)? + T/ (0 (x = 5

+ T ® +3TDT® + T @) - x)°) (4.198)
where X is a point between x, and x. To simplify notation, we define the constants

bi=T(x), bb=1Tx)+T'x)), b3=tT @’ +37@T'® +7T"®),
(4.199)

and write (4.198) as
T = T (1 F by (x = x) + ba(x — x,)? + b3 (x — x*)3) . (4.200)
From (4.197) and (4.200), we have that

w(rCr, 1), T) =7 (14 by (v = x0) + ba(x = 507 + b3(x = 1°%)
<WO(X*)+8X w0 (Xx) (X — Xx)
302w (v (x — 1% + §03wo (6 (x — 10 + o wo @ x — x0?)
= 70 (g () + (1w () + Dyt (1)) (x — )
+ (bawo () + b1dxwo () + 382w0 (1)) (x — x4)?
+ (b3wo (xe) + bodewo (x4) + $b1 97w (xs)
+ $owo(e0) (¢ = x0? ) +O(x — xil). (4.201)

We define the constants

B = biwo(xy) + 0 wo(xx) , (4.202a)
By = bowo(xx) + b1dywo(xy) + S82wo(xy) , (4.202b)
B3 = b3wo(xs) + badywo(xs) + 3b137wo(xs) + £33 wo(xs) (4.202¢)
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and

I(x*)wo(x*) ’

Ky =€
and thus

wn(x, 1), Te) = &y + ) (31 (x — x4) + Ba(x — x:)* + B3(x — x*>3)
+ O(x — x4]h). (4.203)

With 6 = n(x, T) as before, it follows from (4.196) that

1 2
WO, T) = ko + 70 (1 By O = £)F + (2B1 + P B2) (0 — )5

+ (03B + 210282 + @] B3) (0 £)) + O — £1%).  (4204)

We can now define the constants ag, a», and a3 in (4.2) as follows:

a; = g By, (4.2052)
a = ¥ @y B 4+ a?By), (4.205b)
a3 = e (@3 By 4 2102 By + 0} B3) . (4.205¢)
We note that by Lemma 4.7,
De<en < Hhe. loal Sef. Jasl < e (4.206)

Furthermore, since by (4.19), wo(0) — ko = 0, and we assume the inequality (4.23),
we see that since ]x*’ < 2K()54, we have that

Ko — 263 < wo(xy) < ko + 263, (4.207)

and from (4.137)

— I <hewo(n) < =15, 18fwo (x| < 77 . (4.208)

From (4.199) and (4.26), we see that by, by, and b3 are O(¢). Using (4.202) together
with (4.207) and (4.208), we find that

9 9 1
—LE e By <~ 410, By e

& &€

Together with (4.205) and (4.206), we have that for ¢ taken small enough,

-f{<ar< -1, |a2‘§e%<e%, las| < & .
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Let us now follow the same argument that we used above to produce an expansion
for wy (n(x, Ty), Ty). We see that

Bow(x. 1), Toms(x, To) = €™ (w)(x) + T (x)wo (x))
= I <axw0(x*)(x — x3) + 92 wo () (x — x5
+ 387 wo () (x — x,)?
+ Stwo @ - x.)?)
+ eI(X)T(x)<wo(x*) B wo(r) (¥ — x)
+ 102wo () (x — x)? + L82wo(r) (x — x)?
+ S0t @ 0 - x0*). (4.209)

where X lies between x and x.. In addition to (4.200), we shall need the expansion of
eT™ 7T (x) and we continue to use by, by, b3 defined in (4.199) and write

IO (x) = T <b1 T 2by(x — x,) + 3b3(x — x*)2> , (4.210)
We can then write

Bow(n(x, 1, T (v, Ti) = €70 (brug () + dywo ()
+ (262w (xs) + 21 dx wo (%) + 8§wo(x*))(x — Xx)
+ %(6b3wo(x*) + 6b2 3y wo (xx) 4 3b132wo (xs) + 33100(96*))
(x =202 + Ox = x:P)). 4.211)

With the expansion 7, (x, Ty) is written as
_ 143 2, 1a4 /o 3
Ny (%, Ty) = 5070 (xx, Te) (X — X4)” + 0 n(X, Ti)(x — xy) (4.212)
for some X € (x, x,). Therefore, with (4.211), we have that
Bow(n(x, 1), T2) = ) (brung(e) + B (x:)
+ (2b2w0(x) + 2519, w0 (xs) + D7 wo (X)) (x — X,

+ 3 (6b3wo (xs) + 65205 wo (x)
+ 30193 (5) + 0w () (x — %% + O(x — x.)

-1
x (5oinGe. ToG = 202 + Lotn(, TG = x0%)
(4.213)
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Another expansion of the right side of (4.213) gives

dow(n(x, 1), Ty) = ™) (Ao = x) 72 4 doy (= x) ™ +do) +O(x — x.).

(4.214)
where
— 2(b1wo(xx)+0xwo (xx))
da = 930 To) ’
A= 2(2b2w0(x*)+2b13xlﬂ0(X*)+3fwo(X*))
1= 070 (e T)
2(brwo () +3xwo (x) ) 330 (. T2)
- 330 (e To)? ’
o — 8P3W0(x)+6k2 B wo (x,)+3b1 0Fwo () +07wo ()
0= 930 (e To)
22020 (x)+2b1 B wo (r)+03w0 () 3¢ (2, To)
B 3030 (e, 1)
2(1wo () +0cwo () 880 (2. Ts)
+ 93377(x*,T*)3 :
By substituting (4.196) into (4.214), we obtain that
2 1
‘8911)(6, T.) — ez(x*)afzd,ﬂ_j — eI(x*)(afld,1 - 2af30¢2d72)z_?
< Zez(x*)<d0 — oy 2nd_ ) + (33 — 2a1a3)ozl_4d_2> . (4.215)
Notice from (4.195a), (4.202a), (4.205a) that since
1
_ L L(xy) 6 3
aj=e¢" (m)3 (blwo(x*) + wao(x*)) )
and since
2
T(x4) ,, =2 — 7, T(xs) 6 —3 ( biwo(xXs) 0y wo (X)
e e d = 20 (g0 o) ( 3n(xTy) )
1
= %ez(x*)(m)“ (brwo(xy) + dywo(xy)) = 1ay,
A similar computation shows that
L) (O[l_ld_l — 20[1_30lzd_2) = %az .
As such, we have established the inequality
_2 _1
dpw(®, Ty) — Ja1(0 —£)73 — 3a2(0 — &) 73| < Cm, (4.216)
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where

Cry = 2209 (do - al_zagd_l + (30[% - 2a1a3)a1_4d_2) ,

satisfies |Cm| < é The inequality (4.216) and the bound for Cy, establishes (4.4a).
From (4.209), we see that

Fwn(x, Ty), Ton>(x, T) = —3p (n(x, Ti), T (x, Ti)

+ " (wg (1) + 21 (0w (¥) + ') wo ().
(4.217)

In addition to the expansion (4.212), we shall also need the fact that
Nex (6, T) = 000, To) (X — x) + 3970 (E, T (x — x4)°
for some X € (x, x,). After a lengthy computation, we find that

WO, To) — 2a1(0 —£) 73| < Cm(6 —£)7F (4.218)

where
Cnl 57,

which establishes (4.4b).
Finally, from (4.217), we see that

Rwn(x, T,), Ton> (x, T) = =33wn(x, Tw), T)ne (x, T e (x, Ty)
- 39w(77(x, T*), T*)nxxx(x, T*)
+ 59 (wf (x)

+ 31" ()w" (x) + 31" (x)w' (x) + I" (x)wo(x)) .
4.219)

We make use of one further expansion given by
Rn(x, T) = 3 (xs, T) + 00, To) (x — x,)
for some® € (x, x,). A final lengthy computation shows that

3 _151 -§
‘aéw(e, To| <e o —g| 3. (4.220)

which establishes (4.4¢).
The estimates (4.5) are established by (4.188). The bounds (4.6) for the spe-
cific vorticity are established in (4.81) and (4.87). From (4.79) we have that
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supyo. 7, la(-, )l g < %e. From (4.2), we have that w(-, Ty) € C%(T); therefore,

since 0ra = lf’—gw — w, by (4.33) and (4.81), we have that a(-, T} € Cl’%(’]I‘) which
gives the regularity statement in (4.1). The bounds for & are given in (4.81), and for
dyw in (4.87). O

5 Shock Development

In this section we consider the system (3.5)—(3.6), with pre-shock initial datum as
obtained in Section 4, and consider the associated development problem. The main
result is Theorem 5.5 below.

5.1 Initial Data for Shock Development Comes from the Pre-shock

Theorem 4.1 guarantees the finite time formation of a first singularity for the
(w, z,a, k) system (3.5) at (0, t) = (&, T,); more precisely, the first Riemann variable

w forms a C3 pre-shock as described in (4.2), z and k remain equal to O (their initial
datum), while the function a retains C L3 regularity at the time that the pre-shock
forms.

The initial data for the development problem is provided by Theorem 4.1. For the
remainder of paper, it is convenient to change coordinates so that the pre-shock occurs
atf = 0 (instead of &), at time ¢ = O (instead of 7). The initial condition for the first
Riemann variable thus is wg(0) = w (0 — &, Ty), with the latter function being given
by (4.2). In particular, we have that wy satisfies the quantitative estimates

wo(@) < m (5.1a)

wo(0) > 3 (5.1b)
|wo(0) — k +bOT —cO3| <mlo] (5.1¢)
w)(©) + 1bo~F — 2co75| < m, (5.1d)
| ©) — 26073 < mio|~3 (5.1¢)

i )] <m1o]73 (5.1f)

for all & € T, where k, m > 1,b > 0, and ¢ € R are suitable constants given as
follows. In light of (4.2) and (4.4), we identify x = x4, b = —aj, ¢ = ap, while
the constant m is taken to be sufficiently large, in terms of the large parameters xg
and ¢! from Theorem 4.1. Note however that (4.2) and (4.4) only give the bounds
(5.1¢c)~(5.1f) for 0 in a e-dependent ball around O (of radius &%, recall that we have
mapped &, — 0), whereas in (5.1) we require that these bounds hold for all 6 € T. We
note however that for |6| which is at a fixed positive distance away from 0, the bounds
(5.1¢c)—(5.1f) follow once m is chosen to be sufficiently large with respect to o and
¢~ !; this is because the bounds (4.5) imply uniform C* regularity once a fixed distance
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from the pre-shock is chosen. Indeed, (4.5), (4.119), (4.120), and (4.153) show that
for || > &%, there exists a constant C, > 0 such that |ag; wo(0)] < Ce for0 < y < 4.
We also note that by (4.37) and (4.3) the coefficients in (5.1) satisfy the conditions

1
Kk —wol <&, L<b<2, o <e2,

where we recall that kg > 1 was chosen sufficiently large. In order to simplify our
argument we shall frequently use the relations

lcl«b<?2 and 4<k<m. (5.2)

In particular, we shall use that m sufficiently large with respect to k: if C > O is a
universal constant (independent of «, b, ¢, m), then xC < mllT). Similarly, we shall

use that |c| is sufficiently small with respect to b, so that Cb|c| < 1.
The initial conditions for the second Riemann variable and the entropy function are
given by
z0(0) =0, and ko(#)=0. (5.3)

Lastly, in view of Theorem 4.1 we identify ag() = a(6 — & T,) € C"3 and
wo(0) =@ (0 — &, Ty) € Cl.In particular, due to (4.79) and (4.83),

||a()||W1100(11*) < %K, 5.4)
and due to (4.6), we have that
R<m@) <2 and  |og)| <m, (5.5)
foralld € T.

Remark 5.1 (The small parameter € and the large constant C) Throughout Sections 5
and 6, we shall denote by C = C(k, b, c, m) > 1 a generic constant, which only
depends on the parameters «, b, ¢, and m, which appear in (5.1), and which may
increase from line to line. We shall also denote by € = g(x,b,c,m) € (0,1] a
sufficiently small constant, which only depends on the parameters «, b, ¢, and m.
Note that the parameter € is not the same as the parameter ¢ in Section 4.

5.2 Definitions

Definition 5.2 (Jump, mean, left value, right value, domain) Given a smooth curve
5: [0, T] — T, we shall denote

Dy = (T x [0, TD\ (s(2), t)refo,7] (5.6)
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the space-time domain which excludes a shock curve. Given any function f: Dr — R
we denote the left and right values of f at s as

f-@)= lim f(@,1) and fr(@®) = lim f(O,1). 5.7
0—s(t)~ 0—=>s()t

We denote the jump of f across s by

[I=0rOl=f-)— fr ), (5.8)

and the mean of f at s by

() =(fD) =3 (f-) + f+() (5.9)

for all + € [0, T]. The dependence of f_, f4, [f], and Dr on the curve s is not
displayed.

Next, we define a space X7 which will be used for the construction of unique
solutions.
Definition 5.3 (Functional space for shock emanating from C'/3 pre-shock) Letm > 1
be asin (5.2). Given T > O and a curve s: [0, T] — T, define the norm

I, z,k, a)llr = sup max{r‘1(50m2)—1|v(9,r>|,
0,t)eDr

1
m=3 (b% + 0 —5(1)?)" 19500, 1),

M3 (20, 0] . mT T2 (920, 0] mT 273 kO, 1)]

M2 [k (0, )] . (4m) " a(@. )] . (4m) " |3pa (o, r>|}

(5.10)
where D7 is as defined in (5.6). For T > 0 we also define
Xy = |(w, 2.k a) € C)(Dr): (w, 2.k, @)|i=o = (wp, 0,0, ap),
llw — we, 2.k, @)llr < 1}, (5.11)

where wg is the solution of the 1D Burgers equation in Dy with datum wq, which
jumps across the shock curve s (see Proposition 5.7 for its precise definition). That is,
the role of the dummy variable v in (5.10) is played by w — wg.

In order to state the desired properties for s, in terms of the parameters « and b
appearing in (5.1c), we define two time-dependent subsets of T. The first set, X, will
be shown to contain the location of the shock front for w at time ¢, while the second
set, 2, contains the labels of the two particle trajectories associated with the flow of
w, which fall into the shock at time 7.
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Definition 5.4 (Regular shock curve) For every t € [0, Km’4], we define

(1) = [kt — tm*? ket + Im*?] (5.12a)

Q@) =[-20n?, —2bnU[2bn?, 3br)i] (5.12b)

extended periodically on the circle T. For a given T € (0, km~%), we say that 7 >
5(t): [0, T] — T is a regular shock curve if it s satisfies

s() e X(t), |5@) —k| <mbt,  [5(0)] < 6m*, (5.13)
forallt € (0, T].

5.3 The Shock Development Problem in Azimuthal Symmetry

We defined a solution to the development problem in Definition 3.1. The main result
of this section is to establish the existence and the uniqueness of such solutions.

Theorem 5.5 (Azimuthal shock development) Given pre-shock initial data (wy, zg, ko,
ap) and @y satisfying conditions (5.1)—(5.5), there exist:

(1) € =%€(b, m, ¢, k) > 0 sufficiently small;

(i) a C? regular shock curve s: [0,€] — T, in the sense of Defintion 5.4; in
particular, s solves the ordinary differential equation (3.12b), corresponding
to Rankine-Hugoniot jump condition;

(iii) a unique solution (w, z, k, a) € Xz to the system (3.5), in the sense of Defini-
tions 3.1 and 5.3;

(iv) two Cl smooth curves s1, s2: [0, 8] — T, with s1(0) = 52(0) = O and s () <
5o(t) < s(t) fort € (0,€], such that s; is a characteristic curve for the A;
wave-speed, i € {1, 2},

such that the following hold:

(v) letting DX = {(0,1) € Ds: 52(1) < 6 < (1)} we have that k = 0 on (DX)C
with k0, t) = O — 52(t))%) in Dé, cf (5.215), and dgk(s2(t), t) = 0;
(vi) letting D% = {(0,1) € Ds: 513(t) < 0 < s(t)}, we have that z = 0 on (Dg)c
with z(6,1) = O((0 — 51(1))2) in D, cf- (5.218), and dgz(s1(t), 1) = 0;
(vii) on s(t), the function w(-,t) exhibits an O(t%) jump, cf. (5.63), while the
functions z(-,t) and k(-,t) exhibit O(t%) Jjumps, cf. (5.69), and solve the
system of algebraic equations (3.13a)-(3.13b);
(viii) the specific vorticity w (see its definition in (3.8)) solves (3.9) in Dy, is uni-
formly bounded with O(k ~') upper and lower (see (5.223)), and is continuous
across the shock curve s(t);
(ix) the function a(-, t) is continuous across s(t), while dga (-, t) exhibits an O(t%)
Jjump.
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5.4 A Given Shock Curve Determines w, z, k, and a

The goal of this subsection is to show that given a regular shock curve {s(#)};¢[0.7],
as in Definition 5.4, we may compute a solution (w, z, k, a) of the system (3.5)—(3.6)
with initial datum as described in Section 5.1, and which exhibits a jump discontinuity
across the curve s(t). This statement is summarized in Proposition 5.6 below. Note
that at this stage we do not assume that s satisfies the ODE which corresponds to the
jump conditions in Section 2.1; this will be discussed in Section 5.10.

With the above notation, the main result of this section is:

Proposition 5.6 (Computing w, z, k, and a, in terms of s) Consider initial datum
(wo, 20, ko, ag) which satisfy conditions (5.1), (5.3), and (5.4). Let Ty > 0 be given,
and assume thats: [0, To] — T is a given regular shock curve, as in (5.13). Then, there
exists € € (0, Ty], which is sufficiently small with respect the parameters k, b, c, m,
such that the following hold on [0, ]:

(1) There exist functions (w, z, k, a) which belong to the space Xz defined in (5.11).
(ii) On the spacetime region Ds, defined in terms of s in (5.6), the functions
(w, z, k, a) solve the azimuthal Euler equations (3.5)—(3.6).
(iii) The function w has a jump discontinuity on (s(1), t);e(0,5) Which satisfies (5.63).
(iv) There exist C! smooth curves s, 57: [0,8] — T which are the )| and )
characteristics through the point shock. They satisfy s1(0) = s2(0) = 0,51(¢) <
52(t) < s(¢) forall t € (0, €], and we have the bounds |5 (t) — %K| = O(t%),
and |52(t) — 2| = O(tH).
(v) The function z has a jump discontinuity on (s(t), t);c(0,5) which satisfies (5.69a,).
Moreover, for everyt € [0, €] we have that z(0,t) = 0 for0 € T\ [s1(2), s(¢)].
(vi) The function k has a jump discontinuity on (s(t), t);c(0,5) which satisfies (5.69b).
Moreover, for everyt € [0, €] we have that k(6,t) = 0for@ € T\ [s2(¢), s(t)].
(vii) We have that (w—, w+, z—, k_) satisfy the system of algebraic equations
(3.13a)-(3.13b), arising from the Rankine—Hugoniot conditions.

The proof of Proposition 5.6 is the content of Sections 5.5-5.8, and is summarized
in Section 5.9 (Fig. 9).

5.5 ComputingwWhena=z=k=0

In light of (5.10) and (5.11), it is natural to treat z and k as a perturbation of 0. As such,
it convenient to first look at the evolution (3.5a) for w, in the case thata = k = z = 0.
In this case (3.5a) and the definition of A3 in (3.6) show that w solves the 1d Burgers
equation; to distinguish this solution from the true w, we denote it as wg.

Proposition 5.7 (Burgers solution with a prescribed shock location) Let wqo be as

described in (5.1), and assume that s: [0, To] — T satisfies (5.13). There exists
¢ € (0, Ty] and a function wg: Dz — R which solves

0;wp + wedgwg =0, in Ds, (5.14a)
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~
Il
™|

t=20 > 0

Fig.9 The curves s1, s, and s discussed in Proposition 5.6 all originate from the pre-shock

wg = wo , on T x {0}, (5.14b)

which is C? smooth in Dz, and has a Jump discontinuity across the curve (s(t), t);e(0,7),
with jump across s and mean at s bounded as

‘ 31 4
[we ()] —2b272

t, (5.15a)

1

<t, l(we(1)) — k| < §m
4 wg(H)] — b3t :

<2mt, |4 (wg(1))]| < m*, (5.15b)

4 wg()] + b33 < 2m* !, & ((wB(t)>>‘ <m*t!'. (5.150)

ar?

It is important to emphasize that the function wg given by Proposition 5.7 is a
solution of the Burgers equation in the region where it is C> smooth, i.e., it is not an
entropy-producing weak solution of the Burgers equation which contains the shock.
Instead, wp takes a given curve s as given, and constructs a “good” solution of the
Burgers equation to the left and to the right of this curve s.

In Proposition 5.7 we use the notation from Remark 5.2 and Definition 5.2. Prior
to the proof of Proposition 5.7, it is convenient to establish an auxiliary result for the
derivatives of wq (cf. Lemma 5.8), and a result (cf. Lemma 5.9) which concerns the
invertibility of the usual flow map for the Burgers equation:

ne(x, 1) = x + two(x), (5.16)

which is well-defined for every x € T.” We first record a few estimates for wy, which
follow from (5.1):

Lemma 5.8 There exists € € (0, 1] such that for every t € (0, €] we have

|wo(x)| < m, xeT, (5.17a)

7 Here and throughout the remainder of the paper we shall denote the Eulerian variable by 6, while for the
corresponding Lagrangian label we use x.
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woen)| < 5171, dbnd < x| <, (5.17b)

lwjn)| < 1b 3173 $br)? < x| <7 (5.17¢)

|wg' ()] < 2m(b)~*, $(br)? < x| <7 (5.17d)
3

‘l—:j(LEZ()x) < %t h %(blﬁ <lxl<m (5.17¢)

Proof of Lemma 5.8 For simplicity, we only give the proof for x > 0. The bound
(5.17a) follows directly from (5.1a) since (5.1b) implies that wq is nonnegative. In
order to prove (5.17b) we use assumption (5.1d), which gives

I\)

lwy ()]t < 1b (%)_%(bt)*1t+§|c|() S )" 4+ mr < 1(3) Sy < z

upon choosing £ (and hence 7) to be sufficiently small, in terms of «, b, ¢, and m. The
proof of (5.17¢) is similar to the one of (5.17b), except that we appeal to assump-
tion (5.1e) and derive

wilbid <2 et <) (5.18)

once € (and hence ¢) is small enough. The bound (5.17d) immediately follows
from (5.1f) and (5.2). Lastly, the estimate (5.17e) is a direct consequence of (5.17b).
O

Second, we discuss the invertibility of 7g:

Lemma 5.9 (Local inversion of the Burgers flow map) Let wo be as described in (5.1),
assume that s satisfies (5.13) on [0, Ty, and let ng be defined as in (5.16). Then, there
exists a sufficiently small € € (0, Ty, which only depends on «, b, c, m, such that
for t € (0, €] the following holds. There exists a largest xg + = xg 4+ (t) > O and a
smallest xg — = xg,—(t) < O such that

5(1) = ne(xg,+ (1), 1) (5.19)
and moreover we have
ea(F b <m*? = bni < |xe@)] < 2bDI.  (5.20)

We also define xg +(0) = 0. Note that xg +(t) € Q2(t) for all t € [0, €]. Moreover,
defining the set of labels

Tg(1) =T\ [xg,— (1), x,+ (1]

we have that the map ng(-,t): Yg(t) — T\ {s(¢)} is a bijection satisfying the bounds

0yme(x,s) — 1] < 2 (5.21a)
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t=0 5
g, (1) ze+(t)  pg=1(6,t) 0

Fig. 10 Several Lagrangian paths {ng(x, s)}se[0,s] are represented by cyan paths. The extremal points

xp,+ (1) are the two labels which are colliding into the shock curve precisely at time 7. All the labels in
between them have collided with the shock curve at some time s € [0, t)

ms(x, 5) — 5(s)| > b33 (t — ) . (5.21b)

for all s € [0,¢t) and x € Yg(t). The above estimate implies that the trajectory
{n(x, $)}sef0,1] can not intersect the shock curve prior to time s = t, for every x €
Yg(t). Lastly, the inverse map ng~' (-, t): T\ {s(t)} — Yg(¢) satisfies the estimates
(Fig. 10)

2 < gm0, < 3 (5.22a)

$br)? + 110 —s)] < (nB—l(e, t)‘ < 8(br)? +210 — 5(1)] (5.22b)

forall (0,1) € Ds.

Proof of Lemma 5.9 1t is convenient to denote

2
3

20(x) = wo(x) — k + bx3 — cx (5.23)

so that in view of (5.1) we have that |gp(x)| < m|x| and |g6(x)| <m.Fort > 0 we
let

t=bn2, y=x3t7l, = (s(t)— kD). (5.24)

Note that the condition s(¢) € X(¢) in (5.13) together with (5.2) imply that || <
b~2m*r <« 1,anin particular |¢| < 11—0. With this notation, for any r > 0 the equation
(5.19) is equivalent to

3+ wt =13y 1 (K —bry +c?y? + go(f3y3)) :
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After collecting terms, and dividing by 73, we obtain that the above equality is equiv-
alent to

0=—C+y —y+cb lry?+ 1t go(z3y?) . (5.25)

=G(y,7)

In view of the aforementioned properties of go, we have that for all |y| < 10 and all
0 < t < g, with g sufficiently small in terms of «, b, ¢, m, we have that

‘G(y, ) — cb_lryz‘ <co? (5.264)
1) —cb! y2’ Ct (5.26b)
‘ayc(y, ) — 2cb™ ry‘ < Cc7? (5.26¢)

where C > 0 only depends on «, b, ¢, and m.

Returning to (5.25), we next claim that for every fixed ¢ € [—%, %] and any 7
sufficiently small, there exists a unique most negative root y_ = y_(¢, t) and a unique
most positive root yy = y4 (¢, ) of the implicit equation

Y =y+Gyr o =¢. (5.27)
The key observation is that in view of (5.26a), when when t = 0, the equation in the
: N 2 2 1 1
tabove display becor.nes L=y y. For ever?/ ¢ e( WL 3¢§) D. [. 5> 101 We
introduce two functions Z4(¢) and Z_(¢) which are the largest (positive) root and
respectively the smallest (negative) root of the equation
c=2"-7z. (5.28)
The power series of these functions is given by
20(Q) =1+ 50 F 30+ 30 F et +30+ 006 (529
and is valid for |¢| <« 1. In particular, we have
2+ +2-(0) = £+ £ +3¢° + 0 ). (5.30)
For later purposes, it is also convenient to note here that

124 (O +2-(0)—¢I <8 and 240 —2-() -2/ < (53D

for all [¢] < % With this notation, we have thus obtained the desired roots of (5.27)
when t = 0, namely

Z3(0) — 24(0) + G(24(2),0) = ¢ .
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The proof is then completed by an application of the implicit function theorem. This
is possible since

dy (y3 -y + G, f)) lo)=(z2.0) =323 — 1 #0.

In fact, for every |¢| < %, one may verify that % < 3Zi(§)2 —1< %, since Z4 are
explicit functions. The implicit function theorem guarantees the existence of an€ > 0,
such that if T € (0, (bE)%] and [¢| < %, the equation (5.27) has a most negative root
y—(¢, T) which is O(t)-close to Z_(¢), and a most positive root y (¢, t), which is
O(r)-close to Z4(¢). Upon unpacking the definitions in (5.24), we have thus identified

1 1 s5(t1) — «kt 1

xg (1) = (br)2ys ()—3, (br)2 |, (5.32)
’ (br)>

for all # € (0, ], which solves (5.19).

Note however that || < b72m4r, andthat T < (b?)% is taken to be small. In this 7-
dependent range for ¢ we may obtain a sharper estimate than the |y+ (¢, 7) — Z+(¢)| <
Ct claimed above. Indeed, since the bounds (5.26b)—(5.26¢) are available, from the
Taylor theorem with remainder applied to (5.27), we may deduce that

Z4+(¢)
322(¢) — 1

2

y+(L,T) — 24(¢) + tcb ™! <Cr

if  is sufficiently small, for a constant C = C(x, b, ¢, m) > 0. Taking into account
the power series expansion of Z4 in (5.29), and € to be sufficiently small (hence t
sufficiently small), we deduce that

ye@. 0 F1-te+Sr[<Cr®, forall  [z] <b’m* and T < (bE)?.
(5.33)

In particular, keeping in mind (5.24) and (5.32), we deduce from (5.33) the estimate

1) — Kkt Cct
s -kt

3
<Ctz?, 5.34
2bt 2 ( )

xp (03 F (br)Z —

for all ¢ € (0, €], where C = C(k, b, c, m) > 0 is a computable constant. The bound
(5.20) is an immediate consequence of (5.34), the working assumptions (5.2) and
(5.13), upon taking € to be sufficiently small.

The bound (5.21a) is a direct consequence of (5.17b), (5.20), and the fact that by
(5.16) we have d,ng(x,s) — 1 = swé(x). Therefore, the map ng(-, t) is a strictly
increasing function on the label x € T, thus being injective from Yg(#) — T\ {s(?)}.
Surjectivity follows from the intermediate value theorem, and fact that by (5.19) we
have limx_”&_(,y ne(x,t) = s(t) = limx_mB&(,)Jr ng(x, t). In order to show that
for every x € Yg(t) the trajectory ng(x, -) does not meet the shock curve prior to
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time ¢, by the monotonicity property of ng in the x variable, we only need to show
that ng(xg,—(f), s) < s(s) and that ng(xp +(¢),s) > s(s). These two statements are
established in the same way, so we only give the proof for the label xg _(¢). By
appealing to (5.19), the § assumption in (5.13), the wy assumption in (5.1), and the
previously established estimate (5.34), we have that

t
s(s) — ng(xp,—(1),5) = —/ (5(t) — (9mB)(xg,— (1), 1)) dt

t t
=/ (wo(xB,_(z))—K)dr—/ () —k)dr

1

> | —bxg (1) — 2|c|bt) (t —s5) — im*(@? —s?)

ey

4,3 1
> zb2r2(t — )

for any s € [0, ), with # < g which is sufficiently small.

The proof is concluded once we establish (5.22). The bound (5.22a) is an immediate
consequence of (5.21a) and the inverse function theorem. For the proof of (5.22b), let
us first consider a point & which is to the left of s(¢). Then, by the mean value theorem
and (5.19), we have that

s (0, 1) —x— (1) =g (@, 1) — g~ (s(t), 1)) = (@ — 5(1))(Bems ") (@, 1)

forsomed € ( v, 5(t)). The above identity, combined with (5.22a) and the first inequal-
ity in (5.20) implies (5.22b), upon taking ¢ sufficiently small. The proof in the case
that y is to the right of s(¢) is identical. O

Next, we discuss the solution wg to (5.14) and its properties.
Proof of Proposition 5.7 By Lemma 5.9, for all (0, t) € Ds we may define
we(8, 1) = wolng ™' (6, 1)). (5.35)
By the of construction ng and the properties of wy, the above defined wg is C?

smooth in Dz and solves (5.14) in this region. Indeed, differentiating the relation
wg(ng(x,1),t) = wo(x) and using the definition of ng we have the identities

wo(e~1(0, 1))

dowgp (@, 1) = ¥t (=16, 1) (5.36a)
Vi —1
P2wg (6, 1) = —20me 6. 10) (5.36b)

(1 + rwy(n =10, 1))°

for all @ € T \ {s(¢)}. In particular, combining (5.36a) with (5.22b) and (5.1), gives
that

l09wa (0, ] < 2b((b1)? + 16 — s(N*) 3 (5.37a)
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\8§ws(y, t)( < 2b((bt)* 416 — s(1)) 76 (5.37b)

for all (0, t) € Dz such that |6 — 5(7)| < E%, as soon as ¢ is sufficiently small.
Next, we we discuss the mean and the jump of wg at the shock curve. We have that

[ws()] = wo(xs,— (1)) — wo(xg,+ (1))

= (xéﬁ_(t) — xéy_(t)) (b — cxé’+(t) — cxé,_(t)>
+ go(xg,— (1)) — go(x.+ (1))

where we recall the notation from (5.23). Using (5.34), (5.1c¢), and (5.2), we deduce
that

‘ 31

[we()]] —2b212

< 8b|clr <t

upon choosing € to be sufficiently small with respect to «, b, ¢, and m. This proves
the first bound in (5.15a). Similarly,

(we(®)) = % (wo(xe,— (1)) + wo(xp 1 (1))
=K —3b (xé,_(t) +xé’+(t)) + 3¢ (xéy_(t) + x§7+(t)>
+ 5 (g0(x8.— (1)) — go(xB.4 (1)) -
From (5.34), (5.20), and (5.1c) we deduce that

s5(t) —«kt
2t

3
< Ctr2.

