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Abstract
A fundamental question in fluid dynamics concerns the formation of discontinuous
shock waves from smooth initial data. We prove that from smooth initial data, smooth
solutions to the 2d Euler equations in azimuthal symmetry form a first singularity, the

so-calledC
1
3 pre-shock. The solution in the vicinity of this pre-shock is shown to have a

fractional series expansionwith coefficients computed from the data.Using this precise
description of the pre-shock, we prove that a discontinuous shock instantaneously
develops after the pre-shock. This regular shock solution is shown to be unique in
a class of entropy solutions with azimuthal symmetry and regularity determined by
the pre-shock expansion. Simultaneous to the development of the shock front, two
other characteristic surfaces of cusp-type singularities emerge from the pre-shock.
These surfaces have been termed weak discontinuities by Landau & Lifschitz [12,
Chapter IX, §96], who conjectured some type of singular behavior of derivatives along
such surfaces. We prove that along the slowest surface, all fluid variables except the

entropy haveC1, 12 one-sided cusps from the shock side, and that the normal velocity is
decreasing in the direction of its motion; we thus term this surface a weak rarefaction

wave. Along the surface moving with the fluid velocity, density and entropy formC1, 12
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one-sided cusps while the pressure and normal velocity remain C2; as such, we term
this surface a weak contact discontinuity.

Keywords Shock formation · Shock development ·Weak contact ·Weak
rarefaction · Pre-shock · Compressible euler
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1 Introduction

We consider the simultaneous development of shock waves and weak singularities
(contact and rarefaction cusps) from smooth initial data, for the two-dimensional
compressible Euler equations in azimuthal symmetry. This problem consists of:

• the shock formation process, in which we start from smooth initial data and con-
struct the first singularity, the so-called pre-shock;
• the shock development process, in which the pre-shock instantaneously evolves
into a discontinuous entropy producing shock wave, and two other families of
weak characteristic singularities (cusps).

1.1 The Compressible Euler Equations

For shock development, it is essential to write the Euler equations in conservation
form, so as to ensure the physical jump conditions (conserving total mass, momentum
and energy) are satisfied. The system reads

∂t (ρu)+ div(ρu ⊗ u + pI ) = 0 , (1.1a)

∂tρ + div(ρu) = 0 , (1.1b)

∂t E + div((p + E)u) = 0 , (1.1c)

where u : R2 × R → R
2 denotes the velocity vector field, ρ : R2 × R → R+

denotes the strictly positive density, E : R2 × R → R denotes the total energy, and
p : R2 × R → R denotes the pressure function which is related to (u, ρ, E) by the
identity

p = (γ − 1)
(
E − 1

2ρ |u|2
)
,

where γ > 1 denotes the adiabatic exponent. For smooth solutions, the conservation
of energy equation (1.1c) can be replaced by the transport of (specific) entropy ∂t S +
u · ∇S = 0, where S : R2 × R→ R denotes the entropy function, and the pressure
has the equivalent form

p(ρ, S) = 1
γ
ργ eS . (1.2)

We consider solutions to the Euler equations (1.1) which start from smooth non-
degenerate initial data at time T0, form a first singularity or pre-shock at time T1, and
simultaneously develop a discontinuous shock wave and surfaces of weak characteris-
tic discontinuities on the time interval (T1, T2]. Solutions on the time interval [T0, T1)
are classical solutions to (1.1), and only the continuation of these solutions past T1
requires the introduction of the Rankine-Hugoniot jump conditions.

Suppose that for t ∈ (T1, T2], the shock front S ⊂ R
d × (T1, T2] is an orientable

space-time hypersurface across which the velocity u±, density ρ±, and energy E±
jump. We consider the case where this surface is given by S := {s(t, x1, x2, . . . xd) =
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0} with spacetime normal−(ṡ,∇xs)|S := (−ṡ, n). We assume that (u±, ρ±, E±) are
defined in the sets�±(t) ⊂ R

2 separated by the shock front at time t . Let n(·, t) point
from �−(t) to �+(t), which is in the direction of propagation of the shock front.
In two-dimensions, we let τ(·, t) = n(·, t)⊥ denote the tangent vector. We denote
[[ f ]] = f − − f + where f ± (sometimes denoted f±) are the traces of f along S in
the regions �± respectively, and un = u · n|n|−1, uτ = u · τ |τ |−1. The shock speed
is denoted by ṡ. The Rankine-Hugoniot jump conditions state that the shock speed ṡ
along with the jumps of the fields across S must simultaneously satisfy

ṡ|n|−1[[ρun]] = [[ρu2n + pI ]] , (1.3a)

ṡ|n|−1[[ρ]] = [[ρun]] , (1.3b)

ṡ|n|−1[[E]] = [[(p + E)un]] , (1.3c)

where we have used [[uτ ]] = 0 for a shock discontinuity.

Definition 1.1 (Regular shock solution) We say that (u, ρ, E, s) is a regular shock
solution on R

d × [T1, T2] if the following conditions hold:

(i) (u, ρ, E) is a weak solution of (1.1) and ρ � ρmin > 0;
(ii) the shock front S ⊂ R

d × R+ is an orientable hypersurface;
(iii) (u, ρ, E) are Lipschitz continuous in space and time on the complement of the

shock surface (Rd × [T1, T2]) \ S;
(iv) (u, ρ, E) have discontinuities across the shock which satisfy the Rankine-

Hugoniot conditions (1.3).

Furthermore, the solution has a weak shock if

sup
t∈[T1,T2]

(|[[u(t)]]| + |[[ρ(t)]]| + |[[E(t)]]|)	 1 .

1.2 Prior Results in Shock Development Problem for Euler

For hyperbolic systems in one space dimension, existence (and in some cases unique-
ness) of global weak solutions is well understood using either the Glimm scheme or
compensated compactness techniques (see e.g. [8]). Unfortunately, thesemethods can-
not provide a description of the surfaces across which weak and strong singularities
propagate. In multiple space dimensions, Majda [14, 15] establishes the short-time
evolution (and stability) of a shock front. This is a free-boundary problem in which
the parameterized shock surface moves with the shock speed given by the Rankine-
Hugoniot conditions. In this problem, the initial data consists of a shock surface and
discontinuous (u, ρ, E) which are smooth on either side of the shock. As such, this
framework does not include the shock development problem, in which the surface of
discontinuity must evolve from a Hölder pre-shock.

There are very few results on the formation and development of shocks. For the
one-dimensional p-system (which models 1d isentropic Euler), Lebaud [13] was the
first to prove shock formation and development. Following [13], Chen &Dong [4] and
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Kong [11] also proved formation and development of shocks for the 1d p-system with
slightly more general initial data. However, because entropy is created at the shock,
the use of the isentropic 2×2 p-system cannot produce weak solutions to the 1d Euler
equations.1 Yin [17] was the first to consider the formation and development problem
for the non-isentropic 3×3 Euler equations in spherical symmetry. Independently,
shock development for the barotropic Euler equations under spherical symmetry was
established by Christodoulou & Lisbach [7]. The use of the isentropic model or the
assumption of an irrotational flow in higher dimensions cannot produceweak solutions
to the Euler equations, and as such has been termed the restricted shock development.
Christodoulou [6] has established restricted shock development for the irrotational
and isentropic Euler equations in three spatial dimensions and completely outside
of symmetry. Yin & Zhu [18] have recently established shock development in two
dimensions for a scalar conservation law.

As previously noted by Landau & Lifschitz in [12, Chapter IX, §96], at the same
time that the discontinuous shock wave develops, other surfaces of singularities are
expected to simultaneously form. Landau & Lifschitz termed these surfaces weak
discontinuities. In the restricted shock development problem, Christodoulou [6, Page

3] constructs C1, 12 cusp singularities along the characteristic of the fluid velocity
minus the sound speed, emanating from the first singularity (akin to the s1 curve
in Theorem 3.2). For the full Euler system (with or without symmetry, even in one
dimension) the analysis of these surfaces of weak discontinuity has been heretofore
nonexistent. In this paper we prove that two such surfaces of weak singularities emerge
from the pre-shock and move with the slower sound-speed characteristic and the fluid
velocity respectively. We shall refer to these two surfaces as a weak contact (s2),
respectively a weak rarefaction (s1). We call the curve s2 a weak contact because it
moves with the fluid velocity, and both the normal velocity and the pressure are one
degree smoother than the density and entropy. The curve s1 is called aweak rarefaction
because the normal velocity to this curve is decreasing in the direction of its motion –
see Section 7.

1.3 Statement of theMain Results

The goal of this paper is to prove the following (we refer to Theorems 7.1 and 7.2 for
a precise statement):

Theorem 1.2 (Main result for 2DEuler – abbreviated version)From smooth isentropic
initial data with azimuthal symmetry, at time T0, there exist smooth solutions to the
2d Euler equations (1.1) that form a pre-shock singularity at a time T1 > T0. The
first singularity occurs along a half-infinite ray and the blowup is asymptotically self-

similar, exhibiting a C
1
3 cusp in the angular velocity and mass density, and a C1, 13

cusp in the radial velocity. Moreover, the blowup is given by a series expansion whose
coefficients are computed as a function of the initial data.

1 We emphasize that the Rankine-Hugoniot jump conditions are not satisfied under the isentropic assump-
tion, see Lemma 2.1.
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Fig. 1 The images represent values of the density written in polar coordinates ρ(r , θ, t), and plotted for
r ∈ [1, 2]. The image on the left represents the smooth data at time T0. The center image shows the pre-
shock formed at time T1, at one specific value of the angular coordinate; we marked the corresponding line
in red. The image on the right represents the density at time T2, where we have represented in red the line
along which the shock discontinuity occurs, in blue the line containing the weak contact, and in green the
line corresponding to the weak rarefaction

Past the pre-shock, the solution is continued on (T1, T2], as an entropy–producing
regular shock solution of the full 2d non-isentropic Euler equations (1.1). The solution
is unique in the class of entropy producing weak solutions with azimuthal symmetry,
with a certain weak shock structure and suitable regularity off the shock (see Defini-
tion 5.3 below). The following properties are established:

• Across the shock curve, all the state variables jump:

[[uθ ]] ∼ (t − T1)
1
2 , [[ρ]] ∼ (t − T1)

1
2 ,

[[∂θur ]] ∼ (t − T1)
1
2 , [[S]] ∼ (t − T1)

3
2 .

• Across the characteristic emanating from the pre-shock and moving with the fluid

velocity, the entropy, density and radial velocity all have a C1, 12 one-sided cusp
from the right, while from the left, they are all C2 smooth. The second derivative
of the angular velocity and of the pressure is bounded across this curve for t ∈
(T1, T2].
• Across the characteristic emanating from the pre-shock and moving with sound
speed minus the fluid velocity, the entropy is zero while the angular velocity and

density have C1, 12 one-sided cusps from the right, while from the left, they are all
C2 smooth. The second derivative of the radial velocity is bounded across this
curve for t ∈ (T1, T2].

We thereby obtain a full propagation of singularities result for regular shock solutions,
capturing both the jump discontinuity and the weak singularities emanating from the
initial cusp in the pre-shock (Fig. 1).

Remark 1.3 (Anomalous entropy production) In analogy with Onsager’s conjecture
on anomalous dissipation of kinetic energy by weak solutions of incompressible
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Euler, entropy can be anomalously produced by singular inviscid solutions of the
compressible Euler equations. Theorem 3 of [9] establishes the following L3-based
Onsager-criterion: if u, ρ, E ∈ L∞(0, T ; (B1/3+

3,∞ ∩ L∞)loc(Rd)) then there is no
entropy production. Our Theorem 1.2 provides an example of an entropy producing
weak solution resulting from continuing past a finite time singularity. In fact, the solu-
tion we construct lies in u, ρ, E ∈ (BV ∩ L∞)loc ⊂ (B1/p

p,∞)loc, for every p � 1,
illustrating the sharpness of the Onsager criterion in this context.

Remark 1.4 (Uniqueness and entropy) With regards to the question of uniqueness, the
recent work [10] established that infinitely many entropy-producing weak solutions
emanating from 1d Riemann data exist (see also the references therein for the rich
history of such convex-integration constructions going back to [5]). The solutions in
[10] break the 1d symmetry and are in general just bounded, and show that the usual
entropy condition cannot ensure uniqueness in the class of bounded weak Euler solu-
tions. By contrast, we establish uniqueness in a class of weak solutions with azimuthal
symmetry, exhibiting weak shock structure, and which have regularity consistent with

the fact that they emanate from a C
1
3 pre-shock (see Definition 5.3).

2 Jump Conditions and Entropy Conditions

2.1 The Rankine-Hugoniot Jump Conditions for the Euler Equations

We now return to the Rankine-Hugoniot conditions (1.3). The weak shock regime is
relevant to the development of a discontinuous shock wave from Hölder continuous
data (the pre-shock). A key feature of a regular shock solution to the Euler equations
is the production of entropy along the shock surface.

In order to best exemplify this entropy production, we shall set

S+ = 0 . (2.1)

We then define

v = un − ṡ . (2.2)

Then noting that u2n = (v + ṡ)2 = v2 + 2ṡv + ṡ2 and ṡun = ṡv + ṡ2, the jump
conditions (1.3) become

0 = [[ρv2 + p]] , (2.3a)

0 = [[ρv]] , (2.3b)

0 = [[v2 + 2γ
γ−1

p
ρ
]] , (2.3c)

From (2.3b), we know that the mass flux is continuous ρ−v− = ρ+v+ =: j . For a
shock discontinuity j 
= 0 implying the tangential velocity is continuous across the
shock [[uτ ]] = 0. In our setup, mass is crossing the shock from the ‘+’ phase to the
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‘−’ phase, so the shock is traveling from ‘−’ to ‘+’. With our choice of orientation
for the normal, this fixes j < 0, which implies that

u− · n < ṡ, u+ · n < ṡ. (2.4)

Thus, the shock speed is greater than the normal velocity of the fluid on both sides of
the shock, consistent with that mass flux being negative j < 0. We will refer to ‘−’
state as behind the shock and the ‘+’ state as the front.

2.2 Second Law of Thermodynamics and the Physical Entropy Condition

We now explain the meaning and consequences of the physical entropy condition. The
motion of a viscous compressible fluid in d-spatial dimensions is, to good approxima-
tion, governed by the Navier-Stokes system. In that system, any non-trivial state has
the property that net entropy is increasing

d

dt

∫

�

ρS dx > 0, (2.5)

provided u is tangent to � (and the boundaries ∂� are insulating if the thermal dif-
fusivity is non-vanishing). Namely, the second law of thermodynamics holds. For the
Euler equations, the entropy satisfies

∂t (ρS)+∇ · (ρuS) = 0 (2.6)

and is thus has conserved average for smooth solutions. We recall here the following
classical result

Lemma 2.1 Let (u, ρ, E) be a weak shock solution. Then, entropy is produced (2.5)
if and only if [[S]] > 0. Moreover, provided that the specific volume V := 1/ρ and
enthalpy h = p

ρ
+ e when viewed as a functions of pressure and entropy are C4, then

the following leading order description of the entropy jump holds

[[S]] = 1

12

1

T+

(
∂2V

∂ p2+

)∣∣∣∣∣
S

[[p]]3 +O([[p]]4). (2.7)

The notation “ f (x) = O(x)" means, as usual, | f (x)| � (const.)|x | for all suffi-
ciently small x . An immediate implication of equation (2.7) is that entropy variation
is produced once a shock is formed, even if the flow was initially isentropic.

Remark 2.2 (Equations of State) Although we only require finite regularity in Lemma
2.1, away from phase transitions, all thermodynamic functions are smooth in their
arguments. Thus, the specific volume V := V (ρ, S) and the enthalpy h := h(ρ, S)
which are used in the subsequent proof are smooth functions of p and S. As such,
our assumption physically is that our medium is far from criticality. Moreover, strict
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convexity ∂2V /∂ p2 > 0 is amaterial property. For example, for a ideal gas (the family
we consider) we have explicitly

(
∂2V

∂ p2

)∣∣∣∣
S
= (1+ γ−1)V

p

2

> 0 (2.8)

which can be obtained by differentiating the relationship pV γ = (const.) (equation
(1.2)). The thermodynamic temperature appearing in (2.7) can also be explicitly related
to ρ and p in this setting. Specifically, for the ideal gas law T = e/cv where the internal
energy e = p

(γ−1)ρ , we have the following explicit formula 1
T = cv(γ−1)ρ

p .

Remark 2.3 (Correlations in jumps) One consequence of Lemma 2.1 is that, if V is a
strictly convex function of the pressure (as it is for the ideal gas), then positive entropy
production implies positivity of the jumps [[p]] > 0, [[ρ]] > 0 and [[un]] > 0. This
conclusion is simply the well known fact that pressure and mass density trailing the
shock exceed their values at the front, due to compression. See Landau and Lifshitz
[12], Chapter IX for an extended discussion.

Proof of Lemma 2.1 Integrating the entropy balance (2.6) over the domain one finds

ṡ[[ρS]] − [[ρuS]] = − j[[S]] . (2.9)

Thus we must have − j[[S]] > 0, to be consistent with the second law of thermody-
namics (2.5) imposed, for example, by the effects of infinitesimal viscosity. Recalling
that, with our conventions the mass flux j = ρv is negative (mass is passing the shock
from + to −), we see that the physical entropy condition (2.9) is equivalent to the
condition

[[S]] > 0 . (2.10)

We now derive the consequences of (2.10) for weak shocks. In what follows, we will
show that [[S]] = O([[p]]3). In the calculations below, we anticipate this result in
our expansions. It is convenient to work with the enthalpy h = p

ρ
+ e. We regard

h = h(p, S) and Taylor expand to obtain

[[h]] =
(
∂h

∂S+

)∣∣∣∣
p
[[S]] +

(
∂h

∂ p+

)∣∣∣∣
S
[[p]]

+ 1

2

(
∂2h

∂ p2+

)∣∣∣∣∣
S

[[p]]2 + 1

6

(
∂3h

∂ p3+

)∣∣∣∣∣
S

[[p]]3 +O([[S]][[p]], [[p]]4, [[S]]2).

Recalling the first law of thermodynamics in the form

dh = T dS + V dp, (2.11)
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where V := 1/ρ is the specific volume, we find that

(
∂h

∂S

)∣∣∣∣
p
= T ,

(
∂h

∂ p

)∣∣∣∣
S
= V . (2.12)

Thus, the Taylor expansion of the enthalpy becomes

[[h]] = T+[[S]] + V−[[p]] + 1

2

(
∂V

∂ p+

)∣∣∣∣
S
[[p]]2 + 1

6

(
∂2V

∂ p2+

)∣∣∣∣∣
S

[[p]]3

+O([[S]][[p]], [[p]]4, [[S]]2). (2.13)

Recalling that the mass flux j is continuous across the shock, we note that by (2.3a)
that

[[p]] = −[[ρv2]] = − j[[v]] = − j2[[V ]], (2.14)

which implies j2 = −[[p]]/[[V ]]. Moreover, from (2.3c), we have

[[h]] = −[[ 12v2]] = −
j2

2
[[V 2]] = 1

2
[[p]] [[V

2]]
[[V ]] = [[p]]Vave, (2.15)

where Vave = 1
2 (V− + V+). Combining with (2.13), after some manipulation we find

T+[[S]] = 1
2 [[V ]][[p]] − 1

2

(
∂V
∂ p+

)∣∣∣
S
[[p]]2 − 1

6

(
∂2V
∂ p2+

)∣∣∣∣
S
[[p]]3

+O([[S]][[p]], [[p]]4, [[S]]2). (2.16)

Finally, Taylor expanding the specific volume yields

[[V ]] =
(
∂V

∂ p+

)∣∣∣∣
S
[[p]] + 1

2

(
∂2V

∂ p2+

)∣∣∣∣∣
S

[[p]]2 +O([[p]]3, [[S]]). (2.17)

Upon substitution into (2.16), we obtain the relation (2.7). Note that provided
∂2V /∂ p2 > 0, for weak shocks [[p]] 	 1, equation (2.7) shows that [[p]] > 0.
Hence, by (2.14), we have [[ρ]] > 0 and [[un]] > 0. ��

2.3 Lax Geometric Entropy Conditions and Determinism of Shock Development

In this section, we show that the entropy condition implies that the shock discontinuity
is supersonic relative to the state ahead (‘+’ phase) and subsonic relative to the state
behind (‘−’ phase)

u+ · n + c+ < ṡ < u− · n + c− , (2.18)
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where c− and c+ are the sound speeds behind and at the front of the shock. In this
way, the {t = 0} hypersurface is the Cauchy surface for the state ahead (+) whereas
{t = 0} together with the shock front serve as the Cauchy surface for the state behind
(−). The region behind the shock is thus determined by the initial conditions together
with data along the shock front which are determined by enforcing Rankine-Hugoniot
conditions.

Equations (2.18) (togetherwith (2.4)) are calledLax’s geometric entropy conditions.
We now show that the Lax geometric entropy conditions are equivalent to the physical
entropy condition (2.10), at least for weak shocks.

Lemma 2.4 In the setting of Lemma 2.1, the physical entropy condition (2.5) holds if
and only if the geometric Lax entropy conditions (2.18) and (2.4) hold.

Proof of Lemma 2.4 Conditions (2.4) hold since themass flux j < 0.Using u±·n−ṡ =
jV±, (2.18) becomes

c+
V+ < − j < c−

V− . (2.19)

Thus, when the jump conditions, the Lax geometric conditions hold provided

[[c/V ]] > 0. (2.20)

We now show how this is implied by [[S]] > 0 in the weak shock regime. Letting
w := V 2/c2, we have

[[w]] =
(

1
(c/V )− + 1

(c/V )+
)
[[V /c]] = −

(
1

(c/V )− + 1
(c/V )+

) [[c/V ]]
(c/V )−(c/V )+ . (2.21)

Thus, verifying condition (2.20) and thus (2.19) is equivalent to showing [[w]] < 0.
To verify this note first, that viewing ρ := ρ(p, S), as an application of the chain rule
we have

1

c2
=

(
∂ρ

∂ p

)∣∣∣∣
S
= − 1

V 2

(
∂V

∂ p

)∣∣∣∣
S
, (2.22)

which yields w = −
(
∂V
∂ p

)∣∣∣
S
. Appealing to the leading order entropy jump (2.7) of

Lemma 2.1, we obtain

[[w]] = −
(
∂2V

∂ p2+

)∣∣∣∣∣
S

[[p]] +O([[p]]2) = −12T+
[[p]]2 [[S]] +O([[p]]2). (2.23)

Thus, we see that [[S]] > 0 if and only if [[w]] < 0 which in turn implies the Lax
conditions (2.18), (2.4). ��
Remark 2.5 (Determinism of shock development and entropy conditions) We now dis-
cuss an interpretation of the Lax geometric inequalities as they pertain to the issue of
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determinism of the shock development problem. To simplify ideas, we specialize to
1D setting in which the spacetime shock curve is given by {x = s(t)}. The spacetime
normal to the shock curve is n = (−ṡ, 1). With the notation ∇t,x = (∂t , ∂x ), the
transport operators for the Riemann invariants are

(1, u − c) · ∇t,x , (1, u) · ∇t,x , (1, u + c) · ∇t,x . (2.24)

See equations (3.5b), (3.5c) and (3.5a) respectively. In the front of the shock (+ phase),
the Lax inequalities (2.18) read

u+ − c+ < ṡ, u+ < ṡ, u+ + c+ < ṡ (2.25)

all of which follow directly using the fact that the sounds speed is positive. Geomet-
rically, these translate to

n · (1, u+ − c+) < 0, n · (1, u+) < 0, n · (1, u+ + c+) < 0, (2.26)

showing that all the associated characteristics in front of the shock (+ phase) impinge
on the shock front, carrying with they Cauchy data from the {t = 0} hypersurface.
This ensures that the front of the shock is causally isolated from shock and determined
solely from initial conditions. On the other hand, behind the shock (− phase) we have
from (2.18) and (2.4) that

u− − c− < ṡ, u− < ṡ, u− + c− > ṡ (2.27)

which has the geometric meaning of

n · (1, u− − c−) < 0, n · (1, u−) < 0, n · (1, u− + c−) > 0. (2.28)

Unlike the situation in the+ phase, we see that two of the characteristics corresponding
to wave speeds u−− c− and u− are “exiting the shock", carrying with them data from
along shock hypersurface. Only one of the characteristics corresponding to u− + c−
is impinging on the surface, carrying Cauchy data from {t = 0}. The significance of
this is the following: the data along the shock front for the Riemann invariants carried
by characteristics leaving the shock are free and will be chosen to enforce two out
of the three jump conditions for mass, momentum and energy. The third invariant
whose characteristics impinge on the shock enjoys no such freedom – rather the speed
of the shock will be designed to arrange for the last jump condition to be satisfied.
Simultaneously ensuring these constraints hold define a free boundary problem for
the shock development. If additional characteristics were to lack this freedom, the
problem would become overdetermined and no solution could be found in general. As
such, the entropy condition is precisely what is required for the shock development
problem to be “deterministic”.

Remark 2.6 (Shock speed near formation) From the Rankine-Hugoniot conditions, it
follows that the rate of propagation of weak shock waves (relative to the fluid) is the
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sound speed, ṡ ≈ un + c. This follows from the fact that, at the pre-shock, v− = v+
so

v− = v+ = v = jV = −
√
−V 2(∂ p/∂V )|S = −

√
(∂ p/∂ρ)|S = −c, (2.29)

which follows from the identity j2 = −[[p]]/[[V ]]. Since ṡ = un − v, the claim
follows.

2.4 The Euler System in Terms of Entropy, Velocity, and Sound Speed

In preparation for reducing the equations to a symmetry class and deriving equations of
motion for the Riemann variables, we reformulate the two-dimensional non-isentropic
compressible Euler equations. First, for classical solutions the energy equation can be
replaced by the transport of entropy

∂t (ρu)+ div (ρ u ⊗ u)+ ∇ p(ρ, S) = 0 , (2.30a)

∂tρ + div (ρu) = 0 , (2.30b)

∂t S + u · ∇S = 0 , (2.30c)

where S : R2 × R → R is the (specific) entropy. If the initial entropy is chosen to
be a constant S0 ∈ R, then the entropy function satisfies S(·, t) = S0 as long as the
solution remains smooth. The formulation of Euler given in (2.30) is equivalent to the
usual conservation law form (see (1.1)) up to the pre-shock, and will be used for the
shock formation process.

We introduce the adiabatic exponent

α = γ−12
so that the (rescaled) sound speed reads

σ = 1
α

√
∂ p/∂ρ = 1

α
e

S
2 ρα . (2.31)

With this notation, the ideal gas equation of state (1.2) becomes

p = α2
γ
ρσ 2 . (2.32)

The Euler equations (2.30) as a system for (u, σ, S) are then given by

∂t u + (u · ∇)u + ασ∇σ = α
2γ σ

2∇S , (2.33a)

∂tσ + (u · ∇)σ + ασ div u = 0 , (2.33b)

∂t S + (u · ∇)S = 0 . (2.33c)
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We let ω = ∇⊥ · u denote the scalar vorticity, and define the specific vorticity by
ζ = ω

ρ
. A straightforward computation shows that ζ is a solution to

∂tζ + (u · ∇)ζ = αγ σρ∇⊥σ · ∇S . (2.34)

The term term α
γ
σ
ρ
∇⊥σ ·∇S on the right side of (2.34) can also be written as ρ−3∇⊥ρ ·

∇ p and is referred to as baroclinic torque.

2.5 Jump Formulas for Ideal Gas Equation of State

In this section, we perform some manipulations of the Rankine-Hugoniot conditions
(1.3a)–(1.3c) which will be used later in the paper. Combining (2.3) together with
(2.1), we find that

[[p]] = − 2ργ+
(γ−1)ρ−−(γ+1)ρ+ [[ρ]] . (2.35)

We can also compute the jump in pressure as

[[p]] = 1
γ
(eS− − 1)ργ− + 1

γ
[[ργ ]] . (2.36)

Equating (2.35) and (2.36), we see that

ρ
γ
−(eS− − 1) = − 2γργ+

(γ−1)ρ−−(γ+1)ρ+ [[ρ]] − [[ργ ]] , (2.37)

where we recall that S− = [[S]]. In order to simplify (2.37), we introduce

Q = ρ+
ρ−

(2.38)

whichwe expect to be close to 1 on the shock curve, for a short time after the pre-shock.
Then, (2.37) reads

eS− − 1 = (Q−1)3
(γ−1)−(γ+1)Q

(
γ (γ−1)(1+γ )

6 − (Q − 1)Bγ (Q)
)
, (2.39)

where Bγ (Q) is a smooth function in the neighborhood of Q = 1, with Bγ (1) =
1
12 (γ − 2)(γ − 1)γ (γ + 1) and B ′γ (1) = −140 (γ − 3)(γ − 2)(γ − 1)γ (γ + 1).

When γ = 2 and α = 1
2 , the above formulae simplify. First we note that B2(Q) = 0

for all Q, and in that case, (2.39) becomes

eS− − 1 = (Q − 1)3

1− 3Q
= [[ρ]]3
ρ2−(3ρ+ − ρ−)

. (2.40)

From (2.31) and the fact that S+ = 0, we have that

ρ− = 1
4σ

2−e−S− , ρ+ = 1
4σ

2+ ,
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from which it follows that

[[ρ]] = 1
4e
−S−

(
σ 2− − eS−σ 2+

)
.

This allows (2.40) to be rewritten as

(eS− − 1)σ 4−(3σ 2+eS− − σ 2−) =
(
σ 2− − eS−σ 2+

)3
. (2.41)

3 Azimuthal Symmetry

3.1 The Euler Equations in Polar Coordinates and Azimuthal Symmetry

The 2D Euler equations (2.33) take the following form in polar coordinates for the
variables (uθ , ur , ρ, S):

(
∂t + ur∂r + 1

r uθ ∂θ
)
ur − 1

r u
2
θ + ασ∂rσ = α

2γ σ
2∂r S , (3.1a)

(
∂t + ur∂r + 1

r uθ ∂θ
)
uθ + 1

r ur uθ + α σr ∂θσ = α
2γ
σ 2

r ∂θ S , (3.1b)
(
∂t + ur∂r + 1

r uθ ∂θ
)
σ + ασ ( 1r ur + ∂r ur + 1

r ∂θuθ
) = 0 , (3.1c)(

∂t + ur∂r + 1
r uθ ∂θ

)
S = 0. (3.1d)

We introduce the new variables

uθ (r , θ, t) = rb(θ, t) , ur (r , θ, t) = ra(θ, t) ,

σ (r , θ, t) = rc(θ, t), S(r , θ, t) = k(θ, t) . (3.2)

The system (3.1) then takes the form

(∂t + b∂θ ) a + a2 − b2 + αc2 = 0 (3.3a)

(∂t + b∂θ ) b + αc∂θc + 2ab = α
2γ c

2∂θk (3.3b)

(∂t + b∂θ ) c + αc∂θb + γ ac = 0 (3.3c)

(∂t + b∂θ ) k = 0 . (3.3d)

For simplicity of presentation we shall henceforth focus on the case

γ = 2 and α = 1
2 .
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Note, however, that all the results in this work generalize to the case when γ > 1.2

The Riemann functions w and z are defined by

w = b + c , z = b − c , (3.4a)

b = 1
2 (w + z) , c = 1

2 (w − z) . (3.4b)

It is convenient to rescale time, letting ∂t �→ 3
4 ∂̃t , and for notational simplicity, we

continue to write t for t̃ . With this temporal rescaling employed, the system (3.3c) can
be equivalently written as

∂tw + λ3∂θw = − 8
3aw + 1

24 (w − z)2∂θk , (3.5a)

∂t z + λ1∂θ z = − 8
3az + 1

24 (w − z)2∂θk , (3.5b)

∂t k + λ2∂θk = 0 , (3.5c)

∂t a + λ2∂θa = − 4
3a

2 + 1
3 (w + z)2 − 1

6 (w − z)2 . (3.5d)

where the three wave speeds are given by

λ1 = 1
3w + z , λ2 = 2

3w + 2
3 z , λ3 = w + 1

3 z . (3.6)

We note that (3.3c) takes the form

∂t c + λ2∂θc + 1
2c∂θλ2 = − 8

3ac . (3.7)

Finally, we denote the specific vorticity in azimuthal symmetry by


 = 4(w + z − ∂θa)c−2ek , (3.8)

which satisfies the evolution equation

∂t
 + λ2∂θ
 = 8
3a
 + 4

3e
k∂θk . (3.9)

We supplement (3.5) with initial conditions

w0(θ) = w(θ, T0) , z0(θ) = z(θ, T0) , a0(θ) = a(θ, T0) ,

k0(θ) = k(θ, T0) , 
0(θ) = 
(θ, T0) .