‘((ws(t))) — K+

The second inequality in (5.15a) now follows from (5.13).
Appealing to the definitions (5.19), (5.16), and (5.35), we arrive at

4 (we(s()F, 1)) = L (wolxg (1) = w(xp,+ (1)) Lxg 1 (1)
(1) — wo(xp,+ (1))
1+ tw)(xg+(1)

= w((xp (1))

Therefore, using (5.1c), (5.17e), the asymptotic description (5.34) for xg 4+ (¢), and the
assumption on § from (5.13), after a tedious computation we obtain

w (xg,+ (1))
1+ rw) (.- (1))
t|lwg (xg,+(1))]
1+ twy(xg,+ (1))

D=

4 (wa(s()*, ) £ 13173 | < [bag 4(1)3 F b3
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(m4 L w0 + be,ia)%)
t

1
< %m4+b|c| +Cr2 <m*.

From the above estimate, it is clear that (5.15b) follows. Differentiating once more,
we obtain

wp (g, (1)) (5(1) — wo(xg,+(1)))
1+ 1w (xg, .+ (1) (1 + 1wy (xg, +(1))?
~ 2(wp(xp, (1) (5(1) — wo(xg,+(1)))
(1 + twj(xg +(1)))?

L (wp(s(D)F, 1) = 5(0) + wf (g2 (1))

and therefore, after an even more tedious computation, we arrive at

2 3 3
L (we(s()™, 1)) F gb7172

< (%m4 + 3b|c|> T <mtt
The claim (5.15¢) now follows, thereby completing the proof of the proposition. O

5.5.1 Lagrangian Trajectories for Velocity Fields that are Close to wg

For future purposes, see Section 5.7, at this stage it is convenient to consider velocities
A3: Dg — R which are close to the wg we have constructed in Proposition 5.7, in the
sense that A3 € C 91 ,(Ds), and we have the pointwise bounds

230, 1) — we(@, )] < Ryt + C13 (5.38)
|0gA3(0, 1) — dgwp (0, 1)]| < Rz((bt)3 + (0 — 50))2)—% + Ct% (5.38b)

for all (0,¢) € Dsg, for positive constants Ry, Ry, C which only depend on «, b, c,
and m; see (5.142) for the values of Ry, Ry which are used in the proof, namely
Ri =Ry =m3.

Note that in view of (5.35) and (5.37a), assumptions (5.38) imply that A3 is C!
smooth on the complement of the shock curve. In particular, this means that for every
label x € T \ {0}, we are guaranteed the short time (x-dependent time) unique solv-
ability of the ODE

an(x, 1) = Ar3(nx,0),1),  nx,0)=x. (5.39)
In view of the assumed regularity of 13, for a given label x the path n(x, t) can be
continued on a maximal time interval [0, Ty), where the stopping time 7 is defined

as

T, := min{g, sup{r € [0,]: [n(x, 1) —s(t)| > 0}}. (5.40)
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That is, if the trajectory n(x, -) intersects the shock curve prior to time €, then we
record this stopping time in Ty, and in this case we have n(x, Ty) = s(7). Note that
since s € C!, and since A3 is C! smooth on the complement of the shock curve, the
stopping time 7 is continuous in x.

Next, for every ¢ € (0, €], in analogy to (5.19), we wish to define in a unique way
two extremal labels x4 (t) with the property that

s(t) = n(xx(t),1). (5.41)

By (5.40) we have that the above definition is equivalent to 7 ;) = ¢, which then
motivates

x_(t) =inf{x € [-m,0): T, <t}, x4(t) =sup{x € (0,7]: T < t},

Y() =T\ [x-(t), x+()]. (5.42)
By the continuity of 7 in x, the above inf /sup are in fact min / max. Moreover,
for every x € Y (¢), we know that T, > ¢. One of our goals will be to show that
n(,t): Y () = T\ {s(¢)} is a bijection, for every ¢ € (0, £].

As mentioned above, Ty € (0, €] if x # 0. Now for fixed x and r € [0, Ty), by
Lemma 5.9 we may define

gty =ng ' (n(x, 1), 1), (5.43)

and note that ¢ () € Yp(¢) and that ¢(0) = x. Since ng’l solves the transport equation
with speed wg, and 7 solves (5.39), we have that

dra = @mg™ ") on + Beme™") 0 ndn = (A3 — we) o (e~ ") 0 1.
Thus, by also appealing to (5.38a) and (5.22a), we have that
g~ (. 1), 1) = x| = 1q(0) = q(0)] < Rir® (5.44)

whenever ¢ < Ty, upon taking € to be sufficiently small. By (5.42), we note that (5.44)
in particular holds for all # € (0, €], and all x € Y'(¢). Note that from (5.19), (5.41),
(5.44), and continuity, we have that

[xe ) = 20,0 = (0 = 1™ (e 0), )| < Rur?
for all t € (0, €], and thus similarly to (5.20) we have that
3 24 4 3 6 3
xe () F ()2 <2m*4+R) = (b)) < |xx(0)] < 2(bn)2.  (5.45)
upon taking € to be sufficiently small.
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If T, < g, and ¢ € [0, Ty), the bound (5.44) and the identity (5.36a) allow us to
estimate

t _ ! !wo(q(s))|
/0 8o wp (1(x, ), 5)| ds _/(; T+swpgen ™

t t ¥ ev
g/ Mds +R1/ K sup woi(),c)lzds
0 1+5w0(x) 0 [—x|<R)s2 (1+5w0(x))

lwp ()]

w(x)

t
log (1 + twp(x)) + %b_iRl / s”2ds .
0

At this stage we recall that the values of x that we are interested in satisfy |x| >
3 3 .. . 3
(bt)2 — 2(m* +Ry) > lg—o(bt)?. We distinguish two cases: lg—o(bt)z |x] < b2t

and b2t |x] < m. Using assumption (5.1d), in the first case we deduce that
0> twj(x) > —Lbrx 3 (1 +3]clt) > —2(3) 31 +3)cle5) > — %

In the other case, we we use that t < € < 1, and thus

Q=

1 12 _
tiwo(x)| < $bt3 + F|clb™2t5 +mr < &

From the above three inequalities, and the fact that sgn (r) log(1 + r) < log( ) for

allr € (—l E%), we deduce that

19°
t
/Olaews(n(x,S),S)lds log(12) + b= 3R12 < 19 (5.46)

since t < € <K 1. As before, we note in particular that (5.46) holds for all ¢ € (0, €],
and all x € Y (¢). We note that using (5.36b), (5.44), and (5.17¢), in addition to (5.46)
we have

t ) ! |w (ng™ l(n(x 5),$))|
/o e, 5). )| ds </0 (1+two(773 e )3

< 3(bt) "2 (5.47)

whenever x € Y (1). Here we have used that |m3_1 n(x,s),8)| = |x|— Rys2 4(bt)2
fors <t <=&.

With (5.46) in hand, and appealing also to (5.38b), for every x € Y (f) we may now
have

t t
dxn(x, 1) = exp (/0 (@pwp)(n(x, s), S)dS) exp (/O (99r3 — dgwp) (1 (x, 5), S)dS) )
(5.48)
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and thus

L<Cexp(—L —4Rob™21%) < dn(x, 1) <exp(h +4Rb 217) <7 (5.49)

since ¢ is sufficiently small with respect to «, b, ¢, and m. This shows that the map
n(-, t) is strictly monotone (thus injective) on either side of the shock curve; combined
with (5.41) and the intermediate function theorem (ensuring surjectivity), we obtain
that n(-,7): Y () — T\ {s(¢)} is a bijection, as claimed earlier. Moreover, (5.49)
shows that for every x € Y (¢), the curve n(x, s) does not intersect the shock curve
prior to time ¢#; in fact, by the monotonicity of n we have that |s(s) — n(x, s)| >
|s(s) — n(x+(), s)|, and analogously to (5.21b), using (5.45) we have that

t
s(s) —n(x-(1),s) = —/ §(1) — A3(n(x—(0), 7), )dt

s

t
= [ (wotm™ rx- 0. 00 7)) ~ ) e

t
+/ (k = 5(7)) + (A3 — wp)((x— (1), 7), T)dT

> (wo(x— (1)) — &)(t — s) — 2(M? +4R)(1* — 57)

~

> 4213t —5) (5.50)

B~

for all s € [0, 1), and all x € Y (¢). This bound shows that Y'(s) D Y (¢) for s < .
Recalling the ng(x, ) is defined by (5.16) for all x € T, and in particular for
x € Y(t), from (5.45) and (5.49) we immediately deduce that

[nCx, 1) — ng(x, )] < 3R11%, forall xeY(@),
(5.51a)

|0,n(x, 1) — denp(x. 1)] < (16R1b—% 4 Ssz—%) i, forall x € Y(t),
(5.51b)

for all t € (0, €]. The bound (5.51a) follows from (5.44), the mean value theorem,
and the fact that by (5.17b) we have that |0, ng(x,?) — 1| < 29—0 for all x € Y(¢) (in
analogy to (5.21a)). In order to prove the bound (5.51b), we use

0;(0xn — 0xng) = (Jgwsp) o1 (0xn — dxnB) + (JgA3 — dpwg) o N Iy
+ ((dgwsp) o — (dpwg) o NB) dx N8B

and the fact that 9, n(x, 0) — 9, ng(x, 0) = 0. First, we note that due to (5.17¢), (5.21a),
(5.36a), (5.44), and the mean value theorem, we have that

wors~ (0@, 0, 1) wp(x)
L+ twy(g =" (n(x, ), 1) 1+ twp(x)

| ((Bpwg) o n — (Bpws) o ng) dxng| < 2
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<A4RbIrT, (5.52)
Second, by the assumption (5.38b) and the bound (5.49) we know that
| (8923 — dyws) 0 0 de| < 2Ra(br) ™2 . (5.53)

Combining the above two estimates with the evolution equation for d,n — 9, ng and
(5.46), we obtain (5.51b).
The results in this section may be summarized as follows:

Lemma 5.10 Let n be defined by (5.39), with A3 satisfying (5.38). Then, by possibly
further reducing the value of €, solely in terms of k, b, ¢, m, the following hold. With
the definition of Y (t) in (5.42), we have that n(-,t): Y (¢t) — T\ {s(¢)} is a bijection.
For x € Y(t), the curve {n(x, s)}se[o,r] does not intersect the shock curve, and by
(5.49), (5.51a), (5.51b), we have the estimates

3 <On(x.1) <5 (5.54a)

T < dmx, 1) < 3m (5.54b)

In(x, ) — ne(x, )| < 3Rir? (5.54¢)
|0xn(x, 1) — dxng(x, )| < (16R1b™ > + 8R2b™ 2)t2 (5.54d)

The inverse map n~": Ds — T \ {0} is continuous in space-and-time, with bounds

<2 (5.552)
0. 1) < — gk (5.55b)

forall (0,t) € Dg. Lastly, from (5.46) and (5.47) we have that

/ [0gwa(n(x,s), s)| ds < 4—9 (5.56a)
/ (agwg(n(x,s),s) ds < 3(bt)"3 (5.56b)
0

forall x € Y(t),and allt € [0, €].

Proof of Lemma 5.10 The only estimates which were not established in the discussion
above the lemma are (5.54b) and (5.55). In order to prove (5.54b), we appeal to (5.39),
(5.38a), (5.35), (5.1a), (5.1a), and take € to be sufficiently small:

on(x,t) = A3(nx, 1)) = wg(n(x, 1)) + O()
=wo(ns™' (n(x, 1), 1)) +O@) € [§. ] .

€[5,m]
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The bound (5.55a) follows from (5.54a) and the inverse function theorem. Lastly, in
order to prove (5.55b), we use that ! solves the transport equation dual to the ODE
(5.39), namely Bm_l + Agayn_l = 0. As such, from (5.55a), (5.38a), (5.35), (5.1a),
(5.1a), we obtain that

O, 1) = —we(0, Hdgn " + O()
=—wo(ns~ ' (0,0) dgn~' +0(1) € [-3m, —%]
N — e e’

€[5.m] el4.2]

upon taking € to be sufficiently small. O

5.5.2 Estimates for Derivatives of wg Along Flows Transversal to the Shock

In analogy to Lemma 5.10, we also have an estimate for the time integral of dypwg
along any flow which is transversal to s. More precisely, we have:

Lemma5.11 Fixt € (0,€] and 0 < 0 < s(t). For some t’ € [0, t), assume that we
are given a differentiable curve y : [t', t] — Dz which does not intersect the shock
curve s, such that y(t) = 0, and such that y(s) < ux for all s € [t t], for some
w € [0, 1). Then, we have that

W=

t
f [dpwp(y (s),s)|ds < A%t , (5.57a)
t/

(I*M)K
/l‘
’

Proof of Lemma 5.11 As in the proof of Lemma 5.10, the goal is to understand the
evolution of x(s) := r)B’l (v (s), s). First, we note that since y lies on the left side
of s, the point x(s) is well-defined, and satisfies x(s) < —%‘(bs)%. Next, from the
definition of ng and its inverse, we have that

2
2
Gwe(y(s),9)|ds < oo (%Iy(t/) —5<r/>|+%<bﬂ>f) T (557b)

< et (5.57¢)

%) = @me D (5), ) + 7 ()@ne (¥ (s), 5)
_ V() = Byne) (g~ (v (5). 9). 5)
(0xme) (8~ L (y (5), 5), 5)
_y(s) — wo(x(s))
T sw)(x(s)

(5.58)

Due to the aforementioned lower bound on |x (s)| and the estimate (5.17b), the denom-
inator of the fraction on the right side of (5.58) lies in the interval [%, %]. Furthermore,
since r < £ and ¢ is sufficiently small, we have that |x(f)| = |7~ (y, )| is sufficiently
small to ensure via (5.1¢) that |wg(x(¢)) — k| < 2blx(¢) |% < 1_T“/c. Also, from (5.58)
we may deduce that |x(s)| < 4m which implies |x(s)| < [x(¢)| + 4m¢; therefore,
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since t < ¢ is sufficiently small, we may show that |wo(x(s)) — k| < —/< for all
s € [t, t]. We then immediately obtain from (5.58) that

—wo(x(s)) pk — wo(x(s)) (1 —wx
O s ey ST S Thsweey ST 3 0 O

Then, using (5.36a) and the fact that x (s) is strictly negative, we obtain that

/[ 16 ws(y (s), )| ds =/’ HEHCIO) NN b/t(x(s»—?ds
g o Tswpren

=

T2 (x(r)z —x(0)} )
W|x<r)| = el @. 1))
(3Kf) (5.60)

t
< 3b_ /fc(s)(x(s))—%ds
t/

//\

< o

In the last inequality we have used that since 0 < 6 < s(¢) we have that |n|3’1 @,1)] <
|773_1 (0, 1)] < 3kt for all ¢ < g, which is sufficiently small.

The proof of (5.57c) is nearly identical, but instead of (5.36a) we appeal to (5.36b),
arriving at

J.

In order to obtain (5.57b)—(5.57¢), we use the above bound and (5 22b), which implies
that |x(¢)| = [ng ' (y (1)), 1] = Sy (') — ()| + 2 (bt/)2 > 2(bt’ )3 o

_2
3

sy (s). 9)|ds < 25 (m’y% —x(t)*%) <2 (x(th)

(5.61)

5.6 zand k on the Shock Curve

For every t € (0, €], let us assume that we are given a left speed w. = w.() =
w(s(t)~, t) and a right speed wy = w4 (t) = w(s(t)™, 1) at the point (s(¢), t). Fur-
thermore, let us assume that w. and w4 behave similarly to the solution of the Burgers

equation computed in Proposition 5.7; by this we mean that the jump and the mean at
(s(t), 1), defined by

[wl = [wl@®) = w-(1) — w4(2), (w) = (wh() = %(w-(t) + w4 (1)) ,
(5.62)

satisfy the bounds
Twll(e) —2b%¢2| <Rjr and  [(w)(t) — k| < Rt , (5.63)
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for all t € (0, €], for two constants R;, R,, > 0 which only depend on «, b, ¢, and m.
These bounds are consistent with (5.15a) and (5.145a) (to be established below).

The variables w. and w are the same as those in equations (3.13a)—(3.13b). Our
goal in this subsection is to solve the coupled system of equations (3.13a)—(3.13b),
for the jumps of z and k at the fixed point (s(¢), t), as a function the left speed w. and
right speed wy, at this point. Since z and k are equal to 0 on the right side of the shock
curve, we note that the jumps of z and k are equal to their values on the left of (s(t), 1);
as such, we work with the unknowns

=z =[zN), k- =k () =[kI@). (5.64)

In fact, because we expect k_ to be close to 0 (see (2.7)), and since (3.13a)—(3.13b)
contain the variables e %- and e*—, which are thus close to 1, it is more convenient to
replace k_ with the unknown

e =ce (1) =e"0 1. (5.65)

Then, with this notation the equations (3.13a)—(3.13b) may be rewritten as the system

1w, wy,z_,e_)=0 (5.66a)
E(w., wy,z—,e_)=0 (5.66b)

where

51 ('LU-, W+, Z—, e—)
= ((w. —z ) (w.+z)%+ %(w, —z )t - %(1 + e_)wfr)
((w. —z )Y -1+ e_)wf>

_ ((w_ — 2 w4z )=+ e,)wi)2 (5.67a)
gZ(w-s W+, Z—, e—)

=e¢_(w. — z_)4(3w3(1 +e)— (w.—z.)) — ((w. —z) =+ e_)wi)3
(5.67b)

We view (5.66) as a coupled system of equations for the unknowns z_ and e_ (or
alternatively, k_), with w. and w4 given. The correct root of (5.66) is given by:

Lemma 5.12 (Existence and asymptotic formula for z_ and k_) Assume that w- and
w4 are such that their jump and mean at (s(t), t) satisfy (5.63). Then, the system of
equations (5.66) has a smallest (in absolute value) root (z_, ¢_), such that 7_ and
k_ =log(e— + 1) satisfy the bounds

3 3
2-(0) + qaisia| < Cot?. (5.682)
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3 5
k_(t) — % < Cot 2, (5.68b)

where Co = Co(k, b, c, m) > 0 is an explicitly computable constant. In particular, in
view of (5.63) we have the estimates

9

2

9
o)+ 25 %|<Ct2 = |zl < ﬁt% (5.69a)

9
k() — 32'02 <o = ko] <2

K

(1108

(5.69b)

forallt € (0, €], assuming that € is sufficiently small.

Proof of Lemma 5.12 Throughout the proof, we fix ¢ € (0, €], and omit the ¢ depen-
dence of the unknowns. In view of (5.63), we view [[w]] as a small parameter, thus

suitable for asymptotic expansions, and (w}) as an O(1) parameter. As such, in (5.67)
we replace

w.o = (w) + swl,  wy = (w) — 3[wl.

Because we expect [z—|, [e—| < 1, we first perform a Taylor series expansion of
(5.66), and identify only the linear terms with respect to z_ and e_. This becomes

Telwl*(12(w)? — [w?) — §IwIG2(w)* + 8(w)*[wI?* + 6¢w)[wI’ — [w]*)z—
— i [wl@8(w)’ + 40¢w)’ [wl* — 48(w)*[wl’ + 3(w) [wl* + 4[w]’)e_
= O(lz—* + le—»)
— 8(w) [wl® + 12[w]*2(w)? + (w)*[wl)z—
+ 55 (64(w)° + 240(w) [w] — 512(w)’ [w]® + 60(w) > [w]* + [w]®)e—
= O(lz—* + le—1)).

By dropping the higher order terms in |[[w]l| <« 1, this motivates our definition of the
approximate solutions z"*" and ¢*™ as the solutions of the linear system

Afwlw)? FTwl(w)® (27 _ (Jlwl*(w)? (5.70)
24[wlP(w)®  2(w)® ) 8r[w1|3<<w>> ' '

This system is uniquely solvable, and yields

app _ 9[[w]]3 ([[w]]) B .
ST ) O T T (5.71a)
app _ Alw]® ([[w]]) - 1

T Pl ) ST (5.71b)
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In order to apply the implicit function theorem, we at last introduce the variables

7 — ZaPP e — eaPP
= —5_ and FE = —5_ (5.72)
[w] [wl
and substitute in the system (5.67) the ansatz z_ = 7P 4 Z[[w]]5 and e_ =

¢’ + E[[w]’. After some algebraic manipulations, the system of equations (5.67) is
rewritten as system

O = f] ([[LU]], <<w>>7 Zv E)
= [wl~%& ((w) + STwl, (w) — JMwl, 2P + Z[w], 2P + E[w]’)
(5.73a)
0= .7:2([[11)]], «w»’ Zv E)

= [wl&(w) + STwl, (w) — STwl, 2 + Z[wT’, e + E[w]?)
(5.73b)

for the unknowns Z and E. Defining

Py = (0, (w), —Z (w) ™4, —15(w) ™),
we observe that

Fi(Py) =0,  8zF1(Py) = —4(w)*,  8zF2(Py) =0,
Fo(Py) =0, dpFi1(Py) =0, 0pFa(Py) =2(w)°.

Thus, the Jacobian determinant associated to (Fi, F2)(-, -, Z, E) evaluated at P,
equals to —8(w)'? £ 0. Here we are using that by (5.63) we have that [{w) — «| <
5. and thus (w) # 0. Thus, by the implicit function theorem, there exists a
Jo = Jo({w)) > 0, such that for all |[w]]] < Jy, we have a unique solution
Z = Z([w], {w)) and E = E([w]], {w)) of (5.73), with Z(0, {(w)) = —%({w})’4
and E(0, (w)) = —15(w)~°. To conclude, we note that since Jy depends only on
{w), it may be estimated solely in terms of «; and since by (5.63) we have that
[Tw]l] < 3b%§% with € which is sufficiently small in terms of x and b, we deduce that
the condition |[w]]| < Jo is automatically guaranteed.

As a consequence, from the above discussion we deduce that for all 1 < €, we have

lz- — 2P| < Collwl®,  and  [e— — ™| < Collw]°, (5.74)

where Cop > 0 is a constant which only depends on «.
The proof of the bounds (5.68a)—(5.68b) are now essentially completed, upon
combining (5.63), (5.71), and (5.74). To see this, note that the rational function Q
appearing in the definition (5.71a) satisfies |Q1(x) — 1] < 3x2 forall x < 11—0. Thus,
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we obtain that

Iw]?
za_pp+ﬂﬂ

To1w)? < CollwP

since {w) > % when € is sufficiently small. The bound (5.68a) follows from the above
estimate, (5.63), and (5.74). Similarly, by using that the rational function Q> appearing
in the definition (5.71a) satisfies |Q2(x) — 1] < 2x2 for all x < %, we obtain the
bound

app 4[Iw]]3

(w)?

which may be combined with (5.63) and (5.74), to establish

< CollwP,

3
‘e _ Al < Collw] (5.75)

(w)?

with Cp > 0 a constant which depends only on « and b. The bound (5.68b) now
follows because k— = log(l 4+ ¢_), and [log(1 +e¢-) —e_| < 2¢2 for |e_| < %;
clearly, [e_| = O(t7) < L in view of (5.75).

The bounds (5.69a)—(5.69b) follow from (5.68a)—(5.68b), (5.63), and the fact that
t < g, which in turn may be made arbitrarily small with respect to « and b. O

Let us further assume that w; and w. are differentiable with respect to & and ¢ for
all (¢, t) € Qz. By implicitly differentiating (5.66a)—(5.66b), we may then deduce:

Lemma 5.13 (Lipschitz bounds for z_ and k_) For t € (0, €], assume that w- and
wy are such that their jump and mean at (s(t), t) satisfy (5.63), and further assume
that {w) and [[w]] are differentiable with respect to t. Then, the smallest roots of the
system of equations (5.66) are such that z_ and k_ = log(e_ + 1) satisfy the pointwise
estimates

Foo)+ & (HI0)| < Cor (|l Ol + 1 ) 0])  (5.76a)

Ok ) — & (A) | < cor? (141wl + 14w ®)])  (S5.76b)

where the constant Co > 0 only depends on k, b, and m.

Proof of Lemma 5.13 From the definition k_ = log(1 + e¢_) we obtain that %k, =
e k- %e_, and thus, in order to prove the lemma it is sufficient to obtain derivative
bounds for z_ and e_.

Implicitly differentiating (5.66) we arrive at
d(z2\_ (9. 808 &\ (0nE 0,6 d [(w 677
dr \e— )] 0;_& 3:._& 0w.&2 0w, &2 ) dt \ws )’ ’
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pointwise for ¢ € (0, €], where we recall that the functions £ and &, are defined in
(5.67). In order to evaluate these Jacobi matrices, we resort to the notation in (5.62)
and rewrite w. = (w) + %[[w]] and wy = (w) — %[[w]]; furthermore, we write
2o =z L O([w]®) and e_ = ™ + O([w]°) as justified by (5.72), with z**P
defined by (5.71a), and ¢"" given by (5.71b). We emphasize that the implicit constants
inthe O([w]®) and O([w]°) symbols only depend on k and b, since the bounds on the
solutions Z and E of (5.73) only depend on « and b. After some tedious computations,

we arrive at
-1
_ <3z51 3e51) <3w_51 3w+51>
0, &> 0:_&> 0w.&2 0, &2

_ 27[w]? Iwl®  27[w]? 9[w]?

16(w)? 16(w)* 16(w)? 16(w)‘ 4
T W) w)?

where the implicit constant only depends on k and b. From (5.63), (5.77), (5.78), and
recalling that Lw. = 4 (w) + 1 Lw] and Lw, = L(w) — 1 Lw]), we deduce
that there exists a constant Cop > 0, which only depends on « and b, such that

3 3
o+ i (e )|+ [ihe — b ()| < ot (| 0o + | £ o1 )
(5.79)

The bounds (5.76) follow from (5.79), upon recalling that [w]] = O(t%). O

A direct consequence of Lemmas 5.7, 5.12, and 5.13 is the following statement,
which will be useful in the proof of Proposition 5.6.

Corollary 5.14 In addition to the assumption of Lemmas 5.7, assume that [w] and
{w) satisfy the bounds (5.63). Let z_(t) and k_(t) be as defined in Lemma 5.12. In

addition, suppose that there exists R = R(k, b, ¢, m) > 0 such that for all t € (0, €]
we have

|4 [wll(r) — S Mwsll(1)] < 2R, |4 (w) (1) — 4 (ws) ()| <R.  (5.80)

Then, assuming that € is sufficiently small with respect to k, b, c and m, we have that
9

Fre (t)+27b212| : |k (t) - 213 <o, (5.81)

forallt € (0, €], where C = C(x, b, c, m) > 0is a constant.
In addition to (5.80), if we are also given that

| Lowl) - Sllwsl)| <2R | L qwd) - L fwe) ()| <R
. 82)
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for a constant R* = R*(«, b, ¢, m) > 0. Then, by possibly further reducing the value
of € we also have the estimates

2! < ¢ Ly - 2t o (5.83)

where C = C(k, b, c, m) > 0 is a constant.

Proof of Corollary 5.14 Recall that by assumption the bound (5.63) holds, and thus by
Lemma 5.12 we have the estimate (5.69). The assumption (5.80) and the bound (5.15b)
imply that

4wl — b3 2| + |4 (w)| < 3m* + 3R, (5.84)

and thus the right sides of (5.76a) and (5.76b) are (’)(t%). For the bound on the time
derivative of z_, we appeal to (5.76a), which gives

[SI[%)

d 27Mw]? d
ar<= + 16(w)? deI wl =

di ‘\Ct

Incorporating into the above estimate the bounds (5.84) and (5.63), we arrive at the z_
bound in (5.81). The time derivative of k_ is bounded by appealing to (5.76b), which
yields

3 3
et — BLOE 4w+ B 4 )| < ¢

Using (5.84), (5.69b), and (5.63), the k_ bound in (5.81) now follows.
In order to prove (5.83), we first note that assumption (5.82) and the bound (5.15¢)
imply that

[l + 3637 [ g <3 (smi4R7) T 589)

Next, we implicitly differentiate (5.66) a second time, to obtain

a? (7 0,_&1 0._& - 0,.E1 0, &1\ g% [ w-
i (2) i
dr? \ e- 3, & 3 & 0w.E 0w, & ) A7 \ w,

d . N2
——W-
0, &1 0._& (00w 1 dww, &1 Qw1 idt d)
2_ 4
81752 0._& dw.w.&2 aw-w+g2 8w+w+€2 R
(Lwy)?
i (4222
0;_&1 3._& 0;_ 7 &1 0,k &1 i &
== dtZ dtk—
9, & 0._& 0, 7. & 0,k & Nk &
(4k)?
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4, d
dt dt
5 0 &1 9 &1\ (0wl 0wl K w.E1 w1\ | Lz Ly
0, & 0. & 0z w.&2 07w, &2 O w.&2 h_w, &2 % %
dp d
dt

(5.86)

By appealing to (5.78), (5.76), and (5.63), similarly to (5.79) we deduce that the right
side of (5.86) equals

3{w) d d (w dp 2
ai -k~ + Torw (d_ -)

16[w] . O ((|%Z7| + |%k7|)2>
— ) + L2y PR 4 g+ 34wy (22
" w (w)2[w] 32[w]{w) 8 dt (dt )
2l 4 ~2l ] - B gy ) \ e
+0 (Il (| 4Tl + | & wd)) (1621 +15k1)) - (5.87)

Similarly, one may verify that the sum of the last two terms on the left side of (5.86)
is given by

et - S G | (G + 2 e o
SR e+ B Sy |\ 2 e + L )
+0 ([1w]]3 (|4 wi| + |E<<w>>|)) (5-88)

where the implicit constants only depend on «, b, ¢, and m.
To conclude we use the bounds (5.63), (5.84), (5.85), (5.69), and (5.81) in the
equality given by (5.86), (5.87), and (5.88), to arrive at

2
Lo+ T (2 (4qw])’ + [wldlwl)| < € (5.89)
. 2 A .
and by also appealing to %k, ke jﬂ e_ — (%k,)2 we obtain
2 2 1
e Lop — LRI (5 ()’ + [ulwl)| < CrF, (590)

where C = C(x,b,c,m) > 0. To conclude, we combine (5.89)—(5.90) with the
precise estimates for [w]] and its first two time derivatives, cf. (5.63), (5.84), and
(5.85) and arrive at (5.83). O
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5.7 Transport Structure, Spacetime Regions, and Characteristic Families
5.7.1 ANew Form of the w and z Equations

We first observe that using (3.5¢) and recalling that ¢ = %(w — 7), we can write the
system (3.5) as

dw + A3dgw = —Saw + Lc(@k + A39pk) , (5.91a)
9z + rdpz = —Saz — Le(@k + 1100k) (5.91b)
3k + A2dpk =0, (5.91c)
dia + Mdga = —3a° + §(w +2)° — (w —2)°, (5.91d)

Our iteration scheme will be based on (5.91), and in particular on the estimates for
dpw that the specific form of the equations (5.91a) and (5.91b) provide. It will be
convenient to introduce the vector of unknowns

U=w,zk,a). (5.92)

5.7.2 Characteristic Families, Shock-Intersection Times, Spacetime Regions

Recalling the definition of the wave speeds (3.6), we let n denote the 3-characteristic
which satisfies

on(x, 1) =r3(n(x,0),1),  nx,0) =x, (5.93a)
fort € (0, €). We also define the 1- and 2-characteristics as

aswt(evs)z)"l(wl(09s)5s)’ wl(ert)=07 (593b)
0591 (0, 5) = Ao (0,5),8),  ¢(0,1) =0, (5.93¢)

for s € (0, t). We note that n has a prescribed initial datum at time 0, while ¢, and
Y, have a prescribed terminal datum, at time 7. Moreover, note that as opposed to 1,
the characteristics ¢; and v/; may cross the shock curve (s(¢), t);¢[0,7] in a continuous
fashion; this will be shown to be possible because A1 and A, have bounded one-sided
derivatives on the shock.

Definition 5.15 For (0,¢) € T x [0, €] consider the integral curves v, (6, s) and
¢:(0, s) defined by the ODEs (5.93b)—(5.93c). If the curves (¥ (6, s), 5)sef0.] and
(5(s), $)se[0,1], respectively (¢ (8, ), $)sefo0,] and (s(s), $)se[0,¢], intersect then we
define the shock-intersection times T(0, t) and g(0, t) as the (largest) time at which

Y (0,30,1) =5(3(0,1)), and
¢:(0,70,1) =s5(70,1)). (5.94)

@ Springer



26  Page 106 of 199 T. Buckmaster et al.

~ (6, 5)

(]5t(9, S)

T s@0,0) s00.0) 0

Fig. 11 Fix a spatial location (6, t), just to the left of the given shock curve s, which is represented in red.
The flow n(x, s) defined in (5.93a), and the label x such that n(x, r) = 6, are also represented in red. The
flow ¢ (6, s) defined in (5.93c), its associated shock-intersection time T(6, ¢) from (5.94), and the curve sy
from (5.95), are represented in blue. The flow ¥+ (0, s) defined in (5.93b), its associated shock-intersection
time J(0, t) from (5.94), and the curve s7 from (5.95), are represented in green

If the curves (¥ (8, ), §)sef0,] and (s(s), §)sef0,1], respectively (¢; (0, s), §)se0,r] and
(s(s), $)se0,1], do not intersect, then we overload notation and define 3(0,¢) = &,
respectively 7(0, t) = €.

Implicit in the above definition is the assumption that if the characteristics (6, ) or
¢: (0, -) intersect the shock curve, then they do so only once; we will indeed prove this
holds, due to the transversality of these characteristics (Fig. 11).

Definition 5.16 Define 6;,6, € T implicitly by the equations 3(61,%) = 0 and
T(6h,€) =0.Forall ¢ € [0, 2] we define

si() =vs(@1.1), and  s(1) = ¢e(ba, ). (5.95)
In particular, s1(0) = 5,(0) = 0, and J(s1(¢),t) = T(s2(¢),t) = 0. The spacetime

curves 51(t), s2(t), and s(¢), divide the spacetime region Dz into four regions with
distinct behavior. We also define the sets

Di={(0,s) € Ds: 51(s) <6 <5(s),s € (0,5},
DE={(0,5) € Ds: 52(s) <6 < 5(s),5 € (0,€]}.

Implicit in the above definition is the assumption that the points 61 and 6, exist, and
are uniquely defined; we will indeed prove that this holds, due to the monotonicity of
Y (0, s) and ¢, (0, s) with respect 6, and the the regularity of these curves with respect
toy and s.

Definition 5.17 It is convenient to define the vectors

U= w,zk,c,a) and
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Ul =w,z,kc,a)s@) ,t) =(w_,z—, k_,c_,a_)(t). (5.96)

Remark 5.18 (Notation for derivatives) Throughout the remainder of manuscript
we shall interchangeably use the following notations for the derivatives of vari-
ous functions f with respect to the Lagrangian label x or the Eulerian variable 6:
o f < fu, Bff < fixs00f < fo, 892]‘ < fpo. Similarly, we shall sometimes
denote time derivatives as d; f <> f;. Derivatives for function restricted to the shock
curve, shall be denoted as %( f(s(t),1) = f [(s(r),r); this notation for instance shall
be used for the function I/ defined in (5.96).

5.7.3 Identitities Up to the First Derivative for w, z, k, and a

There are particularly useful forms of the equations for w, z, k, and a and their first
derivatives. These identities will be used both for designing a simple iteration scheme
for the construction of unique solutions, and also for second derivative estimates in
Section 6.

Identies for w. Equation (5.91a) can then be written as

dwon) =tcondkon —Saw)on. (5.97)
Differentiating this equation, we find that

L (wg onnye) = Sconik(kgonny) + fco onnylk + Aske) o — g (aw) o n 1y

T4 (conkygonny) — f(cr +Azco) on ks o ny

dt
+ 30 0 1 Nx 3k + A3dgk) 0 — $dp(aw) o n nx
75 ((cko) o m 1) + §(cko (zo + co +4a)) o n 1x — §(aw)g o 1 11y .
(5.98)

To obtain the last equality, we have used that (3.7) can be written as

0;¢c + A30gc = —%089 — %ca,

and that 9;k = —A,0pk with the fact that A3 — A, = %c. Integrating (5.98) in time, we
obtain that

, t
wyon= % + %(cky) on+ nlx_/o (%Ckg(zg 4+ cop +4a) — gag(aw))on nedt’ .
(5.99)

We wish to emphasize that although (3.5a) appears to have derivative loss on the right
side, the structure of (5.91a) leads to the identity (5.99) which shows that there is, in
fact, no such loss incurred.
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Notice that by expanding the time derivative in (5.97) and using (5.91c), we find
that

B,wonz—wgonkgon—i—%czkgon—%awon
It follows that
(0w +5hw)on=(§ —A30nwgon—+ éczkg on— %awon
= 22— A3 0m) + y(cke) 0 n(5 — A3 0m)
—l—éczkgon—%awon
. t
+ (5*];\_;0’1)/ <éck9(ze +co +4a) — %39(6111)))077 nedt’ .
0
(5.100)
Identies for z and k. Equation (5.91b) can then be written as
d _ 1 d 8
zoy)=—teoy ko) —S@)oy. (5.101)

Differentiating (5.101), a similar identity to (5.99) holds for dgz. The analogous com-
putation to (5.98) shows that

1
1
— (ko (wy + 2 + 8a) + $05(a2) ) ov Bty (5.102)

and thus, upon integration in time from J (6, ) to ¢, we find that

2005, 1) = ((20(5(a), 8) + §(cko) (). ) ¥ (5(2), 2)

+ Fz (U, Y1, 3))(y, 1), (5.103a)
Foy(U, Y, 8) = — 1 (cko) (0, 1)

t
_/3(9 )(11_2Ck9(wQ + 29 +8a) + %30(‘12))0% dordt’
,t
(5.103b)

Again, the identity (5.103) shows that no derivative loss occurs for dpz as well. This
formula is not yet in its final form. We shall view the given shock curve (s(¢), ) as
a Cauchy surface for both z and k. As such, we shall write the first term on the right
in (5.103) in terms of the differentiated data on the shock curve, which we now make
precise.

The transport equation (5.91c) allows us to write % (kog¢;) = 0, so that integration

from 7(0, t) to t shows that for all (6, t) € Dé,

k@,t) =k(s(7(0,1)),7(6,1)). (5.104)
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Differentiation then gives
4 gk o ¢y dopy) =0, (5.105)
and integration using (5.93c¢) and (5.94) shows that
0k (0, 1) = dok(s(7(0,1)),T(0,1)) o (s(T(0,1)), T(O,1)). (5.106)

Letting k_(7) := % k_(t) denote differentiation along the shock curve, from (5.91c)

we have the coupled system

k_(t) = 8,k(s(1), 1) + $(1)dpk(s(1), 1), (5.107a)
0 = 3,k (s(t), 1) + Aa(s(t), 1)dpk(s(t), 1) . (5.107b)
We see that
dpk(s(2), 1) = A (5.108)
YT S — 0.0 ‘
and thus with (5.94),
B k_(7(6,1)))
0pk(s(7(0,1)),T7(0,1))) = 00.0) — b 0. 70.1) (5.109)
Substitution of (5.109) into (5.106) shows that for all (0, ¢) € Dg,
- B k_(7(0,1)))
hk(0,1) = g (5(7(0,1)),T7(0,1)). (5.110)

§(7(0,1))) — 95¢: (6, 7(6, 1))

Once again, we let z_ (¢) denote differentiation along the shock curve so that using
(3.5b), we obtain the coupled system

() = dz(s(t), 1) + $(D)gz(s(1), 1) , (5.111a)
(L28gk — Saz)(s(0), 1) = 8,2(s(1), 1) + A1 (s(1), )Bpz(s(r), 7). (5.111b)

Thus,

2 (1) — $(Pdk)(s(), 1) + 3(az)(s(1), 1)

0, 1),t) = - , 5.112
(s 1 5 — m(s(). 1) G112
and hence with (5.108),
. 2 (DK-(D) 8
Z2(9) — t e + Sa_(9)2-(9)
992(s(a), 3) = el , (5.113)

$(2) — 951 (0, 9)
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where § = (6, t). We can now substitute (5.109) and (5.113) into (5.103) to conclude
that

2 .
. 1 2 (Dk-() 8
27(3) T 6350)—20).9) + §a7(3)27(8)

5(3) — 05y (s(3), 9)

1 - @k-()
45(3) — r2(s(3), 3)

09z =

> Y (s(3),3) + Fz (5.114)

for any (6, t) € Ds. We define

L
. 1 2 (Dk-(D) 8
-0 ~ g5 nea@.y +39-0)2-0)

§(3) — 051 (s(2), 9)

Hey UL, UL, V1, 9) =

1 c—(@k-(2) )
= - v (5(9), 9), 5.115
450) = ha(s(a), ) ) V@D G115
so that (5.114) is concisely written as
d9z = Moy UL UL, Vi, 8) + Foy (U, Y1, 3) (5.116)

with 7, and H_, given by (5.103b) and (5.115), respectively.

Identies for a. We next obtain identities for dya, first in Dg. We write (5.91d) as
dra + Apdga = —‘—3‘a2 + %(w2 + zz) + wz. We consider this equation along the
characteristics ¢, and integrate from time s € [0, ¢] to 7 to find that

t
a(@,1) = a(@(6,s),s) +/ (_gaz +iwr+ 12+ wz) ogdr.  (5.117)
S
Differentiation shows that

0pa(0,t) = dga(P;(0,s),5)0e¢ (0, )

t
+ [ a4+ bt 4 52 wz) 0 tudr. (5119
N

5.8 Construction of Solutions by an Iteration Scheme
5.8.1 Wave Speeds, Characteristics, and Stopping Times

For each n > 1, the three wave speeds are given by

W = T 0 30 200 4 2,0 5 — ) g 1200 (5119)
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Forn > 1, we define " and ¢ as flows solving

v, 5) =2 W™ ©,5),5),  vO,0=90, (5.120a)
30, 5) =25 (@M 0,5),5),  ¢"O,0)=6. (5.120b)

We next define n to be the solution of
o™ (x, 8) =2 0" (x,5),5), ™ (x,0)=x. (5.121)

Using the characteristics qb(") and w("), we define the shock-intersection times
7™M (@, 1) and 37 (0, 1) as in Definition 5.15. Similarly, the curves 5(”)(t) and 5(”)(t)
and the spacetime regions D" and Dg’ ) are defined just as in Definition 5.16. The
rigorous justification of these definitions is provided in Lemma 5.24.

5.8.2 Specification of the First Iterates

We begin by defining the first iterate ") associated to the 3-characteristic and w‘"
as follows. First, we set

nM(x, s) = ng(x,s) = x + swo(x), (5.122)
and then define

wO,1) = we(®. 1) =wo(nip)®.0), V=0, kV=0, oV =a,
(5.123)

where 7\l := (y@)~! = pg~!. We also define lp“’ and ¢\" via (5.1202)~(5.120b)
as the characterlsnc flows of the velocity fields 1 zwg and respectively %wB.

5.8.3 The Iteration Scheme for w ™+
We can now state the iteration scheme for all n > 1. We set
™ — %(w(") + Z(”)) i
and define w"*1 as the solution to
%(w(n+1) ° n(n)) — _%(a(n)w(n)) ° n(n) + JTC(H) ° T)(n)%(k(n) ° n('l)) . (5.124)
with initial condition w™*D o ™ (x, 0) = wo(x). Integrating in time shows that
w(n+1)(n(n)(x’ 1), 1)
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t
= wo(x) — § fo (@ w™) (™ (x. 1), t)dr’
t
+1 /O MG (x, 1), 1) (k<">(n<">(x, ), ﬂ)) dr'. (5.125)

It follows that for all (0, t) € Dg, w® D ig the solution to

D 43w+ = 8y 10 (g 45 W a0k ™) | (5.126a)
w D (x,0) = wo(x). (5.126b)

In terms of the restrictions of w1 on the left and right sides of shock

(kD (n+1)

curve, i.e. w limg_, g~ w" D@, 1) and respectively wy @) =

limg_, 5(1)+ w6, 1), via Lemma 5.12 we define the functions z(_"H)(t) and
k81+1)(t) as the solutions of the system of equations (5.67)

gl(w(n+1) w_(:—H) Z(n+1)’ e(_n+l)) _ gz(w(_n+1)’ wgiH-l), Z(_VH-l), e(_VH'l)) -0
(5.127)

— 3 » &—

and k<_"+1) = log(1 + e(_"H)).

5.8.4 The Iteration Scheme for a™+"

Forall n > 1 and (0, 1) € Ds, we define atV to be the solution of the Cauchy
problem

ala(n-i-l) _I_)L;")aea(n-ﬁ-l) — _%(a(n))Z + %(w(n))z
+1E™)? 4w ® (5.128a)
a™ PV (x,0) = ap(x). (5.128b)

In view of (5.117), this function is explicitly given by
a0, 1) = ao(¢" 0,0))

t
+/0 <_4§L(a(n))2 + %(w(n))2 + %(Z(H))Z + w(n)z(n)>(¢t(n)(9, s), $)ds .
(5.129)

5.8.5 The Iteration Scheme for z("+"

For all n > 1, and for all (0,1) € Dg’ ™ Wwe define z"tD {0 be the solution of the
ODE

dd_s(z("'f'l) ° Ipt(”l)) — _%(a(”)z(”)) ° wt(n) _ }TC(”) o wt(n)%(k(l’l) ° [(")) , (5.130a)
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foralls € (g () (@, 1), t], with Cauchy data defined on the shock curve by
20,370, 1), 30, 0) = 2"V (™0, 0)7, 3™ O, 1)
= D™ g, 1)) (5.130b)

n+1

where the function z is defined on the shock curve (s(z), t);¢[0,7] as the correct
root of (5.127) given by Lemma 5.12. In Eulerian variables, we note that the equation
(5.130a) is merely

3tz(n+1) + )\Y’)agz(”“) — _%a(n)z(n) _ Ll_‘c(n)(atk(n) + k(ln)agk(n)) (5.131)
for (0,1) € DZ;’ ™ On the other hand, for (0, 1) € (DZJ (”))B, we simply define
2@, =0 (5.132)

which corresponds to the solution of (5.130a) with k" = 0, and Cauchy data at = 0
given by zg = 0.

5.8.6 The Iteration Scheme for k(™

Having defined w@tD and z D we solve for ¢,("+1) using (5.120b). In turn, this

(n+1)
2

defines the curve s , the shock intersection times ‘I("+1)(9, t), and the region

k,(n+1)
- .

Forn > 1and (0,1) € Dé‘(”ﬂ), we define k*D to be the solution of
(D o gty — 0, (5.133a)
forall s (7(”“) (0, 1), t], with Cauchy data defined on the shock curve by

KD "D 0, 70D g 1)), 70D (0, 1))
= k"D (5@ 0, )7, 70, 1) = k"D, 1) (5.133b)

where the function k! = log(1+ e(fH)) is defined on the shock curve (s(1), t)/¢[0,7]
as the correct root of (5.127) given by Lemma 5.12. In Eulerian variables, we note
that the equation (5.133a) is the same as
ak D 2 VgD — o (5.134)
for all (6, 1) € ¥V, On the other hand, for (6, 1) € (D), we define
k"o, n =0, (5.135)

which is the solution of (5.133a) with Cauchy data at time ¢ = 0 given by ko = 0.
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5.8.7 Alternative Forms of the Iteration for w(™t", 2"+ and c(+1

Using that 9k = —A;")agk(”), we can also write (5.126a) and (5.131) as

Bw "D 4287 8yw ) = —8a®w® 4 )25k, (5.136a)
3,2+ 4 Ain)agz(”l) — _%a(n)z(n) + é(c("))289k(") , (5.136b)

and therefore
atc("+1) = —%Ag”)89w<”+‘) — %Aﬁ")agz(”“) — %a(”)c(") , (5.137)

which has the equivalent forms

3D 43 9pc D 4 Lemggafth = _Samem (5.138a)
3D 1 AVt 4 Zem gy () — 8y (5.138b)
8D 42Vt D 4 2 gyt — 8 (5.138¢)

Although it is not necessary to obtain any estimates, we record at this stage the evo-
lution equation for the specific vorticity given according to (3.8) by ™ = 4(w™ +
2™ — 35a™)(c™)~2k™ | By combining (5.128a), (5.134), (5.136a), (5.136b), and
(5.138a), we obtain

o " 4257050 " — § a4 (J:TD))Z apkMeF "
= (%a(") + 39%&")) % (w("H) — w(")>
+ (%a(”) + 80)»31)) %w(")ekmm (c("H)e_k("H) — c(")e_k(n))
+ <C<L(—+)1> _ 39k<n+1>) oDy, (kgm) _ Ag:))
— 13_6@(5<+1>))2€k<"+1>80 (c(”+1) — c(">) + 4@@”””%%5’0 (a(”H) - a(”)) .
(5.139)

Atthis stage we only remark thatif (w, z, k, a, zzr)(”) weretoequal (w, z, k, a, w)("‘H) s
then the right side of (5.139) vanishes, as is natural.

5.8.8 The Iteration Space

We will prove stability under iteration n +— n + 1 of the following bound

™ —w®, 2™ k™ a™)ls < 1 (5.140)
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where the norm || - ||z is as defined in (5.10). For convenience of the reader, we recall
that (5.140) means

lw™ @, 1) —wP®, 0] < Rit (5.141a)
|00 @, 1) = 35wV @, 1) < Rz (b7 + (0 - 5(t))2)_% (5.141b)
2™ @, 1)| < Ryt (5.141c)
10620, 1)| < Rat? (5.141d)
k™ @, 1) < Rst? (5.141e)
|06k (0, 1)| < Ret? (5.141f)
[, 0)] + |00 ©.0| < R, (5.141¢)

for all (0, t) € Dg, where

R1=50m2, R2=m3, R3; =Ry =m, R5=R6=m%, R7 =4m.
(5.142)

Lemma 5.19 Assume that (w™, z, k™ a™) € Xs. Then for all (0,1) € Ds,

_1
|3w™ @, 1) — 3w, )] < 3m? ((9 —s(1)* + z3) ’ (5.143)

Proof of Lemma 5.19 Using the identity (5.136a) and the fact that 3, w " +w M dpw® =
0, we have that

dw™ — 9w = _)Lg’l*])(agw(n) — apuwM) — ()Lgn*]) —wM)gpuw®
— 8an Dy =D 4 L= D)2 gy pn=D) (5.144)

Now from (5.37a) and (5.141), we have that for ¢ taken sufficiently small,

|0 —wM)apw®| < Ry, $a®Dw™ V| <3mR;y, and

1
L) 28pk D] < 12

Then from (5.141b) and with g taken even small, we have that

_1
[0 ™ — 9w | <2mRy (B + @ = s()?) * +3mRy + Ry
1
< 3m? (b3t3 - 5(¢))2) °,

where we have used (5.2), and that t < . Hence, we obtain the bound (5.143). O
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5.8.9 The Behavior of w(™, 2 and k™ on the Shock Curve

Lemma 5.20 Assume that (u)(”’]), (=D =D a(”’l)) € Xs and that w™ € X;.
Then for all t € (0, €] we have

[Tw®™ )1 — [w® 1] < 2Rz, [(w® @) — (wP®)| < Rit,
(5.145a)

4110 - 1wPIo| <2k [£0)0 - D)o <R
(5.145b)

where Ry is as defined in (5.142). In particular, in view of (5.15a) and (5.15b), we
have that
™ 10) — zb%t%} <3mit, ‘((w(")))(t) - K‘ <Am*r, (5.146a)

‘%[[w(”)]](t) it

<3m*, Lol <amt, (5146b)

forallt € (0,¢].

Proof of Lemma 5.20 By assumption, w™ satisfies the bound (5.141a), and so the
inequalities in (5.145a) follow. In order to prove (5.145b), we shall use that

[Tw™DO1| < [TwP®O1] + [Tw® @) — w® (@], and hence by (5.15a) and
(5.141a),

2 (5.147)

LS

w®=D 1| < 25b3e2 + 2R < Yb

where we have taken ¢ sufficiently small for the last inequality. Next, we have that
from (5.144),

™ = Grw®]
= [Bw™ — 3wV + s[dw™ — dpw]
= (5(0) — wD)[Fw™ — dHuwD] + (A" — wD)[Fw™ — w7
— 125" 1w ™ — dw ™)
_ ()Lg"_l) _ w(D)I[agw(l)]] _ [[)L(;'—l) _ w(l)]]é)@w(l)
_ %a("_l)[lw(n_l)]] + %[[(c("_l))289k(”_l)]].

By (5.1¢), (5.13), and (5.20), we see that w® = wg evaluated on the shock curve,
|5 — wM| = O(t). Thus, using the bounds (5.141) and (5.147) shows that

4wl — £1wOn) < S — wOgau®] 4 CrF < 2Ry,

for g taken sufficiently small. This proves the first bound in (5.145b), while the second
follows similarly. O
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Having established Lemma 5.20, the conditions of Lemmas 5.12, Lemma 5.13, and
Corollary 5.14 are satisfied, which together yield

Lemma 5.21 (z(f) and k"™ on the shock curve) Let w™ be as in Lemma 5.20. Applying
Lemma 5.12, on the shock curve we define 2 and k™ as the solutions of (5.127)

with n replacing n + 1. In particular, " and k™ are explicit functions of [w™1 and
(w ™Y and satisfy the following bounds:

‘Z<_n>(,) 4 A0 | o3 (5.148a)

16(w™) (1)

4 (n) 3
253

Cot? (5.148b)

N

where Cy = Co(k, b, c, m) > 0 is an explicitly computable constant. Moreover,
X (0] < sb2c27 K (1)| < 4007317, (5.1492)
40 ()| < 832 Lp ()| <S0b3c 3, (5.149b)
forallt € (0, €], assuming that € is sufficiently small.
5.8.10 Existence, Uniqueness, and Invertibility of Characteristics

The following lemma follows from (5.39)—(5.45) and Lemma 5.10.

Lemma 5.22 (Bijection set of labels) Assume that (w™, z™ k™ a™) € Xg. Then,

foreacht € (0, €], there exists a largestx(")(t) > 0 and a smallest x™ = x_(t) <0
such that

s(1) = ™), 1) (5.150)
where
—Sbn? <x" (1) < —2n?  and LT <xV) < Sbn. (5.151)
Furthermore, there exists a set of labels
YO @) =T\ @), x™ )],

such that n™ (-, 1): Y™ — T\ {s(¢)} is a bijection, and the inverse map r]"?) Dy —
T \ {0} is continuous in spacetime.

Lemma 5.23 (Bounds for 3-characteristics) Assume that (w™, z", k™ ™) e X
Then, we have

% <an™(x, 1) < 47'1’ forall x € T
(5.152a)
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In™ 1) =P, 0| < 3Ry, forall xeY™,
(5.152b)
0™ (e, 1) — 3,0V (x, )| < (16R1b™7 48R, forall xeT™,
(5.152¢)
and
t
/ 05w D (P x,9), )| ds < 55 (5.153)
0

Proof of Lemma 5.23 From Lemma 5.22, all of the conditions of Lemma 5.10 hold, so
the stated inequalities are thus obtained. O

Lemma5.24 For n > 1, assume that w™ and z" satisfy the bounds (5.141a)—
(5.141d).

Then, for every (0,t) € Dg there exists a unique Lipschitz smooth integral curve
1/f,(n) @,-): [0,t] — Dg satisfying (5.120a). There exists a unique point 91(n) eT
such that wé")(él("), 0) = 0, which allows us to define as in Definition 5.16 the curve
si”) and the space-time region Dg' ™ For every (0,t) € Dg’ L , there exists a unique
shock-intersection time 0 < 3™ (0,1) < t satisfying (5.94). Moreover, for (0,t) €

(Dé’(”))c, the characteristic curve (1//,(")(9, s), §)se[0,] does not intersect the shock
curve (s(s), $)se[0,1]-

Similarly, for every (0,t) € Ds there exists a unique Lipschitz smooth integral
curve ¢l(")(9, ): [0, t] — Dz satisfying (5.120b). There exists a unique point )")é") €

T such that ¢é") (902('1), 0) = 0, which allows us to define as in Definition 5.16 the

curve 55") and the space-time region Dg’(n). For every (0,1) € Dé’(n), there exists

a unique shock-intersection time 0 < T (0, 1) < t satisfying (5.94). Moreover, for

0,1 € (Dg’ ("))C, the characteristic curve (¢t(") @, 5), $)sefo,1] does not intersect the
shock curve (s(s), $)se[0.1]-
Lastly, we have the estimates

(n) _ 1 1 4
Y, (0, 5) = 38 + (0 — 3kt) + O(3)

= lies + 0 —s{"(1) + O(5), 0.1 eD", (5.154a)
M0, 5) = Zies + (0 — 2kt) + Ot 3)
=Zks + (0 — s (1) +0(3), ©,0)eD™, (5.154b)

and
1

sup (099 (0.5) — 1| < Cr5 . sup [y, (0.5) — 1| < Cti,  (8.1) € Ds,
s€[0,1] s€[0,1]

(5.155)

where the constant C > 0 only depends on «, b, and m.
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Proof of Lemma 5.24 We prove the lemma for the 1-characteristics w,(") , the proof for

the 2-characteristics ¢t(") being exactly the same.

We begin with the existence and uniqueness of 1-characteristics passing through
any point (0, t) € Ds. Using the definition (5.120a), we see that

" @, 5) = 2" (W6, 5), 5)
= 1wy @,5).9)
+ (3@ = w®) + )" 0,59, (5.1562)
w0, 1) =0, (5.156b)

where we recall cf. (5.123) that w¥ = wg and z()' = 0. The bounds (5.37a),
(5.141b), and (5.141d) show that Xg") is Lipschitz continuous in Dz; moreover, as
long as w,(n)(Q, s) € Dg, we have the explicit estimate

|86 (" . 5). 5)]

<5 (0 + [0 0.9 = s)')

1
6

+ 4R (b5 + [ 0.5) = s)|*) * + Ras?
_1
<1 (s + [ 0. 9) —s)[*) T +2m?. (5.157)

Hence, by the Cauchy-Lipschitz theorem, for each such (9, ) € Dg, there is a unique

local in time solution time to (5.156). Using (5.157) and the bound |A§")| < %m, this

solution wt(") (6, s) may be maximally extended as a Lipschitz function of s on the time
interval [sy, t], where ¥, (0, s.) € 0D¢. In our case, this means that either [s,, ] =
[0, £] Gf (w,(")(s), s) does not intersect the shock curve (s(s), s) for s € (0, ]), or
[s4, 1] = [3(")(6‘, t), t], where we have denoted by g 0, 1) € [0, t) the largest value
of s at which 1//,(") 0, s) = s(s). Of course, if ¢ < € the solution ¥, (6, s) may also be
similarly maximally extended to times s past ¢, up to the time s* at which ¥, (6, s*)
reaches 0Dx.

In order to complete the existence and uniqueness part claimed in Lemma 5.24,
we need to show that if 37 (8, 1) € (0, 1), then the integral curve may be uniquely
continued as a Lipschitz function of s also on the time interval [0, 3™ (0, 1)]. We note
that in this case the limit lim 5= g0 @1+ w,('”(e, s) is well-defined, and so to ensure

continuity we let I//t(n)(e, 3™ (0, 1)) equal this limit. The desired claim follows once
we prove the following two statements: first, that the shock surface (s(s), 5)s¢0,7]
is a non-characteristic surface for the ODE (5.156), so that wl(n)(é, 9™, 1) =
s(3" (0, t) may serve as Cauchy data for the transversal characteristic (6, s) with
s < 3(”>(0, t); second, that the curve ¥,(6, s) does not intersect the shock curve
fors € [0, 379, 1)), thereby ensuring the uniqueness/well-definedness of g M@, 1)
implicitly assumed in Definition 5.15.
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The transversality of w(") and the shock surface is established as follows. We first

carefully estimate k( o _in the vicinity of the shock curve. By (5.35), (5.22b), (5.141a),
and (5.141c), for any 6 such that |6’ — 5(s)| < «t we have that

~ ~ 3 1
M@, 5) — Lie| < Hworg™ (@, 5)) — k| + LRis + R3s? < 3b(kr)3, (5.158)

since €, and hence s < t, are sufficiently small. Note that if |5 —5(s)| < ks, thenin the
upper bound (5.158) we may replace 13 by s3.N ext, we note that the vector normal
to the shock curve is given by (— 1, é(s)) while the tangent vector to the characteristic
curve is given by (SSW,(")(G, s), 1) = (Aﬁ")(w}”)(e, s),s), 1). Computing the dot-
product, and appealing to (5.13) and (5.158), we obtain that

(—1,5) - (39 ™ (), 1) = () = 2 W™ 0, 5),8) = 2 + O(s5) > Lic,
(5.159)

since ¥ is small enough, and s = 3 (0, r). Therefore, the characteristic curve w(")
intersects the shock curve transversally, and the crossing angle is bounded from
below uniformly for on [0, €]. As mentioned above, this means that we can use the

values of the flows 1//,(") on the shock curve as Cauchy data, and continue the solu-
tions in a Lipschitz fashion for s < 3 (@, r). The fact that the angle measured in
(5.159) has a sign, and the smoothness of s, also ensures the uniqueness of the shock-
intersection time 3(0,t) € (0, t), so that it is a well-defined object. This concludes the
proof of existence, uniqueness, and Lipschitz regularity for the characteristic curves

v, ):[0,1] > T.
Next, we turn to the proof of the bound (5.155). Differentiating (5.156) shows that

090 (0, 5) = e AU 0.5’

L w05’ I} (4 @w™ =30 D)452™ ) (9" ©.5).5)ds’
R s, .

(5.160)

For s’ € [s, t] such that W,")(Q s "y — s(s")| > «t, from (5.157) we deduce that
|8g)»(")(1ﬁ,(n) @,s",s) < 3b(/<t)_’ +2m3 2b(fcz‘)_g and thus the contribution
from such s’ to the integral on the right side of (5.160) is bounded from above by
exp(2bk~3£7). On the other hand, s’ € [s, ] such that [ (8, s") — s(s")| < «t, we
may appeal to (5.158), so that 9 t(") ®,s") < %s’; this allows us to apply Lemma 5.11
withy = w,(") 0, )and u = %, for these intervals of s”, and together with the bounds
(5.141) we deduce that the contribution from such s’ to the integral on the right side

of (5.160) is bounded from above by exp(30b/<_%t%). Combining these estimates we
deduce that for all s € [0, ] and 7 € (0, €],

Wit
-~
wi—

0696, 5) — 1] < 40bc =517, (5.161)
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when ¢ is sufficiently small. This proves (5.155) for the flow w,(") , which implies that

,(") is continuous on T x [0, 7], and is uniformly Lipschitz continuous both with
respect to 0 and with respect to s.
The bound (5.161) does not just provide regularity with respect to 6 of the flow
,(") (@, s), but it also shows that it is a monotone increasing function of 8. This allows
us to show the existence and uniqueness of a point 6" € T such that 1,05(") @, 0) =0.
Existence follows by the intermediate function theorem, applied to 1//5(") ©0,0): T —
T: indeed, from (5.158) (applied with t = ¥) and (5.13), we see that for s(¢) <
6 we have wsi”)(e, 0) > ;{KE > 0; on the other hand, for 8 < s(g) — %KE, we
have 1//691)(9, 0) < —%KE < 0. The uniqueness of 601(”) follows by the monotonicity
in 0 guaranteed by (5.161). Note that the above argument gives the rough bound
5(®) — 3E < 6" < s5(2).

Thus, as in Definition 5.16 the curve s
now well-defined. The fact that for (0, 1) € (DZ;’ ("))C the curve (1#,(")(9, ), 8)se0,1]
does not intersect the shock curve (s(s), s)sefo.s], and the fact that for (6, 1) € Dg’ )
intersection does indeed occur at a unique time J ™) (@, 1), now follows from the mono-
tonicity of wt(”) (6, s) with respect to 6, the definition of 5§”), the transversality (5.159),
and its consequences discussed earlier.

In order to conclude the proof, it remains to establish (5.154). From the aforemen-
tioned rough bound on 901("), appealing to the definition s1(s) = 1,05(")(901("), s), the
bound (5.13), integrating (5.158) with § = s\ (s), and using that s\ (0) = 0 = 5(0),
we see that

gn) and the space-time region 'Dg, M are

|s(s) — 5(1")(s) — Zks| < |5§")(s) — ties| +|s(s) — k|
5 forall sel0,8].
(5.162)

1 4 1
< %b/cfﬁs? + m?s? < 2bk 7 3s

More generally, for any (0, t) € DZ;’ ("), we may integrate (5.158) with 6 = w}")(e, s)
and deduce that

) NP PPN 1 4
! (9,s)=9—/ MW O, 5))ds =0 = Skt =)+ OG5, (5.163)

s

which proves the first equality in (5.154). The second equality follows by combining
(5.163) with (5.162), which in turn shows via (5.13) that 5 (1) = Let + 0@ 3).
The arguments for the 2-characteristic q‘),(n) (0, s) are identical, except that %Kl must

be replaced with %K[ because A;") contains %w(l) instead of %w(l). We omit these
redundant details. O
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5.8.11 Stability of the Iteration Space

Proposition 5.25 (X7 is stable under iteration) Let € be taken sufficiently small with
respect to k, b, ¢, and m. For all n > 1, the map

W™, 2™ g0 G0y (D kD D) gty

maps Xg — Xs. In particular, the iterates (w®+1, 7Dk 0+D g 0+Dy sarisfy the
bounds (5.141).