2 The pre-shock formation for general γ > 1 in (3.3) was already done in [1] for an open set of smooth
isentropic initial data. Using the arguments in [3], the same resultmay be obtained also for the non-isentropic
problem. The more detailed information required for shock-development can be obtained in analogy with
the analysis in Section 4. The shock development problem for general γ > 1 is conceptually the same; see
the outline of the proof in Section 3.4. One of the main differences is that the slightly more complicated
Rankine-Hugoniot condition (2.39) must be used in place of (2.40). Another difference is that for general
γ > 1, in the formation part the subdominant Riemann variable is not transported and thus cannot be taken
to equal a constant up to the pre-shock; this issue was already addressed in [1–3], see also [16].
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We shall study the shock formation process for solutions to (3.5) on the time interval
T0 < t � T1, where T1 denotes the time of the first singularity, also known as the
pre-shock. One of our main objectives is to provide a detailed description of the pre-
shock w(·, T1). We shall provide the fractional series expansion of w(θ, T1) for θ in
a neighborhood of the blowup location θ∗.

For the shock formation process, we choose initial data3

k0(θ) = 0 , z0(θ) = 0 ,

which is preserved by the dynamics so that k(θ, t) = 0 and z(θ, t) = 0 for all time
t up to the time time of the pre-shock. Thus (3.5) is reduced to a coupled system of
equations for a and w, satisfying

∂tw + w∂θw = − 8
3aw , (3.10a)

∂t a + 2
3w∂θa = − 4

3a
2 + 1

6w
2 . (3.10b)

We emphasize however that the theorems in this paper generalize to the case that k0
and z0 do not vanish identically, and instead we just assume that z0 and k0 are small in
the C5 topology, and for all γ > 1. We refer to the paper [16] for the detailed analysis
of the full system (3.5) during the shock formation process.

3.2 The Rankine-Hugoniot Jump Conditions Under Azimuthal Symmetry

Under the azimuthal symmetry assumptions and using our temporal rescaling t̃ �→ 3
4 t ,

from (3.2) (fixing γ = 2), we have that the shock hypersurface is given as the graph
{(r , θ, t) : θ = s(t)}. The spacetime normal to this curve is n = (−ṡ, 1r ). Thus, s
satisfies the Rankine-Hugoniot conditions (1.3a) and (1.3b)

ṡ = 4
3

[[e−kc2b2 + 1
8e
−kc4]]

[[e−kc2b]] , (3.11a)

ṡ = 4
3
[[e−kc2b]]
[[e−kc2]] . (3.11b)

We note that the third Rankine-Hugoniot condition (1.3c) has already been employed
to deduce the relation (2.41).

Let us now convert (3.11) and (2.41) into our azimuthal variables as follows. We
denote by w±(·, t), z±(·, t), k±(·, t) the limiting values, from the left (−) and right

3 This choice is made for the following reason: irregardless of the choice of initial entropy function k0,
the Rankine-Hugoniot conditions guarantee that a jump in entropy must occur at the shock. As such the
choice of k0 = 0 emphasizes the production of entropy in the clearest possible terms. Similarly, the choice
of γ = 2 and that k0 = 0 allows the equation (3.5b) to reduce to a transport-type equation. Just as we
did for entropy, we can (in this case) choose z0 = 0 and up to the pre-shock, the sub-dominant Riemann
variable z will remain zero. Once again the Rankine-Hugoniot conditions ensure that z must experience a
jump discontinuity along the shock, and thus the choice of z0 = 0 allows us to most easily demonstrate this
fact.
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(+), of the shock curve s(t). We also note the fact that k+ = 0 and z+ = 0. Now, from
(3.4), the system (3.11) becomes

ṡ(t) = 2

3

e−k−(w− − z−)2(w− + z−)2 + 1
8e
−k−(w− − z−)4 − 9

8w
4+

e−k−(w− − z−)2(w− + z−)− w3+
, (3.12a)

ṡ(t) = 2

3

e−k−(w− − z−)2(w− + z−)− w3+
e−k−(w− − z−)2 − w2+

. (3.12b)

We note that the jump conditions (3.12a) and (3.12b) for the mass and the momentum
equations are a priori two different equations for the shock speed. To remedy this, we
set the right sides of these equations equal to each other, and instead work with one
evolution equation for ṡ, namely (3.12b), and one constraint

(
(w− − z−)2(w− + z−)2 + 1

8 (w− − z−)4 − 9
8e

k−w4+
) (
(w− − z−)2 − ek−w2+

)

=
(
(w− − z−)2(w− + z−)− ek−w3+

)2
(3.13a)

Also, we have that (2.41) takes the form

(ek− − 1)(w− − z−)4
(
3w2+ek− − (w− − z−)2

)
=

(
(w− − z−)2 − ek−w2+

)3
.

(3.13b)

To summarize, we shall first use the system formed by the Eqs. (3.13a) and (3.13b) in
order to solve for z− and k− in terms of w− and w+, and then insert these solutions
into (3.12b) and determine an evolution equation for s, solely in terms ofw− andw+.
This is discussed in Sect. 5.6.

3.3 Main Result in Azimuthal Symmetry

As mentioned in Theorem 1.2, in the formation part of our result, i.e. for t ∈ [T0, T1),
we have that the solution (w, z, k, a) of the Euler equations in azimuthal symmetry is
smooth, so that the notion of solution is the classical one: the system (3.5) is satisfied
in the sense of C1 functions of space and time. On the time interval [T1, T2], which
covers the development part of our result, the notion of regular shock solution is used,
as defined by Definition 1.1 above. In azimuthal symmetry, this definition becomes:

Definition 3.1 (Regular azimuthal shock solution) We say that (w, z, k, a, s) is a reg-
ular azimuthal shock solution on T× [T1, T2] if
(i) (w, z, k, a) are C1

θ,t smooth, and 
 is C0
θ,t smooth, on the complement of the

shock curve {θ = s(t)};
(ii) on the complement of the shock curve (w, z, k, a) solve the equations (3.5) point-

wise, and 
 solves the integrated form of (3.9);
(iii) (w, z, k) have jump discontinuities across the shock curve which satisfy the alge-

braic Eqs. (3.13a), (3.13b) arising from the Rankine-Hugoniot conditions;
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(iv) the shock location s : [T1, T2] → T is C1
t smooth and solves (3.12b).

Our main result for the azimuthal 2D Euler equations (3.5) is stated in detail in
Theorems 5.5 and 6; here we only give a condensed statement:

Theorem 3.2 (Main result in azimuthal symmetry – abbreviated version)From smooth
isentropic initial data with vanishing subdominant Riemann variable at time T0, there
exist smooth solutions to the azimuthal Euler system (3.5) that form a pre-shock sin-
gularity, at a time T1 > T0. The first singularity occurs at a single point in space, θ∗,
and this first singularity is shown to have an asymptotically self-similar shock profile

exhibiting a C
1
3 cusp in the dominant Riemann variable velocity and a C1, 13 in the

radial velocity. After the pre-shock, the solution to (3.5) is continued for a short time
(T1, T2] as a regular azimuthal shock solution (cf. Definition 3.1) with the following
properties:

• Across the shock curve s, all the state variables jump

[[w]] ∼ (t − T1)
1
2 , [[∂θa]] ∼ (t − T1)

1
2 , [[z]] ∼ (t − T1)

3
2 , [[k]] ∼ (t − T1)

3
2

for t ∈ (T1, T2].
• Across the characteristic s2 emanating from the pre-shock and moving with the

fluid velocity, theRiemann variables and the entropymakeC1, 12 cusps approaching
from the right side. Approaching from the left side, are these variables are C2

smooth.
• Across the characteristic s1 emanating from the pre-shock and moving with the
fluid velocity minus the sound speed, the entropy is zero while the subdominant

Riemann variable z makes a C1, 12 cusp approaching from the right. Approaching
from left, they all variables are C2 smooth on (T1, T2].

3.4 Outline of the Proof

The proof of Theorem 3.2 consists of five main steps, which we outline next. For
simplicity, in this outline we focus only on the intuition behind the result, and skip
over the technical difficulties which emergewhenwe turn this intuition into a complete
proof.
Step 1: detailed formation of first singularity, the pre-schock. The formation of
the first gradient singularity for the Euler equations, from an open set of smooth initial
datum, was previously established in [1–3]. In azimuthal symmetry, [1] shows that
that the first singularity is characterized as an asymptotically self-similar C1/3

θ cusp
for the dominant Riemann variable w defined in (3.4); this is the so-called pre-shock.

In order to best illustrate a symmetry breaking phenomenon which occurs after
the formation of the pre-shock, in this paper we consider smooth initial conditions for
(3.5)which are both isentropic (k|t=T0 ≡ 0) and have vanishing subdominant Riemann
variable (z|t=T0 ≡ 0). Both of these conditions are propagated for smooth solutions
(the interval [T0, T1] in Figure 2), but we shall prove that this symmetry is broken as
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Fig. 2 At time T0 a smooth datum is given, which forms a first singularity at time T1, at a single angle
θ∗; this is the pre-shock. For t ∈ (T1, T2], we have three curves of singularities emerging from the point
(θ∗, T1): s is a classical shock curve acrosswhich (w, z, k, ∂θa) jump, and the Rankine-Hugoniot conditions
are satisfied; along the characteristic curve s2 the quantities (w, z, k) have regularity C1,1/2 and no better,
while along the characteristic curve s1, the function z has regularity C1,1/2 and no better

soon as the shock forms (the interval (T1, T2] in Figure 2). From such smooth initial
data, satisfying in addition a genericity condition on the initial gradient of the dominant
Riemann variable, we construct a first singularity occurring at a point (θ∗, T1). For
simplicity of notation, this space-time location of the pre-shock is relabelled as (0, 0),
and the solution (w, z, k, a)|t=T1 is denoted as (w0, z0, k0, a0). From [1] we have that
at the pre-shock, the solution takes the form

w0(θ) = κ − bθ
1
3 + . . . , (3.14a)

a0(θ) = a0 + a1θ + a2θ
4
3 + . . . , (3.14b)

z0(θ) = 0, (3.14c)

k0(θ) = 0 , (3.14d)

asymptotically for |θ | 	 1. We note also that specific vorticity 
 (see (3.8)) at the
pre-shock is Lipschitz continuous; we denote it as
0.

While for the schematic understanding of shock development the asymptotic expan-
sions in (3.14) are sufficient, in order to rigorously capture the formation of higher order
characteristic singularities emerging along the curves s1 and s2 in Figure 2, a much
finer understanding of the pre-shock is required. In particular, we need to show that the

equality (3.14a) holds in a C3 sense; by this we mean that w′0(θ) = − 1
3bθ

− 2
3 + . . .,

that w′′0(θ) = 2
9bθ

− 5
3 + . . ., and that w′′′0 (θ) = − 10

27bθ
− 8

3 + . . ., for |θ | 	 1. This
information is not provided by our previous work [1] and is established in Section 4 of
this paper; herewe combine the information provided by the self-similar analysis in [1]
with a Lagrangian perspective in unscaled variables for (3.10), and the characterization
of the pre-shock as the point in space time where the characteristic associated with
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Fig. 3 The shock curve is represented in bold red, while the paths {ηB(θ±(t), s)}s∈[0,t] are the cyan paths

the speed λ1 has a vanishing first and second gradient (with respect to the Lagrangian
label).

Step 2: emergence of shock front. By Remark 2.6, for short time ṡ ≈ un + c.
Accounting for the temporal rescaling done in Section 3.1 (see paragraph above (3.5)),
this says ṡ ≈ b + c = w close to the pre-shock, so that from (3.14a) we have

s(t) ≈ κt .

Entropy is produced as soon as the shock has developed, cf. Lemma 2.1. However,
this contribution is small at small times, and thus the dynamics of w (cf. (3.5a)) near
the pre-shock can be roughly thought of as

∂tw + w∂θw = (small amplitude error involving entropy gradients), (3.15a)

w|t=0 = κ − bθ
1
3 + (small error near pre-shock). (3.15b)

Note that the characteristics of this equation, the flow of ∂t +w∂θ , are to leading order
in time tangent to the shock, if initiated at the pre-shock location. Otherwise, these
characteristics impinge upon the shock from either the left or right sides, since the
pre-shock data ensures that the Lax entropy conditions (2.18) are satisfied. As such,
we can view the dominant Riemann variable w as being a perturbation of an inviscid
Burgers solution:

wB(ηB(θ, t), t) = w0(θ), ηB(θ, t) = θ + tw0(θ). (3.16)

A large part of the proof of Theorem 5.5 is indeed dedicated to proving that the errors
made in approximating equation (3.15a) with the Burgers equation can indeed be
controlled, in a C1 topology of a suitable space-time. This part of the analysis uses
in a crucial way the specific transport structure of the entropy gradient present on the
right side of (3.15a) or (3.5a), and the evolution equations for the good unknowns qw

and qz defined in (3.29) below, which relate the gradients of entropy to those of the
Riemann variables and the sound speed (Fig. 3).
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The outcome of this analysis is that indeed we may approximate [[w]] ≈ [[wB]]
where

[[wB]](t) = w0(θ−(t))− w0(θ+(t)), (3.17)

where θ±(t) = ηB−1(s(t)±, t) are the locations of the labels of the particles which
fell into the shock at time t . To find how these labels depend on the elapsed time, we
use the expression for the Burgers flowmap (3.16) near the pre-shock

ηB(θ, t)− κt ≈ θ − btθ
1
3 (3.18)

when ηB(θ, t) = s(t). This yields θ±(t) ≈ ± (bt) 32 and returning to (3.17) we find

[[w]](t) ∼ t
1
2 . (3.19)

Step 3: jumps of entropy and the subdominant Riemann variable on the shock
front. In analogy to Lemma 2.1, by choosing the smallest root of the system (3.13a)–
(3.13b) it can be shown that in the weak shock regime |[[w]]| 	 1 which corresponds
to short times after the pre-shock, the Rankine-Hugoniot conditions imply

−[[z]](t) ∼ [[w]]3(t) ∼ t
3
2 , (3.20)

for the subdominant Riemann variable, and similarly

[[k]](t) ∼ [[w]]3(t) ∼ t
3
2 , (3.21)

for the jump in entropy along the shock front. As such, entropy and the subdominant
Riemann variable are produced instantaneously along the shock in order to enforce
that mass, momentum and total energy are not lost. This is amanifestation of symmetry
breaking associated to physical shocks, and emphasizing this point is the reason for
the choice (3.14c)–(3.14d).

At this point we note that since a is being forced in (3.5d) by both z and w, which
themselves jump across s(t), the function a too exhibits a singularity on s(t). Ordinar-
ily, this singularity might be expected to appear in a itself, but since the characteristics
of a are transversal to the shock, together with the special structure of the specific
vorticity evolution (3.9), we prove that a is continuous across the shock, and that its
derivative exhibits a jump discontinuity:

[[∂θa]](t) ∼ [[w]](t) ∼ t
1
2 . (3.22)

An extended discussion of this point will appear in the next step.

Step 4: development of weak singularities.We use equations (3.5) to determine the
solution away from the shock curve. In front of the shock (to the right in our case), the
solution is determined by its initial data on the Cauchy surface {t = 0}. This is because
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Fig. 4 The characteristic curves of λ3 = w in front of the shock curve are represented in red, those of
λ2 = 2

3w are in blue, and those of λ1 = 1
3w are plotted in green

all of the characteristic curves moving with velocities λi , i = 1, 2, 3, as defined in
(3.6), impinge upon the shock front in that region, since the shock is supersonic there.
As such, in that region z and k are identically zero since they are zero initially and
(3.5b)–(3.5c) have no forcing when z = k = 0 (Fig. 4).

On the other hand, behind the shock (to the left side in our case), this is not the
case. As discussed in Step 3, along the shock front z and k must be produced in order
to enforce the three Rankine-Hugoniot jump conditions. These values z− and k− are
propagated off the shock along their characteristics with speeds λ1 and λ2 which are
both slower than the speed of the shock ṡ(t). As such, the surface {θ < 0, t = 0}∪{θ =
s(t), t > 0} serves as a new Cauchy surface for the z, k, a equations (3.5) once the
shock has formed. Schematically, the initial data on this new Cauchy surface is

z̃0(θ) ≈
{
0 on {θ < 0, t = 0}
z̃0θ

3
2 + . . . on {θ = κt, t � 0} , (3.23a)

k̃0(θ) ≈
{
0 on {θ < 0, t = 0}
k̃0θ

3
2 + . . . on {θ = κt, t � 0} , (3.23b)

ã0(θ) ≈
{
ã0θ + ã1θ

4
3 + . . . on {θ < 0, t = 0}

smooth on {θ = κt, t � 0} , (3.23c)

for some constants z̃0, ã0, k̃0, and for |θ |, t 	 1.As discussed above, this data is carried
away from the shock surface along characteristicswhich are slower than the shock. The
entropy is simply transported cf. (3.5c), whereas the subdominant Riemann variable is
transported, self-amplified and forced by the entropy cf. (3.5b), and the radial velocity
is forced by a, w, and z cf. (3.5d).

We begin by discussingwhat happens to the entropy. Since its data (3.23b) is smooth
away from the point θ = 0, the solution in the domain of influence of this region is
likewise smooth. Only across one single curve can the entropy be non-smooth: the λ2-
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Fig. 5 The entropy k is propagated off the shock curve along the λ2 characteristics represented by blue
curves. The subdominant Riemann variable z is also propagated off the shock curve s, but along the λ1
characteristics represented in green. The λ3 characteristics initiated at {t = 0}, represented in red, impinge
on the shock curve from the left side, determining w in terms of w0

characteristic curve s2(t) emanating from the pre-shock location (0, 0); see Figure 5.
Along this curve, one may expect that the 3

2–Hölder regularity of the Cauchy data k̃0
is transported. Since at the initial time we have λ2(0) ≈ 2

3w0, due to (3.14a) at short
times we expect

s2(t) ≈ 2
3κt .

The entropy exhibits a C1, 12 cusp singularity across {θ = s2(t)}, taking the approxi-
mate form

k(θ, t) ≈

⎧⎪⎨
⎪⎩

0, θ < s2(t)

3
3
2 k̃0 (θ − s2(t))

3
2 , s2(t) < θ < s(t)

0, θ > s(t)

. (3.24)

Note that along the shock curve s(t) (for t > 0) the entropy k smoothly matches its
generated values along shock given by (3.23b); this is because s(t) − s2(t) ≈ 1

3κt .
We emphasize that equation (3.24) gives quite an accurate picture of the entropy for
short times, even in the fully nonlinear problem; this fact is established in Sections 5
and 6, and the proof uses a precise understanding of the second derivative of the λ2
wavespeed in the region between s2 and s.

With the structure of the entropy understood, we can study the behavior ofw, z and
a which evolve according to (3.5). First note that, since the shock is subsonic relative
to the state behind it, the λ3 characteristics impinge upon the shock front, and therefore
the initial data forw is determined entirely by the values on the surface {t = 0}, i.e. by
w0 as given in (3.14a) (see Figure 5). As such, w is smooth away from the pre-shock
andwe are able to precisely quantify how the the bounds degenerate as (θ, t)→ (0, 0).
On the other hand, the characteristics of the subdominant Riemann variable and radial
velocity are slower than the shock and thus the solutions in the region s2(t) � θ < s(t)
are determined entirely by their data along the shock curve. Near the shock curve s(t),
approaching from the left, the solution fields z and a smoothly match their values
along the shock (see Figure 5).
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Since away from s2(t) the entropy given by (3.24) is smooth, in spite of both w
and z being forced by an entropy gradient, it can be shown that w and z are smooth
away from s2(t); this also uses the fact that both w0 (see (3.14a)) and z̃0 (see (3.23a))
are smooth away from (0, 0).

The most interesting behavior happens along s2(t), from the right side. Here, we
have determined that the entropy exhibits a cusp-type Hölder singularity in its deriva-

tive; by (3.24)we have that ∂θk ∼ (θ−s2(t)) 12 . This singularity is seen by theRiemann
variablesw and z and radial velocity a through their forcing terms (w− z)2∂θk which,

naively, are just C
1
2 across s2. However, the fact that the entropy has a specific cusp

structure (3.24) near the curve s2, together with the fact that the wavespeeds ofw and z
are strictly different from the wavespeed of k, actually provides a regularization effect
for w and z. The situation with the radial velocity a is more challenging because it
shares the same wavespeed as the entropy; here, the evolution for the specific vorticity
is used crucially in our analysis.

In order to explain this regularization effect in greater detail, let us denote the λi
characteristics by

d
dt ηi (θ, t) = λi (ηi (θ, t), t), ηi (θ, 0) = θ ,

for every i ∈ {1, 2, 3} (in the proof, we in fact denote by η the characterstic of λ3, but
for the λ1 and λ2 we need to use backwards in time flows, denoted by ψt and φt , see
Section 5.7 for details). Since for |θ | 	 1 the wave speeds at the pre-shock are given
by λ1 ≈ 1

3κ , λ2 ≈ 2
3κ and λ3 ≈ κ , to leading order in time and for small values of

|θ |, we have that

η1(θ, t) ≈ θ + λ1t ≈ θ + 1
3κt , η2(θ, t) ≈ θ + λ2t ≈ θ + 2

3κt ,

η3(θ, t) ≈ θ + λ3t ≈ θ + κt .

We are interested in the behavior near the curve s2. Thus, we seek labels θi (t) such
that ηi (θi (t), t) = s2(t)+ y, where 0 < y 	 1. Since s2(t) ≈ λ2t , we have θi (t) ≈
y + (λ2 − λi )t . The flowmaps are

ηi (θi (t), s) ≈ y + (λ2 − λi )t + λi s, s ∈ [0, t], i = 1, 3. (3.25)

Ignoring the integrating factors e
8
3

∫ t
0 a(η3(θ,τ ),τ )dτ ≈ 1 at short times, the solutions of

(3.5a) and (3.5b) take the form

w(s2(t)+ y, t) ≈ w0(y + (λ2 − λ3)t)
+ 1

24

∫ t

0
((w − z)2∂θk)(y + (λ2 − λ3)t + λ3s, s)ds, (3.26a)

z(s2(t)+ y, t) ≈ z0(y + (λ2 − λ1)t)
+ 1

24

∫ t

0
((w − z)2∂θk)(y + (λ2 − λ1)t + λ1s, s)ds. (3.26b)
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As discussed above, since λ3 ≈ λ2+ 1
3κ > λ2, the characteristic curves ofw impinge

on s2(t) from the left, carrying up initial data w0 from {t = 0}. On the other hand,
the characteristics of z impinge from the right of s2 since λ1 ≈ λ2 − 1

3κ < λ2.
Therefore, the data for z is carried from the shock surface {s(t) = θ}. Although this
data is singular at (0, 0), this point is not sampled by the characteristics above since
t > 0 is fixed, and thus (λ2− λ1)t > 0. Regarding the forcing terms appearing on the
right sides of (3.26), from the asymptotic description of k in (3.24), the approximation
s2(t) ≈ 2

3κt ≈ λ2t , and the fact that by (3.4) w− z equals twice the azimuthal sound
speed c, which we expect to remain bounded from above and below in terms of κ , we
obtain that

∫ t

0
((w − z)2∂θk)(y + (λ2 − λi )t + λi s, s)ds ∼

∫ t

t+ y
λ2−λi
(y − λi (t − s))

1
2 ds ∼ y

3
2 ,

(3.27)

for 0 < y, t 	 1. Thus, the forcing gains one derivative, expressed above by an extra
power of y, due to the fact that it is integrated along curves which are transversal (since
λi 
= λ2) to the characteristics of the entropy (namely, the flow of ∂t + λ2∂θ ). Thus,
from (3.26) and (3.27), we expect that w and z are both C1, 12 across the curve s2(t),

rather than just C
1
2 which is the naive expectation.

Turning this intuition into a proof requires a C2-type analysis of the characteristics
of {λi }3i=1, including an understanding of the times at which the λ1 and λ2 char-
acteristics intersect the shock curve s; see for instance Lemmas 5.24, 6.7, and 6.9.
Additionally, in this stage of the proof we need to analyze the time integrals of ∂yw
and ∂yyw (objects which do blow up rather severely as one approaches the pre-shock)
when composed with the flows of λ1 and λ2; here the transversality of these flows with
respect to s plays a crucial role, along with a precise understanding of the functionwB
in the vicinity of the pre-shock; see Lemmas 5.11, 5.23, and 6.12. This is one of the
principal reasons why the pre-shock obtained in Step 1 needs to be analyzed in a C3

sense.
The intuition behind the gain of regularity for the radial velocity a is less direct.

The data for a along the new Cauchy surface (including the shock curve) is C1, 13 due
to the formula (3.23c). Thus, such a singularity would be expected to propagate along
its characteristic emanating from the pre-shock location. To see this, we recall that the
specific vorticity at the pre-shock is Lipschitz. Since by (3.9) it is transported by the
velocity λ2, it is forced by ∂θk, and because the wavespeed for 
 is the same as that

of k, we conclude from (3.9) only that
 is C
1
2 across the curve s2. Since k, z and w

are all C1, 12 across this curve, by (3.8) we deduce that ∂θa ∈ C
1
2 , and consequently

that a ∈ C1, 12 across s2. Thus, for positive times t > 0, the radial velocity becomes

smoother than its initial condition (C1, 12 vs C1, 13 ). This regularization effect is in
essence a consequence of Lemmas 6.5 and 6.6.

Finally, we discuss the region to the left of s2(t). In this region the entropy is trivial
(k ≡ 0) since it is determined solely by its data on the surface {θ < 0, t = 0},
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Fig. 6 The λ1 characteristics, represented here by the green curves, propagate information about z from
the shock curve s into the region between s1 and s

see (3.24). The equations reduce to

∂tw + λ3∂θw = − 8
3aw ,

∂t z + λ1∂θ z = − 8
3az ,

∂t a + λ2∂θa = − 4
3a

2 + 1
3 (w + z)2 − 1

6 (w − z)2 .

The object z has singular data as in (3.23a), which will be propagated along the λ1-
characteristic curve (Fig. 6). Specifically, we have that at the pre-shock λ1 ≈ 1

3w0 ≈
1
3κ , so that the curve s1 along which z is transported from the pre-shock is given by

s1(t) ≈ 1
3κt .

The 3
2 -Hölder singularity in the Cauchy data for z (3.23b) is morally speaking

transported along these λ1-characteristics for short times t 	 1, resulting in

z(θ, t) ≈
{
0, θ < s1(t)

z0 (θ − s1(t))
3
2 , s1(t) < θ 	 s2(t)

. (3.28)

The difficulty in showing that the intuitive behavior (3.28) is indeed true lies in the
fact that the λ1-characteristics emanating from the shock curve do spend some time in
the region between s2 and s, and in this region the entropy gradient present in (3.5b)
causes the first and second derivatives of z to behave badly. By using the transversality
of the λ1 and λ2 characteristics, we are nonetheless able to show in Section 6.6 that
(3.28) is morally correct.

Note that in this region, the relevant initial data for w and a is far away from the
pre-shock, and so the fieldsw and a are as regular as their forcing for short times. This

forcing involves the field z, which makes a C1, 12 cusp along s1(t). However, again the
wave speeds for w and a are different than that of z, and as such their characteristics
are transversal to s1(t). This means that the solution fields gain a derivative relative to

the forcing, similar to (3.27). It thus seems reasonable to conjecture that w, a ∈ C2, 12
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on the right side of s1. Establishing this fact would in turn require us to show that

(3.14a) holds in a C3, 12 sense, a regularity level which we did not pursue in Step 1. As
such, in this paper we only prove that w, a ∈ C2 on s1, which is nonetheless a better

regularity exponent that the naively expected C1, 12 .
Step 5: returning to basic fluid variables. There is a certain regularization effect
along the curve s2, when returning to the original fluid variables, as we now explain.
A straightforward calculation shows that the good unknowns

qw := ∂θw − 1
4c∂θk, qz := ∂θ z + 1

4c∂θk, (3.29)

satisfy the evolution equations

(∂t + λ3∂θ )qw + (∂θλ3 + 8
3a)q

w = − 8
3∂θaw +

(
4
3ac + 1

6c∂θλ2
)
∂θk, (3.30a)

(∂t + λ1∂θ )qz + (∂θλ1 + 8
3a)q

z = − 8
3∂θaz −

(
4
3ac + 1

6c∂θλ2
)
∂θk. (3.30b)

The remarkable feature of the system (3.30) is that the second derivatives of k do not
appear in the equations; indeed, if one naively considers the evolution equation for
∂θw or ∂θ z alone, then from (3.5a) and respectively (3.5b) we note the emergence of
the forcing term 1

24 (w− z)2∂θθk. The unknowns qw and qz , and the system (3.30), is

useful because it involves only ∂θk, and this forcing makes a C
1
2 cusp along the curve

s2. However, since the characteristic speed of k is λ2, and the characteristics of qw and
qz are λ3 and respectively λ1, and are thus transversal, we again have a regularization

effect akin to (3.27), and we find that the (Lagrangian) force is actually C1, 12 across
s2. Now, the initial data relevant to the behavior of qw and qz comes from different
places. For qw, it originates along the {t = 0} surface and so it is easy to see that it
is smooth for positive time (away from the pre-shock). On the other hand, the data
for qz originates on the shock curve itself and once again, away from the pre-shock
it is smooth. It follows that, for t > 0 the regularity is set by the forcing, resulting in

bounds consistent with qw, qz ∈ C1, 12 . Again, in the proof we only establish the C1

regularity ofqw andqz , due to theC3 expansionof the pre-shock; this argument ismade
rigorous in Sections 6.5 and 6.6. The outcome is that qw + qz = ∂θ z+ ∂θw = 2

3∂θuθ

is smoother than the naive expectation C
1
2 : we prove that it lies inC1 across s2 (which

translates into C2 regularity for the angular velocity uθ ), and conjecture that the sharp

regularity is C1, 12 . Similarly, the improved regularity for qw and qz shows that the
second derivative of the pressure is bounded on s2, see (7.1).
Summary. In terms of the Riemann variables in azimuthal symmetry, we find

• Across the shock curve s(t), we have

[[w]] ∼ t
1
2 , [[∂θa]] ∼ t

1
2 , [[z]] ∼ t

3
2 , [[k]] ∼ t

3
2 .