Proof of Proposition 5.25 1In the course of the proof, we will repeatedly let £, and hence
t, to be sufficiently small with respect to «, b, ¢, m.
Estimates for w®tD. By Lemma 5.22, for any (0,¢) € Dg, there exists a label
x € Y™ (r) such that n™ (x, 1) = 6.

By the triangle inequality,

(@D = wD) o n® | < [w*D o n® — o] + [w® 0 5O — w®D o y®)|

(n+1) 1 (n)

= |w on(”)—w0|+|woong’ on™ —wp|.

By the fundamental theorem of calculus,

t
wo ong™ ! o™ —wp = / —(wo ong™" o n™)ds

o dt
t
= /(; w6 o nB_l o n(l’l) ((atnB_l) ° 77(") + (39773_1) ° ﬂatﬁ(’l))ds
t
- /0 whong™ o n® AL — w0 n® (ny(rg~ o)) \ds.
The bounds (5.17b), (5.152a) and (5.141) show that

lwoomg™ o™ —wo| < LRyt (5.164)

Next, using the identity (5.125), we have that
t t
@D 6 p™ _ g] < gfo (@™ w®™) 0 n™|ds + %/0 EQ on(”)%(k(") on(n))‘d&

The bounds (5.141) with € taken sufficiently small,

(n+1)

|w on™ — wo| < 3mRyt.

Together with the bound (5.164) and the fact that n™(x,1)is a diffeomorphism for
each label x € Y™ we have that for all 0,1) € D,

lw™ D@, 1) —wP @, )| < 3Rt
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as long as 12mR7 < R;. This inequality holds due to the choices in (5.142).
Let us now show that the estimate (5.141b) holds. Following the procedure we used
to obtain the identity (5.99), we differentiating (5.124), use (5.138a), and obtain that

%(wén-#l) o 77( ) m((n)) — %;_;((C(n)kén)) ° 77(n) n}(cn)) +]:(u79) ° ’7(”) 77)(Cn) . (5.165)
where
f(u?) k(")(l (8 (n) +1 1=2), (n) +2 2,(n=2) .(n=2)
4 le()én—z) _ )Lgn))c(gn)) o n(n) ’b(cn)
— 89p(a™w™). (5.166)
An equivalent form of (5.165) is given by
3wV 4 AP WIHD 4 g Ay +D
N T ) B N
Therefore,

1 1 1 1
4 (( (n+1) _ é )) o 77(n)) i wé ) o n(n)(w(n-i- ) é )) o n™
= w0 g™ @ — w) o™ — @™ — WD) o ™yl oy

+ 1 (R 0™ Y () ) o™
(n) n
For 0 < s < ¢, let us define the integrating factor Z; ; = i w1 e, ndr Then,
we have that

1 1
(wén+ ) wé )) ° n(n)

I

t
:f ~Tos (5" o 0™ (= wg?) oy )ds
0

I2

t
+/ —It,s((w(”) w) o p®yly) n(”’)d
0

t
%/ T (£ (k) 0™ n("))(n)(cn))J)ds—l—/o T, 79 0 yds |

I3 I4

(5.168)
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wé") — wél) ‘ < th’% and thanks to (5.153), we have that for € small

enough,

O —wfy @™ ol dr !

wD
7 x,r),r)|dr 17
|Is [| = e’ wg - (17 (x,r) )} < 10 -

Let us now estimate each integral Iy, I», I3, and l4 on the right side of (5.168). First, we
have that

| < —(7) / ‘w (")

The Burgers characteristic satisfies 9,(s(t) — ng(x, t)) = s(s) — wo(x). Integration

froms tof for 0 < s < ¢ together with the inequality (5.13), the fact that |x| > %(bt) 3 ,
and taking € sufficiently small, shows that

1
6

b3s3 + ( (n)(x’ S) — 5(5))2) ds . (5169)

s(s) —ne(x,s) = 5(1) —na(x, 1) + (t — s)(k — wo(x) — Cr)
> () — ne(x, 1) + (333 (t — ) — C(t — )t

Using that that 6 = n(”)(x, t), (5.1c) and (5.152b), and taking € even smaller if
necessary, we see that

a(s) — 0™ (x,5) > 8(t) — 0 + Lot — ),
and hence
bs? + (™ (x,s) — s(s))2 > (60— 5(t))2 + %b3t(t — )2+ b3,

The function %b3t(t — s)2 + b3s3 has a minimum at s = % and takes the value there
of 15—6b3t3, so that

b3s® + (0™ (x. 5) — 5(5))” 2 %((9 —s(0)” + b3t3> : (5.170)
Thus, with (5.170), the integral |} in (5.169) is bounded as

_1 t
< {l(%)—%Rz((e—s(z))2+b3z3) 6/ )w;“onw ds
0

< %%(%)*%Rz((e —5(!))2+b3t3>_6, (5.171)

the last inequality following from (5.153). It is important to note that % }(7) (%) s

9
100
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For the integral |5 in (5.168), the estimate (5.37b) shows that

5

6

ot < 24 R [ 5((09)" 41y —56)7) .

Using (5.170) and that (%) 3 < 3, we then have that

1

~6

~6

[
~

ol < 345 Rib((br)* + 16 = s)) 12 < 6Rib((b1)* + 10 — 51

Thus, w1 satisfies (5.141b) as soon as we choose 1200R;b < Rs. In view of (5.2),
this inequality is ensured by the choice of Ry and R given in (5.142).
To bound I3, we integrate-by-parts and find that

. :_I“<(c<n)k<n>)on(n> /(C(”)k(n))on (n)d@s( )" )ds.

Since 8, Zy; = Io,twé") o™ and 9, (r;)(cn))_l = —(nﬁ"))_lagkg") o n™, using the
bounds (5.141), we obtain

[N

3] < Ct

Finally, using the definition of f(ufg in (5.166) and the bounds (5.141), we also find
that

[N

4] < Ct

By combining the bounds for Iy, I, I3, and l4, we taking € sufficiently small so we
have shown that

1 1
wy @, 1) —wi (0.1 < %Ry,

for all (0, t) € Ds, thus establishing that (5.141b) holds.
Estimates for "tV Let (0, 1) € Dé’("H). We integrate (5.136b) from 3 (0, 1) to ¢

and obtain

t
Z(nﬂ)(@, 1) = Z(_n+1)(5(3(n)(97 ) — /( ) (%a(n)z(n) _ %(c(”))ZE)gk(")) ° I/ft(n)ds’,
3" e.n

(5.172)

Having shown that w®*1 e X; (continuity will be established below), then w®+D
satisfies the criteria of Lemma 5.20 and thus we can appeal to Lemma 5.21 for the
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bound of z(_"+1)(5(3(”)(0, 1))). It follows from (5.141) and (5.149a) that
2706, )] < (5b3k2 + b Re)i?

which shows that (5.141¢) holds for z+D if 5b2x—2 + $k*Re < R3. Using (5.2),
this inequality holds due to the definition of R3 and Rg in (5.142).
Next, integrating (5.130a) from g7 to ¢ and using the definitions of F., and ‘H,,

given by (5.103b) and (5.115), respectively, for all (6, 1) € D=1

802(n+1) = Hze (UL(n), Z/‘{L(n)’ t(”)’ 3(n)) + ‘er (U(n)’ t(n)’ S(H)) ' (5.173)

It follows from (5.57a), (5.141), (5.149b), and (5.155) that for ¢ sufficiently small,
(n+1) —3 9 9.1 P 1 1
|90z (0,1)] <27 (8b2 +5002)12 + S Ret2 < Ryt?, (5.174)

which proves that (5.141d) holds for 99z whenever 116K_3b% + 5Re < Ry.
Using (5.2), this inequality holds by defining R4 and Rg as in (5.142).

Estimates for k"1 We have shown that w "+ and z*+1) satisfy the bounds (5.141),
and we will prove below that both functions are continuous on D and hence are in
the set X%. For each (0,1) € D(”“), we then have existence of unique characteris-
tics ¢" (8, 5) and shock-intersection times 7*+1 (9, 1) satisfying the properties in
Lemma 5.24.

Let (0,1) € Dg’(nﬂ). We integrate (5.133a) from 7n+D (@, 1) to t and obtain that

K00, 1) = kD s(r D@, 1)) (5.175)

Again, appealing to Lemma 5.21, the bound (5.149a) then gives

‘k“’“)(e, t)‘ < 40b3k 313 (5.176)

which shows that (5.141e) holds for 1 if 40bZx~3 < Rs. The condition (5.2)
justifies the definition of Rs in (5.142).
In the same way that we obtained (5.106) and (5.109), we also have that

(1) (n+1)
k™D 0. 1) = K" (@D 9,0))
0 ©. 0 S(TOD@,0)) 0,0 0.T0 D (6,1))

89¢§n+1)(5(7(n+1)(9s 1), .T(nJrl) ®,1), (5.177)

and thus from (5.149b), and (5.155) that for ¢ sufficiently small,

|00k ™D (0, 1)] < 2007k 417, (5.178)
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which shows that (5.141f) holds for dgk®+D if 200b2 4 < Re. The condition
(5.2)justifies the definition of Rg in (5.142).

Estimates for a"*!". We consider any point (6, 1) € Dg’ o) By Lemma 5.24, the

characteristic curve ¢[(”)(9, s) exists for all s € [0, #]. From (5.128a), we have that

%(a(ﬂ-‘rl) ° ¢l(n)) — (—4—3‘(&(”))2 + %(w(n))z + é(z(n))2 + w(n)z(n)) O¢t(n) i

and hence
a0, 1) = ap(¢" (6, 0))

t
+/ (—%‘(am))2 + @™ + 3" + w(”)z(”>) oM ds .
0
(5.180)

Using (5.1a), (5.4), and (5.141), we find that
la" V@, ] <m+Cr < 2m. (5.181)
Differentiating (5.179) gives
4 (3pa™D o 6" d9p™) = By (_%(a(n))2
+ 3@ 4+ L)+ w2 ) 0 6" 28",
and so
96a" (0, 1) = ap(@" 0, 0)dp," (v, 0)
+ /l b (—3@™)? + Lw™)?
+ %iz“’))z +w®2) 0 ¢ dyg"ds .
Employing the bounds (5.1a), (5.57a), (5.141), and (5.155), we find that
|06a™D (0, 1) < m+ Cr3 < 2m),

which together with (5.181) shows that (5.141g) holds for a**! given that R; is
defined by (5.142).

Continuity of w1, z+D (#+D apd ¢"+D Composing (5.125) with ni(gv), we
see that

t
w00 = wol 6.0 = § [ (aP0) 0O 0. 0.0 0
0
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t
+1 / DD 0,0, 1, 1) (KD G (6. 0,1, 1) dr'.
0

By Lemma 5.22, ’71(;13 is continuous on Dg, and hence by the definition of the set Xz
given in (5.140), we see that w1 is then continuous on Ds.

Continuity of the shock-intersection time g(@, t) follows from the continuity of v,
on Dz and the continuity of s(¢). From (5.149b), we see that z(_"H) (t) is continuous.
Therefore, the identity (5.149b) together with the definition of X shows that 7+
is continuous on Ds. Continuity of K"+ follows in the same way from the identity
(5.176). The identity (5.180) together with the (5.140) and the continuity of ag shows
that « ™tV is also continuous on Ds. O

5.8.12 Contractivity of the Iteration Map
We set

Sw™ = ™ — @=D , 5z = g _ (=1 , Sk .— g _ p=1 ,
S = M _ =D gy — )ngn) — Af"_l) ,

fori € {1, 2, 3}.
Proposition 5.26 (The iteration is contractive) The map
™, 7™ k™ g0y s (@D 0D gt Dy e

satisfies the contractive estimate

xrer}%»)i](uaw(n-i_l)('a ) ”Loo + ||6Z(n+l)(" s) ”Loo

D)t 5700 )
<3 max (1809 + 107,90
+ |86 o) | oo + [8a™ ¢ oo - (5.182)
Proof of Proposition 5.26 From (5.126a), we see that for any (0, t) € Ds,
38w ™D + 2578y 5w ™D + 825" dpw ™
= 1 (0k™ + 28" 300k ) + 183" gk D

+ 33c® (7 =28 7) 0k 7D = $aMow® — saMow™D,

and thus for all x € Y™ (1),

3, (8w(n+l) o r](n))
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= 1o oy, (5k<"> o ,7<n>) + @™ + Lsz™) (%CM)BQIC(”_I) _ agw<”>) o n™

+ L Ew®™ +82) (xg") _ A;n—l)) kD o @
_ gsw(n)a(n) ° n(n) _ %(Sa(")w(”_l) ° 77(")~

Using (5.137) and integrating by parts in time,
i/l ROIMOPY <3k(”) o 77(")) ds = Le™sk™ o 5™
0
N %/Oz (Agn_nwén) +A§n—l)zén) + %a(nfl)c(nf])> 5k o ™ s |
and thus, we have that

t t
swth o n(”) = —/ wél)Swm) o n(")ds —/ (w{g") — w(gl))Sw(”) o n(”)ds
0 0
4 %Sk(")c(") ° ,I(n)

t
+ %/ (Sk(n) (Agnfl)wén) +A§n71)zén) + %a(nfl)c(nfl)> ° n(")ds
0
t
+ %/ sw® ((Zw(”) — 20 A;n—l)) _ %‘a“')) k=D o
0
1
+ 4 / 8z ((4w<"> + 2 = 30D gD 889w(”)) on™ds
0

t
- %/ 8aMw D o Mgy . (5.183)
0
Appealing to (5.56a) and (5.141), we find that

Slél[gﬁ]}|5w("+l)(',s)||mo < (% + Ct%) Slél[%’)i]||8w(")(', S)”Loo
+C max 5K, 9]
+ (% + Ct%> Srer}%’)i]HSz(”)(u ||
+Ct max 182" ¢, )| e - (5.184)
Using the evolution of z given by (5.130a), in the same way that we obtained
(5.183), we find that for any (0, 1) € Dé”(”),
52D @, 1) = 62"V (s(3(0. 1)) + F 6k M) (s(3(6. 1)) — L5k ™™ (0, 1)

t
" % /8(9 1) ok (()\gn) - )‘gn_l))cén) + %C(nfl)wé")

_%a(n—l)c(n—l)) o w,"”(e, $)ds
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t
—1 — —1
+ L(a t) 5w(n) <_%Zén) _ %c(l’l)kén ) + %C(}’l l)kén )) o w_t(n)(g’ S)dS

t
+/ 5200 (2 _ 1w 1 =1 n=1) _ 8 ()
0.0 ( 9 — 3¢ kgt 3 9 3 )

t
™0, s)ds — %/ 8a™ =D 6y ™ @ 5)ds .
0.0

Using this identity together with (5.57a), (5.141), and (5.148) shows that
3
max. |8z 1 ¢, )| < CtSren[gﬁ]H(Sw(”H)(u $)| o + C12 [max [sw™¢, ||
n) . () (.
+C max |86 8 oo + €t max 8275
+Ct3 max [[5a™ (., 5) | (5.185)
sel0.1] B 2 ’

Next, the identity (5.175) together with the bound (5.148) provides us with the esti-
mates

max ||8k("+1)(-, s) ”Loo < Ct Srerl[%ﬁ] ||8w("+l)('» S)”Loo )

s€[0,7]
max [k, )] o < Cr max 5w, 5)] (5.186)

Finally, using (5.128a), we find that for (9, 1) € D&,

t
8a"+V 0, 1) =/ sw™ (%Sw(") +2z" — %ag”)) o ¢\"ds
A 3
t
+/O 5 (J32 4 w0 D — 24f) o (s
t
—/ 8a(")5a(")o¢,(")ds,
0
and therefore
8a" TV )|,
Jmax [8a“ V.0,
< cr max (Jsw®™ ¢, 9] o+ [527¢, 9] 1o
Jnax (8w ¢ )] + 8760,
ok )] o + [80P ¢ 10) (5.187)
Summing the inequalities (5.184)—(5.187) yields

max (6w 0 o+ 62400

3D+ 805 )
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<3 max [5w® 9+ g max [827C )] o+ Cr max [5u V9]
1
+Ct2 sren[g?i](”Sw(")(x s) ||L% + ||Bz(")(~, s)”Loc)

+Ct srerl[zoi?%](|‘8k(")(~, S)HLOO + HSa(")(', S)”Loc) .
Choosing g sufficiently small, we obtain the bound (5.182). O

5.8.13 Convergence of the Iteration Scheme
We definey = 6 — s(¢) and
w(y,t) =w@,t), z(y,t) =z(0,1), k(y,t) =k@,t), ay,t) =a(0,1).
The space-time gradient is denoted as Vy ;, and it is convenient to introduce
De = (T\ {0} x (0,%).

The contractive estimate (5.182) shows that (W™, z™ k™ a®™) — (w, z, k, a)
uniformly in Dg, and in particular we have that

i (n) _
Jimw —w® |, =0. (5.188)

Let us now describe the bounds on derivatives. According to (5.141b) and (5.143),
forally # O and ¢ € [0, €], we have that

By the Banach—Alaoglu theorem, there exists a limiting function f and a subsequence
such that

<C.

1
(7 +¥*)" Vyuw® — wp)
D=

1 1
(t3 n yz) * Yy W)~ (;3 + yz)6 f.

the convergence in L (Dg) weak-*. Let us show that f = Vy ;w, the weak derivative
of the uniform limit w, and that the convergence holds for any subsequence. For test
functions ¢ € WOl ’1(Dg),

tim [ w—w)a, (2 +y7) ) dyar

n— 00 Dg
_s
= lim % (w— w("))y (t3 + y2) ® pdydt
n—oQ Dg

1

+ lim 7(w - w(”))(<t3 + y2>6 8y<p> dydt .

n—oo D
£
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It follows that

lim /DE(W - W("))3y<(t3 + yz)% go) dydt

n—o00

< lim |jw —w®™ ||LOO(D§)(%||¢||LOO(D§) /& y~3dydt + 2/& Ay dydt) =0

n—oo

by (5.188). Similarly, if we replace dy with d;, then the integral % f% y_%dydt is
replaced with %sz t_%dydt - %fDFé(t)y_%dydt, and the same conclusion holds,
since again both integrals are bounded (using (5.13)). This shows that®

1 1
(ﬁ n y2) ° vy W (r3 n yz) °Vy.w  in L®(Dg) weak-*,
and hence we have by lower semi-continuity that w satisfies (5.141a), (5.141b),
and (5.143). The weak convergence for (3yz™, 3k, aya®)—(dyz, dyk, dya) in
L*° (D7) weak-* is standard. We conclude that

(w,z.k,a) € Xs. (5.189)

Let ¢ € C§°(Ds). Integration of (5.136a) shows that

/ (E)tw(”H) + (W — wg)a,wr+D
D=

+ (32" + wg — 5(0))dyw D + Sawm %(c("))zayk(")>(p dydt

Tiw™)

= /D (8,w(”+1) + (w™ — wB)ayw(”“))godydt

+/ (129 4 wg — 5(1)) 3w+ 4 Sa@w _ é(c("))zf)yk("))gvdydt ,
Ds

I (W(") ,Z("))

Its clear that Zo (W™, z® k™ a™y) — T,(w, z, k, a). Let us show that Z; (w™) —
71 (w). We have that

Tiw) = Ty w®)|

< ‘/{)F (f3 + yZ)é (a,w — 3tw(”+1)) p (t3 N y2>_é s

1
8 In fact, <t3 + y2) 6w <t3 + y2> ® win W1*°°(Dg) weak-*,
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+

1 _1
/ (ﬁ n y2> ® (ayw — ayw™ D) o (W — wp) (t3 n y2) ° dydt
Dz

1 1
6 )
+w—w?] V& (t3 + y2> dgw D <t3 + y2> dydt

1
Since (t3 + yz) ¢ e L'(Dz), we see that the first two summands converges to 0 by

weak-* convergence in L*°(Dg), while the second term converges to 0 by the strong
convergence (5.188). It follows that w satisfies

/ (8w -+ 2adyw + Saw — Le2yk)p dydr =0,
s

and together with the standard weak convergence argument for the other variables, we
have that (w, z, k, a) are solutions to (5.91) in Ds.

Thanks to the uniform convergence (w(”), AL SO8 a(")) — (w, z, k, a) in Dg, it
follows that the time derivatives 9;(n™, ¢\, ™) — 3,(n, ¢:. ¥;) uniformly, and
that n(-,¢): Y(¢t) = T\ {s(z)} is a bijection, and the inverse map niny : Dz — T \ {0}
is continuous in spacetime, where the set of labels Y () — Y(¢) in the sense that
Y() =T\ [x-(¢), x+(t)] and xi")(t) — x_(t) and x(f)(t) — x4+ (¢) uniformly.

Moreover, the uniform convergence (w™, 7z k™ g0y 5 (w, 7, k,a) in Ds,
combined with the definitions (5.127) and the continuity of £ and &, implies that
E1(w-, wy, z—,e-) = E(w-, wy, z—, e—) = 0. Thus, the equations relating z_ and
k_ to w_ and w4 hold on the given shock curve.

5.9 Proof of Proposition 5.6

The analysis given in Sects. 5.5-5.8 completes the proof of Propoisition 5.6, here
we just summarize our findings. Given a regular shock curve s satisfying (5.13), we
have shown that there exists £ > 0 sufficiently small (solely in terms of «, b, ¢, m)
such that the iteration described in Section 5.8 produces a limit point (w, z, k, a) €
Xz (see (5.189)), which solves the azimuthal form of the Euler equations (5.91) in
Ds; this proves items (i), and (ii). From the last paragraph of the above section, we
have that (w_, w4, z_, k_) satisfy the system of algebraic equations (3.13a)-(3.13b),
arising from the Rankine—Hugoniot conditions, and by passing n — o0 in (5.146)
and (5.148), we have that [w]], [[z], and [[£]] satisfy the bounds claimed in (5.63) and
respectively (5.69); this proves items (iii), (v), (vi), and (vii). The stated bounds on
s1 and s, which are uniform limits of 5(1'1) é")
Lemma 5.24, proving item (iv).

and s, ', follow by passing n — o0 in

5.10 Evolution of the Shock Curve
Proposition 5.6 shows that given a shock curve (s(), t);¢[0,7] Which satisfies assump-
tions (5.13), we may compute a solution (w, z, k, a) of the azimuthal form of the

Euler Egs. (3.5)-(3.6) on the spacetime region D = (T x [0, €]) \ (s(¢), H)tef0.2]5
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moreover, this solution exhibits a jump discontinuity from the (w, 0, 0) state on the
right of the shock curve to the state (w_, z—, k—) on the left of the shock curve, and
this jump is consistent with the system of algebraic Egs. (3.13a)—(3.13b) arising from
the Rankine—Hugoniot conditions. Throughout this section we shall implicitly use that
we have a map

Proposition 5.6

(s, wo, a0) —> (w, z,k,a). (5.190)

Since at this stage of the proof uniqueness has not yet been established (this is achieved
in Sect. 5.11 below), in the map (5.190) we select any one of the solutions guaranteed
by Proposition 5.6.

We note that throughout the proof of Proposition 5.6, the shock curve itself is fixed,
and does not solve an evolutionary equation. The goal of this section is to provide an
iteration scheme whose fixed point s is a C> smooth curve which solves the equation
(3.12b) (recall that in view of Lemma 5.12 the jump conditions (3.12b) and (3.12a)
are equivalent), which we recall is

5(t)=Fs(t), s0)=0, (5.191)
where

2 (w-(1) = 2= (1) (w-(1) + 2= (1) — ws ()’

Fa) =3 (1) — 2 ()% — wa(1)?

(5.192)

and we have implicitly used the notation (5.7) to denote the limits from the left
(indicated by a — index) and the limit from the right (indicated by a + index) at
the shock point (s(¢), ¢) for the functions (w, z, k). We emphasize however that the
(w-, w4, z—, k_) appearing in (5.192) do not just depend on s because they are one
sided limits of their respective functions (w, z, k) on the curve (s(¢), t); they also
depend on s because the functions (w, z, k) themselves arise from the mapping (5.190)
given by Proposition 5.6; this mapping is implicit and nonlinear. Moreover, we note
that due to Lemma 5.12 the z_ and k_ appearing in (5.192) are themselves smooth
functions of w. and wy, so that F; is truly a function that depends solely on w. and
w4, or alternatively, [w]] and (w}).

5.10.1 Properties of F;

Before giving the iteration scheme used to construct a solution to (5.191), we establish
a few useful properties of the function F, defined in (5.192).

Lemma 5.27 Assume that s satisfies (5.13), let (w, z, k) be defined via (5.190), and
Fs be given by (5.192). We then have that

m?t (5.1932)
m*, (5.193b)

|Fs (1) — k|
| L F (1))
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forallt € (0,¢].

Proof of Lemma 5.27 First we note that the function w satisfies (5.63) with

Ri=1+2R =1+100m*<m’ and R, =1im*+R <im®+m’
(5.194)

This holds in view of (5.15a), (5.141a), and the definition of R in (5.142).

Due to (5.68a), in order to approximate the function F; it is natural to insert
— ellwlP(w) 2 in (5.192), instead of z_. Using the identities w. = (w) + 1[[w]]
and w; = (w) — %[[w]], this gives us the leading order terms in F4 defined by

4 Swp? _ Owly _ 3
P _ 2l o) (% ~ Toguy) ~ ¥ (5.195)
wp _ .
3 Ol \2 _
(w-+ l6(w)2)

Furthermore, since the formula in (5.195) is explicit, using (5.63) we obtain that

TIw]?
24(w)

3

— (w) + < Cr2 (5.196)

since t < €, and ¢ is sufficiently small; here C = C(x, b,c, m) > 0. The error
we make in the approximation (5.195) may be bounded using the intermediate value
theorem and the bounds (5.63), (5.68a), (5.69a) as

2 9w’ Twl((w) — 2wl (w)? — LMw]?
Fo— FPP < = ‘ B 2 _ 1
| | 3T 16(w)> ([wll — z4)? 2(w) — z4)?
<ci’ (1 + 3! + < )
h (b33 — 5k—2b313)2  d(k — Sk—2b313)2
< cr? (5.197)

since t < ¢ is sufficiently small; here z, lies in between z_ and —%[[w]]3 (w)~2, and
C =C(k,b,c,m) > 0. Combining (5.196)—(5.197) and (5.63) — with R; and R, as
determined by (5.194), we arrive at

|7'—s(f)—/<|<< m* +m? 4 2b%¢ _l)tg%m“,

thereby proving (5.193a). In this last inequality we have also appealed to (5.2).
In order to prove (5.193b), we first differentiate (5.192) with respect to ¢, to arrive
at

3d (0 [wl(w) = 5lwD)  (w)* - 3lwl’\ 4
2dr]r"‘<1+ ([wl - z-)? Qlwy—2)? ) di™"
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Twl?® — 2[wl?z— + [wlz2 + z- 2(w) — z-)? i[[w]]
2([w] — 2-)*@(w) —2-) di
-2 1 L, B
N (1 y (d = 20D + 3ol - e )Wl )\ d
2([w] — 2-)({w) — 32-) d1
(5.198)

By combining (5.198) with the bounds the derivative bounds (5.84) (which holds
due to (5.145b) with constant R = R; < m? as defined in (5.142)), (5.81), and the
amplitude estimates (5.63) (with (5.194)) and (5.69a), we arrive at

3
2

d
5.7 s

dt

([0}

t

D=

3 I
< kb — 7 | +2b2x1t2

dt
k™38 (803 23) 4263113 (207178 ) 42 (3m* 4+ 3m?)

4 3 o) |2
dt[[w}]‘+<2+2b/< t)‘dt((w)‘

N

< 7m?. (5.199)

In the second inequality above we have used that ¢ < € is sufficiently small with respect
to k, b, ¢, and m, while in the third inequality we have used (5.2). This concludes the
proof of (5.193b). O

5.10.2 The Shock Curve Iteration

In view of (5.191) and (5.193a)—(5.193b) we note that the inequalities (5.13) are stable
(since % < l and 5 < 6). Upon integrating in time, the condition [§(f) — k| < m*z
present in (5.13), automatically implies s(¢) € X (¢).

Next, we define a sequence of curves s® fori > 0, as follows. For i = 0, we
let s (1) = kr. This curve trivially satisfies the conditions in (5.13). Next, given a
curve s() defined on [0, ] which satisfies (5.13), we first compute via (5.190) a tuple
(w, k, z, a)® associated to s:

Proposition 5.6
_—

(s, wo, ag) w®, 2D kD a0y, (5.200)

Then, according to (5.192), from (w, wii ), zg)), which are one-sided restrictions on

s, we may uniquely define a velocity field F4@ (1), which may be in turn integrated
to define

t
sUTD (1) = / Fyir (s)ds (5.201)
0

forallz € [0, £]. Since s satisfies (5.13), by Lemma 5.27, we have that ) satisfies
the bounds in (5.193a)—(5.193b). Using (5.201) and Lemma 5.27, we in turn deduce
that s+ satisfies (5.13), on the same time interval €. Thus, under the above described
iteration s — s+ the set of inequalities (5.13) is stable.
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The sequence of curves {5(i)}l>o is uniformly bounded in W22°(0, %), in light of
the bounds (5.13), and for i > 0 it satisfies (5.201). From the Arzela-Ascoli theorem,
we may thus deduce that there exists at least one sub-sequential uniform limit s, of the
family {s(i ) }i>0, which inherits the bounds (5.13). However, in order to show that this
limit point s solves (5.191), we would need to show that ) — Fs when s — g,
This continuity of F5 with respect to s is addressed in the next section, where we in
fact show that the sequence {5(i)}l~>0 is in fact Cauchy in W1%°(0, ).

5.10.3 Contraction Mapping and Convergence of the Shock Curve Iteration

By (5.192), in order to compare Fi+1) and F,q, it is obviously sufficient and neces-
sary to compare the tuples (w @t wJ(riH), 29Dy and (wl*D, w{™D 20Dy Note
however that these tuples represent restrictions of the functions (w @+, z0+1) and
(w®, z), which are themselves defined on different domains; thus in order to com-
pare (w@tD z@+Dy and (w®, z), we need to re-map them of a fixed domain, by
shiftingy = 6 — s+ (1), respectively y = 6 — s (r).

As such, for every i > 0, and for (y, r) € (T \ {0}) x [0, €], we define

W20, kD,a) (y, 1) = @, 20, kD0 (y+5D00,1) . (5.202)

where s© (1) = «t,andfori > 1thecurve s isdefined recursively via (5.201) . Since
Proposition 5.6 and the bound (5.189) guarantee that (w®, z), kD, a) e Xy are
well-defined and differentiable on the spacetime domain T x [0, €]\ {(s O ), 1)}te[0,5)
the new unknowns (W@, z® k@ a®)y are all well-defined and differentiable on the
i-independent domain (T \ {0}) x [0, €] with bounds inherited from the space Xz
defined in (5.140), allowing us to compare them to each other. Note that due to the
shift (5.202), we have

w? (@) = lim w(y, 1), w () = lim why, 1),
y—0~ y—0t

D@0 = tim 200,10, k9@ = 1im KOy, 1),
y—0~ y—0~

the system of equations (5.66) (which encode the jump conditions) are satisfied for
every i > 0,¢ € [0, €], and F,u may be expressed in terms of the above variables.
Moreover, by (5.91) we have that for each i > 0 the unknowns in (5.202) solve the
system of equations

(8 + 8 = 5Day ) w? = —2aOw® 1 4 (5, + 6 — 5Dy, ) kO,

(5.203)
(8 + 3 = 5Day ) 20 = —3a020 — 1 (5 + ) = 5Dy, ) K,

(5.203b)
( + 0§ = 57, ) KO =0, (5.203¢)
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( + Y =503y ) a® = ~4@ D)2 + LW +20)2 = L —20)2,
(5.203d)

in the interior of (T \ {0}) x [0, €], where we have denoted c® = %(W(i) —z®), and
have use the usual notation for the three wave speeds at level i.

Since we have seen earlier that for all i > 0 the curves s satisfy (5.13), by
the proof of Lemma 5.27 (see the first line of estimate (5.199)) and the mean value
theorem, for all i > 0 we have that

31, ; 3 | . .
|.7'—5(i+1> — .7:5(,‘)‘ < %Kb_ft_7 |Z(l+l) — Z(l)| + %bfl(_lﬂ “IW(H_D]] — [[W(l)]]|

+ (1 + 3b3/<_2t) w0y — (w®y], (5.204)

holds uniformly for ¢ € (0, €]. Thus, it remains to estimate the right side of (5.204).
For this purpose, we fix an i > 0, and denote

(5w, 8z, 8k, 8a, 8¢, 85) = (WUTD ZEH+D | GHD JG+D (4D s+

—wD, 2O kO {0 ) 5@y (5.205)

We note that (8w, 8z, 8k, da, 5¢)(x, 0) = 0. We subtract from (5.203) at level i + 1,
the equations (5.203) at level 7, in order to estimate the increments defined above, via
the maximum principle, to obtain

e From (5.203c) we have that
(8 + FTD = 5Dy ) sk = —ayk® (3w + 36z - 55) .

Since Proposition 5.6 guarantees that k) € A%, the function k® satisfies the
bound (5.141f), and so similarly to (5.186) we may obtain

3 .
sup [|8k]l o < m3t2 (sup 16W|| oo + sup ||8z|| Lo + sup |85|) (5.206)
[0,] [0,¢] [0,¢] [0,¢]

where the L norms are taken over the domain T \ {0}.
e Similarly, from (5.203d) we have

(a, + o0t é““))ay) sa=—aya" (36w + 28z — 85) — 2@V +a?)sa
+ 2wl £ w® 200D 4 20y 5w + 62)

_ %(W(H-l) + w@ _ S+ Z(i))((gw —82).
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Using that (w®, z@ k@ aD) e X;, and since [wP (@, 1)| = |wg(®, 1) < m,
similarly to (5.187) we obtain

sup [18all 00 < M3t [ sup |6Wl| ;00 + sup (18]l ;00 + sup |85] | + 3m>s sup [|8all;
[0,7] [0,7] [0,7] [0,1] [0,7]

5
+ (mt +m’? + m3t7) <sup 6wl oo + sup ”82||Loo)
[0,7] [0,7]

and thus, taking into account (5.142),

sup [|8all foo < 4m3t (sup [[6W | oo 4 sup [16z]| poo + Sup |8é|) (5.207)
[0,7] [0,] [0,7] [0,¢]

sincet <g K 1.
e Next, we turn to (5.203a), which gives

(at + it - é““))ay) sw = —ayw (sw + 15z — 85) — S0+ Dsw — Swsa
+ LD (8, + D - é(i+]))3y> sk
— 3D (sw + Yoz - 550) ayk®
+3oc (3 = 20) ayk®

Recalling that ¢+ solves (8,415 T 95)c 4D = — B+ _ 2+ 3,7 G+D),
see e.g. (5.138b), we obtain from the above that

(8, + o8t _é(i-i—l))ay) <5W _ %C(H—l)gk)
= —dyw? (dw + 18z — 85) — 84" Dsw — SwPsa
Ly (84G+D G+1) | 2 (+1) g G+
— 1ok <§a(z IHD 4 2l 0 >>
— 5D (ow + Yoz - 550) ayk® + FcDayk Ve,
Following (5.183), the above equation is composed with the flow of A§i+l) —50+D,
which of course is just 7D — s@*D “and then integrated in time. Note that
dyw o (n+D — 5Dy = (3w ®) o n+1D and (5.56a) holds. Thus, using that

WD,z kD a®Dy e Xsand (wl*D, 20+D (G+D q0+Dy ¢ Xz similarly to
(5.184) we may deduce that

sup [|8wl[; < m (1 + 4m3t> sup |18kl ;o + (% + 4m3t) sup [|8wll
[0,7] [0,7] [0,7]
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1 4.3
n (6 +2m t2> sup [152]]
[0,1]

3 .
+ 3m¢ sup ||8al| p + (% + m4t7) sup |85] .
[0,] [0,7]

Upon taking € to be sufficiently small with respect to m, taking into account (5.142)
we deduce

sup ||8w|| foo < m’ sup ||8k|| o + 2 sup ||6z] Lo + 2m3t sup ||8a|z.0
[0,7] [0,7] [0,7] [0,7]

+ (8 +8m’) sup o3 (5.208)
[0,7]
e Lastly, from (5.203b) and (5.138c) we similarly deduce
(3t i ()‘YH) _§(i+1))8y) (62+ %c(i+1)5k)
= —ayz® (Lsw + 62 — 85) — 805z — 82052
+ 8k( 20D D) _ c(i+1)ayw(i+]))

+ D (Low + 7 — 550) ayk® + LD kDsc
and then similarly to (5.208) we have

6.3
sup 18] o0 < m? sup I18kIl oo + mP22 sup [|Swl| o
[0,7] [0,7] [0,]

+3m313 sup [18a]l Lo + mCs2 sup |85 . (5.209)
[0,] [0,]
Combining the estimates (5.206)-(5.209), and defining

Ni(t) := sup||6w||Loo+r 4sup I8zl oo + 27
[0,7]

1
sup [|8kll g0 + 772 sup [|8all o~ ,
[0, [0,1] [0,1]

(5.210)

where we recall the notation in (5.205), we arrive at

Ni(£) < 3(1 4+ mP)t4 Ni (1) + (X2 + 6m317) sup |85
[0,1]

and thus upon taking # < ¢ to be sufficiently small in terms of m, we deduce

N;(t) < sup|85| sup D _ @O (5.211)
Mo
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Recalling the definitions (5.201) and (5.210), from the bounds (5.204) and (5.211)
we deduce that

sup|$F+2 — 50D | = sup | F i — Foo|
[0,£] [0,1]

< %Kb_%t_% sup

[0,7]

+ (1 + b2 + 3b3/<_2t) sup

[0,2]

S+ _ z(i)‘

Lo

Wit _ y®

< 2eb 2N (1) + (1 +8b3lrr 4 3b3K_2t) Ni ()
< (L+15)N; (1)
< %(1 + t%) sup|§(i+1) _é(i)|
[0.1]
< 2L sup[sEHD — 50| (5.212)

[0.7]

upon taking €, and hence ¢, sufficiently small with respect to «, b, ¢, and m. Note that
% < 1, and so we have a contraction. Since s©) = k7, and all the sequence of iterates

satisfy (5.13), we deduce that

sup|é(i+1) — ﬁ'(i)| < (%)i sup|é(1) - K| < (%)i m*s . (5.213)
[0,7] [0,7]

The bounds (5.212)—~(5.213) have as consequence the fact that the sequence of
shock curve iterates {s(’)}i>0 defined in (5.201) is Cauchy in W10, %), and thus
has a unique limit point

s= lim s in  W!*0,%)), (5.214)
1—> 00

which inherits the bound (5.13). The bound (5.212) moreover shows that F,¢) — Fs
asi — ooin C%(0, ), and by (5.201) we obtain that s solves shock evolution equation

(5.191), as desired.
Lastly, in view of (5.190), associated to this limit point s, which satisfies the bound
(5.13), Proposition 5.6 determines a unique solution (w, z, k, @) € X5 of the azimuthal
form of the Euler Egs. (3.5)—(3.6) on either side of the shock curve, which also satisfies

the Rankine-Hugoniot jump conditions (3.13a)—(3.13b), and the shock speed § is given
by (3.12b), as desired.

5.11 Uniqueness of Solutions
The uniqueness of solutions holds in the following sense. Consider wq which satisfies

(5.1), and ag which satisfies (5.4). Fori € {1, 2}, assume that s© is a C2 smooth shock
curve defined on [0, T'] for some T > 0, which satisfies (5.13) on [0, T']. Assume that
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(w, z, k, a)(i) are C ; , smooth solutions of the azimuthal form of the Euler Egs. (3.5)—
(3.6) on the spacetime domain D7, i.e., on either side of the shock curve s, with initial
datum (wy, 0, 0, ag). Moreover, assume that the restrictions of (w, z, k)© satisfy the
Rankine-Hugoniot jump conditions (3.13a)—(3.13b), and that the shock speed § is
given by (3.12b). Lastly, assume that (w, z, k,a)?) € A, as defined in (5.141)-
(5.140). Then, if € < T is sufficiently small (in terms of the constants «, b, ¢, m), we
have that sV = 5@ on 0, €, and (w, z, k, a)V = (w, 7, k, @)® on Ds.

The proof of this statement is a direct consequence of the contraction mapping
established in Section 5.10, and of the fact that z@(-,#) = 0 .on T \ [s\" (1), s (1)],
andk@ (., ¢) = 0on ']I‘\[ﬁg)(t), s (¢)]. More precisely, fori € {1, 2} use the definition
(5.202) to remap the two sets of solutions to the same space-time domain, and then
use (5.205) (with i = 1) to denote their difference. As in (5.210), define

3 1
N(t) := sup [|6W|| o0 + ¢~ 4 sup [|6Z]| poo + 1! sup [|8k|l = 4+ 172 sup ||8al ;. -
[0,1] [0,¢] [0,¢] [0,£]

Then, as in (5.211) and (5.212), we may show that the bounds
N() < 2 sup 85|
[0.7]
and

sup [85] < (1+ 15)N (1)
[0,7]

hold for all r € [0, €], whenever € is chosen to be sufficiently small with respect to
the aforementioned parameters. This shows that N(z) = 0 = 8s(¢) for all ¢ € [0, £].
Since 5 (0) = 0, it follows that §s = 0, and thus also that N = 0, thereby concluding
the uniqueness proof.

5.12 Proof of Theorem 5.5

The proof of Theorem 5.5 is a direct consequence of Proposition 5.6, of the contraction
mapping established in Sect. 5.10, and of the uniqueness in Sect. 5.11, as described
next.

The parameter £ > 0 in item (i) is chosen to be possibly smaller than what is
required in Proposition 5.6, as required by the estimates in Sections 5.10 and 5.11.
The existence of the regular shock curve s and of the solution (w, z, k, a) € X5 to the
azimuthal form of the Euler equations (3.5), follows from the contraction mapping
in Section 5.10. Note that in view of (5.191), the shock curve s obeys the correct
ODE, while the desired properties for (w, z, k, a) follow from Proposition 5.6 applied
to this limiting shock curve. The uniqueness of the solution (s, w, k, z, a) such that
s satisfies (5.13) and (w, z, k,a) € A, is established in section 5.11. Taking into
account Proposition 5.6, we have thus established items (i), (ii), (iii), (iv), (vii), and
along with the support properties for k and z claimed in items (v) and (vi).
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In order to complete the proof of the theorem, it remains to establish the following:
the precise bounds for k near s, (as claimed in item (v)), the precise bounds for z
near 51 (as claimed in item (vi)), the specific vorticity bounds (and its continuity
across s) claimed in item (viii), and the continuity of a, respectively the jump for dya
across s, as claimed in item (ix). These properties of the solution are established in
Subsections 5.12.1 and 5.12.2, below.

5.12.1 Improved Bounds for z and k near s, Respectively s,

The information (w, z, k, a) € X does not directly provide estimates for z(6, t) and
k(6,t) which vanish as § — s;(¢)™, respectively # — s>(¢)*. Such bounds may
however be easily obtained, as follows.

From (3.5¢c), the definitions of the stopping time T and of the flow ¢, and the
estimate (5.69b), we obtain

k(©, )] = |k—(s(7(0, 1)), 70, 1))| < 40b7 k370, 1)2 (5.215)

for all (0,¢) € Dé. Similarly, from (5.110), (5.81), and (5.155) (with n — 00) we
deduce that

|00k(0, )| < 2| Lk_(7(0, 1))] < 20003 *7(0, 1)? (5.216)

for all (0,1) € Dg. Since 7(0, 1) ~ %(9 — 52(1)), see e.g. (6.144a) below, the above
two estimates give a precise order of vanishing for k and ky as y — s»(1) ™.

Next, let us consider the behavior of z near s,(¢). For (0,¢) € Dg, from (3.5b) we
obtain

20,1) = 2(s(3(6, 1)), 8(0, 1)) B woVids
t

+3 / (ckg) 0 Ye™ 5 Jiaovids' g (5.217)
3.1

Using (5.69a), (5.141a), (5.141g), and (5.216), we deduce that

9, 3 T !
|z(y, )| < 5b2k723(0, 1) +40m*b2k T (0, 5),5)2ds .
3.0

In order to estimate the integral term in the above estimate, we use (5.154) to bound
3k7NO — 52(0) < TO,1) < FkTNO — s2(0)) for all s2(1) < 0 < s(1), for &
sufficiently small. As such, it is natural to define y (s) = (0, s) — s2(s), and note
that due to (5.158), we have y (s) = A1 (¥ (0, 5), s) — $2(s) € [~5, —7]. Hence,

! ! _1 (! 1
/ T (0, 5),s)2ds <2k 2 / y(s)2ds
d d

[CR)) [CR))
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t
< -8k 2 f P (5)(y () 2ds
J

©0.1)
=673 (y(a6, 1) -y (0?)

<6k 2(s(3(0. 1)) — 52(3(0, 1)))?
<23(0.0)7 .

Combining the above two inequalities we arrive at
|26, )] < 12b7x 230, 1) (5.218)

forall (y, ) € DX For (6, 1) € D\ DX, the same bound as in (5.218) holds. Indeed,
for s € [4(0, t), t] such that ¥, (0, s) ¢ Dg, we have that kg (Y, (9, 5), s) = 0, so that
the integrand in the second term in (5.217) vanishes for such s. On the other hand, for
s € [9(0,1), t] such that ¥ (0, s) € Dé we again appeal to (5.216), and to the fact that
I (0, s),5) = 3(0, t). Estimate (5.218) and the bound %K_l O —s51(1) <J0,1) <
%rl(e — 52(t)), which holds for s1(r) < 6 < s,(¢) and ¢ sufficiently small, gives
the rate of vanishing of z(6,t) as 8 — s;(t)". Moreover, since z(s1(t),t) = 0 by
using the definition of the derivative as the limit of finite differences, from (5.218) we
immediately deduce also that

(092)(s1(2), 1) = 0. (5.219)

5.12.2 Bounds for the Specific Vorticity, the Radial Velocity, and Its Derivative

The continuity of the radial velocity a on T x [0, €] is a consequence of the construction:
the continuous initial data ag (see (5.4)) is propagated smoothly along the characteristic
flow of A, (which is continuous, in fact Lipschitz continuous in space and time) in
the domain (Dg)c, and in particular a limiting value for a from the right side of the
shock curve is obtained; these values of a on the shock curve then serve as Cauchy
data for the region Dé, using that the flow of X, is transversal to the shock curve. In

detail, from (5.129), the the Lipschitz regularity of q),(") (6, -) with respect to both 6

and ¢ (see Lemma 5.24 and its proof, the boundedness of 9, d),(") follows in the same
way as (5.155), since 9, ,(") solves the same equation as 83¢l(") except with datum 0
instead of 1 at (0, t)), the continuity of ag, and the bounds (5.141), inductively imply
that ™ is continuous on T x [0, €], and thus so is its uniform limit a. In particular,
[a(-, )]l = 0.

Concerning the specific vorticity, we note that from the uniform bound (5.140) and
the lower bound on wy in (5.1b), we have that the sequence of specific vorticities
{w(")}n>1 , where ™ = 4(w® 4 7™ — Bga("))(c("))_zek<”) , is uniformly bounded
in L>*°(Dg), by 300m« —2. Thus the weak-* limiting vorticity @ also lies in L*° (D),
and inherits this global bound. By repeating the argument in Section 5.8.13, since
the right side of (5.139) vanishes as n — oo (when integrated against smooth test
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functions), we obtain that o is a L’ weak solution of (3.9) in D. Since (w, z) € &,
we have that A; is Lipschitz, giving uniqueness of weak solutions to (3.9), and thus @
can be computed classically by integrating along the characteristics of A, (see (5.221)
below).

In order to obtain a sharper estimate for the limiting specific vorticity @ we recall
that from (5.5) that

107! < wp(0) < 287! (5.220)

for all & € T. Integrating the evolution (3.9) along the characteristics ¢, (0, s), for
s € [0, t], we obtain that

@ (0, 1) = @o(1(6, 0))e’ i A0

3 S50 OO0 @k @06, 5). 5163 8@ CDD g for (6,1) € DE
for (6,1) € (DG
(5.221)

Then, for all (0, t) € Dz, using the bounds (5.141g), (5.141e), and (5.141f), we deduce
that

| (6, 1) — @0 (0, 0))| < 3Ryt |wo (@ (0, 0))]

3
+ Re(t3 — 7(0, 1) )R HRst?
<cCt. (5.222)

Since t < € K 1, it follows from the above estimate and (5.220) that
%' <w(O,1) <3067, (5.223)

forall (0, 1) € Ds.

The continuity of the specific vorticity across the shock curve s follows from (5.221),
the continuity of @y (see (5.5)), the continuity of a established earlier, the Lipschitz
continuity of ¢,(6, -) in both space and time (which holds in light of the argument
in Lemma 5.24 and the uniform convergence )LE”) — A1), the transversality of the
flow ¢;(6, -) to the shock curve, the bounds (5.141), and the fact that by definition
TO,t) > tasy — s(t)”.

It only remains to consider the behavior of dga near the shock curve, claimed in
item (ix). From (3.8) we have that dga = w+z— %wc%k and thus, using the continuity
of @ across the shock curve, for every ¢ € (0, €] we deduce that

[3gall = [wll + [zl — S |s0.0[wle) (") + 1.0 lz(c) (e*)
— 1@ s, (AT
= [l (1 = § I ) ()

=iJa,1

@ Springer



26  Page 146 of 199 T. Buckmaster et al.

+ 2D + 1 s .0 [2De) () — Yo l(s(ry.0) () TEFT

=:Ju2

Using the fact that (w, z, k,a) € X%, the precise information on wg provided by
Proposition 5.7, that the specific vorticity satisfies (5.223), and that the jumps in z and
k (hence also the jump in ) satisfy (5.69), we obtain

[Ja2(0)] < €3

and that
31
Jan(t) = ( 2b212 + Ot )) (1= 3@ lst).0x + O0)
G2 apid < b3 - Cr < gt < —3bAe 4+ Cr < ~ b3

for all ¢+ € (0, €]. By combining the above three displays we arrive at

1
12

1

—4b17 < [[dpall(r) < —Lb’

[

since €, and hence ¢, is sufficiently small. The above estimate concludes the proof of
Theorem 5.5.

6 A Precise Description of the Higher Order Singularities

The goal of this section is to establish:

Theorem 6.1 (Shocks, cusps, and weak discontinuities) Ler € > 0, s € Cc? 51,52 €
Cl, (w,z,k,a) € Xs be as in Theorem 5.5. For t € (0, €], we have the following
upper bounds on higher order derivatives:

3, if6 < 52(0) 0r 6 > (1) + 4
lwag 0, 1) S {173 470,077 ifsr(t) <6 < s(1) , (6.12)
i3 ifs(t) <6 <s(t) + %
1
TO, 072, ifsat) <6 < s(t)
000, )] < . 6.1b
0@ 15 40,04 i) <6 <) (©1)
koo (0.0 S TO.072  ifsa(t) <6 < 5(0), (6.1c)
3, if y < s2(t) or 6 > s(1) + &

lage 0, )| S Ve 4170, 0)77 ifs2(t) <6 < s(t) , (6.1d)
1! ifs(t) <0 <s(t)+4

|wa(0, )] S 1+ Lig pept (t = 7(0.1) 7(0, nz, (6.1¢)
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Development of shocks and cusps “
jump t

one sided
1/2 cusp
| Lt L
/—' one sided
L—""1/2 cusp
‘/.__/—

Fig. 12 Schematic of the tuple (w, z, k, a) at ¢t € (0, €]. On the left, we have sketched w in red, z in green,
k in blue, and a in orange. On the right, we have sketched the derivatives wg in red, zg in green, ky in blue,
and ag in orange

where the implicit constants in < only depend on m, cf. (6.8)—(6.13), and (6.14). In
particular, for everyt > 0, the first and second derivatives of (w, z, k, a) are bounded
on boths(t)™ and s(t)™.

Moreover, 51(t) and s, (t) are C' smooth curves of weak characteristic discontinu-
ities in the following precise sense:

(i) The spacetime curve s,(t) is a weak contact discontinuity with the property that
second derivatives of (w, z, k,a) blow up on 5; (t); in particular, for generic
constants ¢ and C,

c® —Sz(t))_% < wop (8, 1), —200(0, 1), koo (0, 1), —t L age (6, 1)

<CO - 5(t)2 (6.2)

for sy(t) < 0 and 6 — s5o(t) K t. The sum wggy + zgo remains bounded on s,(t)
and

1

|wog (0, 1) + 2600, 1) S 172, (6.3)

forsy(t) <6 < sy(t) + %t. Lastly, the functions (wg, zg, ko, ap) form C%-cusps
along s>(1) ™.

(ii) The spacetime curve $1(t) is a weak discontinuity such that only zpg blows up on
si(0)7,

(O —51(1) "2 < —209(0.1) < CO —51(1) 2, (6.4)

for s1(t) < 6 with 0 — s1(t) < t, while second derivatives of (w, k, z) remain
bounded in terms of inverse powers of t. The function zy forms a C %—cusp along
s1(1)" (Fig. 12).

The proof of Theorem 6.1 is the subject of the remainder of this section: in Sec-
tion 6.1 we give the bootstrap assumptions which yield (6.1), Sections 6.2-6.6 are
dedicated to closing these bootstraps, while Sections 6.7 and 6.8 are dedicated to the
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analysis of the weak singularities emerging on s; and s. The summary of the proof
is given in Section 6.9.

‘We note that the bounds for the second order derivatives of (w, z, k, a) claimed in
Theorem 6.1 greatly differ according to the location of the space-time point (6, ) where
they are evaluated: while far away from sy, s,, s all information concerning w and a
is propagated smoothly from the initial datum, for (6, ¢) near the space-time curves
51, §2, 5, obtaining upper bounds and matching lower bounds for second derivatives
is a delicate matter, which requires a region-by-region analysis. Accordingly, we shall
consider three separate cases:

e (0,1) € Dé, the region between s, and s. Here, for all # > 0 the second derivatives
of (w, z, k, @) are bounded as & — s(¢)~, but they all blow up as § — s>(¢)",
due to the presence of the entropy.

e (0,1) € Dg\Dg, the region between s1 and s;. In this region k = 0, and this implies
that the second derivatives of w remain bounded as &6 — s(¢)™; nonetheless,
the second derivative of a still develops a singularity here, highlighting the two-
dimensional nature of Euler in azimuthal symmetry model. On the other hand,
approaching s (#) from the right side, only the second derivative of z develops a
singularity.

e (0,1t) € Dg \ <, the region which is either to the left of s; or the the right of
5. In this region We have that z = 0 and k = 0, and thus the analysis reduces
to the study of w and a alone. We show that for all # > 0, these quantities have
bounded second derivatives, uniformly in this region, essentially because they are
determined solely in terms of the initial data.

Remark 6.2 Naturally, the further away (6, t) are from s (¢) (to the left) or s(¢) (to
the right), the further away we are from any singular behavior, and so the bounds for
agw and 892(1 become better. As such, for simplicity of the presentation we only give

proofs of estimates for second derivatives at points (0, t) € Dg \ D_g which are close

to 51 or s: either 51 () — E% <O <s51(t),ors(t) <6 <s(t)+ E% In particular, the
closeness considered is z-independent, and thus on the complement of this region it is
not hard to establish bounds for 83(9, t) and 89251(0, t) which are uniform in time for
t € [0, €]; these bounds only depend on €, which is a fixed parameter.

Remark 6.3 By the uniform convergence of our iteration scheme and (5.154), we have
that

V0, 9) = Lics + (0 — Lkt) +(9(t%)
=lks+ @ -510)+0(15), @1 eDE, (6.50)
610, 5) = x5 + (6 — 3kr) + O (15)

=2ks+ (0 —52(1) + O (t%) , (0.1) DL (6.5b)

Remark 6.4 (Bounds on wave speeds 1 and 2) Recall that ¢, and 1, are the flows of
the wave speeds A> and A, which are the identity at time z. Throughout this section
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we shall use the following fact: for all # € [0, €], and all y € [s1(z) — E% ,5() + E%],
we have

10,61 (0, 5) — 2| = |A2(d (6, 5), 5) — 2| < 4blgh (6, 5) — 5(s)|3 +4b3s? (6.6a)

1

|01 (0. 5) = &| = [L1 (W1 (6.9). 5) — §| < 4bJY (8. 5) — 5(5)|F +4b3s? (6.6b)

for all s € [0, t], where C = C(k, b, c, m) > 0 is a constant. The proofs of (6.6a)
and (6.6b) are identical, and rely on the fact that z(-, s) = (’)(s%), and that for y €
{9:(8,5), ¥ (0, 5)} we have

lkk —w(@,s)| < |k —ws(@,s)|+ Ris
< e —wo(ng ™' (@, $))| + Rys
< 2blng~ @, 5)13 + Ris

3

< 3b3s? +4bd — s(s)|5 + Rys

The aforementioned restriction on 6 not being too far to the left of 51 () or too far to the
right of 5(¢) was used in the third inequality above, because in light of (5.1c) this allows
us to bound |wo(x) — k| < 2b|x|%, since x = ng~1 (0, 5) satisfies |x| < E% < 1.
Note that a direct consequence of (6.6a)—(6.6b) and (5.13), we have that

4 4
3 3

|s(t) —52() = | < C15 and  |sa(t) —s1(1) — K| < Cr 6.7)

holds uniformly for all ¢ € [0, ], for a suitable constant C = C(x, b, ¢, m) > 0.

6.1 Second Derivative Bootstraps

The core of the proof of Theorem 6.1 is to obtain suitable second derivative estimates
for the unknowns (w, z, k, a), and on the first derivative of @, consistent with (6.1).
We achieve this by postulating a number of bootstrap bounds — see (6.8), (6.10),
(6.12) below — and then show that these same bounds hold with a constant which is
better by a factor of 2. Note that the @y and agy estimates are direct consequences of
these bootstrap bounds, see Lemmas 6.5 and 6.6, they are not part of the bootstraps
themselves. Rigorously, the bounds (6.8), (6.10), and (6.12) need to be established
iteratively for the sequence of approximations (w™, z™ | k™) which were considered
in Section 5.8; then, these estimates hold for the unique limiting solution (w, z, k) by
passing n — oo. When n = 1 the bounds (6.8), (6.10), and (6.12) are trivially seen to
hold in view of the definition given in (5.123). Then, assuming the bootstraps bounds
hold for (w™, z™, k™), the analysis in Sections 6.2—6.6 below, shows that they hold
for the next iterate (w1 7+ k#+D) defined in Section 5.8, and that they in fact
hold with a better constant. In the proof in this section, instead of carrying around the
super-indices - and -t (as was done in Section 5.8), we write the proof as if we
had already passed n — o0, and work directly with the limiting solution. This abuse
of notation is justified as described above in this paragraph.
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6.1.1 Bootstraps for the Cone ’D%

Forall (0,1) € Dg, we suppose that

02w (8, 1) — 83w (6, r)’ <My(70.0)7% +172) (6.82)
10326 0)| < Ma76,1)7 (6.8b)
‘agk(e, t)‘ < M3T(6.1)°F (6.8¢)
where
M; =10m*, M, =10m>, M;=2m>. (6.9)

6.1.2 Bootstraps for the Cone ’DZE \ 17%

S\ ok
For all (6,1) € D%\ Dy,

2w, 1) — 92w, t)( < N3 (6.10a)
‘agz(e, t)( < N236, 1) 2 (6.10b)
where
Ny =5m*, Ny =8m’. (6.11)
6.1.3 Bootstraps for D \ ’DZE
Forall (0, 1) € Dz \ D~
o] < (11 0T
where
Ny=5m*,  Ns=10m*. (6.13)

6.1.4 Bounds for @wg and agg

We first show that the bootstrap for the second derivative of k implies a good estimate
for the derivative for the specific vorticity.
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Lemma 6.5 Assume that (w, z,k,a) € Xz is such that (6.8c) holds. Then, for all
0,1) € Dg, we have

|wo (0, 1)] < 2m+ 1(0’061)54m2 (t —70,0) 70, 1)°7 . (6.14)

Proof of Lemma 6.5 We differentiate the equation for the specific vorticity (3.9) with
respect to 6 and obtain

(0; + Mp0g)y + (39%2 — %a) wy = %aew + %ek (kg + keg) .
For any fixed (0, t) € Dg, we compose the above identity with ¢,(0, s) and arrive at
(w0 0 ¢) + (Inr2 0 & — Sa 0 4) (o 0 ) = (Sase + 3“3 + ko)) 0 1.

Denoting the integrating factor associated to the above equation by

t
Ioyy = Iy (0,15 5) = —/ (0022(¢: (6, 1), 1) — Sa(@/ (6, r), r))dr

t
N

_% / (39w(¢z(9, r),r) 4 0pz(p:(0,7), 1)
—4a(g:(6,r), r))dr , (6.15)

and using that ¢, (0, t) = 6, we then obtain

t
@y (0. 1) = Wy (0, 0))e!mo @10 4 f (3ap
0
+4¢5 (3 + ko)) (910, 5), $)e!™0 @19 (6.16)

First, we estimate the integrating factor in (6.15), for a fixed (6, ) in the region of
interest, as described in Remark 6.2. Using (6.6a) and (5.13), we have that the curve
¢: (0, s) is transversal to the shock curve s, in the sense that d;¢; (0, 5) < %K —}—O(E%) <
?T" < 6. Hence, we may apply Lemma 5.11 with y (s) = ¢,(0, s), separately on the
intervals [¢/, t] — [T7(0,1),t] and [¢', t] — [s, T(0, )], with the second case being
of course empty if 7(6, t) < s. In this way, from estimate (5.57a), (5.141b), (5.141d),
and the triangle inequality, we deduce that
2
3

|1y (0, 13 5)| < 40bk~31% + 2Ryb™ 217 + Ryt? < 50brc

=

t

As such,
‘elwe ©.59) _ 1| < 60bre— 317 6.17)
uniformly for s € [0, 7], since r < & K 1.
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Second, we appeal to the bounds (5.141e), (5.141f), (5.141g), and (5.223), to deduce
that

t
Sapw + 2F (k)| (90, ), s)ds < 12¢ 'Ryt + R2> < Ct (6.18)
0 3 3 0 6

for a suitable C = C(k, b, c, m) > 0.
Third, we use (5.141e), (6.17), the bound (6.8¢c), and the fact that k = 0 on [Dé]c
to deduce that for all (6, ¢) € Dé, we have

t
/ (*keo) (10, 5)., $)elm 1) ds| < 4m? (1 — 70, 1) 70,72 (6.19)
T,1)

for a suitable C = C(x,b,c,m) > 0. Here we have implicitly used that
T((¢: (0, 5),5)) =T(0,1).