• Across the curve s2(t), the functions ∂θw, ∂θa, ∂θk, ∂θ z all behave as C
1
2 cusps

approaching s2 from the right. Approaching from the left, they are all smooth, in
positive time.
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• Across the curve s1(t), the entropy is zero, ∂θw and ∂θa are C1 (expected to be

C1, 12 ) and ∂θ z behaves as a C
1
2 cusp approaching s1 from the right. Approaching

from the left, ∂θ z is C1 in positive time.

In terms of the physical variables, we find

• Across the shock curve s(t), all state variables jump

[[uθ ]] ∼ r t
1
2 , [[ρ]] ∼ r2t

1
2 , [[∂θur ]] ∼ r t

1
2 , [[S]] ∼ t

3
2 . (3.31)

• Across the curve s2(t), the entropy, density and radial velocity derivatives all make

C
1
2 cusps approaching s2 from the right. Approaching from the left, they are all

smooth. The second derivative of the angular velocity and the pressure are bounded

for t > 0, and are expected to be C
1
2 smooth.

• Across the curve s1(t), the entropy is zero while the angular velocity and density

derivatives make C
1
2 cusps approaching s1 from the right. Approaching from the

left, they are all smooth for t > 0. The second derivative of the radial velocity is

bounded and is expected to make a C
1
2 cusp.

4 Detailed Shock Formation

In [1], it was established that for an open set of C4 initial data, solutions to (3.5) form
a generic, stable, asymptotically self-similar pre-shock at time t = T∗ and that the

dominant Riemann variable w(·, T∗) ∈ C
1
3 . The primary objective of this section is

to provide a precise description of w(·, T∗) in the vicinity of the pre-shock. We shall
prove the following

Theorem 4.1 (Detailed shock formation) For κ0 > 1 taken sufficiently large and
ε > 0 sufficiently small, and for initial data (w, z, k, a)|t=−ε = (w0, 0, 0, a0) ∈
C5(T) satisfying (4.17)–(4.26) below, there exists a blowup time t = T∗, where
T∗ = O(ε 54 ), a unique blowup location ξ∗, and unique solutions (w, a) to (3.5) in
C0([−ε, T∗),C4(T)) ∩ C4([−ε, T∗),C0(T)) such that

w(·, T∗) ∈ C
1
3 (T) , a(·, T∗) ∈ C1, 13 (T) , 
(·, T∗) ∈ C0,1(T) . (4.1)

Furthermore, there exists a unique blowup label x∗ satisfying

|x∗| � 20κ0ε
4 such that lim

t→T∗
η(x∗, t) = ξ∗ ,

where η is the 3-characteristic defined by (4.40). The pre-shock w(·, T∗) has the
fractional series expansion

∣∣w(θ, T∗)− κ∗ − a1(θ − ξ∗) 13 − a2(θ − ξ∗) 23 − a3(θ − ξ∗)
∣∣ �

∣∣θ − ξ∗
∣∣ 43 (4.2)
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for all θ ∈ η(Bx∗(ε
3)), where

κ∗ = e−
8
3
∫ T∗−ε ∂x (a(η(x∗,r),r))drw0(x∗) ,

and

|κ∗ − κ0| � 2εκ0 , − 6
5 � a1 � − 4

5 ,
∣∣a2

∣∣ � ε 1
10 ,

∣∣a3
∣∣ � 7

6ε . (4.3)

In fact, the expansion (4.2) is valid in a C3-sense, by which we mean that the bounds

∣∣∣∂θw(θ, T∗)− 1
3a1(θ − ξ∗)−

2
3 − 2

3a2(θ − ξ∗)−
1
3

∣∣∣ � 1
ε
, (4.4a)

∣∣∣∂2θ w(θ, T∗)− 2
9a1(θ − ξ∗)−

5
3

∣∣∣ � ε− 63
8
∣∣θ − ξ∗

∣∣− 4
3 , (4.4b)

∣∣∣∂3θ w(θ, T∗)
∣∣∣ � ε− 151

8
∣∣θ − ξ∗

∣∣− 8
3 , (4.4c)

hold for all θ ∈ η(Bx∗(ε
3)). Moreover, the C4 regularity away from the pre-shock is

characterized by

sup
t∈[−ε,T∗)

max
γ�4

(∣∣∂γθ a(η(x, t), t)
∣∣+ ∣∣∂γθ w(η(x, t), t)

∣∣)

�
{
Cε

(
(T∗ − t)+ 3ε−3(ε + t)(x − x∗)2

)−4 |x − x∗| � ε2
Cε |x − x∗| � ε2

, (4.5)

where Cε > 0 is a sufficiently large constant depending on inverse powers of ε. Lastly,
the specific vorticity satisfies the bounds

10
κ0

� 
(x, t) � 28
κ0
,

∣∣∂x
(x, t)
∣∣ � 70

κ20 ε
, (4.6)

for all x ∈ T and t ∈ [−ε, T∗).
The proof of this theorem makes use of detailed estimates for the characteristic

families and their derivatives. As we will detail below, we let η(x, t) denote the flow
w. Here x denotes a particle label, and η(x, t) provides the location of x at time t ;
specifically we have the formula η(x, t) = x + ∫ t

−ε w(η(x, s), s)ds. Moreover, we

see that w(η(x, t), t) = e−
8
3

∫ t
−ε a(η(x,s),s)dsw0(x) and hence that

w(θ, t) = e−
8
3

∫ t
−ε a(η(η−1(θ,t),s),s)dsw0(η

−1(θ, t)) .

It follows that a power series expansion ofw(θ, T∗) about the blowup location θ = ξ∗
requires a series expansion for the inverse flow map η−1(θ, t) about θ = ξ∗. The
formula for η−1(θ, T∗) requires us to first compute η(x, T∗), and then invert the
polynomial equation η(x, T∗) = θ for θ in a neighborhood of ξ∗.
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We shall write η(x, T∗) as a Taylor series about the blowup label x∗. To do so,
we prove the existence of a unique blowup trajectory η(x∗, t) which converges to ξ∗,
and study the behavior of ∂γx η(x, t), γ � 4. Our analysis makes use of self-similar
coordinates only for the purpose of isolating the unique blowup trajectory η(x∗, t),
whereas all of our estimates for ∂γx η(x, t), ∂

γ
θ w(η(x, t), t), and ∂

γ
θ a(η(x, t), t) are

obtained in physical coordinates. With these bounds in hand, we establish the Taylor
expansion for η(x, t) about the blowup label x∗, proceed to invert this relation, and
then obtain a detailed description of the pre-shock.

4.1 ChangingVariables to Modulated Self-similar Variables

We shall make use of self-similar coordinates (y, s) that rely upon time dependent
modulation functions κ(t), ξ(t) and τ(t), which are introduced to enforce three point-
wise constraints. Specifically, we map the physical coordinates (θ, t) to self-similar
coordinates (y, s) by the following transformations:

s(t) := − log(τ (t)− t) , y(θ, t) := θ−ξ(t)
(τ (t)−t) 32

= e
3
2 s(θ − ξ(t)) .

It follows that

τ − t = e−s , ds
dt = (1− τ̇ )es , (4.7)

and thus

∂θ y = e
3
2 s , ∂t y = −ξ̇

(τ−t) 32
− 3(τ̇−1)(θ−ξ)

2(τ−t) 52
= −e 3

2 s ξ̇ + 3
2 (1− τ̇ )yes . (4.8)

We then transform the physical variables (a, w) to self-similar variables (A,W ) by

w(θ, t) = e−
s
2W (y, s)+ κ(t) , a(θ, t) = A(y, s) . (4.9)

Introducing the parameter

βτ = βτ (t) = 1
1−τ̇ (t) , (4.10)

a simple computation shows that (W , A) solve

∂sW − 1
2W +

(
3
2 y + βτW + e

s
2 βτ (κ − ξ̇ )

)
∂yW

= −e− s
2 βτ κ̇ − 8

3e
− s

2 βτ A(e
− s

2W + κ) , (4.11a)

∂s A +
(
3
2 y + 2

3βτW + e
s
2 βτ (

2
3κ − ξ̇ )

)
∂y A

= − 4
3βτ e

−s A2 + 1
6βτ e

−s(e−
s
2W + κ)2 , (4.11b)
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with initial conditions given at self-similar time s = − log ε by

W (y,− log ε) = ε− 1
2 (w0(θ)− κ0) , A(y,− log ε) = a0(θ) , (4.12)

and

κ(−ε) = κ0 , τ (−ε) = 0 , ξ(−ε) = 0 . (4.13)

For notational brevity, we introduce the transport velocities and forcing functions

VW := 3
2 y + βτW + e

s
2 βτ (κ − ξ̇ ) ,

FW := − 8
3e
− s

2 βτ A(e
− s

2W + κ) (4.14a)

VA := 3
2 y + 2

3βτW + e
s
2 βτ (

2
3κ − ξ̇ ) ,

FA := − 4
3βτ e

−s A2 + 1
6βτ e

−s(e−
s
2W + κ)2 , (4.14b)

so that (4.11) takes the form

∂sW − 1
2W + VW ∂yW = −βτ e− s

2 κ̇ + FW , (4.15a)

∂s A + VA∂y A = FA . (4.15b)

We shall also consider the perturbation of the stable self-similar stationary solution
W (y) of the Burgers equation4; the function W̃ = W −W solves

∂s W̃ +
(− 1

2 + βτ ∂yW + 8
3e
−sβτ A

)
W̃ + VW ∂y W̃

= (1− βτ )W∂yW − 8
3e
−sβτ AW − e−

s
2 βτ κ̇ . (4.16)

4.2 Bounds on the Solution

In order to obtain the necessary quantitative bounds on characteristics and their deriva-
tives, we shall make use of the bounds on W provided by Theorem 4.4 of [1] for the
shock formation process. As such, we give a precise description of the initial data used
for the asymptotically self-similar shock formation.

4.2.1 Initial Data in Self-similar Variables

It is convenient to describe the initial data in terms of the self-similar variables
(W (·,− log ε), A(·,− log ε)) defined in (4.12), which may be equivalently written
as

w0(θ) = ε 12W (y,− log ε)+ κ0 , a0(θ) = A(y,− log ε) . (4.17)

4 Recall that W (y) is the solution of − 1
2W +

(
3y
2 +W

)
∂yW = 0 and has an explicit formula which is

obtained by inverting the cubic polynomial W
3 +W = −y.
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We choose w0 ∈ C4(T) so that for all θ ∈ T:

7
8κ0 � w0(θ) � 9

8κ0 , where κ0 � 3 . (4.18)

We assume that the initial data (W (·,− log ε), A(·,− log ε)) has compact support in
the set

X0 :=
{
|y| � 2ε−1

}
.

In order to obtain stable shock formation, we require that5

W (0,− log ε) = 0 , ∂yW (0,− log ε) = −1 , ∂2yW (0,− log ε) = 0 . (4.19)

As in [2], there exists a sufficiently large parameter M = M(κ0) � 1 (which is in
particular independent of ε), a small length scale �, and a large length scale L by

� = (logM)−5 , L = ε− 1
10 . (4.20)

The initial datum of W̃ = W −W is given by

W̃ (y,− log ε) = W (y,− log ε)−W (y) = ε− 1
2 (w0(θ)− wε(θ)) =: ε− 1

2 w̃0(θ) ,

where we have defined wε(θ) = ε 12W (ε− 3
2 θ) + κ0. We consider data such that for

|y| � L,

(1+ y2)−
1
6
∣∣W̃ (y,− log ε)

∣∣ � ε 1
10 , (4.21a)

(1+ y2)
1
3
∣∣∂y W̃ (y,− log ε)

∣∣ � ε 1
11 , (4.21b)

for |y| � � (equivalently |θ | � ε 32 �), we assume that

∣∣∂4y W̃ (y,− log ε)
∣∣ � ε 58 ⇔

∣∣∣∂4θ w̃0(θ)
∣∣∣ � ε− 39

8 , (4.22)

and at y = 0, we have that

∣∣∂3y W̃ (0,− log ε)
∣∣ � ε 38 ⇔

∣∣∣∂3θ w̃0(0)
∣∣∣ � ε− 29

8 . (4.23)

For y in the region {|y| � L} ∩ X0, we suppose that

(1+ y2)−
1
6 |W (y,− log ε)| � 1+ ε 1

11 , (4.24a)

5 As shown in Corollary 4.7 in [1], the conditions (4.19) on the initial data are satisfied by any data in an
open set (within azimuthal symmetry) in theC4 topology, as long as a global non-degenerate minimal slope
is attained at a point.
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(1+ y2)
1
3
∣∣∂yW (y,− log ε)

∣∣ � 1+ ε 1
12 , (4.24b)

while for Wy , globally for all y ∈ X(− log ε) we shall assume that

∣∣∂yW (y,− log ε)
∣∣ � (1+ y2)−

1
3 , (4.25a)

∣∣∂2yW (y,− log ε)
∣∣ � 7(1+ y2)−

1
3 , (4.25b)

∣∣∂γy W (y,− log ε)
∣∣ � (1+ y2)−

1
3 for γ = 3, 4, 5 . (4.25c)

For the initial conditions of A(y,− log ε) = a0(θ), we require that a0 ∈ C4(T),
and that

‖a0‖C0 � ε , ‖∂xa0‖C0 � κ0
14 , ‖a0‖C5 � 1 . (4.26)

4.2.2 Bounds onW and A

The following facts are established in [2]. The spatial support of (W , A) is the s-
dependent ball

X(s) :=
{
|y| � 2ε

1
2 e

3
2 s
}
for all s � − log ε . (4.27)

It follows that

1+ y2 � 40εe3s ⇒ (1+ y2)
1
3 � 4ε

1
3 es . (4.28)

We have the following bounds for W (y, s) for all y ∈ R and s � − log ε:

∣∣∂γW (y, s)∣∣ �

⎧⎪⎨
⎪⎩

(1+ 2ε
1
20 )(1+ y2)

1
6 , if γ = 0 ,

2(1+ y2)− 1
3 , if γ = 1 ,

M
1
3 (1+ y2)− 1

3 , if γ = 2 .

(4.29)

For the perturbation function W̃ (y, s) = W (y, s)−W (y) and for |y| � L = ε− 1
10 ,

∣∣W̃ (y, s)∣∣ � 2ε
1
11 (1+ y2)

1
6 , (4.30a)

∣∣∂y W̃ (y, s)
∣∣ � 2ε

1
12 (1+ y2)−

1
3 , (4.30b)

while for |y| � � = (logM)−5,
∣∣∂γ W̃ (y, s)∣∣ � (logM)4ε 1

10 |y|4−γ + Mε
1
4 |y|3−γ , γ � 3 , (4.31a)

∣∣∂4W̃ (y, s)∣∣ � ε 1
10 , (4.31b)
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and at y = 0,

∣∣∂3W̃ (0, s)∣∣ � ε 14 , (4.32)

for all s � − log ε. With w0 satisfying (4.18), as shown in [1] via the maximum
principle, we have that

4κ0
5 � w(θ, t) � 5κ0

4 , t ∈ [−ε, T∗) . (4.33)

4.2.3 Bootstrap Assumptions on @�
�a, � � 2

Bounds for a and ∂θa were previously established in [2]. In this paper, we revisit these
estimates and establish the following sharp bootstrap bounds

|a(θ, t)| � 2κ20ε , (4.34a)

|∂θa(θ, t)| � 2κ0 , (4.34b)∣∣∂2θ a(θ, t)
∣∣ � 12es , (4.34c)

for all θ ∈ T and t ∈ [−ε, T∗). The bootstrap bounds (4.34) are closed in Section 4.6
below.

4.3 Evolution Equations and Bounds for theModulationVariables

The modulation variables τ(t), ξ(t), and κ(t) are used to impose the following con-
straints at y = 0

W (0, s) = 0, ∂yW (0, s) = −1, ∂2yW (0, s) = 0 . (4.35)

Imposing ∂yW (0, s) = −1 in the first derivative of (4.11a) at y = 0, and using (4.35),
shows that

τ̇ (t) = e−
s
2 8
3

(
κ(t)Ay(0, s)− e−

s
2 A(0, s)

)
. (4.36a)

Next, requiring that ∂2yW (0, s) = 0 holds, by taking the second derivative of (4.11a),
evaluating the resulting equation at y = 0 and using (4.35), we obtain

ξ̇ (t)− κ(t) = − 8
3

e−s
Wyyy(0,s)

(
2e−

s
2 Ay(0, s)− κAyy(0, s)

)
, (4.36b)

and finally with W (0, s) = 0 used in (4.11a), we find that

κ̇(t) = − 8
3

(
κ(t)A(0, s)+ κ Ayy(0,s)

Wyyy(0,s)
− 2e−

s
2

Ay(0,s)
Wyyy(0,s)

)

= − 8
3κ(t)A(0, s)− es(ξ̇ − κ)(t) . (4.36c)
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The equations (4.36) areODEs for themodulation functions. From (4.34), it follows
that for ε taken sufficiently small, for all t ∈ [−ε, T∗) we have

∣∣τ̇ (t)∣∣ � 9κ20εe
−s ,

∣∣κ̇(t)∣∣ � 6κ30ε ,
∣∣ξ̇ (t)∣∣ � κ0 + 8κ20ε

2 . (4.37)

For the last bound, we have used that since
∫ T∗
−ε(1− τ̇ (t ′))dt ′ = ε, then

|T∗| � 7κ20ε
3 . (4.38)

It follows that

|κ − κ0| � 7κ30ε
2 , |τ | � 7κ20ε

3 , |ξ | � 2εκ0 , |1− βτ | � 7κ20εe
−s .
(4.39)

4.4 Characteristics in Physical Variables (x, t)

4.4.1 3-Characteristics � Associated to �3

We let η(x, t) denote the characteristics of λ3 = w so that

∂tη(x, t) = w(η(x, t), t) for − ε < t < T∗ , (4.40a)

η(x,−ε) = x , (4.40b)

for all labels x .

4.4.2 2-Characteristics� Associated to �2

We let φ(x, t) denote the characteristics of λ2 = 2
3w so that (Fig. 7)

∂tφ(x, t) = 2
3w(φ(x, t), t) for − ε < t < T∗ , (4.41a)

φ(x,−ε) = x , (4.41b)

for all labels x .

4.4.3 Identities Involving the 3-Characteristics �

From (4.40) it follows that

η(x, t) = x +
∫ t

−ε
w(η(x, t ′), t ′)dt ′ (4.42)

and from (3.5a) that

∂tw(η(x, t), t) = − 8
3a(η(x, t), t)w(η(x, t), t) .
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Fig. 7 Characteristic evolution during the pre-shock formation. The blowup point is ξ∗, the blowup time
is T∗, and the blowup label x∗ satisfies η(x∗, T∗) = ξ∗. In red, we display the 3-characteristics η(·, t)
originating from the blowup label x∗ and a nearby label x , while in blue we display the 2-characteristics
φ(·, t) originating from the label χ∗ = φ−1(ξ∗, T∗) and a nearby label χ

We define the integrating factor

It (x) = e−
8
3

∫ t
−ε a(η(x,r),r)dr , (4.43)

Integration yields

w(η(x, t), t) = It (x)w0(x) . (4.44)

We make use of the following identities:

I ′τ I−1τ = − 8
3

∫ τ
−ε

a′ ◦ η ηxdr , (4.45a)

I ′′τ I−1τ =
(
8
3

∫ τ
−ε

a′ ◦ η ηxdr
)2 − 8

3

∫ τ
−ε

(
a′′ ◦ η η2x + a′ ◦ η ηxx

)
dr (4.45b)

I ′′′τ I−1τ = − 512
27

(∫ τ
−ε

a′ ◦ η ηx dr
)3

+ 64
3

(∫ τ
−ε

a′ ◦ η ηxdr
)∫ τ
−ε

(
a′′ ◦ η η2x + a′ ◦ η ηxx

)
dr

− 8
3

∫ τ
−ε

(
a′′′ ◦ η η3x + 3a′′ ◦ η ηxηxx + a′ ◦ η ηxxx

)
dr , (4.45c)

I ′′′′τ I−1τ = 4096
81

(∫ τ
−ε

a′ ◦ η ηx dr
)4

− 1024
9

(∫ τ
−ε

a′ ◦ η ηxdr
)2 ∫ τ

−ε

(
a′′ ◦ η η2x + a′ ◦ η ηxx

)
dr

+ 64
3

(∫ τ
−ε
(a′′ ◦ ηη2x + a′ ◦ η ηxx )dr

)2

+ 256
9

(∫ τ
−ε

a′ ◦ η ηxdr
)∫ τ
−ε

(
a′′′ ◦ η η3x + 3a′′ ◦ η ηxηxx + a′ ◦ η ηxxx

)
dr
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− 8
3

∫ τ
−ε

(
a′′′′ ◦ η η4x + 6a′′′ ◦ η η2xηxx + 3a′′ ◦ η η2xx

+ 4a′′ ◦ η ηxηxxx + a′ ◦ η ηxxxx
)
dr (4.45d)

and from (4.42),

η = x + w0
∫ t

−ε
Iτdτ , (4.46a)

∂xη = 1+ w′0
∫ t

−ε
Iτdτ + w0

∫ t

−ε
I ′τdτ , (4.46b)

∂2xη = w′′0
∫ t

−ε
Iτdτ + 2w′0

∫ t

−ε
I ′τdτ + w0

∫ t

−ε
I ′′τ dτ , (4.46c)

∂3xη = w′′′0
∫ t

−ε
Iτdτ + 3w′′0

∫ t

−ε
I ′τdτ + 3w′0

∫ t

−ε
I ′′τ dτ + w0

∫ t

−ε
I ′′′τ dτ , (4.46d)

∂4xη = w′′′′0
∫ t

−ε
Iτdτ + 4w′′′0

∫ t

−ε
I ′τdτ + 6w′′0

∫ t

−ε
I ′′τ dτ

+ 4w′0
∫ t

−ε
I ′′′τ dτ + w0

∫ t

−ε
I ′′′′s ds . (4.46e)

4.4.4 Identities Involving the 2-Characteristics�

We write (3.5a) as

∂tw + 2
3w∂xw + 1

3w∂xw = − 8
3aw , (4.47)

and define the Lagrangian variables

W = w ◦ φ , V = 2
3w ◦ φ = ∂tφ .

Then it follows from the chain-rule that (4.47) can be written as

∂tW+ 1
2 (∂xφ)

−1∂xVW = − 8
3W a ◦ φ . (4.48)

We multiply (4.48) by (∂xφ)
1
2 to find that

∂t
(
(∂xφ)

1
2W

) = − 8
3

(
(∂xφ)

1
2W

)
a ◦ φ ,

and hence that

∂xφ(x, t) = w2
0(x)

w2(φ(x,t),t)
e−

16
3

∫ t
−ε a(φ(x,s),s)ds . (4.49)

It follows from (4.18), (4.33), (4.34), and since is ε small enough, that

12
25 � ∂xφ(x, t) � 2 , 1

2 � ∂xφ−1(x, t) � 25
12 , t ∈ [−ε, T∗) . (4.50)
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Differentiating (4.41a), we see that ∂t∂xφ = 2
3∂xw ◦ φ ∂xφ and that ∂xφ(x,−ε) = 1.

Hence we have that

12
25 � e

2
3

∫ t
−ε ∂θw(φ(x,s),s)ds � 2 , 1

2 � e−
2
3

∫ t
−ε ∂θw(φ(x,s),s)ds � 25

12 , t ∈ [−ε, T∗) .
(4.51)

Differentiating (4.49), we have that

∂2xφ(x, t) = e−
16
3

∫ t
−ε a(φ(x,s),s)ds w2

0(x)
w2(φ(x,t),t)

(
− 16

3

∫ t

−ε
∂θa ◦ φ φxds + 2

w′0
w0
− 2 ∂θw◦φ φx

w◦φ
)

= ∂xφ(x, t)
(
− 16

3

∫ t

−ε
∂θa ◦ φ φxds + 2

w′0
w0
− 2 ∂θw◦φ φx

w◦φ
)
. (4.52)

Using that |w′0(x)| � ε−1, and the bounds (4.18), (4.34), and (4.50), we see that

∣∣∂2xφ(x, t)
∣∣ � 1

ε
+ ∣∣∂θw(φ(x, t), t)

∣∣ . (4.53)

Finally, differentiating (4.52),

∂3xφ(x, t) = φxx
(
− 16

3

∫ t

−ε
∂θa ◦ φ φxds + 2

w′0
w0
− 2wθ◦φ φx

w◦φ
)

+ φx
(
− 16

3

∫ t

−ε
(
∂2θ a ◦ φ φ2x + ∂θa ◦ φ φxx

)
ds

+ 2
w0w

′′
0−(w′0)2
w2
0

+ 2
(
∂θw◦φ φx
w◦φ

)2)

− 2φx
∂2θ w◦φ φ2x+∂θw◦φ φxx

w◦φ . (4.54)

We will make use of the fact that by (4.7), the change of variables formula, and (4.61),

∫ t

−ε
∣∣∂θw(φ(x, t, t ′)

∣∣ dt ′ =
∫ s

− log ε

∣∣∂yW (�A(y, s
′), s′)

∣∣βτds′ .

As we will show in (4.62),
∫ s
− log ε

∣∣∂yW (�A(y, s′), s′)
∣∣βτds′ � 1. Together with

(4.19), (4.23), and (4.34), we see that

∣∣∂3xφ(x, t)
∣∣ � 1

ε2
+ ∣∣w′′0(x)

∣∣
+ 1
ε

∣∣∂θw(φ(x, t), t)
∣∣+ ∣∣∂θw(φ(x, t), t)

∣∣2 + ∣∣∂2θ w(φ(x, t), t)
∣∣

+
∫ t

−ε
∣∣∂2θ a(φ(x, t ′), t ′)

∣∣dt ′ . (4.55)
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4.5 Characteristics in Self-similar Coordinates

4.5.1 3-Characteristics in Self-similar Coordinates

Having defined the 3-characteristics η(x, t) in (4.40), we now let�W (y, s) denote the
3-characteristic of the transport velocity for VW which emanates from the label y so
that

∂s�W (y, s) = VW (�W (y, s), s) for − log ε < s <∞ , (4.56a)

�W (y,− log ε) = y , (4.56b)

where the velocity VW is defined in (4.14a). Before stating the next lemma, we recall
from (4.13) that ξ(−ε) = 0 and that particle labels are assigned at t = −ε ⇔ s =
− log ε.

Lemma 4.2 (3-characteristics in physical and self-similar coordinates) With particle
labels related by

x = ε 32 y , (4.57)

we have that

η(x, t) = e−
3
2 s�W (y, s)+ ξ(t) , (4.58)

or equivalently

�W (y, s) = e
3
2 s (η(x, t)− ξ(t)) . (4.59)

Proof of Lemma 4.2 From (4.56a), we have that

∂s

(
e−

3
2 s�W (y, s)

)
=

(
e−

s
2W (�W (y, s), s)+ κ − ξ̇

)
βτ e
−s .

Using (4.7) and (4.10), we see that

∂t

(
e−

3
2 s�W (y, s)+ ξ

)
= e−

s
2W (�W (y, s), s)+ κ .

Then, from (4.9), we have that e− s
2W (y, s)+ κ(t) = w(e− 3

2 s y + ξ(t), t), and hence

∂t

(
e−

3
2 s�W (y, s)+ ξ

)
= w

(
e−

3
2 s�W (y, s)+ ξ(t), t

)
.

On the other hand, from (4.40a) we have ∂tη(x, t) = w(η(x, t), t), which then proves
the identity (4.58). ��
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4.5.2 2-Characteristics8A in Self-similar Coordinates

Having defined the 2-characteristics φ in (x, t) coordinates, we now define their self-
similar counterparts in (y, s) coordinates. We define the 2-characteristics �A by

∂s�A(y, s) = VA(�A(y, s), s) for − log ε < s <∞ , (4.60a)

�A(y,− log ε) = y . (4.60b)

where the transport velocityVA is given in (4.14b). In the sameway that we established
(4.59), we have that

�A(y, s) = e
3
2 s (φ(x, t)− ξ(t)) , (4.61)

where x = ε 32 y. The following integral bound was proven in Corollary 8.4 in [2]:

sup
y∈X(− log ε)

∫ s

− log ε

∣∣Wy(�A(y, s
′), s′)

∣∣ ds′ � 1 . (4.62)

4.5.3 The Unique Blowup Trajectory Associated to 3-Characteristics

A basic advantage of the use of self-similar coordinates is that the blowup trajectory
can be isolated. In particular, all but one of the trajectories �W (y, s) “eventually
escape” exponentially fast towards infinity.

Lemma 4.3 (The unique blowup trajectory) There exists a unique blowup label y∗
such that

�W (y∗, s) = e
3
2 s (η(x∗, t)− ξ(t))

is the unique trajectory which converges to y = 0 as s →∞. Moreover,

|�W (y∗, s)| � 20κ0e
− 5

2 s for all s � − log ε , (4.63)

and

|y∗| � 20κ0ε
5
2 ⇔ |x∗| � 20κ0ε

4 . (4.64)

Proof of Lemma 4.3 Using (4.56a), we can write the evolution equation for �W as

∂s�W (y, s) = VW ◦�W = 1
2�W (y, s)+ G�(y, s)+ h(s) , (4.65)

where

G� = G ◦�W , (4.66a)

G = (
W + y

)+ (1− βτ )W + βτ W̃ , (4.66b)
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h = e
s
2 βτ (κ − ξ̇ ) . (4.66c)

The particular form of G� in (4.66b) is chosen to make use of the fact that for all y,

∣∣y +W (y)
∣∣ � |y|3 , (4.67)

which follows from the identity |y +W (y)| = |W (y)|3 and the bound |W (y)| � |y|.
Hence, we integrate (4.65) to obtain

�W (y∗, s) = e
s
2 ε

1
2 y∗ + e

s
2

∫ s

− log ε
e−

s′
2
(
G�(y∗, s′)+ h(s′)

)
ds′ . (4.68)

If e− s′
2
(
G�(y∗, s′)+ h(s′)

)
is integrable on [− log ε,∞) then, we can rewrite (4.68)

as

�W (y∗, s) = e
s
2

(
ε

1
2 y∗ +

∫ ∞
− log ε

e−
s′
2
(
G�(y∗, s′)+ h(s′)

)
ds′

)

− e
s
2

∫ ∞
s

e−
s′
2
(
G�(y∗, s′)+ h(s′)

)
ds′ . (4.69)

Together with (4.32), (4.34), and (4.90), the identity (4.36b) shows that

∣∣ξ̇ − κ∣∣ � 38κ0e
−3s , (4.70)

so that using (4.66c) and (4.70), we have the bound

|h(s)| � 39κ0e
− 5

2 s , (4.71)

so the integrability of e− s′
2 G�(y∗, s′) will be of paramount importance.

We additionally note that since the first term on the right side of (4.69) is a constant
multiplying e

s
2 , in order for �W (y∗, s) → 0 as s → ∞, this constant must vanish,

and thus, we must insist that

y∗ = −ε− 1
2

∫ ∞
− log ε

e−
s′
2
(
G�(y∗, s′)+ h(s′)

)
ds′ , (4.72a)

which then implies

�W (y∗, s) = −e s
2

∫ ∞
s

e−
s′
2
(
G�(y∗, s′)+ h(s′)

)
ds′ . (4.72b)

Notice that (4.72) implies that as long as e− s′
2 G�(y∗, s′) is integrable,

�W (y∗,− log ε) = y∗ , and lim
s→∞�W (y∗, s) = 0 .
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We shall now establish the existence of a unique trajectory �W (y∗, s) solving
(4.72b). We define the set

T = {ϕ ∈ C0([− log ε,∞)) : |ϕ(s)| � 20κ0e
− 5

2 s} ,

with norm given by
∥∥ϕ∥∥T := sups∈[− log ε,∞) e

5
2 s |ϕ(s)|, and consider the map �,

which maps ϕ ∈ T to ϕ, given by

ϕ(s) = �(ϕ(s)) := −e s
2

∫ ∞
s

e−
s′
2
(
Gϕ(s

′)+ h(s′)
)
ds′ .

We note that for ϕ ∈ T, |ϕ| � ακ0ε 52 � � for ε small enough, so that we may apply
the bounds (4.31a) to the function Gϕ(s′). Doing so, we see that the bounds (4.67),
(4.31a) and (4.39) show that for ε taken small enough,

∣∣Gϕ(s)
∣∣ � |ϕ(s)|3 + (1+ 6ε2)

(
(logM)4ε

1
10 |ϕ(s)|4 + Mε

1
3 |ϕ(s)|3

)
+ 6εe−sϕ(s)

� (20κ0)3e−
15
2 s + ε 1

12 ε3α(20κ0)
4e−10s + 120κ0εe

− 7
2 s � 122κ0εe

− 7
2 s .

Together with (4.71), we have that

e−
s′
2
(∣∣Gϕ(s′)

∣∣+ ∣∣h(s′)∣∣) � 40κ0e
−3s′ .

By the fundamental theorem of calculus, s �→ ϕ(s) is continuous, and satisfies the
bound

|ϕ(s)| � 18κ0e
− 5

2 s for all s � − log ε .

Therefore, � : T→ T.
Let us nowprove that� is a contraction. Suppose thatϕ1 = �(ϕ1) andϕ2 = �(ϕ2).

We then have

|ϕ1(s)− ϕ2(s)| � e
s
2

∫ ∞
s

e−
s′
2
∣∣Gϕ1(s′)− Gϕ2(s

′)
∣∣ ds′ . (4.73)

From the identity in footnote 4 (in a similar fashion to (4.67)), we have that

∣∣W (y1)+ y1 −W (y2)− y2
∣∣ �

∣∣∣y31 − y32

∣∣∣ ,

so that

∣∣(W (ϕ1(s))+ ϕ1(s)
)− (

W (ϕ2(s))+ ϕ2(s)
)∣∣

�
∣∣∣ϕ31(s)− ϕ32(s)

∣∣∣
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�
∣∣∣ϕ1(s)2 + ϕ1(s)ϕ2(s)+ ϕ2(s)2

∣∣∣
∣∣ϕ1(s)− ϕ2(s)

∣∣
� ε2e−s

∣∣ϕ1(s)− ϕ2(s)
∣∣ , (4.74)

where we have used that both ϕ1 and ϕ2 are in T. Next, since
∣∣W (y1)−W (y2)

∣∣ �
|y1 − y2|, by (4.39),

|1− βτ |
∣∣W (ϕ1(s))−W (ϕ2(s))

∣∣ � 6εe−s
∣∣ϕ1(s)− ϕ2(s)

∣∣ , (4.75)

and finally, employing the mean value theorem together with the bound (4.31a), for
some a function s �→ α(s) ∈ (0, 1) and

|βτ |
∣∣W̃ (ϕ1(s), s)− W̃ (ϕ2(s), s)

∣∣
� 2

∣∣∂y W̃ ((1− α(s))ϕ1(s)+ α(s)ϕ2(s), s)
∣∣ ∣∣ϕ1(s)− ϕ2(s)

∣∣
� 2

(
(logM)4ε

1
10 (20κ0)

3e−
15
2 s + Mε

1
3 (20κ0)

2e−5s
) ∣∣ϕ1(s)− ϕ2(s)

∣∣
� ε4e−s

∣∣ϕ1(s)− ϕ2(s)
∣∣ . (4.76)

Combining the bounds (4.74), (4.75), and (4.76), and taking ε sufficiently small, we
have that

∣∣Gϕ1(s′)− Gϕ2(s
′)
∣∣ � 7εe−s

∣∣ϕ1(s)− ϕ2(s)
∣∣ ,

and thus from (4.73), we see that

e
5
2 s |ϕ1(s)− ϕ2(s)| � e3s

∫ ∞
s

e−
1
2 s
′ ∣∣Gϕ1(s′)− Gϕ2(s

′)
∣∣ ds′

� 7εe3s
∫ ∞
s

e−
1
2 s
′ ∣∣ϕ1(s′)− ϕ2(s′)

∣∣ ds′

� 14ε sup
s∈[− log ε,∞)

e
5
2 s

∣∣ϕ1(s)− ϕ2(s)
∣∣ ,

so that

‖ϕ1 − ϕ2‖T � 14ε
∥∥ϕ1 − ϕ2

∥∥
T ,

which shows that� is a contraction. By the contraction mapping theorem, there exists
a unique trajectory ϕ ∈ T such that for all s � − log ε,

ϕ(s) = −e s
2

∫ ∞
s

e−
s′
2
((
W (ϕ(s))+ ϕ(s))+ (1− βτ )W (ϕ(s))

+βτ W̃ (ϕ(s), s)+ h(s′)
)
ds′ ,
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or equivalently

e−
s
2 ϕ(s) = −

∫ ∞
s

e−
s′
2
(
ϕ(s)+ βτW (ϕ(s), s)+ h(s′)

)
ds′ .

Differentiating this identity in self-similar time shows that

∂sϕ = VW ◦ ϕ .

Setting

y∗ = −ε− 1
2

∫ ∞
− log ε

e−
s′
2
((
W (ϕ(s))+ ϕ(s))

+(1− βτ )W (ϕ(s))+ βτ W̃ (ϕ(s), s)+ h(s′)
)
ds′ ,

we see that ϕ(− log ε) = y∗ from which it follows that

�W (y∗, s) = ϕ(s) for all s � − log ε ,

and�W (y∗, s) is a solution to (4.72). Clearly
∣∣y∗

∣∣ � 20κ0ε
5
2 and by (4.57), it follows

that
∣∣x∗

∣∣ � 20κ0ε4.
We next show that y∗ is the only blowup label. From (4.14b) and (4.56), we have

that

∂s(�W (y∗, s)−�W (y, s)) = 3
2 (�W (y∗, s)−�W (y, s))

+ βτW (�W (y∗, s), s)− βτW (�W (y, s), s) .

Suppose that y∗ � y. By the mean value theorem and the bound (4.39), we have that

|βτW (�W (y∗, s), s)− βτW (�W (y, s), s)| � (1+ 6ε)(�W (y∗, s)−�W (y, s)) .

Here we have used the global bound
∣∣∂yW (y, s)

∣∣ � 1 and the fact that characteristics
cannot cross so that �W (y∗, s)−�W (y, s) � 0. Therefore,

∂s(�W (y∗, s)−�W (y, s)) � ( 12 − ε
3
4 )(�W (y∗, s)−�W (y, s)) ,

and then

�W (y∗, s)−�W (y, s) � ε
1
2 e(

1
2−ε

3
4 )s(y∗ − y) .

If y � y∗, in the same way we, we obtain �W (y, s)−�W (y∗, s) � ε
1
2 e(

1
2−ε

3
4 )s(y −

y∗). ��
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4.6 Bounds for@�
x a, � � 4

4.6.1 Improving the Bootstrap Bound for a

We note here that from (3.8) and (3.9), the specific vorticity
 = 16
w2 (w−∂θa) solves

∂t
 + 2
3w∂θ
 = 8

3a
 , 
(x,−ε) = 
0(x) ,

and hence


(φ(x, t), t) = e
8
3

∫ t
−ε a(φ(x,t ′),t ′)dt ′
0(x) . (4.77)

We also have from (3.10b), that

a(φ(x, t), t) = a0(x)+
∫ t

−ε
(− 4

3a
2 + 1

6w
2) ◦ φds (4.78)

so that assuming the bootstrap bound
∣∣a(θ, t)∣∣ � 2κ20ε and using (4.26) and (4.33),

we find that for ε taken sufficiently small,

∥∥a(·, t)∥∥L∞ � 3
2κ

2
0ε , t ∈ [−ε, T∗) , (4.79)

which improves the bootstrap bound (4.34a).

4.6.2 Improving the Bootstrap Bound for @�a

From (4.50), we see that φ(·, t) is a diffeomorphism with a well-defined inverse map,
so that for each t ∈ [−ε, T∗) and for ε small enough, the identity (4.77) and the bound
(4.79) show that

(1− ε)
0(θ) � 
(φ(θ, t), t) � (1+ ε)
0(θ) , t ∈ [−ε, T∗) , (4.80)

From (4.18), 7
8κ0 � w0(θ) � 9

8κ0. Since 
0 = 16
w2
0
(w0 − ∂θa0), by (4.26),

101
10κ0

� 
0(θ) � 27
κ0
,

and by (4.80), for ε small enough,

10
κ0

� 
(θ, t) � 28
κ0
, θ ∈ T, t ∈ [−ε, T∗) . (4.81)

Again using that

∂θa = w − w2

16
 , (4.82)
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we then have that

∣∣∂θa(θ, t)
∣∣ = ∣∣w − w2

16

∣∣ � 3

2κ0 , θ ∈ T, t ∈ [−ε, T∗) , (4.83)

which improves the bootstrap bound (4.34b).

4.6.3 Improving the Bootstrap Bound for @2
�a

Differentiating (4.77), we have that

∂θ
(φ(x, t), t) = (∂xφ(x, t))−1e 8
3

∫ t
0 a(φ(x,t

′),t ′)dt ′

(
∂θ
0(x)+ 8

3
0

∫ t

−ε
∂θa(φ(x, t

′), t ′)∂xφ(x, t ′)dt ′
)

= (∂xφ(x, t))−1
(φ(x, t), t)(
∂θ
0(x)

0(x)

+ 8
3

∫ t

−ε
∂θa(φ(x, t

′), t ′)∂xφ(x, t ′)dt ′
)
. (4.84)

It follows from (4.50), (4.80), (4.83), and (4.84) that for ε small enough,

∣∣∂θ
(φ(x, t), t)
∣∣ � 51

24

∣∣∂θ
0(x)
∣∣+ 500ε . (4.85)

Using the formula

∂θ
0 = 16
w2
0
(∂θw0 − ∂2x a0)− 32

w3
0
(w0 − ∂θa0)∂θw0

and the bounds (4.18), − 1
ε

� ∂θw0(x), and (4.26), we estimate that

∣∣∂θ
0(x)
∣∣ � 34

κ20 ε
, (4.86)

and hence from (4.85),

∣∣∂θ
(x, t)
∣∣ � 70

κ20 ε
, x ∈ T, t ∈ [−ε, T∗) . (4.87)

We shall use the fact that

∂2θ a = ∂θw(1− 1
8w
)− w

2

16 ∂θ
 , (4.88)

so that combined with the above estimates,

∣∣∂2θ a(x, t)
∣∣ � 7

2

∣∣∂θw(x, t)
∣∣+ 7

ε
, (4.89)

and hence by (4.9), we have that

∣∣∂2y A(y, s)
∣∣ � 7

2e
−2s∣∣∂yW (y, s)

∣∣+ e−3s 7
ε

� 23
2 e
−2s , (4.90)
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where we have used that
∣∣∂yW (y, s)

∣∣ � 1 as proven in [2]. This then implies that

∣∣∂2θ a(x, t)
∣∣ = e3s

∣∣∂2y A(y, s)
∣∣ � 23

2 e
s , x ∈ T, t ∈ [−ε, T∗) (4.91)

which improves the bootstrap bound (4.34c).

4.6.4 A Bound for @3
�a

We next differentiate (4.84) to obtain

∂2θ 
(φ(x, t), t) =
(
φ−1x ∂θ
 ◦ φ − φ−3x φxx
 ◦ φ

)(
∂θ
0

0
+ 8

3

∫ t

−ε
∂θa ◦ φ φxdt ′

)

+ φ−2x 
 ◦ φ
(

0∂

2
θ 
0−(∂θ
0)

2


 2
0

+ 8
3

∫ t

−ε
(
∂2θ a ◦ φ φ2x + ∂θa ◦ φ φxx

)
dt ′

︸ ︷︷ ︸
R(x,t)

)
. (4.92)

We first bound the integral R. By (4.50), (4.53), and (4.89), we have that

∣∣R(x, t)∣∣ �
∫ t

−ε
(1+ ∣∣∂θa ◦ φ

∣∣)( 1
ε
+ ∣∣∂θw ◦ φ

∣∣)dt ′ . (4.93)

We note that by (4.61),

∂θw(φ(x, t), t) = esWy(�A(y, s), s) .

The identity (4.7) then shows that dt = βτ e−sds so that by the change of variables
formula, we have that

∫ t

−ε
∣∣∂θw(φ(x, t ′), t ′)

∣∣dt ′ =
∫ s

− log ε

∣∣Wy(�A(y, s
′), s′)

∣∣βτds′ � 1 , (4.94)

where we have used (4.62) for the last inequality. Hence, with (4.34) and (4.93), we
have that

∣∣R(x, t)∣∣ � 1 . (4.95)

With (4.95), the formula (4.92) and the bounds (4.34) and (4.86) allow us to estimate
∂2θ 
 ◦ φ in the following way:

∣∣∂2θ 
(φ(x, t), t)
∣∣ � 1+ 1

ε

∣∣φxx (x, t)
∣∣+ ∣∣∂2θ 
0(x)

∣∣
� 1
ε2
+ 1
ε

∣∣∂θw(φ(x, t), t)
∣∣+ ∣∣∂2θ 
0(x)

∣∣ (4.96)

where we have used (4.53) for the last inequality.
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Differentiating (4.88) yields the identity

∂3θ a = ∂2θ w(1− 1
8w
)− w

2

16 ∂
2
θ 
 − 1

4w∂θw∂θ
 − 1
8
(∂θw)

2 (4.97)

so that

∣∣∂3θ a(x, t)
∣∣ �

∣∣∂2θ w(x, t)
∣∣+ ∣∣∂2θ 
(x, t)

∣∣+ ∣∣∂θw(x, t)
∣∣2 + 1

ε

∣∣∂θw(x, t)
∣∣

� 1
ε2
+ ∣∣∂2θ w(x, t)

∣∣+ ∣∣∂2θ 
0(φ
−1(x, t), t)

∣∣
+ ∣∣∂θw(x, t)

∣∣2 + 1
ε

∣∣∂θw(x, t)
∣∣ (4.98)

where we have used (4.96) for the last inequality.
Restricting the identity (4.97) to t = −ε, we see that

w2
0

16 ∂
2
θ 
0 = −∂3θ a0 + ∂2θ w0( 18w0
0 − 1)− 1

4w0∂θw0∂θ
0 − 1
8 (∂θw0)

2
0 ,

(4.99)

and so

∣∣∂2θ 
0
∣∣ � 1

ε2
+ ∣∣∂3θ a0

∣∣+ ∣∣∂2θ w0
∣∣ � 1

ε2
+ ∣∣∂2θ w0

∣∣ (4.100)

since we assumed that
∣∣∂3θ a0(x)

∣∣ � 1 in (4.26). Using the bound (4.100) in (4.98)
shows that

∣∣∂3θ a(η(x, t), t)
∣∣

� 1
ε2
+ ∣∣∂2θ w(η(x, t), t)

∣∣+ ∣∣∂2θ w0(φ−1(η(x, t), t), t)
∣∣

+ ∣∣∂θw(η(x, t), t)
∣∣2 + 1

ε

∣∣∂θw(η(x, t), t)
∣∣ . (4.101)

By (4.25b), we have that for x ∈ T,
∣∣∂2θ w0(x)

∣∣ � ε− 5
2 and therefore

∣∣∂2θ w0(φ−1(η(x, t), t), t)
∣∣ � ε− 5

2 . (4.102)

Using this bound in (4.101), for all t ∈ [−ε, T∗),
∣∣∂3θ a(η(x, t), t)

∣∣ � ε− 5
2 + ∣∣∂2θ w(η(x, t), t)

∣∣+ ∣∣∂θw(η(x, t), t)
∣∣2 + 1

ε

∣∣∂θw(η(x, t), t)
∣∣ .

(4.103)

4.6.5 A Bound for @4
�a

As we will now explain, the bound for ∂4θ a(x, t) does not depend on ∂
4
xη, ∂

4
xφ, or ∂

4
θ w,

and as such is merely a consequence of the bounds that have already been established.
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To obtain this bound, we make one final differentiation of (4.92) and obtain that

∂3θ 
(φ(x, t), t)

=
(
φ−1x ∂

2
θ 
 ◦ φ + 3φ−5x φ

2
xx
 ◦ φ − φ−4x φxxx
 ◦ φ − 2φ−3x φxx∂θ
 ◦ φ

)
(
∂θ
0

0
+ 8

3

∫ t

−ε
∂θa ◦ φ φxdt ′

)

+
(
2φ−2x ∂θ
 ◦ φ − 3φ−4x φxx
 ◦ φ

) (

0∂

2
θ 
0−(∂θ
0)

2


 2
0

+ 8
3

∫ t

−ε
(
∂2θ a ◦ φ φ2x + ∂θa ◦ φ φxx

)
dt ′

)

+ φ−3x 
 ◦ φ
(

 2

0 ∂
3
θ 
0−3
0∂θ
0∂

2
θ 
0+2(∂θ
0)

3


 3
0

+ 8
3

∫ t

−ε
(
∂3θ a ◦ φ φ3x + 3∂2θ a ◦ φ φxφxx + ∂θa ◦ φ φxxx

)
dt ′

︸ ︷︷ ︸
S(x,t)

)
. (4.104)

Our goal is to bound
∣∣∂3θ 
(φ(x, t), t)

∣∣ using the identity (4.104). The time integral in
the first line is O(ε) due to (4.34) and (4.50). The time integral in the second line is
the termR(x, t) in (4.92), which was estimated in (4.95). It thus remains to establish
the bound for the integral term S(x, t) on the third line. We write S = S1 + S2 + S3,
where

S1(x, t) =
∫ t

−ε
∂3θ a ◦ φ φ3xdt ′ , (4.105a)

S2(x, t) =
∫ t

−ε
3∂2θ a ◦ φ φxφxxdt ′ , (4.105b)

S3(x, t) =
∫ t

−ε
∂θa ◦ φ φxxxdt ′ , (4.105c)

and we shall first estimate the integral S3. The key idea in estimating S3 is to use the
identity (4.54) for φxxx and isolate the term

∂2θ w ◦ φ φ2x + ∂θw ◦ φ φxx =: ∂x (∂θw ◦ φ φx ) ,

and estimate its integral in a very careful manner.
The identity for φxxx in (4.54) and the bound (4.55), together with the estimates

(4.89) and (4.94), and the integral bound (4.62), we conclude that

∣∣S3(x, t)
∣∣ � 1

ε
+ ε∣∣w′′0(x)

∣∣+
∫ t

−ε
∣∣∂θw(φ(x, t ′), t ′)

∣∣2dt ′ + ∣∣S4(x, t)
∣∣ , (4.106)
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where the term S4 contains the important term on the last line of (4.54), and is given
by

S4(x, t) =
∫ t

−ε
∂x (a ◦ φ)(w ◦ φ)−1∂x (∂θw ◦ φ φx )dt ′ . (4.107)

We now rewrite the evolution equation (4.47) as ∂t (w ◦ φ) + 8
3 (aw) ◦ φ =

− 1
3 (w∂θw) ◦ φ which yields

∂θw ◦ φ φx = −3φx (w ◦ φ)−1∂t (w ◦ φ)− 8a ◦ φ φx .

Differentiating this equation, we have that

∂x
(
∂θw ◦ φ φx

) = −3φx (w ◦ φ)−1∂t (∂θw ◦ φ φx )
− 3φ2x

∂θw◦φ
w◦φ

( 8
3a ◦ φ + 1

3∂θw ◦ φ
)+ φxx∂θw ◦ φ − 8∂θa ◦ φ φ2x .

We can then write the term S4 in (4.107) as S4 = S4a + S4b, where

S4a(x, t) = −3
∫ t

−ε
∂x (a ◦ φ)φx (w ◦ φ)−2∂t (∂θw ◦ φ φx )dt ′ ,

S4b(x, t) = −
∫ t

−ε
∂x (a ◦ φ)

(
3φ2x

∂θw◦φ
(w◦φ)2

( 8
3a ◦ φ − 1

3∂θw ◦ φ
)

−φxx ∂θw◦φw◦φ + 8 ∂θa◦φ
w◦φ φ

2
x

)
dt ′ .

The term S4a(x, t) requires a careful analysis; meanwhile, the bounds (4.18), (4.33),
(4.34), (4.38), (4.50), (4.94) together with (4.53) show that

∣∣S4b(x, t)
∣∣ � 1

ε
+

∫ t

−ε
∣∣∂θw ◦ φ

∣∣2dt ′ .

To estimate S4a(x, t) we integrate by parts, appeal to the identities (3.10b), (4.41a),
and (4.47), to obtain that

S4a(x, t) = 3a′0w
−2
0 w

′
0 − 3∂x (a ◦ φ)φ2x (w ◦ φ)−2∂θw ◦ φ

+ 4
∫ t

−ε
∂x (a ◦ φ)(w ◦ φ)−2(∂θw ◦ φ)2 φ2xdt ′

+ 3
∫ t

−ε
∂x (− 4

3a
2 ◦ φ + 1

6w
2 ◦ φ)φ2x (w ◦ φ)−2∂θw ◦ φdt ′

+ 16
∫ t

−ε
∂x (a ◦ φ)φ2x (w ◦ φ)−2a ◦ φ∂θw ◦ φdt ′ .
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From the above identity and the bounds (4.18), (4.33), (4.34), (4.50), (4.94), we obtain
that

∣∣S4a(x, t)
∣∣ � 1

ε
+ ∣∣∂θw(φ(x, t), t)

∣∣+
∫ t

−ε
∣∣∂θw(φ(x, t ′), t ′)

∣∣2dt ′ .

Using the above bound in (4.106) shows that

∣∣S3(x, t)
∣∣ � 1

ε
+ ε∣∣w′′0(x)

∣∣+ ∣∣∂θw(φ(x, t), t)
∣∣+

∫ t

−ε
∣∣∂θw(φ(x, t ′), t ′)

∣∣2dt ′ .
(4.108)

Having estimated S3 in (4.105), it remains to bound S1 and S2.
For S1, we return to the identity (4.88) and write

∂2θ a ◦ φ =
(
∂θw ◦ φφx

)
φ−1x (1− 1

8w
) ◦ φ − w
2◦φ
16 ∂θ
 ◦ φ ,

so that after differentiation in x

∂3θ a ◦ φ φx = ∂x
(
∂θw ◦ φφx

)
φ−1x (1− 1

8w
) ◦ φ
− (
∂θw ◦ φφx

)
φ−2x φxx (1− 1

8w
) ◦ φ
− 1

8

(
∂θw ◦ φφx

)
∂θ (w
) ◦ φ − w2◦φ

16 ∂
2
θ 
 ◦ φ φx

− 1
8w ◦ φ ∂θw ◦ φ φx∂θ
 ◦ φ . (4.109)

Due to (4.109), the integrand ∂3θ a◦φ φ3x in S1 has the same structure to the integrand in

S3, with one additional type of term in the form of−w2◦φ
16 ∂

2
θ 
 ◦φ φx , which requires

us to use the already established bounds (4.96) and (4.100). We therefore can show
that S1 is bounded as

∣∣S1(x, t)
∣∣ � 1

ε
+ ε∣∣w′′0(x)

∣∣+ ∣∣∂θw(φ(x, t), t)
∣∣+

∫ t

−ε
∣∣∂θw(φ(x, t ′), t ′)

∣∣2dt ′ .
(4.110)

The integralS2 in (4.105) is relatively straightforward to bound.Weuse the inequalities
(4.53) and (4.89) together with (4.62), and find that

∣∣S2(x, t)
∣∣ � 1

ε
+

∫ t

−ε
∣∣∂θw(φ(x, t ′), t ′)

∣∣2dt ′ . (4.111)

Combining the bounds (4.108), (4.110), and (4.111), we have shown that the S(x, t)
integral in (4.104) satisfies

∣∣S(x, t)∣∣ � 1
ε
+ ε∣∣∂2θ w0(x)

∣∣+ ∣∣∂θw(φ(x, t), t)
∣∣+

∫ t

−ε
∣∣∂θw(φ(x, t ′), t ′)

∣∣2dt ′ .
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It thus follows from (4.53), (4.55), (4.89), and (4.104) that

∣∣∂3θ 
(φ(x, t), t)
∣∣ � 1

ε3
+ ∣∣∂3θ
0(x)

∣∣+ 1
ε

∣∣∂2θ w0(x)
∣∣

+ 1
ε2

∣∣∂θw(φ(x, t), t)
∣∣+ 1

ε

∣∣∂θw(φ(x, t), t)
∣∣2

+ 1
ε

∣∣∂2θ w(φ(x, t), t)
∣∣+

∫ t

−ε
∣∣∂θw(φ(x, t ′), t ′)

∣∣2dt ′ .

Therefore, we have that

∣∣∂3θ 
(η(x, t), t)
∣∣ � 1

ε3
+ ∣∣∂3θ
0(φ

−1(η(x, t), t))
∣∣+ 1

ε

∣∣∂2θ w0(φ−1(η(x, t), t))
∣∣

+ 1
ε2

∣∣∂θw(η(x, t), t)
∣∣

+ 1
ε

∣∣∂θw(η(x, t), t)
∣∣2 + 1

ε

∣∣∂2θ w(η(x, t), t)
∣∣

+
∫ t

−ε
∣∣∂θw(φ(φ−1(η(x, t), t), t ′), t ′)

∣∣2dt ′ . (4.112)

In order to bound the first term in the above inequality, we differentiate (4.99) to obtain

w2
0

16 ∂
3
θ 
0 = − 1

8w0∂θw0∂
2
θ 
0 − ∂4θ a0 + ∂3θ w0( 18w0
0 − 1)+ 1

8∂
2
θ w0∂θ (w0
0)

− ∂θ ( 14w0∂θw0∂θ
0 + 1
8 (∂θw0)

2
0) .

With (4.100), we see that

∣∣∂3θ 
0(θ)
∣∣ � 1

ε3
+ 1
ε

∣∣∂2θ w0(θ)
∣∣+ ∣∣∂3θ w0(θ)

∣∣+ ∣∣∂4θ a0(θ)
∣∣

� 1
ε3
+ 1
ε

∣∣∂2θ w0(θ)
∣∣+ ∣∣∂3θ w0(θ)

∣∣ , (4.113)

where we have used that
∣∣∂4θ a0(x)

∣∣ � 1 by (4.26). From (4.25c), for all x ∈ T,∣∣∂3θ w0(x)
∣∣ � ε−4, so that

∣∣∂3θ w0(φ−1(η(x, t), t), t)
∣∣ � ε−4 ,

and hence by (4.113),

∣∣∂3θ 
0(φ
−1(η(x, t), t), t)

∣∣ � ε−4 .

With this bound and using (4.102), estimate (4.112) becomes

∣∣∂3θ 
(η(x, t), t)
∣∣ � ε−4 + 1

ε2

∣∣∂θw(η(x, t), t)
∣∣+ 1

ε

∣∣∂θw(η(x, t), t)
∣∣2

+ 1
ε

∣∣∂2θ w(η(x, t), t)
∣∣+

∫ t

−ε
∣∣∂θw(φ(φ−1(η(x, t), t), t ′), t ′)

∣∣2dt ′ .
(4.114)
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Having established a bound for the third derivative of 
 , we are now ready to
estimate the fourth derivative of a. We differentiate the identity (4.97) and obtain

∂4θ a = ∂3θ w( 18w
 − 1)+ 1
8∂

2
θ w∂θ (w

2
)− w2

16 ∂
3
θ


− 1
8w∂θw∂

2
θ 
 − 1

8∂θ
(
2w∂θw∂θ
 + (∂θw)2


)
, (4.115)

so that

∣∣∂4θ a(θ, t)
∣∣ �

∣∣∂3θ 
(θ, t)
∣∣+ ∣∣∂3θ w(θ, t)

∣∣+ ( 1
ε
+ ∣∣∂θw(θ, t)

∣∣)
( 1
ε

∣∣∂θw(θ, t)
∣∣+ ∣∣∂2θ w(θ, t)

∣∣+ ∣∣∂2θ 
(θ, t)
∣∣) ,

and with (4.114), we have that

∣∣∂4θ a(η(x, t), t)
∣∣ � ε−4 + 1

ε2

∣∣∂θw(η(x, t), t)
∣∣+ 1
ε

∣∣∂θw(η(x, t), t)
∣∣2 + ∣∣∂3θ w(η(x, t), t)

∣∣
+ ( 1
ε +

∣∣∂θw(η(x, t), t)
∣∣)(∣∣∂2θ w(η(x, t), t)

∣∣+ ∣∣∂2θ 
(η(x, t), t)
∣∣)

+
∫ t

−ε
∣∣∂θw(φ(φ−1(η(x, t), t), t ′), t ′)

∣∣2dt ′ .