Finally, by appealing to the w(; estimate in (5.5), we deduce from (6.16), (6.18),
and (6.19) that

|9 (0, 1)| < m(1 +60bk~313) + Ct + 1y pepedm? (¢ = 7(0,1) 7, =3

1
<2M + 1y prdm? (1 = T(0. 1)) 70, )72,

which completes the proof of (6.14). O

The previously established estimate for the derivative of the specific vorticity, (6.14),
immediately implies a bound for the second derivative of the radial velocity a:

Lemma 6.6 Assume that (w, z, k, a) € Xz is such that (6.8), (6.10), and (6.12) hold.
Then, for all (0,t) € Dg we have

N33, if6 < () 0r 6 > s(1) +
lage (0, D] < Y M5t~ +17(0,1)72), ifs2(r) <6 < s(r) (6.20)
N7t~ 1, ifs(t) <0 <s(t)+ 4

where the constants N3, Ms, and N7 are defined as as
N3=m>, Ms=m* N;=m>. 6.21)

Proof of Lemma 6.6 The proof directly follows from the bounds on the derivative of the
specific vorticity contained in the bootstrap estimate (6.14). We rewrite the definition
(38)asag =w +z — }‘cze_kw, and upon differentiating we see that

agg = Wy + 29 — %C(U)@ — zg)e_kw + JTcZe_kkgw — %Cze_kwg

= —%Cze_kwe + we (1 - J—‘ce_kw) + 26 (1 + ‘]—‘ce_kw) + 1cfe kg .
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By using that (w, z, k, a) € A7 and the bound (5.223), it follows that for all (6, ) in
the region of interest, we have

1

2 (6.22)

age + %cze_kwe — dpwp (1 — %ce_kw)‘ < Ct

for a suitable C = C(k, b, ¢, m) > 0. For dpwg estimates we refer to (5.37a), @ is
bounded via (5.223), while for bounds on dy@ we refer to (6.14). We deduce

Jag 0. )] < M* + 1, ppm® (¢t — 70, 1) 70, 1) "2
_1
+m? ((bt)3 11— 5(;)|2) 3 (6.23)

The bound (6.23) now directly implies (6.20), as follows.
For 6 < sy(1) or 0 > s(1) + %, we have that |0 — s(1)| > & — Ct3, and also
0,1 ¢ Dé. As such, the first bound stated in (6.20) follows from (6.23) as soon

as N3 > 2m2(/</4)’%. This condition motivates the choice of N3 = m? in (6.21).
Similarly, the third bound in (6.20) follows from (6.23) as soon as N7 > 2m2b71;
this condition holds since N7 = m?> as in (6.21). Lastly, we consider the case that
52(t) < 6 < s(t), case in which (6.23) implies

‘aga(e, t)‘ <m® +mic — 76, 076, ) +m?(or)~!
<m*e ! 4 170,077). (6.24)

The bound (6.24) then clearly implies the second bound in (6.20) as soon as M5 > m*;

a condition which holds in view of the definition of M5 in (6.21). O

6.2 Second Derivatives of the Three Wave Speeds
6.2.1 Improved Estimates for Derivatives of  — ng

Lemma 6.7 Given (0,t) € Dg, define the label x € Y (t) by x = n’l 0, 1), where we
recall that the set Y (t) is defined in (5.42). Then

4
50me3, if 60 ¢ (s2(1), 5(t) + )
ety bt < 3) 6.25
0517 (x, 1) ne(x. )] {10mt, ifo € (52(t),5(1) + %), o
10mes, iff ¢ (s2(0), 5(1) + L)
o — ot < 3) 6.25b
on(x, 1) — dyme(x f)‘ {zomz—%, ifo € (s2(1), (1) + ) ( )

Proof of Lemma 6.7 We first record a few bounds for the derivatives of the Burgers
flow map ng. Using (5.17¢)—(5.17d), we have that for all s,(¢) < 6 < s(t) + %’ and
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with x = 710, 1)

02080x, )| < [rwf ()| < 2b72073, [83e(x, )] < rwg (x0)] < 2mb 43
(6.26)

The above estimates hold since |x| > %(bt) % which in turn holds by the definition of
Y (¢) and the bound (5.45). For the case that 0 < s7(f) or 60 > s(t) + %’ similarly to
(5.50) we may show that

I1(x, $) = 5(5)] > Inx, 1) — s()] + 2313 (1 — ) > & (6.27)

and so |x| = [n(x,0) —s(0)] > KT’. It follows from (5.1) that for labels x such that
x| > 4

_2 2
lwo(x)| < bk 3175, 8?173(X,t)| < Jrwg ()|
<Abe 375, |03ne(x. )| < Jrwf ()] < 8ome i, (6.28)

upon taking € small enough.
In order to prove (6.25a), we appeal to the identities

t

t

dowg o nenByds,  nx(x,t) =1 +/ (wg + %29) o nnyds .
0

(6.29)

mey (X, 1) =1 +f
0

In anticipation of subtracting the two identities above, we first derive a useful identity
for dpw o nny. To do so, we return to (5.98), which we rewrite as

i (o — 3cke) 0 n 1) + ((3a — fycke) o n) ((wo — geko) o 1)
= (ggcko (ckg + 429) — Jwag) o 1)y . (6.30)

At this stage it is convenient to introduce the w-good-unknown g% via
q"0,1t) =we@,1) — %c(@, Hke(0,1), (6.31)
the integrating factor in (6.30) as
t
I(x,s.1) = f Sa(x.s)),s") = {5(cko)(n(x,5"). s")ds’ (6.32)
s
and the forcing term in (6.30) by

Q" = jkcko(ck +4z9) — Sway . (6.33)
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With this notation, integrating (6.30) and using that kyp = 0, we arrive at
q" (e, 1), DN (e, 1) = wy()e 0D 4 / 0 (. ), 5Y1a G, )6 TS0 ds
’ (6.34)
Upon recalling the fact that dgwgong ng, = w’o, from (6.29), (6.34), and the definition
Q1 = yckg + 1z, (6.35)
we obtain

0r(Nx — MBy) = Wy © N Nx — JgWg © 1B My

= wp() (e 7400 —1) + Q1o s

t
- / 0¥ (n(x, 5), )1 (x, $)e 5D g (6.36)
0

which is the main identity relating the derivatives of 1 and 7g.
We recall that (5.1), (5.141), and (5.142) imply

|0%(6.1)| < J5(MRet2)(MRet? +4Ry1?) + $Ry(Ryt +m) < 12m?
1 31
10100, 0] < (3MRs + JR)1? < mis2

while (5.54a) gives |1y (x, s)| < 47'1' Moreover, the integrating factor Z defined in (6.32)
satisfies

IZC,5, 0| <8Rt — ) + smRs(t? — 57) < 12m(t —5). (6.37)

Estimate (6.37) will be used frequently throughout the remaining analysis.

In order to prove (6.25a), we integrate (6.36) on the interval [0, ], use that
Nx(x,0) = 1 = np,(x,0), and the fact that (w, z, k,a) € X (expressed through
the bounds (5.141)), and obtain that

! — 33
[nx(x, 1) — mp, (x, )] < Iwé(x)I/ ‘e T09) _ 1| ds + Im213
0

20,/ 7 3.3
< 8miTwy(x)| + gm222. (6.38)

In the case that 8 = n(x,t) € (s2(¢), s(t) + %’), since |x| = |n_1(6,t)| = %(bt)%,
from (5.17b) and (5.142), we obtain the second bound in (6.25a). On the other hand,
for6 = n(x, 1) ¢ (52(), s(r) + %), from (6.27) we have |x| > 4 and so from (6.28),
(6.38), and the working assumption (5.2), we obtain that the first bound in (6.25a)
holds.

@ Springer



26  Page 156 of 199 T. Buckmaster et al.

We next estimate 1,y — nB,,. Notice that by differentiating the identity (6.36),
factors of 1y, appear in both the integral term, which at first leads to non-optimal
bounds. Instead, we twice differentiate the equations dsn = A3 on and dsng = wgong,
to find that

35 (Mxx — MBxy) = Wop © 11775 — Wy © 1B N8 ~+ We © 7 Nxx — WBY © 1B Ny
= (wggg o Mg © (N~ 0 1) — wegp © nB)nf + (wgs — wegg) © N 1>
K Ko

+ wggg o M (12 — 1B2) + (wy 0 N — Wag © NB) By
K3 K4
+ wg on (Nxx — NByy) - (6.39)

We shall first provide bounds for the terms Ky, Ky, K3, and K4 on the right side of
(6.39) in the regions y far from s(#) and y close to s(¢), and then apply the Gronwall
inequality to estimate 7, — 1B, in these two regions. To sharpen the bounds in the
region close to s(¢), we then return to (6.36) and differentiate it in x.

The case 0 < s>(t) or 6 > s(t) + %t We recall that x = 5~ '(6, r) and define the
label ¥ = ng~! (0, 1). As earlier, from (6.27) and (5.44) we have |x|, |X| > ’%t Using
the mean value theorem, and estimates (5.17b), (5.36b), (5.22a), (5.44), and (6.28),
we obtain that

72K (x. )| < 2000R mk~3573 4+ s

so that using (5.54a), (5.142), and (5.2)

2
3

IK1(x, 5)| < mts™ (6.40)
Then, using (5.54a) and (6.10a) and (6.12a), we have that
Ko (x, 5)| < 4Ny + Na)s™5 . (6.41)

In the above estimate we have implicitly used the fact that n(x, s) ¢ Dg, which is a
consequence of the assumption on 6 being sufficiently far from s(¢) and of the bound
(6.27). Next, by (5.36), the s-independent lower bound on x provided by (6.27), and
the wq estimates (5.1) and (5.17b), we have

|0gwe (1B (x, 5), )| < J|wh(x)| < 2b(et) 3, (6.422)
[83ws (s, ), 9)| < (D wf ()l < 16b(en) 3 (6.42)

for all s € [0, t], and so by (5.54a) and (6.25a)

KC3(x,9)] < Cs3173 < €575, (6.43)
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for a suitable C = C(k, b, m) > 0. Lastly, in order to bound /4, we write

(wp o1 — wgg 0 7g) = (Wg © 17 — Weg © NB) NNy

and

(wg on — weg o ne)Nx = (we o 1 1Nx — dgwg o N8 M8, ) — dows o Ne(Nx — NBy) -

Using the second equality in (6.36), similarly to (6.38) but with ¢ replaced by s, we
have that

2
3

1 2 1
|wg o NNy — weg o N 7B, | < 4R7s|wy(x)] + Cs2 < 20bk 3mst™3 < Cs3,

where in the second inequality we have also appealed to (6.28). Hence, by combining
the above three displays with (5.54a), (6.25a), (6.28), and (6.42), we have that

[Katx )| < €3 (3 417557 ) < €73, (6.44)

for a suitable C = C(x, b, m) > 0.
Finally, using the bounds (6.40)—(6.44), and the estimates (5.56a) and (5.141a) we
apply Gronwall to (6.39) and find that

!
x5, 1) — gy (6, )] < e2P2RP722 16(m* 1 Ny 4 Ny)t3

<30(m* + Nj + Na)t5 (6.45)

in the case that y ¢ (s2(1), s(r) + ).
The case s,(f) < 6 < s(t) + %’ We shall first use (6.39) to provide a (non optimal)
bound for the difference 1, — ng,,. Once we have such a bound, we will then return
to the differentiated form of (6.36) to obtain the optimal bound.

Recall the definitions of the labels ¥ = ng~! (n(x, t), ) and x = n~1(8, r). At this
stage it is convenient to introduce s = v¥(x, 1) € [0, 1), the largest time at which either

n(x,s) =s(s) = 5(s)—%+(’)(s%) orn(x,s) = s(s)+%5 . This time v(x, ¢) exists in

view of the intermediate function theorem since, |1 (x, 0)—s(0)| = |x| > %(bt)% > 0,
and is unique since as in (5.50) and in Lemma (5.24), we have that the flow 7 is
transversal to both s, and to s. In fact, we recall from (5.50) that

31
In(x,s) = s(s)| = |y = (O] + 3b212(t —5) (6.46)
and therefore, by also taking into account (6.7), we have that
g 3 1.3
vi(x,t) = b2k 2 (6.47)
uniformly for all x = n~1(6, 1), and 6 € (52(1), s(1) + ).
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Next, we return to bounding the terms on the right side of (6.39). Then by (5.21a),
(5.36b), the mean value theorem, (5.44), and using (5.17b), (5.17c), (6.26) we obtain

(14 sw X)) wy' (%) — 3s(w( (X))?
(1 + swy(¥)*

|K1(x,5)] < 4ng~ (n(x, ), 8) — x|

<4RS2(3) (4mb_4t_4 + 16b_3st_5>

<mts? . (6.48)

Here we have use that X lies in between x and r;B_l(n(x, s), s), and thus satisfies
~ 3
[x] > %(bt)f. Next, by (5.54a), (6.8a), (6.10a), and (6.12a),

_ _1
126, )] <401 + N5) (572 4+ Loy <nesy <ot T, ). $)72) . (6.49)

Next, using (5.36b) and the fact that |x| > %‘(bt)%, combined with the estimates

(5.17b) and (5.17¢c) we obtain that |wggg (n8(x, $), )| < 3b7%t_%. Hence, by also
appealing to (5.54a) and (6.25a), we deduce

IC3(x, 5)| < Cst73 (6.50)
Finally, by (5.52), (5.141b), (5.142), and (6.26),
_3 _1 _1 "
Ko, )| < (4RIBT2572 + Ro(0) 72 ) sl ()]
-3 _1 _1 1p—3 -3 4 L _5
< (4RIDTI5TT 4 Ro(b) ) sdb i T <mbs T (651)
Summing up the estimates (6.48)—(6.51), we obtain
K1, )| + [Ka(x, )| + [K3(x, 9)| + [Ka(x, 9)|

1
< (4(M1 + Ns) + 2m4) 572 AM ) Loy (5) <n(x.5)<s() TN(X, 8), )2 . (6.52)

Let V(t) = b%/c_lt% be the lower bound in (6.47). With (6.52) in hand we apply
the Gronwall inequality to (6.39) on the time interval [V(¢), ¢], which in view of (6.47)
is slightly larger than [v¥(x, t), t]. The point here is that due to (6.47) we know that
either n(x, V) < s2(V), or n(x,V) > s(V) + %, and thus (6.45) holds at the time V.
We thus deduce that

[Max (X, 1) — My (x, 1)

t
< 30(m* + Ni + Na)U3 + (4(M; + Ns) + 2m™) /N s2ds
v

t
_1
+4M1/; 152(s)<n(x,s)<5(s)7(77(x7 §),8)"2ds
v
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t=¢ = _ :
t
1/2(,1’) .................
vi(x) |-
n(, s)
t=20 P !

Fig. 13 Fix a point (6, t) which lies in between s1 and s, and let x be the label such that n(x, t) = 6. The
intersection time of n(x, s) with s is denoted by vy (x), while the intersection time of n(x, s) with s1 is
denoted by vy (x)

3

< Ct3 + (4(My + Ns) +2mHb= 3473

t
_1
+aM, / Loy (s) <.y <o) T (M x. 5, 8) 2. 6.53)
v

Note that if & > s(¢), then {n(x, s)}s¢[0,] does not intersect Dg, and so the integral
term in the above is vacuous. We thus are left to consider the case 6 € (s2(¢), s(2)).

In order to bound the integral term on the right side of (6.53), for every x €
[n‘l (s2(1), 1), n‘l (s(t), t)) we define the intersection time s = v, (x) at which the
3-characteristic 1(x, s) intersects the curve s;7(s). Just as we showed that ¢, (9, s) is
transverse to the shock curve in the proof of Lemma 5.24, by the same argument, for
all labels x € Y (¢), the curve n(x, s) is transverse to the characteristic curve (s, (t), 1),
and so there exists an s, (7)-intersection time vy (x) such that

n(x, v2(x)) = 52(12(x)) . (6.54)

Note that for these values of x, we have that v2(x) = v¥(x, 1), as was previously
defined above (6.46). When x ¢ [~ (s2(¢), 1), 7 (s(¢), 1)) we overload notation,
and define vy (x) = €, to signify that n(x, -) does not intersect s,.

For future purposes, for every x € [n_1 (s1(1),1), n‘l (s(1), t)) we define the inter-
section time s = vy (x) at which the 3-characteristic n(x, s) intersects the curve s1(s),
i.e.

n(x, v1(x)) = s1(v1(x)) . (6.55)

The existence and uniqueness of vi(x) is again justified by the transversality of the
3-characteristic and the 1-characteristic. Again, for x ¢ I~ s1(t), 1), 7 (s(2), 1)),
we set v1(x) = ¢ (Fig. 13).

With this notation, we return to the integral term in (6.53), and recall that 2« -l —
52(5)) < 70, 5) < 41O —57(s)). This justifies defining the curve y (s) = n(x, s)—

@ Springer



26  Page 160 of 199 T. Buckmaster et al.

57 (s). Note that in view of Remark 6.3 and 6.4, we have that y (s) = A3(n(x, s),s) —
Sr(s) > 4—1L/<. Hence,

t

d 1 1
/ L5y .0y <o) TN X, ), 8) " dls < / T(n(x, ) Fds
v va(x)

t 1
<K7/ M(x,s) —s2(s)) " 2ds

2(x)

N

t
IPas: / P (s)(y ()" 2ds
v2(x)

<8Pyt =8k (0 — 52(1))?

< 8tz (6.56)

In the last inequality above we have used that |6 — s2(¢)| < s(f) — 52(¢) < "7’ From
(6.53) and (6.56), we deduce the non-sharp upper bound

ex (6, 1) — ngr (6, )| < 4(My + N5 +m¥b™ 3177 6.57)

forx = n~'(6, 1), when y € (s2(1), s(t) + ).

Note that (6.57) is weaker than the bound claimed in the second line of (6.25b). This
rough bound (6.57) may now be used to establish an optimal bound for 7, — 1B, as
follows. Estimate (6.57) is combined with (6.26) and (6.28), together with the bound
(6.45), to show that for ¢ taken sufficiently small we have

12bi— 373, if0 ¢ (s2(1), 5(1) + )

FINTIRE: B B . (6.58)
8(Mi + Ns+mY kb~ 272 if 0 € (s2(1),5(t) + )

|77xx(xat)| < {

for ¢t € [0, €] where x = 77_1 (0,1t) € Y(t). Moreover, by the definition of the time
v¥(x, t) appearing in (6.47), upon letting (9, 1) +— (n(x, s), s) in (6.58), we obtain
that

12b/<*%s*%, if s <vix,r)

33 , (6.59)
8(M; + Ns + mHxb™ 2572 if vi(x,1) <s <t

|77xx(xv S)| < {

where we have overloaded notation and have defined v (x, 1) := r whenever nix,s) <
s2(s) or n(x, s) > s(s) + %5 forall s € [0, 7].
Next, differentiating (6.36), we arrive at

A5 (Max — NBxx) = W (e‘I(”O’S) — 1) — whe 095, 7, 0, 5)
+ 390101 (1) + Q1 01 Nax

N
+/ (89Qwonn§+Q“’onnxx
0
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— 0" o ned (s, 5)) e TS ds! (6.60)

where we recall that Z, Q% and Ql are defined as in (6.32), (6.33), and (6.35). From
(5.56a), (5.141), (6.8¢c), and (6.56) we deduce

10, Z(, 57, 5)] < 24ms + 1o () (M? + MM3)s 7 (6.61a)
101, )| < m?s? (6.61b)
10" (-, s)| < 12m. (6.61¢)

Moreover, differentiating (6.33) and (6.35), using (5.141) we also obtain

|06 01, 5)

| < (ms)2|wo (-, 5)| + Dlkgo (-, )| + L|zo0 (. )|+ Cs  (6.62a)
|80Qw('as)| <

m3s%|k99(~,s)| + mzs%|zaa(', s)|
+3mlagg (-, s)| + 12m|wg (-, s)| + C. (6.62b)

These bounds are used to estimate the three lines on the right side of (6.60) as follows.
Using (6.37) and (6.61a), we obtain

first line on RHS of (6.60) < 24ms|w6/(x)| + 2(m% + mM3)s% |w6(x)| . (6.63)

Next, using (6.61b) and (6.62a), combined with (5.54a), (6.8b), (6.8¢c), (6.10b), and
(6.59), we estimate

second line on RHS of (6.60)
< m?s? (12b/€7%57%13<vn(x,z) + 8(M1 + Ns + m4)/cb_%s7%1s>vn(x’,)>

+4(ms)2 |wy (- 5)]

+ (MM + 2M3)T(0(x. ), ) 2 Lsce)

+ 2N23 (X, $). )" 2Ly, () <5 <ia(e) + Cs - (6.64)
The estimate for the third line of (6.60) is more delicate, and proceeds in several

steps. By using (6.59), (6.61a), (6.61c), and (6.62b), combined with (5.54a), (5.56a),
(5.141Db), (6.8), (6.10), and (6.12), we have

third line on RHS of (6.60)

min{s,v”(x,1)}

2 3
<C+ C/ (s)73ds" 4+ 1 e (. 96(M1 + N5 + m*Hxb™2m

0

$ 3
/ (s~ 2ds’
vE(x,t)
N

A3 Ms 4 MM + 53 M) Ly 57 / T(n(x, ), sy~ Hds’

va(x)
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1 min{s,vy(x)} .
+4m2N21s>u1(x)s7/ I(n(x, s, sH"2ds’
vy (x)
min{s,v?(x,1)} )
(s 'ds' + N3 / (s’)—zds’>

vy (x)

S

+ 12m | (Ms + N7)1x>V2(X)/
v2(x)

(6.65)

Next, by using (6.56), and the fact that in view of the relations g(@, s) ~ k1o —
51(s)) and A3(n(x, s),s) —s1(s) > %K the same argument used to prove (6.56) also
establishes

t
/ 3(n(x,5))"2ds < Ct? (6.66)
vy (x)

and so from (6.65), (6.47), (6.56), and (6.66) we obtain that

third line on RHS of (6.60) < C + 1,_ z(x ,200(M; + N5 +m*)cb™ 3 m(v¥(x, 1))
<CH+1 5 3200(M; + Ns +m3 b ime3 |
s>b2k112
(6.67)

Finally, using the bounds (6.63), (6.64) (which needs to be combined with (5.56a),
(5.141b), (6.47), (6.56), (6.66)), and (6.67), we integrate (6.60) on [0, ¢], use (6.26),
and arrive at

, 1 3
(Mex — MByx) (X, 1) < 12M%|w( (0)] 4 2(m?2 + mM3)12 [w(x)]

+ Clog +Cr2

vi(x, 1)
£ 200(M; + Ns + mHic b~ ime
< 12me%wi(x)| + Clog?

< 5Smb317 (6.68)

forx = n‘l 0,1) with 6 € (s2(1), s(t) + %t). This concludes the proof of the second
inequality in (6.25b).
The case 6§ < sy(t) or 6 > s(t) + %’ revisited. In order to prove the Lemma,
we note that the constant claimed in the first inequality in (6.25b) is different than
the one previously established in (6.45); this issue plays an important role proof of
Lemma 6.12.

For this purpose we combine (6.60) with the bounds (6.63), (6.64), (6.67) (the first
line of this inequality is used here), and use the fact that for y as above we have that
vﬁ(x, 1), v(x) >t > s, to arrive at

1 1
|95 (Mx — MByy)| < 24ms|wg ()| +2(M2 + mM3)s 2 Jwy (x))|
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+ 24bK_%m2S_% + 4m%s_%

1
+2N23(n(x, 5),5)" 2 1v1(x)<s<v2(x) +C.
Integrating the above estimate on [0, #] and appealing to (6.28) and (6.66) we obtain
1 3 1
| (e = MBx) (6, D] < 12Me%|wg (x0)] +2(M7 + mM3)1 > [wj ()] + Ct?
< 48mbic 313 4 C17

Taking into account (5.2) and the fact that ¢ is sufficiently small with respect to «, b, m,
the above estimate proves the first inequality in (6.25b). O

6.2.2 Derivatives of the 1- and 2-Characteristics

Lemma 6.8 Forany (0,t) € D,

sup 19650, 5) — 1] <60bi— 315,  sup |y (6,s) — 1] < 30bc 373 .
s€[0,7] s€[0,1]

2
3
(6.69)

Proof of Lemma 6.8 For any (0,t) € Ds and s € [0, 1], 050p¢p; = dpr2 o ¢; dp¢py, and
since dg¢p; (0, 1) = 1, we see that

Qo (0, 5) = e—f; dgrropydr _ e—%f; 39w30¢,dre—%f; 9 (w—wg+z)ogrdr

Similarly, for s € [0, #], 059g Yy = dgA1 o Y g, and since gy (0, ¢) = 1, so that

t
s

Do (0. 5) = eifxt dprioyndr _ e,% I agwgow,dre—f (%ag(w—wg)-ﬁ-?)gz)ox/f,dr )

By combining the above two identities with the bounds (5.2), (5.141), and (5.57a)
(with u = 3 for ¢ and pu = 1 for V), and using that € is sufficiently small, the bound
(6.69) follows. O

We next derive second derivative identities and bounds for these characteristics.
As we noted above, the bounds differ, depending on the spacetime region. In order
to state these bounds, we first define the 2-characteristic s1 (#)-intersection time. Just
as we showed that ¢, (0, s) is transverse to the shock curve in the proof of Lemma
5.24, by the same argument, the curve ¢ (6, s) is transverse to the characteristic curve
(s51(2), 1), and there exists an s (¢)-intersection time T (6, ¢) such that (Fig. 14)

$1(0,71(0,1)) = 51(71(0, 1)) .
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t=¢ - _ :
t
¢t(9/78)
71(9’725).... {
TN S (0, 8)
t=0 9/ 9

Fig. 14 Fix points: (¢’, t) which lies in between s and s;, and (6, t) which lies in between s and 5. The
intersection time of ¢ (', s) with s; is denoted by T (6’, ¢), while the intersection time of ¢ (8, s) with s
is denoted as usual by T(6, t)

Lemma 6.9 Let (0,1t) € Ds. Then, forall (0,1t) € Dg we have

sup ‘39@(9 s)’ <3mic3, sup ’agw,(e s)‘ <mic3,
e[T(0,1),t] €[d(6,1),t]
(6.70)

while for all (6, t) € D%\ Dy it holds that

2
sup  s3
se[T10.0).1]

82,6, s)‘ < 4bm?c 73,

sup

0. 9)| < mic 230,07 (6.71)
s€[d(0,1),t]

Lastly, for (0, t) € Dz \ 17% we have

sup |20, (0. s)‘ <3me3!
s€[0,1]
sup agw,(e,s)‘ <mic 2l s <0<, (672
s€[0,1]
sup s% 892¢,(9,s)‘ < 3m2/c_3,
s€[0,1]
sup agw,(e,s)‘ <M 33, —r <O <51(). 6.73)
s€[0,1]

Proof of Lemma 6.9 1t is convenient to introduce the (temporary) variables C = co ¢,
B = 0;¢y = A2 0 ¢; and A = a o ¢; so that using the chain-rule, the equation for ¢
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given by (3.7) can be written as
3;C + 1C (3¢ '8B = -5 AC.
It follows that
(961 20,C + L C (@) 209 B = —E(3ud) T AC,
and hence

o, (@0d0iC) + $A@up0ic =0.

For (0,1) € Dg, and letting s € [T(0, t), 1), we integrate this equation from s to ¢ and
find that

20, 1)

16 [t .
) 0,5) =e3 fs (aog)(y,sHds' < \V»') '
ey c2(¢: (6, 5), 5)

(6.74)

Differentiating (6.74), we find that

2 15 [ gogyds’ €0, 1) 8 ' /

0ye(6,5) =2e3 s % m(gc(ea l)C(¢t(9,S),S)/ (ag o ¢; dg¢r)ds
t ) 5 s

+ (@i (0, 5),8)co(0,1) — (0, 1)co(h: (0, 5), 5)90¢: (0, S)) ~ (6.75)

In essence, the two worst terms in the above identity are cg (6, ¢) and cg(¢; (0, 5), 5),
so that in view of (5.37) and (5.141) the bounds will be determined by how close y is
to s(t), respectively ¢,(0, s) to s(s).

A similar argument can be used to obtain a formula for dyv;. To do so, we make
the observation (see also (5.138¢)) that (3.7) can be written using A1 as the transport
velocity in the special form

0;C + A0gc + 2¢c0gAh1 = 2¢0pz — %ac.
We again introduce temporary variables C = c o {; and B = A1 o Yy = 95, so that
39,C +2C(3pyr) '8 B = (209z — Sa) oy, C.
Then,
3 ((ampt)zc) — (2002 — §a) o ¥ (99)*C =0,
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and for any (0, 1) € DS and s € [T(0, 1), 1), we integrate this equation from s to 7 and
find that

1
S (405,520 ((0.51.5) s’ €2(0,1)

Y (0,5) =e _ (6.76)
c2(Y:(0,5), )
Differentiating (6.76) once more yields
1
9216, 5) = Leh Gamzopas __2©: 1)
c2(Y:(0,5), )
! dyc(O,t
< ( / (S0 —2200) 0 1 B s’ + %ﬂ)
dpc(Y (6, 5), s)
S e s)> . 6.77)

As before, the worst terms in the above identity are cy (0, ) and ¢y (¢ (0, 5), §), but in
order to justify this heuristic we need to estimate the time integral of zgg o V.

For (0,1) € Dg, we shall need a good bound for fgt(e,,) 200 (Y (0, 5), s)ds, and to
this end, we employ an argument which is very similar to the one we used to obtain
(6.56). Let us define y (s) = ¥, (0, s) — s2(s). Since A1 (Y, (6, 5), s) — 52(s) < —13—0/<,
we obtain y (s) < —13—0/c. Moreover, using (6.5) we have that for € sufficiently small,
T0,1) > %K_I(Q — s7(t)) forall s5(¢) < 6 < s(¢). Hence,

! t
/ T 0.5), 5)2ds < %K%f W10, 5) — 52(5)) " 2dis
J d

@,1) @,1)

t
< —2K*%/ P ) ()~ 2ds
)

30,1
1 1 1
= 4% (e )} —y(0)})
<4T2(s(3(0. 1)) — 52(3(0, 1)))?
<3a0,0? (6.78)

From (6.78) and the bootstrap assumption (6.8b), we get

t
/ 200 0 Vel ds < 3M23(0, 1)7 | (6.79)
3.1

First consider (9, 1) € Dé. Combining (6.75) and (6.77), with the bounds (5.37),
(5.141), (6.69), (6.79), and taking € sufficiently small, we see that |892¢, 0, s)| <

3m2k 3571 and |8§1ﬁ, (CH s)| < m%K’%s’], which are the bounds stated in (6.70).
Here we use that 7(0, t) and J(0, t) are the shock intersection times for trajectories
¢ (0, 5) and Y (0, ).
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We next consider the case (0, t) € D%\ﬁg. From (6.75), by using (5.141), (5.37a),
and (6.69), we obtain

‘agqst(e, 0| < 4bm2c3s73

forall s € [71(0, t), t], which establishes the first bound in (6.71). Using the bootstrap
assumption (6.10b) and the bound (6.79) for s such that (0, s) € Dé, respectively

(6.10b) and the fact that g(y; (0, s), s) = 3(0, t) for ¥, (0, s5) € Dg \ Dg, we obtain

t
f |26 (W1 0. ). 9)|ds < tN23(0. 1) + 302906, )}
EICR))]

Therefore, the identity (6.77) together with (5.37), (5.141), (6.69), (6.75), (6.77), and
the above estimate, show that

1

sup |02y (0, )| <m0, 07",

s€[d@,1),t]

forall (6,1) € Dg \ Dg, which establishes the second bound in (6.71). Note that this
bound is only sharp when s is very close to J(@, t).

Forthe casethat (0, r) € Dgsuchthatf > s(¢), we have that z = 0, and so the identi-
ties (6.75) and (6.77) show that second derivatives of these characteristics are largest at
points (6, ) which are very close to s(¢). Using that ¢, (8, s)—s(s)|, | (0, s)—s(s)| =
kt for s € [0, ¢/2], using (5.37) and (5.141) it follows from (6.75) and respectively
(6.77) that

sup
s€[0,1]

32,6, s)) <3m2e 3, sup
s€[0,1]

2 L3
0 (0,s) <m2k 2t

which establishes (6.72) for s(t) < 0 < 7.
For the case that (6, ) € Dz such that —r < 6 < s1(f) we again have that z = 0.
Using (5.37), (5.141), (6.69), it similarly follows from (6.75) and (6.77) that

1

2 r 3 _2
39%(9,S)‘<m2x 2173, (6.80)

ag@(e,s)‘ <3m23,  sup
s€[0,1]

2
sup s3
s€[0,7]

which is the stated bound (6.73). This improved growth rate of second derivatives
makes use of the fact that for —7 < 6 < s1(¢), one the one hand we have |y, (0, s) —
s5(s)| = | (0, 5) — s2(s)| = |6 — 52(t)| 2 «t for all s € [0, ¢], while on the other
hand |¢; (0, s) — s(s)| = |s1(s) — s(s)| = ks forall s € [0, t]. O

6.3 Second Derivatives for w Along the Shock Curve

Lemma 6.10 Assume that the shock curve s satisfies (5.13), that (w, z, k, a) € Xg (as
defined in (5.141)—(5.142)), and that the second derivative bootstraps (6.8)—(6.12)
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hold. Then we have that
L (st 1) — Lug(s()E, )| < @b My +m)~! (6.81)

where M1 = M (k, b, ¢, m) > 0 is the constant from (6.8a). In particular, the bound
(5.82) holds with the constant R* = 4p° M + m>, which in turn implies (5.83).

Proof of Lemma 6.10 First, we note that from (3.5), Lemma 5.8, and the fact that
(w, z,k,a) € Xz cf. (5.141)—(5.142), we have that

1

3w @, )] < [0pwp(@. )| + Ra(br) ™2 < Fr17! + Ry(br) ™2 < 17! (6.82a)
0w(0, )] < (M + Ryt + 2R3t~ + 8B 4 Ryry + Bers (m + Ryt + Ryt ?)?
<2mt~! (6.82b)

[\

mt¢

3 1 3 3 1
19,20, 1) < (3(M+ Ri1) + R3t2)Rat? + SR7R317 + 5 (M + Ryt + R3t2)?Ret?
345 (6.82¢)

10,40, )] < 2(m+ Rit + R3t Ry + L(m + Rt + Ryt ) < m? (6.82d)

N
3

for all (8, t) € Dz, and in particular as 6 — s(H)T.
From the chain rule, we obtain that

Lu(s(t)E, 1) = 50 (we) (D, 1) + (5(1))* (wee) (5(DF, 1)
+ 25(0) (wip) (s(NT, 1) + (W) (5()F. 1) . (6.83)

From the evolution equations (3.5) and the definition of the wave speeds in (3.6) we
have the identities

Wi = — ( )wgg — (wg + 329) %((lw)e
ﬁ(w —2) (wp — z9) ko + ﬁ(w — 2)*keo (6.84a)
wy = — (w4 12) wig — (wi + $2:) wo — 38, (aw) + H(w —2) (w, — 2/ ko

+ ﬁ(w — 2)%kig
= (w+ 12) ((w + 32) woo + (wo + $20) wo + %(aw)g
5w = 2) (wy — 20) ko — 2w — 2)%kso )
+ ((w + %z)we + %aw + %(%w +2)20 + gaz - l—lg(w - z)zkg) w
— 89, (aw)
+ 15w — 2wy — 20)kg — 36 (w — 2)* (W + 2koo + (wo + 26)ke) (6.84b)

pointwise for (0, ¢) € Dz. We shall in fact use (6.84) only for 6 — s(6)F, so that
the relevant bounds on second derivatives of w are given by (6.8a), the second branch

@ Springer



Simultaneous Development of Shocks . . . Page 1690f199 26

in (6.12a), and from the estimate Iang(G, )| < %b%t_%, which follows from
Lemma 5.8 and (5.36b); together, these bounds and the fact 7(s(¢)™, ) = ¢, imply
that

2w, 0] < Lo 213 4+ Ccr2<3b 23,
Similarly, for the second derivative of k we appeal to (6.8¢c), which gives

102k(s(1) ™. 1) < M3t~ 2 .

From the above two estimates, the bounds (6.84), the fact that (w, z,k,a) € AXg
cf. (5.141)—(5.142), we deduce that at (s(1)*, 1):

2 1
wrg + wwey + (W) ‘ < Hzwool + $awg| + C172

(R3b™> + 3Rt~ + 12
Im?! (6.85a)

NN

‘wn — wwgg — 2w(wp)*| < |w ‘wze +wwge + (we)?| + Flzwe| + §lawwe|
+ 8ad,w| + Cr 2

1, 4,—1 -3 1 1 _1
Mt +3Rsmb™ 27 + 10mR7t™" + Ct™ 2

m* ! (6.85b)

NN

upon taking €, and hence ¢, to be sufficiently small, and using (5.2). Combining the s
bounds in (5.13) with (6.83) and (6.85), we thus deduce that

dz (%, 1) — G —wsE, D) wee (s, 1) + 26 — ws)E, 1) wa(s(DE, 1))?

morL, (6.86)

<

D —

In a similar fashion, we may show from (5.14) that d,pwg = —wBang — (0g u)B)2
and that 9, wg = w97 wg + 2we(dws)?, and thus, as in (6.83), we have that

2 wg(s(1)E, 1) — (6 — wa(s(F, 1) wegs (s E, 1)
+2(5 — wes()T, 1) (wey (s()F,1))> = 0. (6.87)

That is, for the Burgers solution we have (6.86) without the O(t~!) error term. In
order to prove (6.81) it remains to subtract (6.86) and (6.87). We obtain that

L (w(sn), 1) — wa(s()F, 1)
= 1 (60 = w0, 1) + () = wa(s()*, 1)?) B (w — we) (s, 1)
+w — wp)(5(DF, 1) (5() — $(w + wp) (5O, 1)) 83 (w + we)(s()F, 1))
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—2(5(1) — T(w + wp)(s(N*, 1)) Bo(w — we) (s()E, 1)) (w + wp) (s()E, 1))

— (= wg) ()=, ) ((wo (s, ) + (was (s(0F,1)?) + O™
(6.88)

where the O(z~1) term is bounded by the right side of (6.86). The estimate (6.88) is
now combined with the working assumption (5.2), the §(¢) — x bound in (5.13), the wg
estimates established in the proof of Proposition 5.7, the estimates (5.141a)—(5.141b),
and the bootstrap assumption (6.8a), to arrive at

L (we*, 1) = ws(s*, 1)
< (b217 + 2m* + RNHZ@M 172 + Ryt (b2 1 + 2m* + R)1) (6b—%f%)
+2(b217 + 2m* + RO Ra(b1) "2 (21~ Y) + Ryt (2t_2> +m’b 3!

< (4b°M) +9m* + Im?) . (6.89)
This completes the proof of the lemma, upon appealing to (5.2). O

6.4 Improving the Bootstrap Bounds for kgg

Lemma6.11 Forall (0,1) € Dg we have that

|03k(6, )| < m?7(8, H2. (6.90)

This justifies the choice of the constant M3 in (6.9) and improves the bootstrap assump-
tion (6.8c¢).

Proof of Lemma 6.11 Differentiating (5.105), we have that

d (921 2 2 _

s \ 99K © ¢r (39Pr)” + Ok o ¢r 3g¢t =0, (6.91)
and integrating in time from 7(0, t) to ¢, we have that for each (0, ) € Dg,

2k(0, 1) = 3k(s(T), T) (36 (0, 7)) + dpk(s(7), TNOF (0, T), T =7(6,1).
(6.92)

It follows from (5.109) that
2 _ a2 2 K_(T)) 2
03k(0, 1) = 0Fk(5(7), T) (361 (0. M)’ + s 3 di (v, 7). (6.93)
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where T = 7(0, t). Next, by differentiating the system (5.107), a lengthy computation
reveals that

2 _ k_(1)
Wk(s(1). 1) = Grmem0?

- (ﬁ(t) — (3 A2(s(1), 1) + (25(1) — Aa(s(1), 1))Bp A (s (1), t)))
k-

(5(—22(s(1),0)% (6.54)

Substitution of (6.94) into (6.93) shows that for all (6, t) € Dg,

030,10 = (T — (5— (2 + 28 = 12)2) ) )

(8(T(0,1)),7(0,1)

, .
(900 (v, 70, )" + s a0 0 (6, 7O, 1) . (6.95)
Given the bounds (5.141) together with (5.2), (5.13), (5.37), (5.81), (5.83), (6.6), (6.7),
(6.82), (6.69), and (6.70) we find that
1\2 . .
93k, 0] < (14 ¢15)" (B K @, )| + & (6m* + 570,07 K- (76, )])
MK (70, )70, )"+ C
3 -5 2, -2 -1
< 50b2k (1 4 10m2—2)7(0, 1) 2

1
<m?70,1)"2

for all (0,1¢) € Dé. See the details in the proof of (6.152) below for a sharper bound
than the one given above. The estimate (6.90) thus holds, concluding the proof. O

6.5 Improving the Bootstrap Bounds for wgg
Lemma 6.12 For all (0,t) € Dg, we have that

Lmin{Ny, Na}t™3, 0 <sa(t) or 0 > s(t) + &
|woo (0, 1) — wege (0. )] < { LMy (72 +7(0,)72) ifs2(t) < 6 < 5(0) :
N5t =2 ifs() <0 <s(t)+ <
(6.96)

where M is as defined as in (6.9), Ny is given by (6.11), while N4y and N5 are defined
in (6.13). In particular, we have improved the bootstrap bounds (6.8a), (6.10a), and
(6.12a). Moreover, we have

15bic— 3173, if6 < s2(t) 0r 6 > (1) + 5
lwea (0, 0] < 13b73173 +5mta(6,1)"% ifsa(r) <6 < s(1) . (6.97)
3313 ifs() <0 <s() + 4
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Proof of Lemma 6.12 Throughout this proof we will take £, and hence ¢, to be suffi-
ciently small with respect to «, b, c and m. For any (0, t) € Ds, we define x € Y(¢)
by x =710, 1).

Recall that the good unknown g% is defined in (6.31), and it satisfies (6.34). Dif-
ferentiating (6.34) with respect to the label x, we obtain the identity

dq” (n(x, 1), ) n2(x, 1) = —q" (N (x, )Nx (x, 1)

t
+ 0y <w6<x>e‘m’°~’>+ / Qw(n(x,S),S)nx(x,S)e_I("’”)dS). (6.98)
0

Taking into account the definition of ¢* in (6.31) and the identity 30211)3 o 773% +
dpwg o 1 NByx = W((x), we thus obtain that

doq" onn? — 9w o np e
= wy(X)nsy " (MBxx — Nxx) + (Bows 0 g — dgw 0 N + %(ckp) 0 1) Ny
+ w(’)/ (e_I("O’S) — 1) - w(’)e_I("O’S)BxZ(~, 0, s)

N
+/ (89 0¥ onni+ Q% on e — Q¥ o nedI(, s, S)) e TS gy’
0
(6.99)

The key observation is that second line in (6.99) is precisely the first line in (6.60),
while the third line in (6.99) is precisely the third line in (6.60); we will use this fact
to avoid redundant bounds.
Bounds in the region s, (1) < 0 < s(t) + KTt By taking into account (5.54a), (6.25b),
(5.52), (6.26), (5.141) and (5.142), we obtain that
the first line on RHS of (6.99)
< 40me™3 4 (8R4 78 + Ry(br) ™7 + JmRer? ) (467373 4 20mi2)
<m(br)~2, (6.100)

since ¢ is sufficiently small. Next, since second line in (6.99) equals the first line in
(6.60), from (6.63), (6.26), and the fact that 7 > v¥(x, ), we obtain

the second line on RHS of (6.99) < 24m¢|w/|(x)| + 2(MZ + mM3)¢ 2 |w)(x)|
< 10m(br)~2 . (6.101)

Similarly, since third line in (6.99) equals the third line in (6.60), from (6.67), (6.26),
and the fact that ¢ > vﬁ(x, t), we obtain

the third line on RHS of (6.99) < Cr™ 7. (6.102)
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By adding (6.100), (6.101), and (6.102), since ¢ is sufficiently small we deduce that
|99q™ o nn? — dgwe o ng ne2| < 2m3(br) 2. (6.103)

Next, by recalling the definition of g% in (6.31), and appealing to (5.141), (5.142),
and (6.90), we deduce

_ _1
|wes © n(n2)* — wags © Me(n8,)°| < 3mM (o) 2 +mPT@O, )77, (6.104)
With (6.104) in hand, we use the notation introduced in (6.39) to rewrite
wo (0, 1) — waag (0, 1) = 1y > (wee o (1ny)* — wegg © ﬂB(’IBx)2>
—n2K3 — 02Ky, (6.105)
and thus we may combine (5.54a), (6.48), and (6.50), to arrive at
|woo (0, 1) — wage (8, )] < Sm*~2 4+ 2mP7(0, )2 (6.106)
since m is large compared to b. The above estimate proves the second and third bounds
in (6.96) once we ensure that %M 1= 5m* and %N5 > 5m*. These conditions hold in
view of the definitions (6.9) and (6.13).

Bounds in the region 6 < s,(¢) or 6 > s(t) + %’ In order to estimate the first line
on the right side of (6.99), we rewrite

we o — wegon =1y (W oniny — wegonene,) — Ny Wee 0N (Nx — Nay)
(6.107)

so that from the second equality in (6.36), (5.54a), (6.37), (6.61b), (6.61c), and (6.25a),
we have

(w0 1 — wag 0 n)(x, )| < 40me|wh(x)| + M7 + Ct + 200m|w) ()|t 3

< 50me|w)(x)] + 2m%e? | (6.108)

Thus, analogously to (6.100), using (5.54a), (6.25b), (6.28), and the fact that k(6, 1) =
0, we have

the first line on RHS of (6.99) < 20[w})(x)|ms3 + (50mt|w(’)(x)| + 2m2t%)
(4bK_%t_% + 10mt%>
<Cr3, (6.109)
Next, similarly to (6.101) we have that

the second line on RHS of (6.99) < 24m¢|w{](x)] + 2(m? + mM3)r2 [w}(x))|
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< 96mbic~ 3173 4 Ct7b (6.110)

As in (6.102), but this time using that v*(x, ) > t, we obtain from the first line in
(6.67) that

the third line on RHS of (6.99) < C. (6.111)

By adding (6.109), (6.110), and (6.111), using that k(n(x, s), s) = 0, since ¢ is suffi-
ciently small we deduce

_2
3

|wee © n(1:)* — wege © ne(ne,)*| < 20mt ™5 . (6.112)

Here we have also used (5.2). Finally, using the decomposition (6.105), and appealing
to the bounds (6.40) and (6.43) we deduce that

|weo (0, 1) — weeg (0, 1)| < 2m*t~

Wi

(6.113)

The above estimate proves the firstbound in (6.96) once we ensure that % min{Ny, N4} >
2m*. This condition holds in view of the definitions (6.11) and (6.13).

In order to complete the proof of the lemma, we note that (6.97) follows from (6.96),
the triangle inequality, and (5.37b). O

Lemma 6.13 Recall the definition of ¢¥ in (6.31). Forall (0, t) € Désuch thatso(t) <
0 < s2(1) + &, we have that

gy @, )| < 3bGet) 3 . (6.114)

Proof of Lemma 6.13 Combining (6.103) with (5.1), (5.36b), (5.54a), (6.46) (with s =
0), and (6.7) we deduce that |77_1(9, D = "7t and thus

g 0. 1) < 2|wegg (e~ (0. 1). 1), )] +2m*(br) 2
< 10wy (10, )| + 2m? (br) 2
< 3b(kr)"3 . (6.115)
The bound (6.114) is thus proven. O

6.6 Improving the Bootstrap Bounds for zgg

Just as we defined the function g% (6, t) in (6.31), we introduce the function

qgc0,1) =z¢(0,1) + JTC(Q, Nky(6,1) . (6.116)
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Using this unknown, we rewrite the equation (5.102) as
£(q7 o Y doyn) = — Q% oY gt (6.117)
where
0% = cko (5w + 1520 + ) + $0s(az) . (6.118)
Differentiating (6.117), we have that

(qf o Vi Bov)” + g% 0 Yidgyn) = —9 Q%o (e y)* — Q%o A5 .

(6.119)
which may be integrated on [J(0, t), ¢] to obtain that
50,0 = (g5v)* +q°05
a0, 1) = (g5 @ v + q°05) )
t
- /3 (80 Q70w @ov)? + 070y 03vn)ds . (6.120)
©.1)

forall (0,¢t) € Dg. Here we have used that ¢, (6, 3(0,t)) = s(3(0, t)) and the fact that
Y (0, t) = 0, which implies 9y, (0,1) = 1 and agwt (0, t) = 0. In order to estimate
the right side of (6.120), we first establish:

Lemma 6.14 For (0,1) € D%,

/t
3.1

Proof of Lemma 6.14 We decompose dg Q% = Q1 + Q,, where

36 0%y (ev)® + Q% oy 93 |ds < 3mP3(6, 172 . (6.121)

Qla Qb Qic
1 1 1 1 2
Q1 = 15¢ckowps + s5kowowe + ckgo (3 wo + 1520 + 5a)

cko ({5200 + 3a0) + $(az)oo + 3ykozows .

o))

For (0,1) € Dg\Dg, is convenient to introduce a time J; (6, t), which is defined as the
time at which the curve v (0, -) intersects the curve s;; recall that (6, t) is the time
at which v (0, -) intersects the shock curve s. From (6.7), (6.69), and the definitions
of g and g, we note that

4

310,1) =23(0,1) + O30, 1)3) . (6.122)

When (0, 1) € Dg, we abuse notation and write 31 (6, t) = t, emphasizing that v, (6, -)
does not intersect s,. By definition, note that fors € (41(0, t), t], all the terms in Q o,

and Q; o v, vanish.
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51 59

3

t=0

Fig. 15 Fix a point (6, t) which lies in between s; and s,. The intersection time of (8, s) with sy is
denoted by J1 (0, t), while the intersection time with s is denoted as usual by J(0, 1)

Let us thus consider first the case (6, t) € Dg. From (5.216) we have that

ko (W1 (0, 5), 5)| < 200b2 k47 (W, (0, 5), 5)7 . (6.123)

for all s € [3(60, t), t]. Thus, using (6.123) together with (5.57¢), (6.8a), and the fact
that T7(y; (0, 5), s) < 3(¥: (0, s),s) = 3(0, t), we have that

t | t
/ |Q1a 0 ¥ |(Boyr)?ds < 21+ Ct3)m (/ |k (wog — wagg) o Wr|ds
40,1 KICK))

t
+ / ks wegg w,|ds)
J@,r)

t
< 60mb%/c_4 (f (M1 + 300, t)%s_z)ds
a0,
+20x 7190, t)‘%)

< 40m3@6, 1)~ 3 . (6.124)

In the last inequality we have taken ¢ to be sufficiently small, and have used (5.2).
Next, using (6.82a), (5.141b), (6.69), (5.57a), and (6.123), we have that

t

t 1
/ |Q1b01ﬁt|(301ﬁt)2ds <CH(9J)_7[ (|(wo — weg) o Y| + |wg o Y ds
36.0) 36.0)
<Ci336,0)72 (6.125)

and with (5.141), (6.8c), and (6.78),
t 2 1 1 1 1 5
/3(9 t)‘Qlc © Vi|@o)'ds < 2m (53(0, D7+ Rt §R7>
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t
/ kg o Y |ds
3.1
t

< ImM33(0, r)‘lf

T (0. 5). s)"2ds
(.1

<2m33(6, )77 . (6.126)

In the last inequality we have taken into account the definition of M3 in (6.9),

Note that if 0 € (s1(¢), 52(¢)) then the integrals in (6.124), (6.125), and (6.126)
range from J(0, t) up to g1 (0, t) < ¢, but this has no effect on the bounds established
in (6.124), (6.125), and (6.126).

Returning to our decomposition of dg Q* as Q; + Q», we note that by the same
bounds and arguments as above, and by appealing also to (5.218), we also have that

t t
/ Q5 0 i | By ds < 2/ (381200 0 Wi + Ca(®. )% |ags o v1| + C) ds
d@0.1) J@.1)

< Ca0.0)% + Crg(0, 1) 2
3
+ CJ(0,1)2 log % + Ct
< Cra, )7 . (6.127)
We note that for the bounds (6.124)—(6.127), we have taken ¢ sufficiently small.

Lastly, from (6.70) we have that for (9, 1) € Dk we have |32 (0, s)| < Cs™! so
with the definition of Q% in (6.118) and the bounds (5.57a), (5.141), and (6.123),

t
/ |07 o, 92y |ds < Ct3a(0, )72 . (6.128)
30,1

On the other hand, for (6, t) € Dg \ 2_92, we have that |8921ﬁ,(9, s)| < Cy(0, z‘)’1 for
s €[a@,t),d1(0,t)] and hence using (6.122)

t

t J10,1)
/ 0%y, 3291 |ds <f 070y, aéwz\dw/ 1070y, 391 |ds
J(0,1) ICR?) J1(0,1)

1(
< Ca0.1)76 +Ct3g(0, 1)
<Ct330,1)7 . (6.129)

Combining the bounds (6.124)—(6.128), and taking € sufficiently small, we obtain the

inequality (6.121). O

Lemma 6.15 Forall (0,1) € Dg we have the bounds

IMy7(0,072, if (0,1) € DX

1 _1 . 7z _k ) (6.130)
3N23(0, )72 if(,1) e DZ\ Dy

|266(60. 1) <
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where My and N, are defined in (6.9), respectively in (6.11). Thus, the bootstrap
assumptions (6.8b) and (6.10b) are improved. Moreover, the quantity g* defined in
(6.116) satisfies the bound

420, )] < 4m33(0, 1)~ (6.131)
forall sy(1) < 0 < sa(r) + .

Proof of Lemma 6.15 Using (6.120) and the definition of ¢* in (6.116), we see that for
all (0, 1) € D% and with g = 3(0, 1), we have

Hi

2000, 1) = (200 Bove)* + 20 0 Y107 V1)

Ha

(s(3).d)

+ H(ckoo (3yr)* + coko Bov)* + ckodF V)

t

(s(2),d)

— 4 (ckog + coko) 6. 1) — / )(30 Q% oy (39¥) + Q% ot 35vi)ds

J@,t

H3
(6.132)

In order to get a good bound for the term H; in (6.132) on the shock curve, it
remains for us to express zgg(5(3(0, 1)), (0, t)) in terms of derivatives of functions
along the shock curve. Differentiating the system (5.111), taking into account the
identity %(f(s(t), 1)) = ((3; + §dg) f)(s(¢), t), and the formulas

3 (c’ke) + hadg (c*ko) = —2(Bp 2 + §a) (ko) .

D9z = —Ai2op — dph1zo — 5(a2)g + £06(c*ko)

which are direct consequences of (3.5b), (3.5¢), and (3.7), after a straightforward but
lengthy computation we arrive at

2 = (0 + 59)%2 — (O +809) (0 + 1109)z — @1 +509) (ko — Saz)
= (6= )z + 86 — M)z00 + 29 G — By — 5pa0) + (3 +80p) (hePko — Saz)
= 6 =220 — G — 1) (02120 + §(@2)a — F0(Pke))
+ z¢9 (s + %)gw@ + Az — %c2k9 + %aw + %az -5 (%we +Z9))

(8032 + §a) (Pho) + G = 22080 (Phko)

a ((é — A1) zp — %az + éczkg) - %z ((é — A2)ag — %az + é(w2 +2)+ wz)

=(6— A1) %z00 + % (é - %w — %z) Zkgo
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+ 4 ((5- 3w —32) ko — (26— §w— §2) 20) wy + Reyy (6.133)
where we have denoted the remainder term R ., by

Ry =20 (5+2 (0 —§) 29 — £(25 + Tw — 32)cky — 3a (25 — 3))))
- %a (%Czkg — %az) - %z ((2§ — Xl — Aag — %az + %(w2 +25)+ wz)
(6.134)

At this stage we note that the reason we call the term R,,, a remainder term is as
follows; from (5.13), (5.141), and the properties of wg, we may directly show that

Ry (5(1), 1)| < Ct (6.135)

for a suitable constant C = C(x, b, ¢, m) > 0. In comparison, the remaining terms in

(6.133) will be shown to be O(t_%), so that R, is negligible.
The identities (6.133) and (6.134) are valid at any point (s(¢), #) on the shock curve,
so in particular at (s(9), J). Hence, we see that

266(s(9), 9)
a= (5 dw— 32) @Chon) = 3 (5 Fw— 32) ko — (28 = 3w = 42) 20) wi

G —n)?

(s(2).)

Ry, (6.136)

G- M)?

s(.9)

By combining (6.136) with (5.109) (in which we replace T with J), (5.113), (6.94)
(with ¢ replaced by J), and the estimates (5.69), (5.81), (5.83), (5.15), (5.141), (6.69),
(6.90), and taking ¢ sufficiently small, we find that

|200(5(8), ) (5(2), )| < 3 2(@b3 k2 4 1 m? + (K2Rg + K Ra))7~ 2

1

£ C3? < 6kem2377 (6.137)
On the other hand, from (5.141) and (6.70),
3
20(s(2), DV (s(a), 2)| < RagPmix"357 < mg72. (6.138)

Combining (6.137) and (6.138), we have thus bounded the first term 71 on the right
side of (6.132) as

1| < Tem?a (0, 1)77 . (6.139)

Next, we turn our attention to the second term, Hj, in (6.132). Using (5.141), (6.69),
(6.70), (6.71), (6.90), and the fact that 7(s(4(0, 1)), 3(6,t)) = 4(0, t), we similarly
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obtain that

[Ha| < em3(6, 1) + Red(8, 1) 2 + K~ Rem?3(6,1)"% + C
< 2%m?3(6,1)77 . (6.140)

Since the integral term in (6.132) was previously estimated in Lemma 6.14, it thus
remains to bound the term H3 on the right side of (6.132). Note thatif (0, ) € Dg\l_?;
then k vanishes, and so H3 = 0. In the case that (0, ¢) € Dg, by appealing to (5.141),
the bound ’§ < c(@,t) < m,and (6.90), we obtain

1,3 N | L _1
|[Ha| < gm’T(0.0)72 + (1™ + Rat2)Ret 2
< tmiz, N7t +mi2

<m370,1)77 . (6.141)

In the last inequality of (6.141) we have used that 7(0, 1) < t.
By combining the identity (6.132) with the bounds (6.139), (6.140), (6.141),
(6.121), we have that

m370,1)"2, for 6 e Dk
7k .
for 6 eDi\D;
(6.142)

|200(0, 1)] < 9em?a(0, )% +3m33(0, 1) +

Taking into account that for (0, t) € Dg by (6.5) we have that 7(0,¢) < J(0, 1), and
we have 9x < m, the above bound completes the proof of (6.130), once we ensure
that %M2 > 5m?3 and %Nz > 4m3. This justifies the choices of M> and N; are defined
in (6.9), respectively in (6.11).

In order to complete the proof of the Lemma, we need to establish the bound (6.131),
which is useful later in the proof. For this purpose, note that in view of (6.120), (6.132),
the fact that qg (0,1) = zgg(0, 1) + Hs3, and of the bounds bounds (6.139), (6.140),
(6.121), we have that

1420, )] < 9%em23(0, )" % +3m33(0, 1) (6.143)

which thus concludes the proof of (6.131), and of the lemma. O

6.7 Lower Bounds for Second Derivatives

In this section we prove that various second derivatives of the solution blow up as
we approach the curves s; and s from the right side. Throughout this section we fix
t € (0, €] and shall make reference to the following asymptotic descriptions:

0 — sr(t
fim 020 _« (6.1442)
0—sa()t T(O,1) 3
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t
lim J0,t) > = (6.144b)
0—s52(1) 3
0 —s(t
fim 2=9@W _ & (6.144c)
O—s1(t)t H(O,I) 3

Here we have implicitly used that ¢, (s2(¢), s) = s2(s), and ¥, (s1(¢), s) = 51(s). The
bounds are a consequence of (6.5), (6.69), and the definitions of 51, s2, ¢, and ;. For
example, in order to prove (6.144a), note that by the mean value theorem we have

$(7(0,1)) —52(7(0, 1)) = ¢ (0, 70, 1)) — ¢y (2(2), T(0, 1))
= (0 —52(1)) 9o (¥, 7(0, 1))
——— —

=1+O(1T%)
while by (6.7) we have
5(7(0,1)) —52(7(0,1)) = %7(9, 1)+ O, t)%) .

The proof of (6.144c¢) is similar. Lastly, in order to prove (6.144b), we use that one the
hand

s(3(6,1) —52(3(6,1) = 536, 1) + OGO, D),

while on the other hand
5(3(0, 1)) —52(3(0,1)) = Yy (52(2), 30, 1)) — ¢ (52(2), 3(0, 1))
t
= / (0s¢pr — Ot ) ds
3 \—,—/
1

.1
=£40(r3)

== a6.0) (5 +0@h) .

By combining the above two estimates, it follows that 3 (s2(¢), ) > t(% — O(E% ) >
proving (6.144b).

L
3

6.7.1 Singularities on s, from the Right Side

Note that the second derivative upper bounds established in (6.8) blow up as 6 —
s(¢)™; the purpose of this subsection is to obtain lower bounds which are within a
constant factor of these upper bounds, and thus also diverge as 8 — s (1) ™.

In this proof we shall frequently use the following facts. First, that % <c@,t)<m
forall (0, t) € Ds. This follows from the identity c(0, ) = %wB(G, )+ % (w—wg—2),
which in view of (5.35), and (5.141) implies c(6, 1) = 3wo(ng~' (6, 1)) + O(1); the
desired bound now follows from (5.1a) and (5.1b). Second, we note that a slightly
sharper bound is required for dgwg on the shock curve (when compared to (5.37a)).
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From (5.34) we note that ng ~! (s(¢) ~, 1) = —(bt)% +O(r?). By appealing to (5.1d) we
then obtain that w(’)(nB’1 (s(t)~",1) = —%t’l + O(t_%) ast — 0. We then conclude
from (5.36a) that
_ _1
—t'+0 (t 2)

dpwp(s(r), 1) = 1+t(_%t*1 +O(t_%)>

_1
=—1 400 7) (6.145)

asforO0 <r<ze

Lower bound for |kgg| on 5;’ . The desired lower bound turns out to be a conse-
quence of (6.95).

We first consider the second line of (6.95). Let 6 > s,(¢) with 6 — s (f) < %’. Note
in this range of 6, due to (6.144a) and the fact that t < &, we have T7(0, 1) < % <&
We claim that for a constant C = C(x, m, b, ¢) > 0 we have

2 2 -1 _ -2 k2 -1 _ -2
036160, 70,10 > 570,07 = C173 > 30,07 = €70, >0
(6.146)

forsy(t) <6 < s(¢) + %’, once ¢ is sufficiently small. In order to prove (6.146), we
consider the formula (6.75) with s = 7(6, t). We note that the largest term in (6.75),

the one containing c(6, t)cg (s(T), T)dgp; (0, T), is positive. Indeed, from the bounds
% < c(8,1) < m, (6.145), the bound (6.69), (5.141b), and (5.141d), we obtain that

(0, )cp(s(T(0, 1)), 70, 1)8s: (60, 7(0, 1))
= 5¢(8, )91 (6, 7) (dpwp(s(1) T, ) + dg (w — wg — 2)(5(M T, 7))

=1e(0, 01 +0@%)) (_%7_1 n O(T_%))

-1

since T7(0,1) < % « 1. The remaining terms in (6.75) may be estimated from above
by

2 2 _1 1 _2
2e1m (3002 Ryr 4 20 (4R() T 4 Ry(E) 72 4 Rur?) ) < €
for a constant C = C(«x, m, b, ¢) > 0. The above two estimates then imply

03¢1(0, 70, 1)) = 2¢71OM K tox(0, 1) — €173

and (6.146) follows.
Next, we return to the second line of (6.95), from (5.81) we have

k_ (70, 1) = 48'07 802 39 12 4+ OO, 1) > (6.147)
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since 7(0, 1) < t is small. Moreover, from (6.6a) and (5.13) we have § < (5§ —

05¢1) (0, 7(6,1)) < 5. As a consequence, from (6.146) and (6.147), we obtain

9
second line of (6.95) > 2 <4822 70, 1)2 — CT, t))

K K

(ﬁy(e, H~' - Cc7, r)—%)

9
3 _1 _1
> 850,07 — CT(0, 1)

3 1
>55570,072 as 60— a7, (6.148)

Next, we consider the terms on the first line of (6.95). From the definition of X, in
(3.6) and the evolution equation (3.5a), we obtain that

(@22 + (25 — 22)dgh2) — § = 28w (S — Ao + 5 — w — 12)
+ 2025 — )dpz + 19z
+3 (% w — 2%k — Saw) 5.