We observe that by (4.96), (4.100), and (4.102),

∣∣∂2θ 
(η(x, t), t)
∣∣ � ε− 5

2 + ε−1∣∣∂θw(η(x, t), t)
∣∣ ,

and thus

∣∣∂4θ a(η(x, t), t)
∣∣ � ε−4 + ε− 5

2
∣∣∂θw(η(x, t), t)

∣∣+ ε−1∣∣∂θw(η(x, t), t)
∣∣2

+ ε−1∣∣∂2θ w(η(x, t), t)
∣∣

+ ∣∣∂θw(η(x, t), t)
∣∣∣∣∂2θ w(η(x, t), t)

∣∣+ ∣∣∂3θ w(η(x, t), t)
∣∣

+
∫ t

−ε
∣∣∂θw(φ(φ−1(η(x, t), t), t ′), t ′)

∣∣2dt ′ . (4.116)

4.7 Bounds on Derivatives of 3-Characteristics

4.7.1 Identities for @�
�w ◦ �

With the integrating factor It (x) defined in (4.43), the equation (4.44) is written as
w ◦ η = Itw0, and differentiation yields

∂θw ◦ η ηx = Itw
′
0 + I ′tw0 , (4.117a)

∂2θ w ◦ η η2x = Itw
′′
0 + 2I ′tw′0 + I ′′t w0 − ∂θw ◦ ηηxx , (4.117b)

∂3θ w ◦ η η3x = Itw
′′′
0 + 3I ′tw′′0 + 3I ′′t w′0 + I ′′′t w0

− 3∂2θ w ◦ ηηxηxx − ∂θw ◦ ηηxxx , (4.117c)
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∂4θ w ◦ η η4x = Itw
′′′′
0 + 4I ′tw′′′0 + 6I ′′t w′′0 + 4I ′′′t w′0 + I ′′′′t w0

− 6∂3θ w ◦ ηη2xηxx − 4∂2θ w ◦ ηηxηxxx
− 3∂2θ w ◦ ηη2xx − ∂θw ◦ ηηxxxx . (4.117d)

4.7.2 Bounds for @x�

We shall now obtain the precise rate at which ∂xη(x∗, t)→ 0 as t → T∗, as well as a
global bound for ∂xη(x, t).

Lemma 4.4 For −ε � t � T∗, at the blowup label x∗ = ε 32 y∗,
1−ε
ε
e−s � ∂xη(x∗, t) � 1+ε

ε
e−s , (4.118)

and for all labels x, we have that

sup
t ′∈[t,T∗)

∂xη(x, t
′) � t(6− 1

ε
)+ 6ε for |x − x∗| � ε2 , (4.119)

and

1
4ε � ∂xη(x, t) � 3 for |x − x∗| � ε2 . (4.120)

Proof of Lemma 4.4 Step 1. Bounds at the blowup label y∗. From (4.57) and (4.58),
we have that

∂xη(x, t) = ε− 3
2 e−

3
2 s∂y�W (y, s) , y = ε− 3

2 x . (4.121)

We will use the following identity, which may be derived from (4.58), the x-
differentiated version of (4.40a), and the y-differentiated version of (4.9):

∂y�W (y, s) = e
3
2 sε

3
2 e

∫ s
− log ε βτ ∂yW (�W (y,r),r)dr . (4.122)

We consider the blowup trajectory �W (y∗, s). For this, we decompose βτ ∂yW as

βτ ∂yW = ∂yW − (1− βτ )∂yW + βτ ∂y W̃ . (4.123)

By (4.64), |y∗| � 20κ0ε
5
2 and by (4.63), |�W (y∗, s)| � 20κ0e−

5
2 s and as such, this

unique trajectory stays in the Taylor region |y| � � for ε sufficiently small. Using the
Taylor remainder theorem, we have that ∂yW (y) = −1+b2y2, where b2 = 1

2∂
3
yW (y)

for some y between 0 and y, so that
∣∣b2− 3

∣∣ � ε2. Substitution of this expansion into
(4.123) gives

βτ ∂yW = −1+ b2y
2 − (1− βτ )∂yW + βτ ∂y W̃ . (4.124)
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Hence,

e
∫ s
− log ε βτ ∂yW (�W (y∗,r),r)dr

= 1
ε
e−seb2

∫ s
− log ε �W (y∗,r)2dr e

∫ s
− log ε(βτ−1)∂yW (�W (y∗,r),r)dr e

∫ s
− log ε βτ ∂y W̃ (�W (y∗,r),r)dr .

(4.125)

From (4.31a), (4.39), the fact that
∣∣∂yW

∣∣ � 1, and (4.63) we have that for ε small
enough,

1− ε � eb2
∫ s
− log ε �W (y∗,r)2dr e

∫ s
− log ε(βτ−1)∂yW (�W (y∗,r),r)dr e

∫ s
− log ε βτ ∂y W̃ (�W (y∗,r),r)dr

� 1+ ε ,

and therefore

1−ε
ε
e−s � e

∫ s
− log ε βτ ∂yW (�W (y∗,r),r)dr � 1+ε

ε
e−s . (4.126)

The bound (4.126) and the identity (4.122) then shows that for ε sufficiently small,

(1− ε)ε 12 e s
2 � ∂y�W (y∗, s) � (1+ ε)ε 12 e s

2 . (4.127)

It follows from (4.121) that (4.118) holds.
Step 2. A bound for ∂xη. The identity (4.46b) together with (4.45a) show that

ηx = 1+
∫ t

−ε
Iτdτw

′
0 − 8

3w0

∫ t

−ε
Iτ

∫ τ
−ε

a′ ◦ η ηxdrdτ . (4.128)

From (4.34),

|a(θ, t)| � 2κ20ε and |∂θa(θ, t)| � 2κ0 . (4.129)

Therefore, for ε taken sufficiently small, we have that

1− ε � Iτ (x) � 1+ ε . (4.130)

By (4.31a), for ε taken sufficiently small,

− 1
ε

� w′0(x) � − 1−4ε
ε

for |x − x∗| � ε2 , (4.131a)∣∣w′0(x)
∣∣ � 1

ε
for |x − x∗| � ε2 , (4.131b)

From (4.38), (4.128)–(4.130), we have that for ε taken sufficiently small,

sup
t∈[−ε,T∗)

ηx (x, t) � 5
2 + 7ε2κ20 sup

t∈[−ε,T∗)
ηx (x, t)
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and hence

sup
t∈[−ε,T∗)

ηx (x, t) � 3 (4.132)

which is the upper bound in (4.120) when |x − x∗| � ε2. We also have that from
(4.38), (4.128)–(4.130), and (4.132) that for ε taken sufficiently small,

sup
t ′∈[t,T∗)

ηx (x, t
′) � 1− 1−4ε

ε
(1− ε)(ε + t)+ 21ε2κ20 , |x − x∗| � ε2 ,

and hence

sup
t ′∈[t,T∗)

ηx (x, t
′) �

{
t(6− 1

ε
)+ 6ε |x − x∗| � ε2

3 |x − x∗| � ε2 , (4.133)

which establishes (4.119).
Notice also from (4.128) that with the bound (4.25a), for all |x − x∗| � ε2 and for

ε taken small enough,
∣∣w′0(x)

∣∣ � (1− 7ε
24 )ε

−1, and hence for all t ∈ [− log ε, T∗), we
have the lower bound

∂xη(x, t) � ε
4 ,

which gives the lower bound in (4.120). Note that here we have used that |Iτ (x)−1| �
ε2, which follows from (4.43) and (4.34a). ��

4.7.3 Bounds for @2
x�

We establish the rate at which ∂2xη(x∗, t) → 0 as t → T∗, and obtain bounds for
∂2xη(x, t) for all labels x .

Lemma 4.5 For all −ε � t � T∗, we have the decay estimate
∣∣∣∂2xη(x∗, t)

∣∣∣ � 62κ0e
−s (4.134)

and for any label x, we have the bound

∣∣∂2xη(x, t)
∣∣ �

{
8ε−1 |x − x∗| � ε2
8ε− 3

2 |x − x∗| � ε2
. (4.135)

Proof of Lemma 4.5 Step 1. A bound for ∂2xη along the blowup label x∗. Since ηx =
e
∫ t
−ε ∂θw◦ηdr , we have that

ηxx (x, t) = ηx (x, t)
∫ t

−ε
∂2θ w(η(x, t

′), t ′)ηx (x, t ′)dt ′
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= ηx (x, t)
∫ s

− log ε
e
3
2 s
′
βτWyy(�W (y, s

′), s′)ηx (x, t ′)ds′ , (4.136)

where we have used the change of variables formula together with the identity (4.7)

which shows that dt ′ = βτ e−s′ds′. By Lemma 4.3,
∣∣�W (y∗, s)

∣∣ � 20κ0e−
5
2 s and

|y∗| � 20κ0ε
5
2 , so that together with (4.31a), we have that for ε taken small enough

and for all − log ε � s′ � s,

∣∣βτWyy(�W (y∗, s′), s′)
∣∣ � 122κ0e

− 5s
2 . (4.137)

Hence, with (4.118) and the identity evaluated at the label x∗, we have that

|ηxx (x∗, t)| � 62κ0e
−s ,

which proves (4.134).
Step 2. A bound for ∂2xη for all labels x . Using the identity in (4.46c) and (4.45b), we
have that

∂2xη =
∫ t

−ε
Iτdτw

′′
0 − 16

3 w
′
0

∫ t

−ε
Iτ

∫ τ
−ε

a′ ◦ η ηxdrdτ

+ w0
∫ t

−ε
Iτ

((
8
3

∫ τ
−ε

a′ ◦ η ηxdr
)2 − 8

3

∫ τ
−ε

(
a′′ ◦ η η2x + a′ ◦ η ηxx

)
dr

)
dτ .

(4.138)

From (4.89) and (4.117),

∣∣a′′(η(x, t), t)∣∣ � 7
2

∣∣∂θw(η(x, t), t)
∣∣+ 7

ε
� 7

2 (Itw
′
0 + I ′tw0)η−1x + 7

ε
. (4.139)

It follows from (4.133) that

∣∣a′′(η(x, t), t)η2x
∣∣ � 7

2

∣∣Itw′0 + I ′tw0
∣∣ηx + 7

ε
η2x �

{
11
ε
|x − x∗| � ε2

74
ε
|x − x∗| � ε2 . (4.140)

By (4.25b) and (4.31a), for ε small enough,

∣∣w′′0(x)
∣∣ �

{
7ε−2 |x − x∗| � ε2
7ε− 5

2 |x − x∗| � ε2
. (4.141)

It follows from (4.18), (4.129)–(4.133), (4.138)–(4.141) that

(1− 7κ20ε
2) sup

t∈[−ε,T∗)

∣∣∂2xη(x, t)
∣∣ �

{
15
2 ε
−1 +O(ε) |x − x∗| � ε2

15
2 ε
− 3

2 +O(ε) |x − x∗| � ε2
,
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and thus taking ε sufficiently small,

sup
t∈[−ε,T∗)

∣∣∂2xη(x, t)
∣∣ �

{
8ε−1 |x − x∗| � ε2
8ε− 3

2 |x − x∗| � ε2
,

which proves (4.135). ��
Remark 4.6 We have shown in the proof of Lemmas 4.4 and 4.5 that for ε taken
sufficiently small,

∣∣It (x)
∣∣ � 1+ ε , (4.142a)

∣∣I ′t
∣∣ �

{
3κ0(ε + t) |x − x∗| � ε2
14κ0ε |x − x∗| � ε2 , (4.142b)

∣∣I ′′t
∣∣ �

{
64κ0 ε+tε |x − x∗| � ε2
40κ0ε−

1
2 |x − x∗| � ε2

. (4.142c)

4.7.4 Bounds for @3
x�

Lemma 4.7 For all −ε � t � T∗, we have that

sup
t∈[−ε,T∗)

∣∣∣∂3xη(x, t)
∣∣∣ �

⎧⎨
⎩
(6+ε 16 )
ε3

|x − x∗| � ε2
C
ε4

|x − x∗| � ε2
, (4.143)

and for |x − x∗| � ε2,

(ε+t)(6−ε 16 )
ε4

� ∂3xη(x, t) � 6+ε 16
ε3
. (4.144)

Proof of Lemma 4.7 We first note that the bounds (4.119) and (4.135) show that

|ηx (x, t)| �
{
t(6− 1

ε
)+ 6ε |x − x∗| � ε2

3 |x − x∗| � ε2 and

|ηxx (x, t)| �
{
8ε−1 |x − x∗| � ε2
8ε− 3

2 |x − x∗| � ε2
. (4.145)

The identities (4.45c) and (4.46d) give

∂3xη = w′′′0
∫ t

−ε
Iτdτ + 3w′′0

∫ t

−ε
I ′τdτ + 3w′0

∫ t

−ε
I ′′τ dτ

+ w0
∫ t

−ε
Iτ
(
− 512

27

(∫ τ
−ε

a′ ◦ η ηx dr
)3
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+ 64
3

(∫ τ
−ε

a′ ◦ η ηxdr
)∫ τ
−ε

(
a′′ ◦ η η2x + a′ ◦ η ηxx

)
dr

− 8
3

∫ τ
−ε

(
a′′′ ◦ η η3x + 3a′′ ◦ η ηxηxx + a′ ◦ η ηxxx

)
dr

)
dτ . (4.146)

From (4.117), we have that

∂2θ w(η(x, t), t) = η−2x (Itw
′′
0 + 2I ′tw′0 + I ′′t w0 − η−1x (w

′
0 It + I ′tw0)ηxx ) . (4.147)

From (4.103), (4.117), and (4.147),

∣∣∂3θ a(η(x, t), t)
∣∣ � ε− 5

2 + ∣∣∂2θ w(η(x, t), t)
∣∣+ ∣∣∂θw(η(x, t), t)

∣∣2 + 1
ε

∣∣∂θw(η(x, t), t)
∣∣

� ε− 5
2 + η−2x (Itw

′′
0 + 2I ′tw′0 + I ′′t w0 − η−1x (w

′
0 It + I ′tw0)ηxx )

+
∣∣∣η−1x (Itw

′
0 + I ′tw0)

∣∣∣
2 + 1

ε

∣∣∣η−1x (Itw
′
0 + I ′tw0)

∣∣∣ . (4.148)

We will use (4.131), (4.141), and the fact that by (4.23) and (4.25c),

6−ε 14
ε4

� w′′′0 (θ) � 6+ε 14
ε4

for |x − x∗| � ε2 , (4.149a)
∣∣w′′′0 (x)

∣∣ � ε−4 for |x − x∗| � ε2 . (4.149b)

Then, with (4.141), (4.142) and (4.148), we have that

∣∣a′′′(η(x, t), t)η3x
∣∣ �

{
ε−2 |x − x∗| � ε2
ε− 5

2 |x − x∗| � ε2
. (4.150)

With these bounds, and with (4.142), (4.145)–(4.148) applied to (4.146), we have
that

sup
t∈[−ε,T∗)

∣∣∣∂3xη(x, t)
∣∣∣

�

⎧⎨
⎩
(ε + ε2) (6+ε

1
4 )

ε4
+ C
ε
+ 7ε2κ20 supt∈[−ε,T∗)

∣∣∂3xη(x, t)
∣∣ |x − x∗| � ε2

Cε−4 + 7ε2κ20 supt∈[−ε,T∗)
∣∣∂3xη(x, t)

∣∣ |x − x∗| � ε2
.

(4.151)

It immediately follows that for ε small enough,

sup
t∈[−ε,T∗)

|ηxxx (x, t)| �
⎧⎨
⎩
(6+ε 16 )
ε3

|x − x∗| � ε2
C
ε4

|x − x∗| � ε2
, (4.152)

which establishes (4.143).
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For labels
∣∣x − x∗

∣∣ � ε2, we can easily see that ∂3xη(x, t) is positive. With (4.149),
we have that the first term on the right side of (4.146) has the lower bound

(ε+t)(6−ε 15 )
ε4

�
∫ t

−ε
Iτdτw

′′′
0 .

Thus,with (4.131), (4.141), (4.142), (4.145)–(4.148), in the sameway thatwe obtained
(4.151), we find that

(ε+t)(6−ε 16 )
ε4

� ∂3xη(x, t) � (6+ε 16 )
ε3
,

which establishes (4.144). ��

4.7.5 A Sharp Bound for @x� and @2
x�

Proposition 4.8 For |x − x∗| � ε2, we have that

1−ε 12
ε
(T∗ − t)+ (ε+t)(3−ε

1
8 )

ε4
(x − x∗)2 � ∂xη(x, t)

� 1+ε 12
ε
(T∗ − t)+ (3+ε

1
8 )

ε3
(x − x∗)2 ,

(4.153)

and

−7ε−2(T∗ − t)+ (ε+t)(6−2ε
1
8 )

ε4
(x − x∗) � ∂2x η(x, t)

� 7ε−2(T∗ − t)+ 6+2ε 18
ε3
(x − x∗) for x � x∗ ,

(4.154a)

−7ε−2(T∗ − t)+ 6+2ε 18
ε3
(x − x∗) � ∂2x η(x, t)

� 7ε−2(T∗ − t)

+ (ε+t)(6−2ε
1
8 )

ε4
(x − x∗) for x � x∗ . (4.154b)

Proof of Proposition 4.8 By Lemma 2.1 in [1], there exists a short time T � −ε, such
that (w, a) is a unique solution to (3.10) with initial data (w0, a0) and

(a, w) ∈ C0([−ε, T ];C4(T)) ∩ C1([−ε, T ];C3(T)) . (4.155)

By the local existence and uniqueness theorem for ODE, η ∈ C1([−ε, T ];C3(T)) ∩
C2([−ε, T ];C2(T)). Given the uniform bounds (4.143) and (4.145), the standard
continuation argument shows that

η ∈ C1([−ε, T∗],C3(T)) ∩ C2([−ε, T∗],C2(T)) .

123



Simultaneous Development of Shocks . . . Page 63 of 199    26 

By the Taylor remainder theorem, there exist a point x1 between x and x∗ and a point
t1 between t and T∗ such that

∂xη(x, t) = ∂t∂xη(x∗, T∗)(t − T∗)+ 1
2∂

3
xη(x1, t1)(x − x∗)2

+ 1
2∂

2
t ∂xη(x1, t1)(t − T∗)2

+ ∂t∂2xη(x1, t1)(t − T∗)(x − x∗) . (4.156)

Note that we have used (4.118) and (4.134) which give

∂xη(x∗, T∗) = 0 , ∂2xη(x∗, T∗) = 0 . (4.157)

From (4.46b), we have that

∂t∂xη(x, t) = It (x)w
′
0(x)+ I ′t (x)w0(x) . (4.158)

We use the bounds (4.38), (4.129)–(4.133) to find that for ε small enough,

− 1+ε 34
ε

� ∂t∂xη(x∗, T∗) � − 1−ε 34
ε
. (4.159)

Differentiation of (4.158) with respect to ∂x yields

∂t∂
2
xη = Itw

′′
0 + 2I ′tw′0 + I ′′t w0 ,

while differentiation of (4.158) with respect to ∂t gives

∂2t ∂xη = I ′t w′0 + I ′′t w0 .

We again use the bounds (4.38), (4.129)–(4.131), (4.141), and (4.142) to obtain that

∣∣∣∂2t ∂xη(x1, t1)
∣∣∣ � 50κ20 , (4.160)

∣∣∣∂t∂2xη(x1, t1)
∣∣∣ � 8ε−2 . (4.161)

From (4.144), we have that

(ε+t)(3−ε 17 )
ε4

� 1
2∂

3
xη(x1, t1) � (3+ε 17 )

ε3
. (4.162)

Since t � T∗,
∣∣x − x∗

∣∣ � ε2, and (T∗ − t)2 � 2ε2, the bounds (4.159)–(4.162)
used in the identity (4.156) show that for ε taken sufficiently small,

1−ε 12
ε
(T∗ − t)+ (ε+t)(3−ε

1
8 )

ε4
(x − x∗)2

� ∂xη(x, t) � 1+ε 12
ε
(T∗ − t)+ 3+ε 18

ε3
(x − x∗)2 ,
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which establishes (4.153).
We can again apply the Taylor remainder theorem to find that for a point x̊1 between

x and x∗ and a point t̊1 between t and T∗,

∂2xη(x, t) = ∂3xη(x̊1, t̊1)(x − x∗)+ ∂t∂2xη(x̊1, t̊1)(t − T∗) .

It then follows from (4.161) and (4.162) that (4.154) holds. ��

4.7.6 Bounds for @�w

Lemma 4.9 (Bound for ∂θw) For t ∈ [− log ε, T∗),

|∂θw(η(x, t), t)| �
{

2
(T∗−t)+3ε−3(ε+t)(x−x∗)2 |x − x∗| � ε2
5ε−2 |x − x∗| � ε2

. (4.163)

Proof of Lemma 4.9 From (4.117), we have that

∂θw(η(x, t), t) = (It (x)w′0(x)+ I ′t (x)w0(x))η−1x (x, t) . (4.164)

Using the bounds (4.18), (4.120), (4.131), (4.142), and (4.153), obtain the bound
(4.163). ��

4.7.7 Bounds for @4
x�

In order to obtain a bound for the fourth derivative of η, we shall appeal to the identity
(4.46e). Before estimating the terms on the right side of (4.46e), we first record a
useful estimate:

Lemma 4.10 For |x − x∗| � ε2 it holds that

η4x (x, t)
∫ t

−ε
∣∣∂θw(φ(φ−1(η(x, t), t), t ′), t ′)

∣∣2dt ′ � ε−1η2x (x, t) . (4.165)

Proof of Lemma 4.10 Fix a label x which is within ε2 of x∗, and a time t ∈ [−ε, T∗),
throughout the proof. In order to estimate the integral in (4.165) we use the bound
on ∂θw obtained in (4.163). Note however that this estimate is obtained when we
compose with the flow η; as such we first define the label (Fig. 8)

χ(x, t) = φ−1(η(x, t), t) , (4.166)

and then for each t ′ ∈ [−ε, t], we also define the label

q(x, t ′) = η−1(φ(χ(x, t), t ′), t ′) . (4.167)
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Fig. 8 The identity (4.168) is explained. The 3-characteristics η are shown in red and 2-characteristics φ
are shown in blue. The worst case scenario is depicted: the label x is to the left of the blowup label x∗. For
each such label x and each t ∈ [−ε, T∗), χ(x, t) denotes the label which satisfies φ(χ(x, t), t) = η(x, t).
For each t ′ ∈ [−ε, t], we define the label q(x, t ′) such that η(q(x, t ′), t ′) = φ(χ(x, t), t ′). As t ′ → t ,
q(x, t ′) → x . A particle moving up the dashed blue curve is equivalent to that particle moving by the
3-characteristic but emanating from the moving label q(x, t ′)

The definitions (4.166) and (4.167) show that

∂θw(φ(φ
−1(η(x, t), t), t ′), t ′) = ∂θw(φ(χ(x, t), t ′), t ′) = ∂θw(η(q(x, t ′), t ′), t ′) .

(4.168)

Therefore, q(x,−ε) = χ(x, t), q(x, t ′)→ x from the right as t ′ → t , while from
(4.163) we have that

∣∣∂θw(η(q(x, t ′), t ′), t ′)
∣∣ �

{
2

(T∗−t ′)+3ε−3(ε+t ′)(q(x,t ′)−x∗)2
∣∣q(x, t ′)− x∗

∣∣ � ε2

5ε−2
∣∣q(x, t ′)− x∗

∣∣ � ε2
.

(4.169)

We will assume first that x∗ ∈ [x, χ(x∗, t)]. The proof is based on decomposing the
interval [−ε, t) into three different sets

Istart = {t ′ ∈ [−ε, t) : |q(x, t ′)− x∗| � ε2 or t ′ � − 1
2ε} (4.170a)

Imiddle = {t ′ ∈ [− ε2 , t) : |q(x, t ′)− x∗| < ε2 and x∗ − 1
2 (x∗ − x) < q(x, t ′) < x∗ + ε2}

(4.170b)

Iend = {t ′ ∈ [− ε2 , t) : |q(x, t ′)− x∗| < ε2 and x � q(x, t ′) � x∗ − 1
2 (x∗ − x)} .

(4.170c)

From (4.169) we immediately have that

∫

Istart

∣∣∂θw(η(q(x, t ′), t ′), t ′)
∣∣2dt ′ �

∫ − 1
2 ε

−ε
4

(T∗ − t ′)2
dt ′ +

∫ T∗

−ε
25

ε4
dt ′

� 4

T∗ + ε2
+ 25(T∗ + ε)

ε4
� 50ε−3 (4.171)
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since T∗ = O(ε3) and ε is sufficiently small.
For the remaining two time intervals, since 1

2ε � t ′ +ε � 2ε, and |q(x, t ′)− x∗| <
ε2, we will use that

∣∣∂θw(η(q(x, t ′), t ′), t ′)
∣∣ � 1

G(x, t ′)
, where

G(x, t ′) := (T∗ − t ′)+ 3
2ε
−2(q(x, t ′)− x∗)2 . (4.172)

The second important fact that we will use frequently is that (4.153) implies

1
3εG(x, t

′) � (∂xη)(q(x, t ′), t ′) � 3
ε
G(x, t ′) . (4.173)

The third important ingredient is an estimate for the time derivative of the label q(x, t ′).
Using that η−1 solves the transport equation (∂t ′ +w∂θ )η−1 = 0, upon differentiating
(4.167) with respect to t ′ we obtain

∂t ′q(x, t
′) = ∂t ′η−1(φ(χ(x, t), t ′), t ′)+ ∂θη−1(φ(χ(x, t), t ′), t ′)∂t ′φ(χ(x, t), t ′)
= ∂t ′η−1(η(q(x, t ′), t ′), t ′)+ 2

3∂θη
−1(η(q(x, t ′), t ′), t ′)w(η(q(x, t ′), t ′))

= − 1
3∂θη

−1(η(q(x, t ′), t ′))w(η(q(x, t ′), t ′), t ′)

= −w(η(q(x, t
′), t ′), t ′)

3ηx (q(x, t ′), t ′)
. (4.174)

From the above identity, using the bounds (4.33) and (4.173) we conclude that

εκ0

20G(x, t ′)
� −∂t ′q(x, t ′) � 2εκ0

G(x, t ′)
. (4.175)

With (4.172), (4.173), and (4.175) in hand, we return to the two remaining cases
described in (4.170). First, we note that (4.175) shows that the function q(x, t ′) is
strictly decreasing, as a function of t ′, and thus when ε is sufficiently small there
exists a unique time t� ∈ [− 1

2ε, t) such that

q(x, t�) = x∗ − 1
2 (x∗ − x) .

As such, Iend = [t�, t], and Imiddle ⊂ [− 1
2ε, t

�]. Since q(x, t) = x , the fundamental
theorem of calculus, (4.175), and the definition of Iend show that

1
2 (x∗ − x) = q(x, t�)− q(x, t) =

∫ t

t�
(−∂t ′q(x, t ′))dt ′

�
∫ t

t�

2εκ0
G(x, t ′)

dt ′

� 2εκ0(t − t�)

(T∗ − t)+ 3
8ε
−2(x∗ − x)2
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� 8εκ0(t − t�)

G(x, t)
.

The purpose of the above estimate is to provide the lower bound

t − t� � 1

16εκ0
(x∗ − x)G(x, t) . (4.176)

With (4.172), (4.175) and (4.176), since Imiddle ⊂ [− 1
2ε, t

�] we may then estimate

∫

Imiddle

∣∣∂θw(η(q(x, t ′), t ′), t ′)
∣∣2dt ′ �

∫

Imiddle

1

G(x, t ′)2
dt ′

� 1

T∗ − t�

∫

Imiddle

−20∂t ′q(x, t ′)
εκ0

dt ′

� 20

εκ0
· (x∗ + ε

2)− (x∗ − 1
2 (x∗ − x))

(T∗ − t)+ 1
16εκ0
(x∗ − x)G(x, t)

� 30ε

κ0
· 1

(T∗ − t)+ 1
16εκ0
(x∗ − x)G(x, t)

� 30ε

κ0

{ 1
G(x,t) , if G(x, t) � 24κ0ε−1(x∗ − x)
400κ20
G(x,t)2

, if G(x, t) < 24κ0ε−1(x∗ − x)

� 12000εκ0
G(x, t)2

� 108000κ0
εηx (x, t)2

, (4.177)

where in the second-to-last inequality we have used that 0 < G(x, t) � ε, and in
the last inequality we have appealed to (4.173). Lastly, since Iend = [t�, t], a similar
argument and the bound (4.173) shows that

∫

Iend

∣∣∂θw(η(q(x, t ′), t ′), t ′)
∣∣2dt ′ �

∫

Iend

1

G(x, t ′)2
dt ′

� 1

(T∗ − t)+ 3
8ε
−2(x∗ − x)2

∫ t

t�

−20∂t ′q(x, t ′)
εκ0

dt ′

� 40

εκ0G(x, t)

(
(x∗ − 1

2
(x∗ − x))− x

)

� 20(x∗ − x)

εκ0G(x, t)
� 60(x∗ − x)

ε2κ0ηx (x, t)
� 60

κ0ηx (x, t)
.

(4.178)

Combining (4.171), (4.177), and (4.178), we arrive at

η4x (x, t)
∫ t

−ε
∣∣∂θw(φ(φ−1(η(x, t), t), t ′), t ′)

∣∣2dt ′
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� ε−3η4x (x, t)+ ε−1η2x (x, t)+ η3x (x, t) ,

and then by appealing to the first case in (4.119), concludes the proof of the lemma in
the case that x∗ > x .

For the other case, x∗ < x , we have that (q(x, t ′)− x∗)2 � (x − x∗)2, and then we
simply have

∫

[−ε,t)\Istart

∣∣∂θw(η(q(x, t ′), t ′), t ′)
∣∣2dt ′ �

∫ t

−ε
1

((T∗ − t ′)+ 3
2ε
−2(x∗ − x)2)2

dt ′

� 1

(T∗ − t)+ 3
2ε
−2(x∗ − x)2

� 3

ε∂xη(x, t)
(4.179)

in light of the definition of G and of (4.173). The estimate (4.165) follows as before
(it is in fact better in this case). ��
Lemma 4.11 For labels x, we have that

sup
t∈[−ε,T∗)

∣∣∣∂4xη(x, t)
∣∣∣ �

⎧
⎪⎨
⎪⎩

3ε− 31
8 |x − x∗| � ε3

363ε−4 |x − x∗| � ε2
Cε− 9

2 |x − x∗| � ε2
, (4.180)

where Cε denotes a positive constant that depends on inverse powers of ε.

Proof of Lemma 4.11 We shall first consider the case that the label x satisfies
|x − x∗| � ε2. The identity (4.117) shows that

∂3θ w(η(x, t), t) = η−3x (Itw
′′′
0 + 3I ′sw′′0 + 3I ′′t w′0 + I ′′′t w0)

− 3η−4x ηxx (Itw
′′
0 + 2I ′tw′0 + I ′′t w0 − η−1x (w

′
0 It + I ′tw0)ηxx )

− η−4x ηxxx (Itw
′
0 + I ′tw0) . (4.181)

We next use the inequality (4.116) together with the identities (4.164), (4.181), and
(4.147),

∣∣∂4θ a(η(x, t), t)
∣∣ � ε−4 + ε−2∣∣η−1x (Itw

′
0 + I ′tw0)

∣∣+ 1
ε

∣∣η−1x (Itw
′
0 + I ′tw0)

∣∣2
+ 1
ε

∣∣η−2x (Itw
′′
0 + 2I ′tw′0 + I ′′t w0 − η−1x (w

′
0 It + I ′tw0)ηxx )

∣∣
+ ∣∣η−1x (Itw

′
0 + I ′tw0)

∣∣∣∣η−2x (Itw
′′
0 + 2I ′tw′0

+ I ′′t w0 − η−1x (w
′
0 It + I ′tw0)ηxx )

∣∣
+ ∣∣ η−3x (Itw

′′′
0 + 3I ′tw′′0 + 3I ′′t w′0 + I ′′′t w0)

∣∣
+ 3

∣∣η−4x ηxx (Itw
′′
0 + 2I ′tw′0 + I ′′t w0 − η−1x (w

′
0 It + I ′tw0)ηxx )

∣∣
+ ∣∣η−4x ηxxx (Itw

′
0 + I ′tw0)

∣∣
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+
∫ t

−ε
∣∣∂θw(φ(φ−1(η(x, t), t), t ′), t ′)

∣∣2dt ′ . (4.182)

By (4.22) and (4.25c), for ε sufficiently small, we have that

∣∣w′′′′0 (θ)
∣∣ � 2ε−

39
8 for |x − x∗| � ε3 , (4.183a)∣∣w′′′′0 (θ)

∣∣ � 361ε−5 for |x − x∗| � ε2 , (4.183b)
∣∣w′′′′0 (x)

∣∣ � ε− 11
2 for |x − x∗| � ε2 . (4.183c)

Using the identity (4.45c) together with (4.140), (4.143), (4.145), (4.150)

∣∣I ′′′t
∣∣ �

{
ε−1 |x − x∗| � ε2
ε−3 |x − x∗| � ε2 . (4.184)

Then, with (4.142) and (4.131), (4.141), (4.149), (4.165), and (4.182), we have that
for ε taken sufficiently small,

∣∣∂4θ a(η(x, t), t)η4x
∣∣ �

{
ε−4 |x − x∗| � ε2
ε−7 |x − x∗| � ε2 . (4.185)

Using the identities (4.45d) and (4.46e), we have that

∂4xη = w′′′′0
∫ t

−ε
Iτdτ + 4w′′′0

∫ t

−ε
I ′τdτ + 6w′′0

∫ t

−ε
I ′′τ dτ + 4w′0

∫ t

−ε
I ′′′τ dτ

+ w0
∫ t

−ε
Iτ

(
4096
81

(∫ τ
−ε

a′ ◦ η ηx dr
)4

− 1024
9

(∫ τ
−ε

a′ ◦ η ηxdr
)2 ∫ τ

−ε
(
a′′ ◦ η η2x + a′ ◦ η ηxx

)
dr

+ 64
3

(∫ τ
−ε
(a′′ ◦ η η2x + a′ ◦ η ηxx )dr

)2

+ 256
9

(∫ τ
−ε

a′ ◦ η ηxdr
)(∫ τ

−ε
(a′′′ ◦ η η3x + 3a′′ ◦ η ηxηxx + a′ ◦ η ηxxx )dr

)

− 8
3

∫ τ
−ε

(
a′′′′ ◦ η η4x + 6a′′′ ◦ η η2xηxx + 3a′′ ◦ η η2xx

+ 4a′′ ◦ η ηxηxxx + a′ ◦ η ηxxxx
)
dr

)
dτ .

Notice that from (4.153) and (4.154), for |x − x∗| � ε2, we have that

η−1x η
2
xx � 100ε−3 .
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Then, together with the bounds (4.139), (4.140), (4.142), (4.145)–(4.150), (4.153),
(4.154), (4.183)–(4.185), and with (4.142), (4.145)–(4.148), we find that for ε suffi-
ciently small,

sup
t∈[−ε,T∗)

∣∣∣∂4xη(x, t)
∣∣∣ �

⎧⎪⎨
⎪⎩

5
2ε
− 31

8 + 7ε2κ20 supt∈[−ε,T∗)
∣∣∂4xη(x, t)

∣∣ |x − x∗| � ε3
362ε−4 + 7ε2κ20 supt∈[−ε,T∗)

∣∣∂4xη(x, t)
∣∣ |x − x∗| � ε2

Cε− 9
2 + 7ε2κ20 supt∈[−ε,T∗)

∣∣∂4xη(x, t)
∣∣ |x − x∗| � ε2

,

(4.186)

and hence

sup
t∈[−ε,T∗)

∣∣∣∂4xη(x, t)
∣∣∣ �

⎧⎪⎨
⎪⎩

3ε− 31
8 |x − x∗| � ε3

363ε−4 |x − x∗| � ε2
Cε− 9

2 |x − x∗| � ε2
, (4.187)

which proves (4.180). ��

4.8 C4 Regularity Away from the Blowup

Lemma 4.12 For labels x, we have that

sup
t∈[−ε,T∗)

max
γ�4

(∣∣∂γθ a(η(x, t), t)
∣∣+ ∣∣∂γθ w(η(x, t), t)

∣∣)

�
{
Cε

(
(T∗ − t)+ 3ε−3(ε + t)(x − x∗)2

)−4 |x − x∗| � ε2
Cε |x − x∗| � ε2

, (4.188)

where Cε denotes a generic positive constant depending on inverse powers of ε.

Proof of Lemma 4.12 We use the identities (4.117) for ∂γθ w ◦ η. The bounds on the
initial data (4.131), (4.141), (4.149), (4.183), the bounds on derivatives of η given
in (4.119), (4.135), (4.143), (4.153), (4.154), and (4.180), the bounds on It and its
derivatives given in (4.142) and (4.184) prove the stated bound for ∂γθ w ◦η in (4.188).

The additional inequalities (4.34), (4.139), (4.148), and (4.182) then proved the
stated bound for ∂γθ a ◦ η in (4.188). ��
Proposition 4.13 (Taylor expansion for η(x, t)) The 3-characteristics η satisfy

η ∈ C1([−ε, T∗],C4(T)) ,

and at the blowup time, η(x, T∗) has the Taylor expansion about x∗ given by

η(x, T∗) = η(x∗, T∗)+ 1
6∂

3
xη(x∗, T∗)(x − x∗)3 + 1

6∂
4
xη(x, T∗)(x − x∗)4 , (4.189)

for some x between x∗ and x.
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Proof of Proposition 4.13 By Lemma 2.1 in [1], there exists a short time T � −ε, such
that (w, a) is a unique solution to (3.10) with initial data (w0, a0) and

(a, w) ∈ C0([−ε, T ];C4(T)) . (4.190)

for any open set U which does not intersect ξ∗. By the local existence and unique-
ness theorem for ODE, η ∈ C1([−ε, T ];C4(T)). Given the uniform bounds (4.119),
(4.135), (4.143), and (4.180), the standard continuation argument shows that

η ∈ C1([−ε, T∗],C4(T)) .

The Taylor remainder theorem provides the expansion (4.189). ��

4.9 Newton Iteration to Solve Quartic Equations in a Fractional Series

We wish to invert the polynomial equation η(x, T∗) = z. As given by (4.156), this
requires inversion of a quartic polynomial. We shall derive the root that yields a
Hölder- 13 solution for η−1(·, T∗) and satisfies η−1(ξ∗, T∗) = x∗.

Lemma 4.14 (Quartic inversion) If

f (x, y) = −x + a3y
3 + a4y

4 ,

and a3 > 0, then the solution y(x) to f (x, y) = 0 such that y(0) = 0 is given by the
fractional power-series

y(x) = a
− 1

3
3 x

1
3 − 1

3a4a
− 5

3
3 x

2
3 + 1

3a
−3
3 a24x +O(|x | 43 ) . (4.191)

Proof of Lemma 4.14 We will first obtain an approximate solution using the Newton
polygon method. Each term of the polynomial f (x, y) is written as cxa yb, and the
Newton polygon for f (x, y) is constructed as the smallest convex polygonal set that
contains the points be1 + ae2. This polygon consists of a finite set of segments, and
we consider the segment �1, such that each of the points (b, a) = be1 + ae2 is either
above or to the right of this segment.

We will construct a fractional-series solution to f (x, y) = 0 as

y(x) = c1x
γ1 + c2x

γ1+γ2 + c3x
γ1+γ2+γ3 + · · · . (4.192)

Thefirst fractional powerγ1 is chosen asminus the slope of�1. For−x+a3y3+a4y4 =
0, the points (b, a) are given by (0, 1), (3, 0), and (4, 0), and thus it is easy to see
that the two lower segments of the Newton polygon have slopes − 1

3 and 0, but that
the segment with slope 0 exists only if a4 
= 0. We first consider the segment �1 with

slope − 1
3 , in which case γ1 = 1

3 . We thus factor x
1
3 from (4.192), and write

y(x) = x
1
3 (c1 + y1(x)) , y1(x) = c2x

γ2 + c3x
γ2+γ3 + · · · .
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We compute

f (x, x
1
3 (c1 + y1)) = −x + a3x(c1 + y1)

3 + a4x
4
3 (c1 + y1)

4 .

The coefficient of the monomial x must equal to zero, so we can determine c1:

x(−1+ a3c
3
1) = 0 �⇒ c1 = a−

1/3
3 .

We next define f1(x, y1) = x−α1 f (x, x 1
3 (c1+ y1))where α1 is the intersection of the

segment �1 and the vertical a-axis, so that α1 = 1. We have that

f1(x, y1) = x−1 f (x, x
1
3 (a−

1/3
3 + y1))

= a4a
−4/3
3 x

1
3 + 3a

1/3
3 y1 + 4a4a

−1
3 x

1
3 y1

+ 3a
2/3
3 y21 + 6a4a

−2/3
3 x

1
3 y21 + a3y

3
1 + 4a4a

− 1
3

3 x
1
3 y31 + a4x

1
3 y41 .

The Newton polygon for f1(x, y1) = 0 shows that the segment �2, whose slope is
equal to minus the exponent γ2, connects the points (0, 13 ) and (1, 0), so that γ2 = 1

3 .
We next write

y1(x) = x
1
3 (c2 + y2(x)) , y2(x) = c3x

γ3 + c4x
γ3+γ4 + · · · .

We compute f1(x, x
1
3 (c2 + y2)) and cancel the coefficients in the lowest-order term

to find that c2 = − 1
3a4a

− 5
3

3 . We then define

f2(x, y2) = x−α2 f1(x, x
1
3 (c2 + y2)) = x−

1
3 f1(x, x

1
3 (− 1

3a4a
− 5

3
3 + y2)) ,

where α2 = 1
3 is the a-intercept for the segment �2. A computation reveals that

f2(x, y2) = −a24a−
8
3

3 x
1
3 + 3a

1
3
3 y2 + o(|x | 13 ) ,

and the Newton polygon for f2(x, y) shows that the exponent γ3 = 1
3 , which in turn

shows that y2(x) = Cx
1
3 + · · ·. Continuing one more step in the iteration to f3(x, y3)

(whose details we omit), we find that C = 1
3a
−3
3 a24 . We thus determined the first two

non-trivial terms of this fractional series expansion (4.191). The result follows by an
application of the implicit function theorem to the approximate solution that we have
just determined.

We now return to the case in which the first fractional power uses the segment of
the Newton polygon with slope 0. In this case, we begin the iteration with γ1 = 0, we

find that y(x) = − a3
a4
− a24

a33
x +O(x2). Note however that y(0) 
= 0 in this case. ��
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4.10 Proof of Theorem 4.1

Having established the expansion for η(x, T∗) we can now prove the main result of
this section.

Proof of Theorem 4.1 We consider labels x satisfying |x − x∗| � ε3. By Proposition
4.13, we have that η(x, T∗) has the Taylor series expansion (4.156), which we write
again as

η(x, T∗) = ξ∗ + 1
6∂

3
xη(x∗, T∗)(x − x∗)3 + 1

24∂
4
xη(x, T∗)(x − x∗)4 , (4.193)

where ξ∗ = η(x∗, T∗), and x is a point between x∗ and x . By (4.144), the coefficient
for the cubic monomial cannot vanish:

1
6∂

3
xη(x∗, T∗) � 6−ε 16

ε3
> 0 . (4.194)

Setting η(x, T∗) = θ , we find that

1
6 (x − x∗)3∂3xη(x∗, T∗)+ 1

24 (x − x∗)4∂4xη(x, T∗) = θ − ξ∗ .

We define the constants6

α1 =
( 6
∂3x η(x∗,T∗)

) 1
3 > 0 , (4.195a)

α2 = − 1
3
∂4x η(x,T∗)

24

( 6
∂3x η(x∗,T∗)

) 5
3 , (4.195b)

α3 = 1
3

( 6
∂3x η(x∗,T∗)

)3( ∂4x η(x,T∗)
24

)2
, (4.195c)

where clearly the positivity condition (4.195a) is merely a restatement of (4.194).
Using Lemma 4.14, we have that

x − x∗ = α1(θ − ξ∗) 13 + α2(θ − ξ∗) 23 + α3(θ − ξ∗)+O(|θ − ξ∗| 43 ) (4.196)

We define the function

I(x) = − 8
3

∫ T∗

−ε
a(η(x, r), r)dr .

6 Note that, as defined by (4.195), α2 and α3 actually depend on x through the intermediate point x , and
thus are not truly “constants”. Nevertheless, in our proof we need only upper and lower bounds on α2 and
α3 which are independent of x , bounds which are indeed available here; no information on the regularity
of these functions with respect to x is needed. The same comment applies to b3 defined in (4.199). It is
however crucial that α1, b1 and b2 are independent of x , which holds true. We emphasize that since the
initial data (w0, a0) is taken to be C5 smooth instead of just C4, we may use arguments similar to those
in Lemma 4.11 and Lemma 4.12 to show that η, w ◦ η, and a ◦ η are in fact bounded uniformly in time
with values in W 5,∞; as such the expansion (4.193) can be developed to fifth order, and this does make
α1, α2, b3 constant in x . We omit these computations which do not require new ideas but are quite involved,
and instead refer to the paper [16] for these details (the paper [16] includes these details even when z and
k do not vanish identically).
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Taylor expanding w0(x) about x∗ in the identity (4.44), we have that

w(η(x, t), T∗) = eI(x)w0(x)

= eI(x)
(
w0(x∗)+ ∂xw0(x∗)(x − x∗)+ 1

2∂
2
xw0(x∗)(x − x∗)2

+ 1
6∂

3
xw0(x∗)(x − x∗)3 + 1

24∂
4
xw0(x)(x − x∗)4

)
, (4.197)

for some x between x∗ and x .
By Proposition 4.13, a ◦ η ∈ C4, so we can apply the Taylor remainder theorem to

the function eI(x), expanding about about x∗, and obtain

eI(x) = eI(x∗)
(
1+ I′(x∗)(x − x∗)+ 1

2 (I
′(x∗)2 + I′′(x∗))(x − x∗)2

+ 1
6 (I
′(̂x)3 + 3I′(̂x)I′′(̂x)+ I′′′(̂x))(x − x∗)3

)
, (4.198)

where x̂ is a point between x∗ and x . To simplify notation, we define the constants

b1 = I′(x∗) , b2 = 1
2 (I
′(x∗)2 + I′′(x∗)) , b3 = 1

6 (I
′(̂x)3 + 3I′(̂x)I′′(̂x)+ I′′′(̂x)) ,

(4.199)

and write (4.198) as

eI(x) = eI(x∗)
(
1+ b1(x − x∗)+ b2(x − x∗)2 + b3(x − x∗)3

)
. (4.200)

From (4.197) and (4.200), we have that

w(η(x, t), T∗) =eI(x∗)
(
1+ b1(x − x∗)+ b2(x − x∗)2 + b3(x − x∗)3

)
(
w0(x∗)+∂xw0(x∗)(x − x∗)

+ 1
2 ∂

2
xw0(x∗)(x − x∗)2 + 1

6∂
3
xw0(x∗)(x − x∗)3 + 1

24∂
4
xw0(x)(x − x∗)4

)

= eI(x∗)
(
w0(x∗)+

(
b1w0(x∗)+ ∂xw0(x∗)

)
(x − x∗)

+ (
b2w0(x∗)+ b1∂xw0(x∗)+ 1

2 ∂
2
xw0(x∗)

)
(x − x∗)2

+ (
b3w0(x∗)+ b2∂xw0(x∗)+ 1

2b1∂
2
xw0(x∗)

+ 1
6∂

3
xw0(x∗)

)
(x − x∗)3

)
+O(|x − x∗|4) . (4.201)

We define the constants

B1 = b1w0(x∗)+ ∂xw0(x∗) , (4.202a)

B2 = b2w0(x∗)+ b1∂xw0(x∗)+ 1
2∂

2
xw0(x∗) , (4.202b)

B3 = b3w0(x∗)+ b2∂xw0(x∗)+ 1
2b1∂

2
xw0(x∗)+ 1

6∂
3
xw0(x∗) , (4.202c)
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and

κ∗ = eI(x∗)w0(x∗) ,

and thus

w(η(x, t), T∗) = κ∗ + eI(x∗)
(
B1(x − x∗)+ B2(x − x∗)2 + B3(x − x∗)3

)

+O(|x − x∗|4) . (4.203)

With θ = η(x, T∗) as before, it follows from (4.196) that

w(θ, T∗) = κ∗ + eI(x∗)
(
α1B1(θ − ξ∗) 13 +

(
α2B1 + α21B2

)
(θ − ξ∗) 23

+ (
α3B1 + 2α1α2B2 + α31B3

)
(θ − ξ∗)

)
+O(|θ − ξ∗| 43 ) , (4.204)

We can now define the constants a1, a2, and a3 in (4.2) as follows:

a1 = eI(x∗)α1B1 , (4.205a)

a2 = eI(x∗)(α2B1 + α21B2) , (4.205b)

a3 = eI(x∗)(α3B1 + 2α1α2B2 + α31B3) . (4.205c)

We note that by Lemma 4.7,

9
10ε � α1 � 11

10ε , |α2| � ε
9
8 , |α3| � ε 54 . (4.206)

Furthermore, since by (4.19), w0(0) − κ0 = 0, and we assume the inequality (4.23),
we see that since

∣∣x∗
∣∣ � 2κ0ε4, we have that

κ0 − 2ε
5
2 � w0(x∗) � κ0 + 2ε

5
2 , (4.207)

and from (4.137)

− 1+ε
ε

� ∂xw0(x∗) � − 1−ε
ε
, |∂2xw0(x∗)| � 7ε

1
2 . (4.208)

From (4.199) and (4.26), we see that b1, b2, and b3 are O(ε). Using (4.202) together
with (4.207) and (4.208), we find that

− 1+ε
ε
− ε 9

10 � B1 � − 1−ε
ε
+ ε 9

10 , |B2| � 4ε
1
2 .

Together with (4.205) and (4.206), we have that for ε taken small enough,

− 6
5 � a1 � − 4

5 ,
∣∣a2

∣∣ � ε 18 � ε 1
10 ,

∣∣a3
∣∣ � 7

6ε .
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Let us now follow the same argument that we used above to produce an expansion
for wx (η(x, T∗), T∗). We see that

∂θw(η(x, t), T∗)ηx (x, T∗) = eI(x)
(
w′0(x)+ I′(x)w0(x)

)

= eI(x)
(
∂xw0(x∗)(x − x∗)+ ∂2xw0(x∗)(x − x∗)

+ 1
2∂

3
xw0(x∗)(x − x∗)2

+ 1
6∂

4
xw0(x)(x − x∗)3

)

+ eI(x)I′(x)
(
w0(x∗)+ ∂xw0(x∗)(x − x∗)

+ 1
2∂

2
xw0(x∗)(x − x∗)2 + 1

6∂
3
xw0(x∗)(x − x∗)3

+ 1
24∂

4
xw0(x)(x − x∗)4

)
, (4.209)

where x lies between x and x∗. In addition to (4.200), we shall need the expansion of
eI(x)I′(x) and we continue to use b1, b2, b3 defined in (4.199) and write

eI(x)I′(x) = eI(x∗)
(
b1 + 2b2(x − x∗)+ 3b3(x − x∗)2

)
, (4.210)

We can then write

∂θw(η(x, t), T∗)ηx (x, T∗) = eI(x∗)
(
b1w0(x∗)+ ∂xw0(x∗)

+ (
2b2w0(x∗)+ 2b1∂xw0(x∗)+ ∂2xw0(x∗)

)
(x − x∗)

+ 1
2

(
6b3w0(x∗)+ 6b2∂xw0(x∗)+ 3b1∂

2
xw0(x∗)+ ∂3xw0(x∗)

)

(x − x∗)2 +O(|x − x∗|3)
)
. (4.211)

With the expansion ηx (x, T∗) is written as

ηx (x, T∗) = 1
2∂

3
xη(x∗, T∗)(x − x∗)2 + 1

6∂
4
xη(x̊, T∗)(x − x∗)3 (4.212)

for some x̊ ∈ (x, x∗). Therefore, with (4.211), we have that

∂θw(η(x, t), T∗) = eI(x∗)
(
b1w0(x∗)+ ∂xw0(x∗)

+ (
2b2w0(x∗)+ 2b1∂xw0(x∗)+ ∂2xw0(x∗)

)
(x − x∗)

+ 1
2

(
6b3w0(x∗)+ 6b2∂xw0(x∗)

+ 3b1∂
2
x (x∗)+ ∂3xw0(x∗)

)
(x − x∗)2 +O(|x − x∗|3)

)

×
(
1
2∂

3
xη(x∗, T∗)(x − x∗)2 + 1

6∂
4
xη(x̊, T∗)(x − x∗)2

)−1
.

(4.213)
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Another expansion of the right side of (4.213) gives

∂θw(η(x, t), T∗) = eI(x∗)
(
d−2(x − x∗)−2 + d−1(x − x∗)−1 + d0

)
+O(|x − x∗|) ,

(4.214)

where

d−2 = 2(b1w0(x∗)+∂xw0(x∗))
∂3x η(x∗,T∗)

,

d−1 = 2
(
2b2w0(x∗)+2b1∂xw0(x∗)+∂2xw0(x∗)

)
∂3x η(x∗,T∗)

− 2
(
b1w0(x∗)+∂xw0(x∗)

)
∂4x η(x̊,T∗)

∂3x η(x∗,T∗)2
,

d0 = 6b3w0(x∗)+6b2∂xw0(x∗)+3b1∂2xw0(x∗)+∂3xw0(x∗)
∂3x η(x∗,T∗)

− 2
(
2b2w0(x∗)+2b1∂xw0(x∗)+∂2xw0(x∗)

)
∂4x η(x̊,T∗)

3∂3x η(x∗,T∗)2

+ 2
(
b1w0(x∗)+∂xw0(x∗)

)
∂4x η(x̊,T∗)

9∂3x η(x∗,T∗)3
.

By substituting (4.196) into (4.214), we obtain that

∣∣∣∂θw(θ, T∗)− eI(x∗)α−21 d−2z−
2
3 − eI(x∗)

(
α−11 d−1 − 2α−31 α2d−2

)
z−

1
3

∣∣∣
� 2eI(x∗)

(
d0 − α−21 α2d−1 + (3α22 − 2α1α3)α

−4
1 d−2

)
. (4.215)

Notice from (4.195a), (4.202a), (4.205a) that since

a1 = eI(x∗)
( 6
∂3x η(x∗,T∗)

) 1
3
(
b1w0(x∗)+ ∂xw0(x∗)

)
,

and since

eI(x∗)α−21 d−2 = 2eI(x∗)
( 6
∂3x η(x∗,T∗)

)− 2
3
(
b1w0(x∗)+∂xw0(x∗)
∂3x η(x∗,T∗)

)

= 1
3e

I(x∗)( 6
∂3x η(x∗,T∗)

) 1
3
(
b1w0(x∗)+ ∂xw0(x∗)

) = 1
3a1 ,

A similar computation shows that

eI(x∗)
(
α−11 d−1 − 2α−31 α2d−2

) = 2
3a2 .

As such, we have established the inequality

∣∣∣∂θw(θ, T∗)− 1
3a1(θ − ξ∗)−

2
3 − 2

3a2(θ − ξ∗)−
1
3

∣∣∣ � Cm , (4.216)
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where

Cm = 2eI(x∗)
(
d0 − α−21 α2d−1 + (3α22 − 2α1α3)α

−4
1 d−2

)
,

satisfies
∣∣Cm

∣∣ � 1
ε
. The inequality (4.216) and the bound for Cm establishes (4.4a).

From (4.209), we see that

∂2θ w(η(x, T∗), T∗)η2x (x, T∗) = −∂θ (η(x, T∗), T∗)ηxx (x, T∗)
+ eI(x)

(
w′′0(x)+ 2I ′(x)w′(x)+ I′′(x)w0(x)

)
.

(4.217)

In addition to the expansion (4.212), we shall also need the fact that

ηxx (x, T∗) = ∂3xη(x∗, T∗)(x − x∗)+ 1
2∂

4
xη(̊x̊, T∗)(x − x∗)2

for some ˚̊x ∈ (x, x∗). After a lengthy computation, we find that

∣∣∣∂2θ w(θ, T∗)− 2
9a1(θ − ξ∗)−

5
3

∣∣∣ � Cm(θ − ξ∗)− 4
3 , (4.218)

where

∣∣Cm
∣∣ � ε− 63

8 ,

which establishes (4.4b).
Finally, from (4.217), we see that

∂3θ w(η(x, T∗), T∗)η3x (x, T∗) = −3∂2θ w(η(x, T∗), T∗)ηx (x, T∗)ηxx (x, T∗)
− ∂θw(η(x, T∗), T∗)ηxxx (x, T∗)
+ eI(x)

(
w′′′0 (x)

+ 3I ′(x)w′′(x)+ 3I ′′(x)w′(x)+ I′′′(x)w0(x)
)
.

(4.219)

We make use of one further expansion given by

∂3xη(x, T∗) = ∂3xη(x∗, T∗)+ ∂4xη(̊ ˚̊x, T∗)(x − x∗)

for some˚̊x̊ ∈ (x, x∗). A final lengthy computation shows that

∣∣∣∂3θ w(θ, T∗)
∣∣∣ � ε− 151

8
∣∣θ − ξ∗

∣∣− 8
3 , (4.220)

which establishes (4.4c).
The estimates (4.5) are established by (4.188). The bounds (4.6) for the spe-

cific vorticity are established in (4.81) and (4.87). From (4.79) we have that
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sup[0,T∗) ‖a(·, t)‖L∞ � 3
2ε. From (4.2), we have that w(·, T∗) ∈ C

1
3 (T); therefore,

since ∂xa = w2

16
 − w, by (4.33) and (4.81), we have that a(·, T∗) ∈ C1, 13 (T) which
gives the regularity statement in (4.1). The bounds for 
 are given in (4.81), and for
∂x
 in (4.87). ��

5 Shock Development

In this section we consider the system (3.5)–(3.6), with pre-shock initial datum as
obtained in Section 4, and consider the associated development problem. The main
result is Theorem 5.5 below.

5.1 Initial Data for Shock Development Comes from the Pre-shock

Theorem 4.1 guarantees the finite time formation of a first singularity for the
(w, z, a, k) system (3.5) at (θ, t) = (ξ∗, T∗); more precisely, the first Riemann variable

w forms a C
1
3 pre-shock as described in (4.2), z and k remain equal to 0 (their initial

datum), while the function a retains C1, 13 regularity at the time that the pre-shock
forms.

The initial data for the development problem is provided by Theorem 4.1. For the
remainder of paper, it is convenient to change coordinates so that the pre-shock occurs
at θ = 0 (instead of ξ∗), at time t = 0 (instead of T∗). The initial condition for the first
Riemann variable thus is w0(θ) = w(θ − ξ∗, T∗), with the latter function being given
by (4.2). In particular, we have that w0 satisfies the quantitative estimates

w0(θ) � m (5.1a)

w0(θ) � 1
2κ (5.1b)

∣∣w0(θ)− κ + bθ
1
3 − cθ

2
3
∣∣ � m |θ | , (5.1c)

∣∣w′0(θ)+ 1
3bθ

− 2
3 − 2

3cθ
− 1

3
∣∣ � m , (5.1d)

∣∣w′′0(θ)− 2
9bθ

− 5
3
∣∣ � m|θ |− 4

3 , (5.1e)
∣∣w′′′0 (θ)

∣∣ � m |θ |− 8
3 , (5.1f)

for all θ ∈ T, where κ,m � 1,b > 0, and c ∈ R are suitable constants given as
follows. In light of (4.2) and (4.4), we identify κ = κ∗, b = −a1, c = a2, while
the constant m is taken to be sufficiently large, in terms of the large parameters κ0
and ε−1 from Theorem 4.1. Note however that (4.2) and (4.4) only give the bounds
(5.1c)–(5.1f) for θ in a ε-dependent ball around 0 (of radius ε4, recall that we have
mapped ξ∗ �→ 0), whereas in (5.1) we require that these bounds hold for all θ ∈ T. We
note however that for |θ |which is at a fixed positive distance away from 0, the bounds
(5.1c)–(5.1f) follow once m is chosen to be sufficiently large with respect to κ0 and
ε−1; this is because the bounds (4.5) imply uniformC4 regularity once a fixed distance
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from the pre-shock is chosen. Indeed, (4.5), (4.119), (4.120), and (4.153) show that
for |θ | � ε4, there exists a constant Cε > 0 such that |∂γθ w0(θ)| � Cε for 0 � γ � 4.

We also note that by (4.37) and (4.3) the coefficients in (5.1) satisfy the conditions

|κ − κ0| � ε3 , 1
2 � b � 2 , |c| � ε 12 ,

where we recall that κ0 > 1 was chosen sufficiently large. In order to simplify our
argument we shall frequently use the relations

|c| 	 b � 2 and 4 � κ 	 m . (5.2)

In particular, we shall use that m sufficiently large with respect to κ: if C > 0 is a

universal constant (independent of κ,b, c,m), then κC � m
1
10 . Similarly, we shall

use that |c| is sufficiently small with respect to b, so that Cb|c| � 1.
The initial conditions for the second Riemann variable and the entropy function are

given by

z0(θ) ≡ 0 , and k0(θ) ≡ 0 . (5.3)

Lastly, in view of Theorem 4.1 we identify a0(θ) = a(θ − ξ∗, T∗) ∈ C1, 13 and

0(θ) = 
(θ − ξ∗, T∗) ∈ C1. In particular, due to (4.79) and (4.83),

‖a0‖W 1,∞(T) � 3
2κ , (5.4)

and due to (4.6), we have that

10
κ

� 
0(θ) � 28
κ

and
∣∣
 ′0(x)

∣∣ � m , (5.5)

for all θ ∈ T.

Remark 5.1 (The small parameter ε and the large constant C) Throughout Sections 5
and 6, we shall denote by C = C(κ,b, c,m) � 1 a generic constant, which only
depends on the parameters κ,b, c, and m, which appear in (5.1), and which may
increase from line to line. We shall also denote by ε = ε(κ,b, c,m) ∈ (0, 1] a
sufficiently small constant, which only depends on the parameters κ,b, c, and m.
Note that the parameter ε is not the same as the parameter ε in Section 4.

5.2 Definitions

Definition 5.2 (Jump, mean, left value, right value, domain) Given a smooth curve
s : [0, T ] → T, we shall denote

DT = (T× [0, T ]) \ (s(t), t)t∈[0,T ] (5.6)
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the space-time domainwhich excludes a shock curve. Given any function f : DT → R

we denote the left and right values of f at s as

f−(t) = lim
θ→s(t)−

f (θ, t) and f+(t) = lim
θ→s(t)+

f (θ, t) . (5.7)

We denote the jump of f across s by

[[ f ]] = [[ f (t)]] = f−(t)− f+(t) , (5.8)

and the mean of f at s by

〈〈 f 〉〉 = 〈〈 f (t)〉〉 = 1
2 ( f−(t)+ f+(t)) , (5.9)

for all t ∈ [0, T ]. The dependence of f−, f+, [[ f ]], and DT on the curve s is not
displayed.