Taking into account the bound (5.13), Proposition 5.7, and the fact that (w, z, k, a) €
Xz (in particular, that (6.82) holds), we obtain

(9A2 + (26 — X2)09A2) (s(T(0, 1)), T(6, 1)) — §(T(6, 1))

= 23owa(s(T(0, 1), T, 1)) (25(7(9, 1) — Sw(s(7(0, 1)), 76, t)))

+ OO, 177 (6.149)

as @ — s,(1)T, or equivalently, as 7(0, 1) — 0. Next, from (5.81) and (5.83) we
note that

k_(76, 1)) = mk;(ﬁ(e, 1)) + O(1) (6.150)

as 7(8,t) — 0T. By combining (6.149), (6.150), the bound % > §5(7(0,1) —
A2(s(7(0,1)), 7(0, 1)) > 7, and (5.81), we deduce

first line of (6.95)

2
_ 3991(0.7(6.1)) -
= (é(ir(e,z»—xz<s(ir(9,r>),fr(9,z>)) k_(7(0.1)

(m + 20pwg(s(7(0, 1), T(0, z))) +0(1) (6.151)

as 7(0, t) — 0T. At this stage we appeal to (6.145) with ¢ replaced by T = 7(0, t) —
0T, which is the relevant regime for 6 — s,(¢)*. From (6.151), (6.145), (6.69), and
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(5.81) we finally conclude that

2
- _ U1 (0.7(0.0)) : i
first line of (6.95) = (é(?r(a,z))ié(s(ﬂe,t)),T(e,t))) k=70, M g7 + OM

9 1
3 48b2T7(6,1)2 1
za e amen €
9
5 1
> 282q00,1)72 (6.152)

as 7(6,t) — 07,
Lastly, by combining (6.148) with (6.152), we obtain that

9
lim +a§k(9,t)zr(e,t)% > HbL (6.153)

6—>52(1)
In view of (6.144a), the above estimate and (6.8¢) thus precisely determines the blowup
rate of 892k(9, t) as @ — so(¢): this rate lies within two constants of (6 — 52(t))_%.
Lower bound for |zgg| on 5; . Next, we show that the upper bound (6.8b) also has
a corresponding lower bound which blows up as & — s,(t)". We start by recalling

the function ¢* defined in (6.117), and the formula for its derivative in (6.120). As
above, we let 5o (f) < 0 < s5(t) + %t and denote J = J(0, t). From estimate (6.131),

and by appealing to (6.144a) which yields 3(0, t) > ;ltt in the range of 6 considered
here, we arrive at

1 1
|200 + 3ckao + gcoko| (6.1) = |d9q*(6.1)] < Ca(®,1)"2 < C17 7,

for all & > s,(¢) which is close to s, (). Furthermore, since (5.141) and (6.82a) imply
that |cgkg| (6, 1) < 1t~ + R4t ?)Ret? < C1™2, the above estimate implies

|200 + Jckoa| (0, 1) < crr, (6.154)

for a suitable constant C = C(k, b, c, m) > 0.
Lastly, since % < c(0,t) < m, we see that the blowup rate for kg as 6 — 5;' ®),
given by (6.153), is immediately transferred to zgy, and we have

Nl

1 1 5
lim  82z(0,)70,0)2 < -1 lim ¢@,1)32k@, )70, 1)2 < -2 .
,lim 9320, 070,0° < =l e© 095kO, 07O, 0> <~

(6.155)

Here we have used the fact that limg_, 5 ;)+ 7(0, t)t’% = 0. The estimate (6.155), and
the upper bound (6.8b), show that 802z(8, t) > —ooas 6 — s,(¢)1, at a rate which is
proportional to —(6 — 52(t))’%.

Lower bound for |wgg| on sj. The argument is nearly identical to the one for the
second derivative of z. We recall that the variable g% defined in (6.31) satisfies the
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derivative bound (6.114). By appealing to the fact that (w, z, k, a) € A%, the estimate
(5.37b) for the second derivative of the Burgers solution, and to (6.114), we arrive at

|woo — Fckoa| (0. 1) < Icokal (8. 1) +|gi (0. 1)
<t '+ Rat?)Rgt? + 3b(kt)~3

N
u\u\

Ct™ (6.156)
for all 6 € (s2(t), so(t) + ’%), for a suitable constant C = C(k, b, c, m) > 0. This
estimate is the parallel bound to (6.154) for the second derivative of z. It implies, in a
similar fashion to (6.156), that

o
w [SN=)

lim agw(Q )70, t)2

0—sy(t)T

(6.157)

The estimate (6.157), and the upper bound (6.8a), show that agw(e, t) — 400 as

0 — s,(t)™, at a rate which is proportional to (6 — 52(t))’%.
Lower bound for |agy| on 5;. As before, consider 8 € (s2(t), 52(t) + ’%). By
combining (5.37a), (5.141e), (5.223), and (6.22), we arrive at the bound

agy + Scte Fmy| < Ct” Spcrr<ers. (6.158)

The desired lower bound on agyg is thus inherited from zy, which we recall is given
by (6.16). The principal contribution is due to the term containing the time integral of
koo . Indeed, using the same argument used to prove (6.14), we have that

t
’zzng(@,t) — g‘/ (¥ koo ) (¢ (0, 5), 5)e'™ @19 gs| < C. (6.159)
T@O,1)

The analysis reduces to establishing a lower bound which is commensurate with the
upper bound (6.19). The main idea here is as follows. From (6.148) and (6.152), as
in (6.153) we have that azk(e t) 24b%K’4iT(9 t)’l for all 6 sufficiently close to
57(t),1.e.52(t) < 0 < 55(¢) + ! Therefore, if the point (6, ) is replaced by the point
(¢, ), s), which in view of Remark 6.5 and estimate (6.7) is such that ¢, (0, s) is
sufficiently close to s, (s), we have that

k(i (0, 5),5) > > 24b2 k4T ( (6, ), 5) "7 = 24b2k 476, 1) 2

uniformly for all s € [T(6, 1), ¢]. In particular, 802k o ¢; > 0, and so by combining
(6.158)—(6.159), with (5.141f), (6.17), and with the estimate % < ¢ < m, we arrive at

1.2 —k -2
age(0,1) < —zc7e "y + Cr 3

t

<-5 koo (¢: (0, 5), s)ds + ct%
)
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< (t —70,1)70,1)” 7. (6.160)

The above estimate implies

im 70, 0)2ap @, 1) < —b—zt (6.161)

0—s2(1)*

which may be combined with the upper bound (6.20) show that agg (6, t) — —o0 as
0 — s>(t)™, at a rate which is proportional to ¢(8 — 52(t))’%.

6.7.2 Singularities on 51, from the Right Side

Passing to the limit & — s;(#)™ in the estimates (6.10), we obtain that

lim oy 6, 0)] < Ct~%i. and lim _lago 9, 0] < ci 3,
0—>s51( 0—s

for a suitable constant C = C(x, b, ¢, m) > 0, which shows that these quantities do
not blow up as 0 approaches s; from the right side. The only quantity that does indeed
blow up is the second derivative of z.

Here we establish a lower bound for |8921(9, t)| which is commensurate with (6.10b)
as @ — s1(¢)™"; more precisely we claim that

lim 80,0 2200(0, 1) < —Lb7k*, (6.162)

0—s1()t

which shows the precise rate of divergence of 8921 towards —oo as 6 approaches s
from the right side. The proof of (6.162) is quite involved, and will be broken up into
several parts, which correspond to estimating the various terms in (6.120). We rewrite
this identity as

299(0,1) = By + By + B3, (6.163)
where we define

By = q(s(3(0, 1)), 3(8, 1)@ ¥)* (0, 3(0, 1))
+ ¢ (5(3(0, 1)), 30, 1))V (8, 30, 1))

= Bi1 + B2 (6.164)
t
By = — f (3 Q%o @ov)? + QFovs 21)ds (6.165)
d1(6,1)
d106,0) ) )
Bs = —/;(9 : (39QZO¢/Z (09 ¥r1)” + Q%o ng,)ds (6.166)
ot

and J; is the time at which ¥ (6, -) intersects the curve s;; as given by (6.122), see
also Figure 15. Since # — s1(¢)" is equivalent in view of (6.144c) to 4(0,t) — 0,
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our goal is to extract the leading order term in 53] with respect to J < 1, and then to
obtain sharp estimates for 3, and B3 with respect to 4. In this direction we claim:

Lemma6.16 Fixt € (0,g]land s (t) <0 < s1(t) + ’%. Then we have that

_3p3 50, 1)} < By < —Bbita0.073 (6.167)

where the term B is as defined in (6.164).
Lemma6.17 Fixt € (0,g] and s1(t) < 6 < s1(¢) + %t. Then we have that

1 1

By <tibZi43(0,1)7 7, (6.1682)
By < b3k 436,072 +Ca0.1)7s (6.168b)

where the terms By and B3 defined in (6.165) and respectively in (6.166). Note that
the sum of the estimates in (6.168) gives an improvement over (6.121), in the sense
that the constant is sharper.

Proofof (6.162) We note that the bound (6.162) follows from (6.163), (6.167),
(6.168a), (6.168b), and the inequality

9 1 L g5 1
5+Ct4+C335 — 2 < —7,

for €, and hence ¢ and 7, sufficiently small. Thus, in order to complete the proof of
the (6.162), it only remains to prove Lemmas 6.16 and 6.17. These proofs occupy the
remainder of this subsection.

Proof of Lemma 6.16 We recall that ¢* is defined in (6.116) as zg + %ckg. The easiest
term is the sound speed. From (5.1c¢), (5.20), (5.141a), and (5.141c) we note that

c(s(), 9) = Swp(s(9), ) + 3 (w — wg +2)(5(9). 9)
= %wo(xg,_(g)) + O0@)
=& 1p3gt 4 O(), (6.169)

as J — 0. The next term we consider is the y derivative of k, restricted to the shock
curve. This term is given by (5.108), with ¢ replaced by J. The denominator of this
fraction is given by §(3) — A2(s(9), 9) = §(9) — %6(5(3), ) — %z(s(a), J) = %K +
O %) , by appealing to (5.141c) and (6.169). By combining the above estimate with
the identity (5.81), we arrive at

9
4852 53 1 O(a)
kg(s(3),d) = —————

7 = 144bZk 42 + O(9), (6.170)
6+ 0@37)
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as § — 0. The last ingredient needed to compute ¢g* on the shock curve is to obtain a
leading order term for the derivative of z. For this term we appeal to identity (5.112)

with 7 replaced by J. As above, we may show that §(3) — A1(s(9), 9) = %K + (9(3%),
and we may appeal to the estimate (5.81) and the already established (6.169) and
(6.170), to deduce

ER 1 71
(——21522 7 + O(a)) -3 <(% +0@2)) a7 + 0(3))
26(s(9),3) =

2+ 0(37)
= —18p3c37 4 0(9). 6.171)

We then combine the definition of ¢ in (6.116) with (6.169)—(6.171) and arrive at

q°(s(9),9) = —%ng‘%ﬁ + 03, (6.172)

as § — 0. In order to have a complete asymptotic description of the second term on
the right side of (6.164), we need to determine 892% (6, 9). For this purpose, we use
(6.77) with s replaced by g = J(0, t), and we recall that we are interested in the region
s51(1) <6 <s1(t) + %’. By using (5.37a), (5.141), (6.69), (6.79), (6.145), (6.169)

(4 . t
ﬁwﬂaa)Z%ekQazmwﬂsiiﬁﬁ—</ (Sa0 —2z00) © Vi dpYrds’
c2(s(3).9) Mg

dc(6,1) dgc(s(d),d)
+ G T e 0¥, 3))

1 1

_ K+0(t3))2 1

= %eo(f D (Kz+ (t l))l (O(t_3)+0(32)
E+o@1)z

1
_oad) _ —3d'+o@:
§+Oo%) §+ow%)

=L O +0G ) 6.173)

Y14 0G%))

for 3 <t <« 1. From (6.172) and (6.173), and using that g < ¢, we finally obtain that
the second term in (6.164) is given by

9 _3 1 _ _2
Biy = — (%bw 392 — O(a)) (ﬁa '+ 0@ 3))
TR B
=—5Zb2ck™372 + 0@ F). (6.174)
It remains to consider the first term on the right side of (6.164). We recall that
qé = Zpo + %Cgkg + }Tckeg. Thus, in view of (6.169) and (6.170), we need to estimate

separately three terms on the shock curve: ¢y, kgg, and zgg. First, similarly to (6.169),
we have from (6.145) and (5.141) that

co(5(9), 9) = 3(Bpwp) (5(9), ) + 139 (w — wg + 2)(5(3), 3)
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= 1 *1+(9(3*7) (6.175)

as § — 0. Next, we turn to ng, which is given by (6.94). By appealing to (6.149),
(6.145), (5.81), (5.83), and (5.141), we obtain

_ kZ(3)
koo (5(9). 9) = Gane@a7

+ ((3z)»2(5(3), 3) + (25(3) — 22(5(3), 9))3p22(5(2), 9))

" K
B 5(3)> GD—(50).0)°
24b2 48b2

J- 2+(9(1) _ 1 82+O(8)
=== (<5 0 )
(5+00 2 ))2 (5+0(32))3
— 722675977 + O(1) (6.176)

as § — 0. Lastly, we turn to 8922, which is given by the expression (6.136). By using
(5.13), (5.141), and (6.134), we first rewrite

7 — %(K — %w)(c2k99) — % ((K — %w)cke — 2k — %w)zg) w
(6 —A1)? (5(2).9)
+0@7). (6.177)

799(5(9), 3) =

Then, by appealing to (5.83), (5.141), (6.145), (6.169), (6.170), (6.171), (6.175), and
(6.176), from the above formula we obtain

70— 1 (e = Lwg) (cPkg) — 4 ((K — %wg) cky — (2k — Fws) zo) 9o wa
200(5(3), 3) = 1\ 2 ‘(5(8) ) +om

(3 +0(s) |

bt gen et (ael st ()

= . 1 2

(3 +o())

+O0)

bty 4 00), (6.178)

as J§ — 0. Using the definition of q§, upon combining (6.169), (6.170), (6.175),
(6.176), and (6.178) we obtain

9
2

4550, 0) = —$4bi Tt + 0 + & (~a 7! + 06
144b2k 432 + 0() )
+4 (5 + 0(3%)) (72b%/f53*% + 0(1))
= —8lp3y73 1 0(). (6.179)
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Lastly, by combining (6.69) with (6.179), and using that g < ¢, we obtain that the first
term in (6.164) is given by

B = (=3bika72 + 0m) (1+ (D(t%))2

6
- —(%b%fuoué)) 7+ 0(1). (6.180)
Adding the bounds (6.174) and (6.180) completes the proof of the lemma. O

Proof of Lemma 6.17 Recallfrom (6.118)that Q% = cko (15 wo+1520+3a)+ 53y (az).
As in the proof of Lemma 6.14, we write 99 Q° = Q| + Qj, where

Qla Qp Qic

1 1 1 1 2
Q1 = 15¢kowen + szkowowe + ckoo (3wo + 1320 + 50),

Q, = cko(5200 + 3ap) + 3(az)ep + sykozows -

We first give the proof of the more difficult bound, (6.168b). Several times in this
proof we require a bound on f 33' |kogwe| o Y. In order to obtain a suitable estimate,
we recall the bound of J; in (6.122), and introduce the time which lies half way in
between g and g, namely g, = g+ %(31 —3) = %3 +(’)(3%). The reason is as follows.

For s € [7, 32], from Remark 6.3 we may deduce that 7(y, (0, s), s) > %3(0, t); this
lower bound is useful when combined with (6.8¢c), (6.69), (5.141b), and (5.57a) for

y(s) = v: (0, 5):

d2 J» 1
/ koo wa | o Y (9py)’ds S 972 (|dgwg o Y| +s72)ds S a6 . (6.181)
d )

On the other hand, for the contribution coming from s € [d2, J1], the trick is to use
that |y, (0, s) — s(s)| > % Then, we may appeal to the bound (6.78), to (5.141b),
and to the estimate (5.37a), which in this region gives that |dowg(¥;(0, 5), s)| <

%bll/fz(& s) —S(S)I% < 573 < I3, concluding in

i 1

d1 2 1
/ lkoows | o Y (Bp ) ds < 373 / T (0,5),s) " 2ds Sa o.  (6.182)

J2 d2

Combining the above two bounds, and the fact that % < ¢ € m, we conclude that

1

d1
/ |ckagwa| o Y (Bpr)*ds <975 . (6.183)
J

The remaining contribution to Q. is bounded as

i 1
/H |ckon (2o + 2a)| o Y () ds < 3% . (6.184)
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Next, let us estimate — fgg(]g((i;t) Qipo Yy (89¢,)2ds. From (6.122), we see that

a@,t) =230,1t) + O(t%). Hence, using the bounds (5.57a), (5.141b), (6.123), and
(6.145), we have that

d L [
/g (ke(we)z)owaewzds53—2/3 (|lwo — weg| o ¥ + |weg| 0 ¥1) ds

N—

SE (6.185)
Next, in order to bound the contribution from Qj,, we define

A= —%(ckgwee + cwokog)

G = Zcwokgy + cco(ko)® + £c*kooko — 3(aw)gke — ko (wo)* + kowozo .

A straightforward computation shows that the product kgw, solves the equation
35 (kowe) + 110 (kowe) + 2(kowe)dpry = LA+G. (6.186)
We now obtain an explicit solution to (6.186). In order to solve (6.186), we set
x=kowg) oW, F=HBA+G oy,
and by employing the chain-rule, we write (6.186) as
O X +2x @) ' 05 (FpYr) = F.
It follows that
£ (o) = @7,

and integration from J to J; yields the identity

(kowe) (52(31), 1) @a W (8, 31))* — (kowp)(s(3), 9)we (s(3), 3)(Bo (9, 9))*

d
- /g (%A4+6) o Yy Gpy)ds

a1 d1
Z/a (G — 3cwokes) o Y (dpvr)°ds — % s (x¢kotwes) o Wi (g v)*ds
(6.187)
First, we note that since 7(s2(d1),d;) = O, the estimate (5.216) implies that

ko(s2(d1),d1) = 0, and so the first term on the left side of (6.187) vanishes. The
first term on the right side of (6.187) is estimated using (5.37a), (5.141), (6.8c), (6.69),
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(6.78), (6.123), (6.183), and (6.185) as

o

/3 G — Scwkoo| o vi Goy?ds S a7t (6.188)
Moreover, the estimates (5.141b), (6.69), (6.145), and (6.170) show that

—(kgwg)(5(3), 3)(Ba V1 (6, 9))* = (144b2 a2 +O(3)> (1 “1ro@ z))
2
(1+0ah)
= 72“ 40376 (6.189)

By using (6.187), the observation kg(s2(91), d1) = 0, and the bounds (6.188) and
(6.189) we obtain that

J
_/3 1 (f5ckowsg) o Yy (3o ) *ds = 9b2 92 50,1)"2 + O(375). (6.190)

Combining (6.183), (6.184), (6.185), (6.188), and (6.190), we have proven that for €
small enough,

3100,1) 9 . .
—/ QoY (ngt)zds < %3(9, 1) 24C3(0,1) 6. (6.191)
3(0,1)

In addition to the bounds (5.37a), (5.141), (6.8c), (6.69), (6.78), (6.123), by also
appealing to (6.8b) and (6.79), we deduce that

d1(0,1) .
—/ Qr0 (Ip¥r)2ds S a(0,1)7 . (6.192)
d@.1)

Moreover, by using the identity (6.77) for 83 Y, we see that the integrand Q%o 83 Yy
is estimated in the identical fashion as the term Q) in (6.185), and hence we have
that

310.0) .
—/ Q%o d3ds < 376 . (6.193)
ICH))
Together, the bounds (6.191), (6.192), and (6.193) establish the desired inequality
(6.168b), for 3(0, 1) <« 1.
The proof of the lemma is completed once we establish (6.168a). These estimates
are however simpler because by the definition of the time g1 (0, t), for all 51(¢) < 6 <

51(t)+ ,andforalls € (41(0, 1), t), we have that (y,(0, s5), s) € DZ\D" andk =0
in this region. In particular, this means that in this region we have that Q% = %89 (az),
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and g Q% = Q) = %392 (az); there are no dangerous k terms. As such the bounds we
seek directly follow from (6.127) and (6.128):

t

t
B, < / 196 0% o 2| () ds +/ 0%y, 32yn|ds < Cr3a(6.1)}
J1(6,1) J10,1)

(6.194)

1(

for a suitable constant C. The bound (6.168a) follows since r < € < 1. This completes
the proof of Lemma 6.17. O

6.8 Precise Holder Estimates for Derivatives

Here we combine the upper bounds established in Section 6.1, with the lower bounds
proven in Section 6.7, to precisely characterize the behavior of (wg, zg, kg, ag) as
0 — s1(H)T and @ — sp()T.

We first consider the behavior of these derivatives on s1(¢). Note that on the left
side of s1(¢), by (6.12) and (6.97) we have that the order second derivatives of w and
a are finite for every ¢ € (0, €], but that the bounds are not uniform in ¢ as t — ot
(as should be expected, since wq, ag ¢ C 2). On this left side of s1(r), we moreover
have that k = z = 0. Similarly, on the right side of s1(¢), the second derivative of
w is bounded due to (6.97), the second derivative of a is bounded in light of (6.20),
these bounds not being uniform as t+ — 0%, while k = 0. It remains to consider the
behavior of zg(8, t) as & — s1(¢)™. From (5.219) we know that zg(s1(¢), t) = 0, so
that using (6.10b) and (6.144c)

|z6(s1(t) + h, 1) — zo(51(1), 1) .

1
T h““/ |z00 (51 () + Ah, )| dA
0

O0<h<% O0<h<%

1
<Ny sup hl‘“/ 3(51(6) + A, )~
0

O<h<%

1 |
<2Npk™? sup hl—“f || 2dA
O<h<% 0

—32mi2 sup hi Y. (6.195)

O<h<%’

The right side of (6.195) is finite whenever « < % Thus, from (6.10b), (6.144b), and

(6.195), we deduce that z € C'2 in D\ DX, The remarkable fact is that due to (6.162),
this upper bound is sharp: for any o > %, z ¢ C1¥ near 5. Indeed, by (6.162), we

have that for £ sufficiently small but positive,

29(51(0) +h, 1) —zg(s1(1), 1)
ha

1
=h‘*°‘/ 209 (51(t) + Ah, 1)dA
0
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1
< —%b%/c_“h]_“/ 3(s1(t) + Ah, 1) 2d

0
1 9 9 1 1 1
< — b2k 2h *“/ (M)~ 2d)
0

9 1
2

< —lpie-ipie. (6.196)

ool —

For o > % the right side of (6.196) converges to —oo as & — 0T, proving that
zg ¢ C% in the vicinity of s;.

Next, we consider the behavior of derivatives on s(7). On the left side of 5, (7) we
have that £ = 0, while the second derivatives of w, z, and a are bounded in terms of
inverse powers of ¢ in view of (6.10b), (6.144b), (6.20), and (6.97). On the right side
of 57, the situation is different. Similarly to (6.195), we may use (6.97), (6.8b), (6.20),
and (6.144a) to show that wy, zg, kg, ag € C“ near s, forany o < % Indeed, the only

difference to (6.195) is that J(s1(t) + Ah, t)_% is replaced by T(s1(t) + Ah, t)_% <

2K_%()\.h)_%. Moreover, for any o > %, similarly to (6.196), we may use (6.153),
(6.155), (6.157), and (6.161) to prove

ko(s2(t) + h,t) —ko(s1(2), 1) < 9 _9

- 12b2 k22~ (6.197a)

(o) + h}?y_ wE @0 S (6.197b)

walea(t) + th— wsle1(@),2) Lp3=3pie (6.197¢)
% (52(1) + h:a_ WD 13 -3pie, (6.197d)

for h > 0 sufficiently small. The estimates in (6.197) show that kg, zg, wg, ag ¢ C“

1
for any @ > 5.

6.9 Proof of Theorem 6.1

The bounds in (6.1) are merely a restatement of the bootstrap bounds stated in (6.1)
for (weg, zoe, keg). The bounds for agg and @y follow as shown in Lemmas 6.5
and 6.6. These bootstrap estimates were closed (i.e., improved by a factor of 2) by
the analysis in Sections 6.2-6.6. As discussed in the first paragraph of Section 6.1,
this analysis should formally be carried out at the level of the approximating sequence
(w<”), ™, k(”)), but we have not chosen to do so for simplicity of the presentation.
One remark is in order at this point: when dealing with the approximating sequence
(W™, z™ k™ g™ the identities (6.75) and (6.77) for the second derivatives of ¢,
and ¥, are not available; this is because the structure of the equation for the sound
speed at ¢"+1) | given in (5.1382)—(5.138c), lacks a necessary n — n + 1 symmetry;
in this case, estimates for 892 t(") and 83 ,(") are obtained simply by differentiating
(5.120a) and (5.120b) twice with respect to y and appealing to the bootstrap bounds
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for Bgzw(") and 8§Z("); the resulting bounds are however exactly the same as the ones
given in Lemma 6.9.

The bounds in (6.2) follow from (6.1) on the one hand, and (6.144), (6.153), (6.155),
(6.157), (6.161), on the other hand. The estimate (6.3) follows by adding the bounds
in (6.154) and (6.156), observing that the terms %ckgg cancel. The characterization

of the singularity formed by (wg, 24, kg, ag) as 8 — s>(t)* as being precisely a C >
cusp is given by Section 6.8, estimate (6.197). The estimate (6.4) is implied by bounds
(6.1) and (6.162). The characterization of the singularity formed by zg as & — s1()™"

as being precisely a C > cusp is given by Section 6.8, estimate (6.196). This concludes
the proof of Theorem 6.1.

7 Shock Development for 2D Euler

In view of the transformations (ug, u,, o, S) — (b, c, k,a) — (w, z, k, a) described
in (3.2) and (3.4), the results obtained in Sections 4—6 for the azimuthal variables
(w, z, k,a, w) imply the following results for the usual hydrodynamic variables
(u, p, E, p). First, from Theorem 4.1 we deduce:

Theorem 7.1 (Shock formation for 2D Euler with azimuthal symmetry) There exists
ko > 1 sufficiently large, and ¢ > 0 sufficiently small, such that the following holds.
Consider initial data at time —e given by

(ur,ug,0,8)(r,0,—e) = (ra@®, —e), 5w @, —¢), 5w(®, —¢),0) ,

with (w, a)(-, —&) € C>(T) satisfying conditions (4.17)—(4.26). In particular, the ini-
tial data is smooth and has azimuthal symmetry. Then, there exists Ty, > —e (explicitly
computable), and a unique solution (u, o, S) € CO([—e¢, T); CH(R? \ {0))) of the

Euler equations (2.33), which has the azimuthal symmetry (3.2). The associated den-

sity is p = %aze’s = %rzwz, and the total energy is E = %p lul> + %pzes =

%}sz(a2 + 15—6w2). Moreover, at time blowup time Ty, we have S0, T,) = 0, and
there exists a unique angle &, € T (explicitly computable) such that an azimuthal
pre-shock forms on the half-infinite ray {(r, &x, Ts)}rer,, . The azimuthal pre-shock is
described by the fact that for |0 — &,| < 1 we have

ug(r, 0, T,) = 3r (K* +a1(0 —£)3 + a0 — £)5 +a3(0 — £) + OO — g*)%))
ur(r,0,T) =r (a{) +aj(0 — &) +ay(0 — £)3 + OO — g*)g))
o(r,0,Ty) = %ﬂ <Kf + 2a1k.(0 — g*)% + (a% + 2a0kc,) (0 — %-*)% +O0 — %_*))

i / i 1 2
E(.0,T) = 55 (k2(@F + 5&) + a1, Qaf + %5)(60 — 607 + 0(0 — £)9))

where ky, a1, a2, @3, a, ), a, are suitable constants which may be computed in terms
of the data. Moreover, in view of (4.4) we have that these asymptotic descriptions
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are valid (to leading order), for the first three derivatives of the solution, and for
|60 —&.| K¢ 1. Forangles 0 which are at any fixed distance away from &, the functions
(u, p, EY(r,0,T,) are C* smooth. Lastly, the specific vorticity and its derivatives
remain uniformly bounded up to T.

The above result, which establishes the formation of the pre-shock and gives its
detailed description, is nothing but a rewriting of Theorem 4.1 in terms of the usual fluid
variables. This is possible in view of the mapping (u,, ug, o, S) = (ra, %rw, %rw, 0),
valid on [—¢, Ti], and the above mentioned formulas for the density and energy. The
series expansion for the radial velocity ra (6, T) is not explicitly stated in Theorem 4.1,
but it immediately follows from the fact that a has regularity precisely C''!/3 and no
better, and from the bounds on a o n obtained in Section 4.

For the development part of our result, for simplicity of notation it is convenient to
re-label the pre-shock location (r, &4, Ty) +— (r, 0, 0). Moreover, the fields at which
we arrive at the end of the formation part, namely (u, o, S)(-, T), are re-labeled as
(ug, 09, So). Then, from Theorems 5.5 and 6.1 we obtain:

Theorem 7.2 (Shock development for 2D Euler with azimuthal symmetry) Given pre-
shock initial data

(ur, ug, 0, $)|i=0 := (raog, 5(wo + z0), 5 (wo — 20), ko),

with (wo, 2o, 4o, ko) satisfying conditions (5.1)—(5.5), there exist:

(i) € > 0 sufficiently small;

(ii) a shock surface S = {(r,0,1) € R? x [0, %]: 6 = s(1)} with s € C*([0, €]);

(iii) fields (u, p, E) with p = ‘—llaze_s and E = %p lul®> + %pzes, such that the
(u, p, E, S) is a regular shock solution of the compressible Euler equations (1.1)
on the time interval [0, €], in the sense of Definition 1.1;

(iv) two Cl smooth functions sy, s> [0, €] — T, with 51(0) = s2(0) = 0 and 51(t) <
$2(t) < s(t) fort € (0,8, such that S; == {(r,0,1) € R? x [0,€]: 0 = s;(t)} is
a characteristic surface for the A; wave-speed, where .1 = ug — %0 and Ay = ug;

such that for any t € (0, €] all fields are twice differentiable at points (r,0) with
0 ¢ {s1(1), s2(t), 5(t)}, and the following hold:

(v) letting DP = {(r, 6, 1) € R? x (0,]: 52(t) < 6 < 5(t)} we have that

o SeC2ADP), S =00n (D), and L < (6 —52(1))203S(r,0,1) < C
as — so(H)T,
1
o pug € CX(DY), [83ug(r,0,1)| < Cri~2 and |33 p(r,6,1)| < Crit=2 as

0 — s(1)7,

o 1, € CU2(DP) and —r1C < (6 — 52(0)22u,(r, 0,1) < —Lri as —
sH(D)T,

o p € CY2DP) and —r2C < (0 — 52(1))203p(r, 0,1) < —Lr2as6 —
s(0)T,

for a suitable constant C > 0;
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(vi) letting D = {(r,0,1) € R? x (0,]: 51 (1) < 6 < 52(1)}, we have

o S(r,0,1)=00nD.,

o ug € CM2DD) and Lr < (6 —51(1)703u(r,0,1) < Cras6 — s, ()T,

o u € CZ(D(I))andlaeur(r 0.0 < Crt 'ash — s(1)T,

o p e CH2DY) and —r2C < (0 — s1(1)203p(r, 0,1) < —Lr2as6 —
st

for a suitable constant C > 0;

(vii) on S, the functions ug(r, -, t) and dgu,(r, -, t) exhibit O(rt%) Jjumps, the density
p(r, -, t) exhibits an O(r2t%)jump, the entropy S(r, -, t) exhibits an (’)(t%)jump,
the total energy E(r, -, t) exhibits an (’)(r4t%)jump (cf. (5.63) and (5.69)), while
u,(r, -, t) does not jump.

Moreover, this solution is unique in the class of entropy producing regular shock
solutions (cf. Definition 1.1) with azimuthal symmetry, such that the corresponding
azimuthal variables (w, z, k, a) belong to the space Xz (cf. Definition 5.3).

The above theorem directly follows from our previous two Theorems 5.5 and 6.1, by
taking into account the relation between the fluid variables and the azimuthal variables
in (3.2), and in turn to the Riemann variables in (3.4). The bounds on second derivatives
are all a consequence of Theorem 6.1. In the region Dg), the bounds for the entropy
S and radial velocity u, follow from (6.2). Since up = %(w + z), the bound for the

second derivative of uy in the region Déz), which does not blow up as 8 — s(¢)"

in positive time, follows from (6.3). Since p = %cze_k , the claimed bound for the
second derivative of the density follows from (5.11), (6.2), (6.114), and (6.131) since
we may write

i—g‘agp =ce ¥ (2cgg — ckgg) + (terms which are bounded as 6 — s,(r)"
in terms of powers of 1
=ce K (a8 — a5 — %Ckgg) + (terms which are bounded as 6 — s,(f)"
in terms of powers of 1
= —%c2e_kk99 + (terms which are bounded as 8 — s, ()™

in terms of powers of 1.

and so the singularity of kgp on s, carries over to p. Lastly, the claimed estimate for

the second derivative of pressure, which does not blow up as 0 — s(f)™ in positive

time, follows from the identity p = lr4c4e_k and a similar computation as above

3—%892 p= Se* (4cgp — ckyy) + (terms which are bounded as 0 — s,(7)™
in terms of powers of =1

=2c%e™* (g — ¢¢) + (terms which are bounded as 6§ — s, (1) "
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in terms of powers of 1

= (terms which are bounded as & — s,(¢)™ in terms of powers of t_l) .
(7.1)

The dependence of the bound on t~! follows from (5.11), (6.114), and (6.131).

In the region Dg), we have that wgg is bounded in terms of inverse powers of ¢
and zgp satisfies (6.4), which gives the bounds on uy and p. The bound for the radial
velocity appears in (6.1a).

The size of the jumps along the shock curve, and the uniqueness statement, follow
directly from Theorem 5.5. To avoid redundancy we omit further details.
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