Next, we define a space XT which will be used for the construction of unique
solutions.

Definition 5.3 (Functional space for shock emanating fromC1/3 pre-shock) Letm > 1
be as in (5.2). Given T > 0 and a curve s : [0, T ] → T, define the norm

|||(v, z, k, a)|||T = sup
(θ,t)∈DT

max
{
t−1(50m2)−1 |v(θ, t)| ,

m−3
(
b3t3 + (θ − s(t))2

) 1
6 |∂θv(θ, t)| ,

m−1t−
3
2 |z(θ, t)| ,m−1t− 1

2 |∂θ z(θ, t)| ,m− 1
2 t−

3
2 |k(θ, t)| ,

m−
1
2 t−

1
2 |∂θk(θ, t)| , (4m)−1 |a(θ, t)| , (4m)−1 |∂θa(θ, t)|

}

(5.10)

where DT is as defined in (5.6). For T > 0 we also define

XT =
{
(w, z, k, a) ∈ C1

θ,t (DT ) : (w, z, k, a)|t=0 = (w0, 0, 0, a0) ,
|||(w − wB, z, k, a)|||T � 1

}
, (5.11)

where wB is the solution of the 1D Burgers equation in DT with datum w0, which
jumps across the shock curve s (see Proposition 5.7 for its precise definition). That is,
the role of the dummy variable v in (5.10) is played by w − wB.

In order to state the desired properties for s, in terms of the parameters κ and b
appearing in (5.1c), we define two time-dependent subsets of T. The first set, �, will
be shown to contain the location of the shock front for w at time t , while the second
set, �, contains the labels of the two particle trajectories associated with the flow of
w, which fall into the shock at time t .
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Definition 5.4 (Regular shock curve) For every t ∈ [0, κm−4], we define

�(t) = [
κt − 1

2m
4t2, κt + 1

2m
4t2

]
(5.12a)

�(t) = [− 5
4 (bt)

3
2 ,− 3

4 (bt)
3
2
] ∪ [ 3

4 (bt)
3
2 , 54 (bt)

3
2
]

(5.12b)

extended periodically on the circle T. For a given T ∈ (0, κm−4), we say that t �→
s(t) : [0, T ] → T is a regular shock curve if it s satisfies

s(t) ∈ �(t) , |ṡ(t)− κ| � m4t , |s̈(t)| � 6m4 , (5.13)

for all t ∈ (0, T ].

5.3 The Shock Development Problem in Azimuthal Symmetry

We defined a solution to the development problem in Definition 3.1. The main result
of this section is to establish the existence and the uniqueness of such solutions.

Theorem 5.5 (Azimuthal shockdevelopment)Givenpre-shock initial data (w0, z0, k0,
a0) and 
0 satisfying conditions (5.1)–(5.5), there exist:

(i) ε = ε(b,m, c, κ) > 0 sufficiently small;
(ii) a C2 regular shock curve s : [0, ε] → T, in the sense of Defintion 5.4; in

particular, s solves the ordinary differential equation (3.12b), corresponding
to Rankine-Hugoniot jump condition;

(iii) a unique solution (w, z, k, a) ∈ Xε to the system (3.5), in the sense of Defini-
tions 3.1 and 5.3;

(iv) two C1 smooth curves s1, s2 : [0, ε] → T, with s1(0) = s2(0) = 0 and s1(t) <
s2(t) < s(t) for t ∈ (0, ε], such that si is a characteristic curve for the λi
wave-speed, i ∈ {1, 2};

such that the following hold:

(v) letting Dk
ε = {(θ, t) ∈ Dε : s2(t) < θ < s(t)} we have that k ≡ 0 on (Dk

ε)
�

with k(θ, t) = O((θ − s2(t))
3
2 ) in Dk

ε , cf. (5.215), and ∂θk(s2(t), t) = 0;

(vi) letting Dz
ε = {(θ, t) ∈ Dε : s1(t) < θ < s(t)}, we have that z ≡ 0 on (Dz

ε)
�

with z(θ, t) = O((θ − s1(t))
3
2 ) in Dz

ε, cf. (5.218), and ∂θ z(s1(t), t) = 0;

(vii) on s(t), the function w(·, t) exhibits an O(t 12 ) jump, cf. (5.63), while the

functions z(·, t) and k(·, t) exhibit O(t 32 ) jumps, cf. (5.69), and solve the
system of algebraic equations (3.13a)-(3.13b);

(viii) the specific vorticity 
 (see its definition in (3.8)) solves (3.9) in Dε, is uni-
formly boundedwithO(κ−1) upper and lower (see (5.223)), and is continuous
across the shock curve s(t);

(ix) the function a(·, t) is continuous across s(t), while ∂θa(·, t) exhibits anO(t 12 )
jump.
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5.4 A Given Shock Curve Determinesw, z, k, and a

The goal of this subsection is to show that given a regular shock curve {s(t)}t∈[0,ε],
as in Definition 5.4, we may compute a solution (w, z, k, a) of the system (3.5)–(3.6)
with initial datum as described in Section 5.1, and which exhibits a jump discontinuity
across the curve s(t). This statement is summarized in Proposition 5.6 below. Note
that at this stage we do not assume that s satisfies the ODE which corresponds to the
jump conditions in Section 2.1; this will be discussed in Section 5.10.

With the above notation, the main result of this section is:

Proposition 5.6 (Computing w, z, k, and a, in terms of s) Consider initial datum
(w0, z0, k0, a0) which satisfy conditions (5.1), (5.3), and (5.4). Let T0 > 0 be given,
and assume that s : [0, T0] → T is a given regular shock curve, as in (5.13). Then, there
exists ε ∈ (0, T0], which is sufficiently small with respect the parameters κ,b, c,m,
such that the following hold on [0, ε]:

(i) There exist functions (w, z, k, a)which belong to the spaceXε defined in (5.11).
(ii) On the spacetime region Dε, defined in terms of s in (5.6), the functions
(w, z, k, a) solve the azimuthal Euler equations (3.5)–(3.6).

(iii) The functionw has a jump discontinuity on (s(t), t)t∈(0,ε] which satisfies (5.63).
(iv) There exist C1 smooth curves s1, s2 : [0, ε] → T which are the λ1 and λ2

characteristics through the point shock. They satisfy s1(0) = s2(0) = 0, s1(t) <
s2(t) < s(t) for all t ∈ (0, ε], and we have the bounds |ṡ1(t)− 1

3κ| = O(t 13 ),
and |ṡ2(t)− 2

3κ| = O(t 13 ).
(v) The function z has a jumpdiscontinuity on (s(t), t)t∈(0,ε]which satisfies (5.69a).

Moreover, for every t ∈ [0, ε] we have that z(θ, t) = 0 for θ ∈ T\ [s1(t), s(t)].
(vi) The function k has a jumpdiscontinuity on (s(t), t)t∈(0,ε]which satisfies (5.69b).

Moreover, for every t ∈ [0, ε] we have that k(θ, t) = 0 for θ ∈ T\ [s2(t), s(t)].
(vii) We have that (w−, w+, z−, k−) satisfy the system of algebraic equations

(3.13a)-(3.13b), arising from the Rankine–Hugoniot conditions.

The proof of Proposition 5.6 is the content of Sections 5.5–5.8, and is summarized
in Section 5.9 (Fig. 9).

5.5 ComputingwWhen a = z = k = 0

In light of (5.10) and (5.11), it is natural to treat z and k as a perturbation of 0. As such,
it convenient to first look at the evolution (3.5a) forw, in the case that a = k = z = 0.
In this case (3.5a) and the definition of λ3 in (3.6) show that w solves the 1d Burgers
equation; to distinguish this solution from the true w, we denote it as wB.

Proposition 5.7 (Burgers solution with a prescribed shock location) Let w0 be as
described in (5.1), and assume that s : [0, T0] → T satisfies (5.13). There exists
ε ∈ (0, T0] and a function wB : Dε → R which solves

∂twB + wB∂θwB = 0 , in Dε , (5.14a)
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Fig. 9 The curves s1, s2, and s discussed in Proposition 5.6 all originate from the pre-shock

wB = w0 , on T× {0} , (5.14b)

which isC2 smooth inDε, and has a jump discontinuity across the curve (s(t), t)t∈(0,ε],
with jump across s and mean at s bounded as

∣∣∣[[wB(t)]] − 2b
3
2 t

1
2

∣∣∣ � t , |〈〈wB(t)〉〉 − κ| � 1
3m

4t , (5.15a)
∣∣∣ ddt [[wB(t)]] − b

3
2 t−

1
2

∣∣∣ � 2m4 ,
∣∣ d
dt 〈〈wB(t)〉〉

∣∣ � m4 , (5.15b)
∣∣∣ d2dt2
[[wB(t)]] + 1

2b
3
2 t−

3
2

∣∣∣ � 2m4t−1 ,
∣∣∣ d2dt2
〈〈wB(t)〉〉

∣∣∣ � m4t−1 . (5.15c)

It is important to emphasize that the function wB given by Proposition 5.7 is a
solution of the Burgers equation in the region where it is C2 smooth, i.e., it is not an
entropy-producing weak solution of the Burgers equation which contains the shock.
Instead, wB takes a given curve s as given, and constructs a “good” solution of the
Burgers equation to the left and to the right of this curve s.

In Proposition 5.7 we use the notation from Remark 5.2 and Definition 5.2. Prior
to the proof of Proposition 5.7, it is convenient to establish an auxiliary result for the
derivatives of w0 (cf. Lemma 5.8), and a result (cf. Lemma 5.9) which concerns the
invertibility of the usual flow map for the Burgers equation:

ηB(x, t) = x + tw0(x) , (5.16)

which is well-defined for every x ∈ T.7 We first record a few estimates for w0, which
follow from (5.1):

Lemma 5.8 There exists ε ∈ (0, 1] such that for every t ∈ (0, ε] we have
∣∣w0(x)

∣∣ � m , x ∈ T , (5.17a)

7 Here and throughout the remainder of the paper we shall denote the Eulerian variable by θ , while for the
corresponding Lagrangian label we use x .
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∣∣w′0(x)
∣∣ � 2

5 t
−1 , 4

5 (bt)
3
2 � |x | � π , (5.17b)

∣∣w′′0(x)
∣∣ � 1

3b
− 3

2 t−
5
2 , 4

5 (bt)
3
2 � |x | � π (5.17c)

∣∣w′′′0 (x)
∣∣ � 2m(bt)−4 , 4

5 (bt)
3
2 � |x | � π (5.17d)∣∣∣ w

′
0(x)

1+tw′0(x)
∣∣∣ � 2

3 t
−1 , 4

5 (bt)
3
2 � |x | � π . (5.17e)

Proof of Lemma 5.8 For simplicity, we only give the proof for x > 0. The bound
(5.17a) follows directly from (5.1a) since (5.1b) implies that w0 is nonnegative. In
order to prove (5.17b) we use assumption (5.1d), which gives

∣∣w′0(x)
∣∣t � 1

3b
( 4
5

)− 2
3 (bt)−1t + 2

3 |c|
( 4
5

)− 1
3 (bt)−

1
2 t +mt � 1

3

( 4
5

)− 2
3 + Ct

1
2 � 2

5

upon choosing ε (and hence t) to be sufficiently small, in terms of κ,b, c, andm. The
proof of (5.17c) is similar to the one of (5.17b), except that we appeal to assump-
tion (5.1e) and derive

∣∣w′′0(x)
∣∣b 3

2 t
5
2 � 2

9

( 4
5

)− 5
3 + Ct

1
2 � 1

3 (5.18)

once ε (and hence t) is small enough. The bound (5.17d) immediately follows
from (5.1f) and (5.2). Lastly, the estimate (5.17e) is a direct consequence of (5.17b).

��
Second, we discuss the invertibility of ηB:

Lemma 5.9 (Local inversion of the Burgers flowmap) Letw0 be as described in (5.1),
assume that s satisfies (5.13) on [0, T0], and let ηB be defined as in (5.16). Then, there
exists a sufficiently small ε ∈ (0, T0], which only depends on κ,b, c,m, such that
for t ∈ (0, ε] the following holds. There exists a largest xB,+ = xB,+(t) > 0 and a
smallest xB,− = xB,−(t) < 0 such that

s(t) = ηB(xB,±(t), t) (5.19)

and moreover we have

∣∣xB,±(t)∓ (bt) 32
∣∣ � m4t2 ⇒ 4

5 (bt)
3
2 <

∣∣xB,±(t)
∣∣ < 6

5 (bt)
3
2 . (5.20)

We also define xB,±(0) = 0. Note that xB,±(t) ∈ �(t) for all t ∈ [0, ε]. Moreover,
defining the set of labels

ϒB(t) = T \ [xB,−(t), xB,+(t)]

we have that the map ηB(·, t) : ϒB(t)→ T \ {s(t)} is a bijection satisfying the bounds

|∂xηB(x, s)− 1| � 2
5 (5.21a)
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Fig. 10 Several Lagrangian paths {ηB(x, s)}s∈[0,t] are represented by cyan paths. The extremal points
xB,±(t) are the two labels which are colliding into the shock curve precisely at time t . All the labels in
between them have collided with the shock curve at some time s ∈ [0, t)

|ηB(x, s)− s(s)| � 4
5b

3
2 t

1
2 (t − s) . (5.21b)

for all s ∈ [0, t) and x ∈ ϒB(t). The above estimate implies that the trajectory
{η(x, s)}s∈[0,t] can not intersect the shock curve prior to time s = t , for every x ∈
ϒB(t). Lastly, the inverse map ηB−1(·, t) : T \ {s(t)} → ϒB(t) satisfies the estimates
(Fig. 10)

5
7 � ∂θηB−1(θ, t) � 5

3 (5.22a)

4
5 (bt)

3
2 + 1

2 |θ − s(t)| �
∣∣∣ηB−1(θ, t)

∣∣∣ � 6
5 (bt)

3
2 + 2 |θ − s(t)| (5.22b)

for all (θ, t) ∈ Dε.

Proof of Lemma 5.9 It is convenient to denote

g0(x) = w0(x)− κ + bx
1
3 − cx

2
3 (5.23)

so that in view of (5.1) we have that |g0(x)| � m|x | and |g′0(x)| � m. For t > 0 we
let

τ = (bt) 12 , y = x
1
3 τ−1, ζ = (s(t)− κt)τ−3 . (5.24)

Note that the condition s(t) ∈ �(t) in (5.13) together with (5.2) imply that |ζ | �
b−2m4τ 	 1, an in particular |ζ | � 1

10 . With this notation, for any t > 0 the equation
(5.19) is equivalent to

τ 3ζ + κt = τ 3y3 + t
(
κ − bτ y + cτ 2y2 + g0(τ

3y3)
)
.
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After collecting terms, and dividing by τ 3, we obtain that the above equality is equiv-
alent to

0 = −ζ + y3 − y + cb−1τ y2 + τ−1b−1g0(τ 3y3)︸ ︷︷ ︸
=:G(y,τ )

. (5.25)

In view of the aforementioned properties of g0, we have that for all |y| � 10 and all
0 < τ � ε, with ε sufficiently small in terms of κ,b, c,m, we have that

∣∣∣G(y, τ )− cb−1τ y2
∣∣∣ � Cτ 2 (5.26a)

∣∣∣∂τG(y, τ )− cb−1y2
∣∣∣ � Cτ (5.26b)

∣∣∣∂yG(y, τ )− 2cb−1τ y
∣∣∣ � Cτ 2 (5.26c)

where C > 0 only depends on κ,b, c, and m.
Returning to (5.25), we next claim that for every fixed ζ ∈ [− 1

10 ,
1
10 ] and any τ

sufficiently small, there exists a uniquemost negative root y− = y−(ζ, τ ) and a unique
most positive root y+ = y+(ζ, τ ) of the implicit equation

y3 − y + G(y, τ ) = ζ . (5.27)

The key observation is that in view of (5.26a), when when τ = 0, the equation in the
above display becomes ζ = y3 − y. For every ζ ∈ (− 2

3
√
3
, 2
3
√
3
) ⊃ [− 1

10 ,
1
10 ] we

introduce two functions Z+(ζ ) and Z−(ζ ) which are the largest (positive) root and
respectively the smallest (negative) root of the equation

ζ = Z3 − Z . (5.28)

The power series of these functions is given by

Z±(ζ ) = ±1+ 1
2ζ ∓ 3

8ζ
2 + 1

2ζ
3 ∓ 105

128ζ
4 + 3

2ζ
5 +O(|ζ |6) (5.29)

and is valid for |ζ | 	 1. In particular, we have

Z+(ζ )+ Z−(ζ ) = ζ + ζ 3 + 3ζ 5 +O(|ζ |7) . (5.30)

For later purposes, it is also convenient to note here that

|Z+(ζ )+ Z−(ζ )− ζ | � 6
5ζ

3 and |Z+(ζ )− Z−(ζ )− 2| � ζ 2 (5.31)

for all |ζ | � 1
5 . With this notation, we have thus obtained the desired roots of (5.27)

when τ = 0, namely

Z3±(ζ )− Z±(ζ )+ G(Z±(ζ ), 0) = ζ .
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The proof is then completed by an application of the implicit function theorem. This
is possible since

∂y

(
y3 − y + G(y, τ )

)
|(y,τ )=(Z±,0) = 3Z2± − 1 
= 0 .

In fact, for every |ζ | � 1
10 , one may verify that 3

2 � 3Z±(ζ )2 − 1 � 5
2 , since Z± are

explicit functions. The implicit function theorem guarantees the existence of an ε > 0,

such that if τ ∈ (0, (bε) 12 ] and |ζ | � 1
10 , the equation (5.27) has a most negative root

y−(ζ, τ ) which is O(τ )-close to Z−(ζ ), and a most positive root y+(ζ, τ ), which is
O(τ )-close toZ+(ζ ). Upon unpacking the definitions in (5.24), we have thus identified

x
1
3
B,±(t) = (bt)

1
2 y±

(
s(t)− κt
(bt)

3
2

, (bt)
1
2

)
, (5.32)

for all t ∈ (0, ε], which solves (5.19).
Note however that |ζ | � b−2m4τ , and that τ � (bε) 12 is taken to be small. In this τ -

dependent range for ζ wemay obtain a sharper estimate than the |y±(ζ, τ )− Z±(ζ )| �
Cτ claimed above. Indeed, since the bounds (5.26b)–(5.26c) are available, from the
Taylor theorem with remainder applied to (5.27), we may deduce that

∣∣∣∣∣y±(ζ, τ )− Z±(ζ )+ τcb−1 Z±(ζ )
3Z2±(ζ )− 1

∣∣∣∣∣ � Cτ 2

if ε is sufficiently small, for a constant C = C(κ,b, c,m) > 0. Taking into account
the power series expansion of Z± in (5.29), and ε to be sufficiently small (hence τ
sufficiently small), we deduce that

∣∣y±(ζ, τ )∓ 1− 1
2ζ ± c

2bτ
∣∣ � Cτ 2 , for all |ζ | � b−2m4 and τ � (bε) 12 .

(5.33)

In particular, keeping in mind (5.24) and (5.32), we deduce from (5.33) the estimate

∣∣∣∣xB,±(t)
1
3 ∓ (bt) 12 − s(t)− κt

2bt
± ct

2

∣∣∣∣ � Ct
3
2 , (5.34)

for all t ∈ (0, ε], where C = C(κ,b, c,m) > 0 is a computable constant. The bound
(5.20) is an immediate consequence of (5.34), the working assumptions (5.2) and
(5.13), upon taking ε to be sufficiently small.

The bound (5.21a) is a direct consequence of (5.17b), (5.20), and the fact that by
(5.16) we have ∂xηB(x, s) − 1 = sw′0(x). Therefore, the map ηB(·, t) is a strictly
increasing function on the label x ∈ T, thus being injective from ϒB(t) �→ T \ {s(t)}.
Surjectivity follows from the intermediate value theorem, and fact that by (5.19) we
have limx→xB,−(t)− ηB(x, t) = s(t) = limx→xB,+(t)+ ηB(x, t). In order to show that
for every x ∈ ϒB(t) the trajectory ηB(x, ·) does not meet the shock curve prior to
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time t , by the monotonicity property of ηB in the x variable, we only need to show
that ηB(xB,−(t), s) < s(s) and that ηB(xB,+(t), s) > s(s). These two statements are
established in the same way, so we only give the proof for the label xB,−(t). By
appealing to (5.19), the ṡ assumption in (5.13), the w0 assumption in (5.1), and the
previously established estimate (5.34), we have that

s(s)− ηB(xB,−(t), s) = −
∫ t

s

(
ṡ(τ )− (∂tηB)(xB,−(t), τ )

)
dτ

=
∫ t

s

(
w0(xB,−(t))− κ

)
dτ −

∫ t

s
(ṡ(τ )− κ) dτ

�
(
−bx

1
3
B,−(t)− 2|c|bt

)
(t − s)− 1

2m
4(t2 − s2)

� 4
5b

3
2 t

1
2 (t − s)

for any s ∈ [0, t), with t � ε which is sufficiently small.
The proof is concluded oncewe establish (5.22). The bound (5.22a) is an immediate

consequence of (5.21a) and the inverse function theorem. For the proof of (5.22b), let
us first consider a point θ which is to the left of s(t). Then, by the mean value theorem
and (5.19), we have that

ηB
−1(θ, t)− xB,−(t) = ηB−1(θ, t)− ηB−1(s(t), t)) = (θ − s(t))(∂θηB

−1)(θ, t)

for some θ ∈ (y, s(t)). The above identity, combinedwith (5.22a) and the first inequal-
ity in (5.20) implies (5.22b), upon taking ε sufficiently small. The proof in the case
that y is to the right of s(t) is identical. ��

Next, we discuss the solution wB to (5.14) and its properties.

Proof of Proposition 5.7 By Lemma 5.9, for all (θ, t) ∈ Dε we may define

wB(θ, t) = w0(ηB−1(θ, t)) . (5.35)

By the of construction ηB and the properties of w0, the above defined wB is C2

smooth in Dε and solves (5.14) in this region. Indeed, differentiating the relation
wB(ηB(x, t), t) = w0(x) and using the definition of ηB we have the identities

∂θwB(θ, t) = w′0(ηB−1(θ, t))
1+ tw′0(ηB−1(θ, t))

(5.36a)

∂2θ wB(θ, t) =
w′′0(ηB−1(θ, t))

(1+ tw′0(ηB−1(θ, t)))3
(5.36b)

for all θ ∈ T \ {s(t)}. In particular, combining (5.36a) with (5.22b) and (5.1), gives
that

|∂θwB(θ, t)| � 4
5b((bt)

3 + |θ − s(t)|2)− 1
3 (5.37a)
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∣∣∣∂2θ wB(y, t)
∣∣∣ � 2b((bt)3 + |θ − s(t)|2)− 5

6 (5.37b)

for all (θ, t) ∈ Dε such that |θ − s(t)| � ε 12 , as soon as ε is sufficiently small.
Next, we we discuss the mean and the jump of wB at the shock curve. We have that

[[wB(t)]] = w0(xB,−(t))− w0(xB,+(t))
=

(
x

1
3
B,+(t)− x

1
3
B,−(t)

)(
b− cx

1
3
B,+(t)− cx

1
3
B,−(t)

)

+ g0(xB,−(t))− g0(xB,+(t))

where we recall the notation from (5.23). Using (5.34), (5.1c), and (5.2), we deduce
that

∣∣∣[[wB(t)]] − 2b
3
2 t

1
2

∣∣∣ � 8b|c|t � t

upon choosing ε to be sufficiently small with respect to κ,b, c, and m. This proves
the first bound in (5.15a). Similarly,

〈〈wB(t)〉〉 = 1
2

(
w0(xB,−(t))+ w0(xB,+(t))

)

= κ − 1
2b

(
x

1
3
B,−(t)+ x

1
3
B,+(t)

)
+ 1

2c
(
x

2
3
B,−(t)+ x

2
3
B,+(t)

)

+ 1
2

(
g0(xB,−(t))− g0(xB,+(t))

)
.

From (5.34), (5.20), and (5.1c) we deduce that

∣∣∣∣〈〈wB(t)〉〉 − κ +
s(t)− κt

2t

∣∣∣∣ � Ct
3
2 .

The second inequality in (5.15a) now follows from (5.13).
Appealing to the definitions (5.19), (5.16), and (5.35), we arrive at

d
dt

(
wB(s(t)

±, t)
) = d

dt

(
w0(xB,±(t))

) = w′0(xB,±(t)) ddt xB,±(t)
= w′0(xB,±(t))

ṡ(t)− w0(xB,±(t))
1+ tw′0(xB,±(t))

.

Therefore, using (5.1c), (5.17e), the asymptotic description (5.34) for xB,±(t), and the
assumption on ṡ from (5.13), after a tedious computation we obtain

∣∣∣ ddt
(
wB(s(t)

±, t)
)± 1

2b
3
2 t−

1
2

∣∣∣ �
∣∣∣∣bxB,±(t)

1
3
w′0(xB,±(t))

1+ tw′0(xB,±(t))
∓ 1

2b
3
2 t−

1
2

∣∣∣∣

+ t |w′0(xB,±(t))|
1+ tw′0(xB,±(t))
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(
m4 + κ − w0(xB,±(t))+ bxB,±(t)

1
3

t

)

� 5
6m

4 + b|c| + Ct
1
2 � m4 .

From the above estimate, it is clear that (5.15b) follows. Differentiating once more,
we obtain

d2

dt2
(
wB(s(t)

±, t)
) = s̈(t)

w′0(xB,±(t))
1+ tw′0(xB,±(t))

+ w′′0(xB,±(t))
(ṡ(t)− w0(xB,±(t)))2
(1+ tw′0(xB,±(t)))3

− 2(w′0(xB,±(t)))2(ṡ(t)− w0(xB,±(t)))
(1+ tw′0(xB,±(t)))2

and therefore, after an even more tedious computation, we arrive at

∣∣∣ d2dt2
(
wB(s(t)

±, t)
)∓ 1

4b
3
2 t−

3
2

∣∣∣ �
(
1
3m

4 + 3b|c|
)
t−1 + Ct−

1
2 � m4t−1 .

The claim (5.15c) now follows, thereby completing the proof of the proposition. ��

5.5.1 Lagrangian Trajectories for Velocity Fields that are Close towB

For future purposes, see Section 5.7, at this stage it is convenient to consider velocities
λ3 : Dε → R which are close to the wB we have constructed in Proposition 5.7, in the
sense that λ3 ∈ C1

θ,t (Dε), and we have the pointwise bounds

|λ3(θ, t)− wB(θ, t)| � R1t + Ct
3
2 (5.38a)

|∂θλ3(θ, t)− ∂θwB(θ, t)| � R2((bt)3 + (θ − s(t))2)−
1
6 + Ct

1
2 (5.38b)

for all (θ, t) ∈ Dε, for positive constants R1, R2,C which only depend on κ,b, c,
and m; see (5.142) for the values of R1, R2 which are used in the proof, namely
R1 = R2 = m3.

Note that in view of (5.35) and (5.37a), assumptions (5.38) imply that λ3 is C1

smooth on the complement of the shock curve. In particular, this means that for every
label x ∈ T \ {0}, we are guaranteed the short time (x-dependent time) unique solv-
ability of the ODE

∂tη(x, t) = λ3(η(x, t), t) , η(x, 0) = x . (5.39)

In view of the assumed regularity of λ3, for a given label x the path η(x, t) can be
continued on a maximal time interval [0, Tx ), where the stopping time Tx is defined
as

Tx := min
{
ε, sup{t ∈ [0, ε] : |η(x, t)− s(t)| > 0}} . (5.40)
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That is, if the trajectory η(x, ·) intersects the shock curve prior to time ε, then we
record this stopping time in Tx , and in this case we have η(x, Tx ) = s(Tx ). Note that
since s ∈ C1, and since λ3 is C1 smooth on the complement of the shock curve, the
stopping time Tx is continuous in x .

Next, for every t ∈ (0, ε], in analogy to (5.19), we wish to define in a unique way
two extremal labels x±(t) with the property that

s(t) = η(x±(t), t) . (5.41)

By (5.40) we have that the above definition is equivalent to Tx±(t) = t , which then
motivates

x−(t) = inf{x ∈ [−π, 0) : Tx � t} , x+(t) = sup{x ∈ (0, π ] : Tx � t} ,
ϒ(t) = T \ [x−(t), x+(t)] . (5.42)

By the continuity of Tx in x , the above inf / sup are in fact min /max. Moreover,
for every x ∈ ϒ(t), we know that Tx � t . One of our goals will be to show that
η(·, t) : ϒ(t)→ T \ {s(t)} is a bijection, for every t ∈ (0, ε].

As mentioned above, Tx ∈ (0, ε] if x 
= 0. Now for fixed x and t ∈ [0, Tx ), by
Lemma 5.9 we may define

q(t) = ηB−1(η(x, t), t) , (5.43)

and note that q(t) ∈ ϒb(t) and that q(0) = x . Since ηB−1 solves the transport equation
with speed wB, and η solves (5.39), we have that

d
dt q = (∂tηB−1) ◦ η + (∂θηB−1) ◦ η∂tη = (λ3 − wB) ◦ η(∂θηB−1) ◦ η .

Thus, by also appealing to (5.38a) and (5.22a), we have that

∣∣∣ηB−1(η(x, t), t)− x
∣∣∣ = |q(t)− q(0)| � R1t2 (5.44)

whenever t < Tx , upon taking ε to be sufficiently small. By (5.42), we note that (5.44)
in particular holds for all t ∈ (0, ε], and all x ∈ ϒ(t). Note that from (5.19), (5.41),
(5.44), and continuity, we have that

∣∣x±(t)− xB,±(t)
∣∣ =

∣∣∣x±(t)− ηB−1(η(x±(t), t))
∣∣∣ � R1t2

for all t ∈ (0, ε], and thus similarly to (5.20) we have that

∣∣x±(t)∓ (bt) 32
∣∣ � t2(m4 + R1) ⇒ 4

5 (bt)
3
2 < |x±(t)| < 6

5 (bt)
3
2 . (5.45)

upon taking ε to be sufficiently small.
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If Tx < ε, and t ∈ [0, Tx ), the bound (5.44) and the identity (5.36a) allow us to
estimate

∫ t

0
|∂θwB(η(x, s), s)| ds =

∫ t

0

∣∣w′0(q(s))
∣∣

1+ sw′0(q(s))
ds

�
∫ t

0

∣∣w′0(x)
∣∣

1+ sw′0(x)
ds + R1

∫ t

0
s2 sup
|x−x |�R1s2

∣∣w′′0 (x)
∣∣

(1+ sw′0(x))2
ds

� |w
′
0(x)|
w′0(x)

log
(
1+ tw′0(x)

)+ 8
5b
− 3

2 R1

∫ t

0
s−

1
2 ds .

At this stage we recall that the values of x that we are interested in satisfy |x | �
(bt)

3
2 − t2(m4 + R1) � 9

10 (bt)
3
2 . We distinguish two cases: 9

10 (bt)
3
2 � |x | � b

3
2 t ,

and b
3
2 t � |x | � π . Using assumption (5.1d), in the first case we deduce that

0 > tw′0(x) > − 1
3bt x

− 2
3 (1+ 3|c|t 13 ) > − 1

3 (
9
10 )
− 2

3 (1+ 3|c|t 13 ) > − 7
19 .

In the other case, we we use that t � ε 	 1, and thus

t |w′0(x)| � 1
3bt

1
3 + 2

3 |c|b−
1
2 t

2
3 +mt � ε 13 .

From the above three inequalities, and the fact that sgn (r) log(1 + r) � log( 1912 ) for

all r ∈ (− 7
19 , ε

1
3 ), we deduce that

∫ t

0
|∂θwB(η(x, s), s)| ds � log( 1912 )+ 16

5 b
− 3

2 R1t
1
2 � 19

40 , (5.46)

since t � ε 	 1. As before, we note in particular that (5.46) holds for all t ∈ (0, ε],
and all x ∈ ϒ(t). We note that using (5.36b), (5.44), and (5.17c), in addition to (5.46)
we have

∫ t

0

∣∣∣∂2θ wB(η(x, s), s)
∣∣∣ ds �

∫ t

0

|w′′0(ηB−1(η(x, s), s))|
(1+ tw′0(ηB−1(η(x, s), s)))3

ds

� 3(bt)−
3
2 (5.47)

whenever x ∈ ϒ(t). Here we have used that |ηB−1(η(x, s), s)| � |x |−R1s2 � 4
5 (bt)

3
2

for s � t � ε.
With (5.46) in hand, and appealing also to (5.38b), for every x ∈ ϒ(t)we may now

have

∂xη(x, t) = exp

(∫ t

0
(∂θwB)(η(x, s), s)ds

)
exp

(∫ t

0
(∂θλ3 − ∂θwB)(η(x, s), s)ds

)
,

(5.48)
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and thus

1
2 � exp(− 1

2 − 4R2b
− 1

2 t
1
2 ) � ∂xη(x, t) � exp( 12 + 4R2b

− 1
2 t

1
2 ) � 7

4 (5.49)

since ε is sufficiently small with respect to κ,b, c, and m. This shows that the map
η(·, t) is strictly monotone (thus injective) on either side of the shock curve; combined
with (5.41) and the intermediate function theorem (ensuring surjectivity), we obtain
that η(·, t) : ϒ(t) → T \ {s(t)} is a bijection, as claimed earlier. Moreover, (5.49)
shows that for every x ∈ ϒ(t), the curve η(x, s) does not intersect the shock curve
prior to time t ; in fact, by the monotonicity of η we have that |s(s)− η(x, s)| �
|s(s)− η(x±(t), s)|, and analogously to (5.21b), using (5.45) we have that

s(s)− η(x−(t), s) = −
∫ t

s
ṡ(τ )− λ3(η(x−(t), τ ), τ )dτ

=
∫ t

s

(
w0(ηB

−1(η(x−(t), τ ), τ ))− κ
)
dτ

+
∫ t

s
(κ − ṡ(τ ))+ (λ3 − wB)(η(x−(t), τ ), τ )dτ

� (w0(x−(t))− κ)(t − s)− 1
2 (m

3 + 4R1)(t2 − s2)

� 4
5b

3
2 t

1
2 (t − s) (5.50)

for all s ∈ [0, t), and all x ∈ ϒ(t). This bound shows that ϒ(s) ⊃ ϒ(t) for s < t .
Recalling the ηB(x, t) is defined by (5.16) for all x ∈ T, and in particular for

x ∈ ϒ(t), from (5.45) and (5.49) we immediately deduce that

∣∣η(x, t)− ηB(x, t)
∣∣ � 3

2R1t
2, for all x ∈ ϒ(t) ,

(5.51a)
∣∣∂xη(x, t)− ∂xηB(x, t)

∣∣ �
(
16R1b

− 3
2 + 8R2b

− 1
2

)
t
1
2 , for all x ∈ ϒ(t) ,

(5.51b)

for all t ∈ (0, ε]. The bound (5.51a) follows from (5.44), the mean value theorem,
and the fact that by (5.17b) we have that |∂xηB(x, t) − 1| � 9

20 for all x ∈ ϒ(t) (in
analogy to (5.21a)). In order to prove the bound (5.51b), we use

∂t (∂xη − ∂xηB) = (∂θwB) ◦ η (∂xη − ∂xηB)+ (∂θλ3 − ∂θwB) ◦ η ∂xη
+ ((∂θwB) ◦ η − (∂θwB) ◦ ηB) ∂xηB ,

and the fact that ∂xη(x, 0)−∂xηB(x, 0) = 0. First, we note that due to (5.17c), (5.21a),
(5.36a), (5.44), and the mean value theorem, we have that

∣∣((∂θwB) ◦ η − (∂θwB) ◦ ηB) ∂xηB
∣∣ � 2

∣∣∣∣∣
w′0(ηB−1(η(x, t), t))

1+ tw′0(ηB−1(η(x, t), t))
− w′0(x)

1+ tw′0(x)

∣∣∣∣∣
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� 4R1b
− 3

2 t−
1
2 . (5.52)

Second, by the assumption (5.38b) and the bound (5.49) we know that

∣∣(∂θλ3 − ∂θwB) ◦ η ∂xη
∣∣ � 2R2(bt)−

1
2 . (5.53)

Combining the above two estimates with the evolution equation for ∂xη − ∂xηB and
(5.46), we obtain (5.51b).

The results in this section may be summarized as follows:

Lemma 5.10 Let η be defined by (5.39), with λ3 satisfying (5.38). Then, by possibly
further reducing the value of ε, solely in terms of κ,b, c,m, the following hold. With
the definition of ϒ(t) in (5.42), we have that η(·, t) : ϒ(t)→ T \ {s(t)} is a bijection.
For x ∈ ϒ(t), the curve {η(x, s)}s∈[0,t] does not intersect the shock curve, and by
(5.49), (5.51a), (5.51b), we have the estimates

1
2 � ∂xη(x, t) � 7

4 (5.54a)
1
3κ � ∂tη(x, t) � 3

2m (5.54b)∣∣η(x, t)− ηB(x, t)
∣∣ � 3

2R1t
2 (5.54c)

∣∣∂xη(x, t)− ∂xηB(x, t)
∣∣ � (16R1b−

3
2 + 8R2b

− 1
2 )t

1
2 (5.54d)

The inverse map η−1 : Dε → T \ {0} is continuous in space-and-time, with bounds
4
7 � ∂θη−1(θ, t) � 2 (5.55a)

−3m � ∂tη−1(θ, t) � − 1
4κ (5.55b)

for all (θ, t) ∈ Dε. Lastly, from (5.46) and (5.47) we have that

∫ t

0
|∂θwB(η(x, s), s)| ds � 19

40 (5.56a)

∫ t

0

∣∣∣∂2θ wB(η(x, s), s)
∣∣∣ ds � 3(bt)−

3
2 (5.56b)

for all x ∈ ϒ(t), and all t ∈ [0, ε].
Proof of Lemma 5.10 The only estimates which were not established in the discussion
above the lemma are (5.54b) and (5.55). In order to prove (5.54b), we appeal to (5.39),
(5.38a), (5.35), (5.1a), (5.1a), and take ε to be sufficiently small:

∂tη(x, t) = λ3(η(x, t)) = wB(η(x, t))+O(t)
= w0(ηB−1(η(x, t), t))︸ ︷︷ ︸

∈[ κ2 ,m]
+O(t) ∈ [

κ
3 ,

3m
2

]
.
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The bound (5.55a) follows from (5.54a) and the inverse function theorem. Lastly, in
order to prove (5.55b), we use that η−1 solves the transport equation dual to the ODE
(5.39), namely ∂tη−1 + λ3∂yη−1 = 0. As such, from (5.55a), (5.38a), (5.35), (5.1a),
(5.1a), we obtain that

∂tη(θ, t) = −wB(θ, t)∂θη−1 +O(t)
= −w0(ηB−1(θ, t))︸ ︷︷ ︸

∈[ κ2 ,m]
∂θη
−1

︸ ︷︷ ︸
∈[ 47 ,2]

+O(t) ∈ [−3m,− κ4
]

upon taking ε to be sufficiently small. ��

5.5.2 Estimates for Derivatives ofwB Along Flows Transversal to the Shock

In analogy to Lemma 5.10, we also have an estimate for the time integral of ∂θwB
along any flow which is transversal to s. More precisely, we have:

Lemma 5.11 Fix t ∈ (0, ε] and 0 � θ < s(t). For some t ′ ∈ [0, t), assume that we
are given a differentiable curve γ : [t ′, t] → Dε which does not intersect the shock
curve s, such that γ (t) = θ , and such that γ̇ (s) � μκ for all s ∈ [t ′, t], for some
μ ∈ [0, 1). Then, we have that

∫ t

t ′
|∂θwB(γ (s), s)| ds � 13b

(1−μ)κ 23
t
1
3 , (5.57a)

∫ t

t ′

∣∣∣∂2θ wB(γ (s), s)
∣∣∣ ds � 9b

(1−μ)κ
(
1
2 |γ (t ′)− s(t ′)| + 4

5 (bt
′)

3
2

)− 2
3

(5.57b)

� 11
(1−μ)κ t

′−1 . (5.57c)

Proof of Lemma 5.11 As in the proof of Lemma 5.10, the goal is to understand the
evolution of x(s) := ηB−1(γ (s), s). First, we note that since γ lies on the left side
of s, the point x(s) is well-defined, and satisfies x(s) � − 4

5 (bs)
3
2 . Next, from the

definition of ηB and its inverse, we have that

ẋ(s) = (∂tηB−1)(γ (s), s)+ γ̇ (s)(∂θηB−1)(γ (s), s)

= γ̇ (s)− (∂tηB)(ηB
−1(γ (s), s), s)

(∂xηB)(ηB
−1(γ (s), s), s)

= γ̇ (s)− w0(x(s))
1+ sw′0(x(s))

. (5.58)

Due to the aforementioned lower bound on |x(s)| and the estimate (5.17b), the denom-
inator of the fraction on the right side of (5.58) lies in the interval [ 12 , 32 ]. Furthermore,
since t � ε and ε is sufficiently small, we have that |x(t)| = |ηB−1(y, t)| is sufficiently
small to ensure via (5.1c) that |w0(x(t))− κ| � 2b|x(t)| 13 � 1−μ

4 κ . Also, from (5.58)
we may deduce that |ẋ(s)| � 4m which implies |x(s)| � |x(t)| + 4mt ; therefore,
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since t � ε is sufficiently small, we may show that |w0(x(s))− κ| � 1−μ
2 κ for all

s ∈ [t ′, t]. We then immediately obtain from (5.58) that

−(3− μ)κ � −w0(x(s))
1+ sw′0(x(s))

� ẋ(s) � μκ − w0(x(s))
1+ sw′0(x(s))

� − (1− μ)κ
3

. (5.59)

Then, using (5.36a) and the fact that x(s) is strictly negative, we obtain that

∫ t

t ′
|∂θwB(γ (s), s)| ds =

∫ t

t ′

∣∣w′0(x(s))
∣∣

1+ sw′0(x(s))
ds � b

∫ t

t ′
(x(s))−

2
3 ds

� − 3b
(1−μ)κ

∫ t

t ′
ẋ(s)(x(s))−

2
3 ds

= 9b
(1−μ)κ

(
x(t ′)

1
3 − x(t)

1
3

)

� 9b
(1−μ)κ |x(t)|

1
3 = 9b

(1−θ)κ |ηB−1(θ, t)|
1
3

� 9b
(1−μ)κ (3κt)

1
3 (5.60)

In the last inequality we have used that since 0 � θ < s(t)we have that |ηB−1(θ, t)| �
|ηB−1(0, t)| � 3κt for all t � ε, which is sufficiently small.

The proof of (5.57c) is nearly identical, but instead of (5.36a) we appeal to (5.36b),
arriving at

∫ t

t ′

∣∣∣∂2θ wB(γ (s), s)
∣∣∣ ds � 9b

(1−μ)κ
(
x(t ′)−

2
3 − x(t)−

2
3

)
� 9b
(1−μ)κ

(
x(t ′)

)− 2
3 (5.61)

In order to obtain (5.57b)–(5.57c), we use the above bound and (5.22b), which implies

that |x(t ′)| = |ηB−1(γ (t ′), t ′)| � 1
2 |γ (t ′)− s(t ′)| + 4

5 (bt
′) 32 � 4

5 (bt
′) 32 . ��

5.6 z and k on the Shock Curve

For every t ∈ (0, ε], let us assume that we are given a left speed w- = w-(t) =
w(s(t)−, t) and a right speed w+ = w+(t) = w(s(t)+, t) at the point (s(t), t). Fur-
thermore, let us assume thatw- andw+ behave similarly to the solution of the Burgers
equation computed in Proposition 5.7; by this we mean that the jump and the mean at
(s(t), t), defined by

[[w]] = [[w]](t) = w-(t)− w+(t) , 〈〈w〉〉 = 〈〈w〉〉(t) = 1
2 (w-(t)+ w+(t)) ,

(5.62)

satisfy the bounds

∣∣[[w]](t)− 2b
3
2 t

1
2
∣∣ � R j t and |〈〈w〉〉(t)− κ| � Rmt , (5.63)
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for all t ∈ (0, ε], for two constants R j , Rm > 0 which only depend on κ,b, c, and m.
These bounds are consistent with (5.15a) and (5.145a) (to be established below).

The variables w- and w+ are the same as those in equations (3.13a)–(3.13b). Our
goal in this subsection is to solve the coupled system of equations (3.13a)–(3.13b),
for the jumps of z and k at the fixed point (s(t), t), as a function the left speed w- and
right speedw+, at this point. Since z and k are equal to 0 on the right side of the shock
curve, we note that the jumps of z and k are equal to their values on the left of (s(t), t);
as such, we work with the unknowns

z− = z−(t) = [[z]](t) , k− = k−(t) = [[k]](t) . (5.64)

In fact, because we expect k− to be close to 0 (see (2.7)), and since (3.13a)–(3.13b)
contain the variables e−k− and ek− , which are thus close to 1, it is more convenient to
replace k− with the unknown

e− = e−(t) = ek−(t) − 1 . (5.65)

Then, with this notation the equations (3.13a)–(3.13b) may be rewritten as the system

E1(w-, w+, z−, e−) = 0 (5.66a)

E2(w-, w+, z−, e−) = 0 (5.66b)

where

E1(w-, w+, z−, e−)

=
(
(w- − z−)2(w- + z−)2 + 1

8 (w- − z−)4 − 9
8 (1+ e−)w4

+

)
(
(w- − z−)2 − (1+ e−)w2

+

)

−
(
(w- − z−)2(w- + z−)− (1+ e−)w3

+

)2
(5.67a)

E2(w-, w+, z−, e−)

= e−(w- − z−)4(3w2
+(1+ e−)− (w- − z−)2)−

(
(w- − z−)2 − (1+ e−)w2

+

)3
.

(5.67b)

We view (5.66) as a coupled system of equations for the unknowns z− and e− (or
alternatively, k−), with w- and w+ given. The correct root of (5.66) is given by:

Lemma 5.12 (Existence and asymptotic formula for z− and k−) Assume that w- and
w+ are such that their jump and mean at (s(t), t) satisfy (5.63). Then, the system of
equations (5.66) has a smallest (in absolute value) root (z−, e−), such that z− and
k− = log(e− + 1) satisfy the bounds

∣∣∣z−(t)+ 9[[w]](t)3
16〈〈w〉〉(t)2

∣∣∣ � C0t
5
2 . (5.68a)
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∣∣∣k−(t)− 4[[w]](t)3
〈〈w〉〉(t)3

∣∣∣ � C0t
5
2 , (5.68b)

where C0 = C0(κ,b, c,m) > 0 is an explicitly computable constant. In particular, in
view of (5.63) we have the estimates

∣∣z−(t)+ 9b
9
2

2κ2
t
3
2
∣∣ � Ct2 ⇒ |z−(t)| � 5b

9
2

κ2
t
3
2 (5.69a)

∣∣k−(t)− 32b
9
2

κ3
t
3
2
∣∣ � Ct2 ⇒ |k−(t)| � 40b

9
2

κ3
t
3
2 (5.69b)

for all t ∈ (0, ε], assuming that ε is sufficiently small.

Proof of Lemma 5.12 Throughout the proof, we fix t ∈ (0, ε], and omit the t depen-
dence of the unknowns. In view of (5.63), we view [[w]] as a small parameter, thus
suitable for asymptotic expansions, and 〈〈w〉〉 as anO(1) parameter. As such, in (5.67)
we replace

w- = 〈〈w〉〉 + 1
2 [[w]] , w+ = 〈〈w〉〉 − 1

2 [[w]] .

Because we expect |z−|, |e−| 	 1, we first perform a Taylor series expansion of
(5.66), and identify only the linear terms with respect to z− and e−. This becomes

1
16 [[w]]4(12〈〈w〉〉2 − [[w]]2)− 1

8 [[w]](32〈〈w〉〉4 + 8〈〈w〉〉2[[w]]2 + 6〈〈w〉〉[[w]]3 − [[w]]4)z−
− 1

64 [[w]](48〈〈w〉〉5 + 40〈〈w〉〉3[[w]]2 − 48〈〈w〉〉2[[w]]3 + 3〈〈w〉〉[[w]]4 + 4[[w]]5)e−
= O(|z−|2 + |e−|2)
− 8〈〈w〉〉3[[w]]3 + 12[[w]]2(2〈〈w〉〉3 + 〈〈w〉〉2[[w]])z−
+ 1

32 (64〈〈w〉〉6 + 240〈〈w〉〉4[[w]]2 − 512〈〈w〉〉3[[w]]3 + 60〈〈w〉〉2[[w]]4 + [[w]]6)e−
= O(|z−|2 + |e−|2) .

By dropping the higher order terms in |[[w]]| 	 1, this motivates our definition of the
approximate solutions zapp− and e

app
− as the solutions of the linear system

(
4[[w]]〈〈w〉〉4 3

4 [[w]]〈〈w〉〉5
24[[w]]2〈〈w〉〉3 2〈〈w〉〉6

)(
zapp−
e
app
−

)
=

( 3
4 [[w]]4〈〈w〉〉2
8[[w]]3〈〈w〉〉3

)
. (5.70)

This system is uniquely solvable, and yields

zapp− = −
9[[w]]3
16〈〈w〉〉2 Q1

( [[w]]
〈〈w〉〉

)
, Q1(x) = 1

1− 9
4 x

2
, (5.71a)

e
app
− =

4[[w]]3
〈〈w〉〉3 Q2

( [[w]]
〈〈w〉〉

)
, Q2(x) = 1− 9

16 x
2

1− 9
4 x

2
. (5.71b)
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In order to apply the implicit function theorem, we at last introduce the variables

Z = z− − zapp−
[[w]]5 and E = e− − e

app
−

[[w]]5 (5.72)

and substitute in the system (5.67) the ansatz z− = zapp− + Z [[w]]5 and e− =
e
app
− + E[[w]]5. After some algebraic manipulations, the system of equations (5.67) is
rewritten as system

0 = F1([[w]], 〈〈w〉〉, Z , E)
= [[w]]−6E1(〈〈w〉〉 + 1

2 [[w]], 〈〈w〉〉 − 1
2 [[w]], zapp− + Z [[w]]5, eapp− + E[[w]]5)

(5.73a)

0 = F2([[w]], 〈〈w〉〉, Z , E)
= [[w]]−5E2(〈〈w〉〉 + 1

2 [[w]], 〈〈w〉〉 − 1
2 [[w]], zapp− + Z [[w]]5, eapp− + E[[w]]5)

(5.73b)

for the unknowns Z and E . Defining

Pw = (0, 〈〈w〉〉,− 27
64 〈〈w〉〉−4,−15〈〈w〉〉−5) ,

we observe that

F1(Pw) = 0 , ∂ZF1(Pw) = −4〈〈w〉〉4 , ∂ZF2(Pw) = 0 ,

F2(Pw) = 0 , ∂EF1(Pw) = 0 , ∂EF2(Pw) = 2〈〈w〉〉6.

Thus, the Jacobian determinant associated to (F1,F2)(·, ·, Z , E) evaluated at Pw
equals to −8〈〈w〉〉10 
= 0. Here we are using that by (5.63) we have that |〈〈w〉〉 − κ| �
κ
2 , and thus 〈〈w〉〉 
= 0. Thus, by the implicit function theorem, there exists a
J0 = J0(〈〈w〉〉) > 0, such that for all |[[w]]| � J0, we have a unique solution
Z = Z([[w]], 〈〈w〉〉) and E = E([[w]], 〈〈w〉〉) of (5.73), with Z(0, 〈〈w〉〉) = − 27

64 〈〈w〉〉−4
and E(0, 〈〈w〉〉) = −15〈〈w〉〉−6. To conclude, we note that since J0 depends only on
〈〈w〉〉, it may be estimated solely in terms of κ; and since by (5.63) we have that

|[[w]]| � 3b
3
2 ε

1
2 with ε which is sufficiently small in terms of κ and b, we deduce that

the condition |[[w]]| � J0 is automatically guaranteed.
As a consequence, from the above discussion we deduce that for all t � ε, we have

∣∣z− − zapp−
∣∣ � C0[[w]]5 , and

∣∣e− − e
app
−

∣∣ � C0[[w]]5 , (5.74)

where C0 > 0 is a constant which only depends on κ .
The proof of the bounds (5.68a)–(5.68b) are now essentially completed, upon

combining (5.63), (5.71), and (5.74). To see this, note that the rational function Q1
appearing in the definition (5.71a) satisfies |Q1(x)− 1| � 3x2 for all x � 1

10 . Thus,
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we obtain that

∣∣∣∣zapp− +
9[[w]]3
16〈〈w〉〉2

∣∣∣∣ � C0[[w]]5

since 〈〈w〉〉 � κ
2 when ε is sufficiently small. The bound (5.68a) follows from the above

estimate, (5.63), and (5.74). Similarly, by using that the rational function Q2 appearing
in the definition (5.71a) satisfies |Q2(x) − 1| � 2x2 for all x � 1

10 , we obtain the
bound

∣∣∣∣eapp− −
4[[w]]3
〈〈w〉〉3

∣∣∣∣ � C0[[w]]5 ,

which may be combined with (5.63) and (5.74), to establish

∣∣∣∣e− −
4[[w]]3
〈〈w〉〉3

∣∣∣∣ � C0[[w]]5 (5.75)

with C0 > 0 a constant which depends only on κ and b. The bound (5.68b) now
follows because k− = log(1 + e−), and |log(1+ e−)− e−| � 2e2− for |e−| � 1

2 ;

clearly, |e−| = O(t 32 ) � 1
2 in view of (5.75).

The bounds (5.69a)–(5.69b) follow from (5.68a)–(5.68b), (5.63), and the fact that
t � ε, which in turn may be made arbitrarily small with respect to κ and b. ��

Let us further assume that w+ and w- are differentiable with respect to ξ and t for
all (ξ, t) ∈ �ε. By implicitly differentiating (5.66a)–(5.66b), we may then deduce:

Lemma 5.13 (Lipschitz bounds for z− and k−) For t ∈ (0, ε], assume that w- and
w+ are such that their jump and mean at (s(t), t) satisfy (5.63), and further assume
that 〈〈w〉〉 and [[w]] are differentiable with respect to t . Then, the smallest roots of the
system of equations (5.66) are such that z− and k− = log(e−+1) satisfy the pointwise
estimates

∣∣∣ ddt z−(t)+ d
dt

(
9[[w]](t)3
16〈〈w〉〉(t)2

)∣∣∣ � C0t
2
(
| ddt [[w]](t)| + | ddt 〈〈w〉〉(t)|

)
(5.76a)

∣∣∣ek−(t) ddt k−(t)− d
dt

(
4[[w]](t)3
〈〈w〉〉(t)3

)∣∣∣ � C0t
2
(
| ddt [[w]](t)| + | ddt 〈〈w〉〉(t)|

)
(5.76b)

where the constant C0 > 0 only depends on κ , b, and m.

Proof of Lemma 5.13 From the definition k− = log(1 + e−) we obtain that d
dt k− =

e−k− d
dt e−, and thus, in order to prove the lemma it is sufficient to obtain derivative

bounds for z− and e−.
Implicitly differentiating (5.66) we arrive at

d

dt

(
z−
e−

)
= −

(
∂z−E1 ∂e−E1
∂z−E2 ∂e−E2

)−1 (
∂w-E1 ∂w+E1
∂w-E2 ∂w+E2

)
d

dt

(
w-
w+

)
, (5.77)
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pointwise for t ∈ (0, ε], where we recall that the functions E1 and E2 are defined in
(5.67). In order to evaluate these Jacobi matrices, we resort to the notation in (5.62)
and rewrite w- = 〈〈w〉〉 + 1

2 [[w]] and w+ = 〈〈w〉〉 − 1
2 [[w]]; furthermore, we write

z− = zapp− + O([[w]]5) and e− = e
app
− + O([[w]]6) as justified by (5.72), with zapp−

defined by (5.71a), and eapp− given by (5.71b).We emphasize that the implicit constants
in theO([[w]]5) andO([[w]]6) symbols only depend on κ andb, since the bounds on the
solutions Z and E of (5.73) only depend on κ and b. After some tedious computations,
we arrive at

−
(
∂z−E1 ∂e−E1
∂z−E2 ∂e−E2

)−1 (
∂w-E1 ∂w+E1
∂w-E2 ∂w+E2

)

=
⎛
⎝−

27[[w]]2
16〈〈w〉〉2 +

9[[w]]3
16〈〈w〉〉3

27[[w]]2
16〈〈w〉〉2 +

9[[w]]3
16〈〈w〉〉3

12[[w]]2
〈〈w〉〉3 −

6[[w]]3
〈〈w〉〉4 − 12[[w]]2

〈〈w〉〉3 −
6[[w]]3
〈〈w〉〉4

⎞
⎠+O([[w]]4) , (5.78)

where the implicit constant only depends on κ and b. From (5.63), (5.77), (5.78), and
recalling that d

dtw- = d
dt 〈〈w〉〉 + 1

2
d
dt [[w]] and d

dtw+ = d
dt 〈〈w〉〉 − 1

2
d
dt [[w]], we deduce

that there exists a constant C0 > 0, which only depends on κ and b, such that

∣∣∣ ddt z− + d
dt

(
9[[w]]3
16〈〈w〉〉2

)∣∣∣+
∣∣∣ ddt e− − d

dt

(
4[[w]]3
〈〈w〉〉3

)∣∣∣ � C0[[w]]4
(∣∣ d

dt [[w]]
∣∣+ ∣∣ d

dt 〈〈w〉〉
∣∣)

(5.79)

The bounds (5.76) follow from (5.79), upon recalling that [[w]] = O(t 12 ). ��
A direct consequence of Lemmas 5.7, 5.12, and 5.13 is the following statement,

which will be useful in the proof of Proposition 5.6.

Corollary 5.14 In addition to the assumption of Lemmas 5.7, assume that [[w]] and
〈〈w〉〉 satisfy the bounds (5.63). Let z−(t) and k−(t) be as defined in Lemma 5.12. In
addition, suppose that there exists R = R(κ,b, c,m) > 0 such that for all t ∈ (0, ε]
we have

∣∣ d
dt [[w]](t)− d

dt [[wB]](t)
∣∣ � 2R,

∣∣ d
dt 〈〈w〉〉(t)− d

dt 〈〈wB〉〉(t)
∣∣ � R . (5.80)

Then, assuming that ε is sufficiently small with respect to κ,b, c andm, we have that

∣∣ d
dt z−(t)+ 27b

9
2

4κ2
t
1
2
∣∣ � Ct ,

∣∣ d
dt k−(t)− 48b

9
2

κ3
t
1
2
∣∣ � Ct , (5.81)

for all t ∈ (0, ε], where C = C(κ,b, c,m) > 0 is a constant.
In addition to (5.80), if we are also given that

∣∣∣ d2dt2
[[w]](t)− d2

dt2
[[wB]](t)

∣∣∣ � 2R∗t−1,
∣∣∣ d2dt2
〈〈w〉〉(t)− d2

dt2
〈〈wB〉〉(t)

∣∣∣ � R∗t−1 ,
(5.82)
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for a constant R∗ = R∗(κ,b, c,m) > 0. Then, by possibly further reducing the value
of ε we also have the estimates

∣∣ d2
dt2

z−(t)+ 27b
9
2

8κ2
t−

1
2
∣∣ � C ,

∣∣ d2
dt2

k−(t)− 24b
9
2

κ3
t−

1
2
∣∣ � C , (5.83)

where C = C(κ,b, c,m) > 0 is a constant.

Proof of Corollary 5.14 Recall that by assumption the bound (5.63) holds, and thus by
Lemma 5.12we have the estimate (5.69). The assumption (5.80) and the bound (5.15b)
imply that

∣∣ d
dt [[w]] − b

3
2 t−

1
2
∣∣+ ∣∣ d

dt 〈〈w〉〉
∣∣ � 3m4 + 3R , (5.84)

and thus the right sides of (5.76a) and (5.76b) are O(t 32 ). For the bound on the time
derivative of z−, we appeal to (5.76a), which gives

∣∣∣ ddt z− + 27[[w]]2
16〈〈w〉〉2

d
dt [[w]] − 9[[w]]3

8〈〈w〉〉3
d
dt 〈〈w〉〉

∣∣∣ � Ct
3
2 .

Incorporating into the above estimate the bounds (5.84) and (5.63), we arrive at the z−
bound in (5.81). The time derivative of k− is bounded by appealing to (5.76b), which
yields

∣∣∣ek− d
dt k− − 12[[w]]2

〈〈w〉〉3
d
dt [[w]] + 12[[w]]3

〈〈w〉〉4
d
dt 〈〈w〉〉

∣∣∣ � Ct
3
2 .

Using (5.84), (5.69b), and (5.63), the k− bound in (5.81) now follows.
In order to prove (5.83), we first note that assumption (5.82) and the bound (5.15c)

imply that

∣∣ d2
dt2
[[w]] + 1

2b
3
2 t−

3
2
∣∣+ ∣∣ d2

dt2
〈〈w〉〉∣∣ � 3

(
5m4 + R∗

)
t−1 . (5.85)

Next, we implicitly differentiate (5.66) a second time, to obtain

d2

dt2

(
z−
e−

)
+

(
∂z−E1 ∂e−E1
∂z−E2 ∂e−E2

)−1 (
∂w-E1 ∂w+E1
∂w-E2 ∂w+E2

)
d2

dt2

(
w-

w+

)

+
(
∂z−E1 ∂e−E1
∂z−E2 ∂e−E2

)−1 ⎛
⎝
∂w-w-E1 ∂w-w+E1 ∂w+w+E1
∂w-w-E2 ∂w-w+E2 ∂w+w+E2

⎞
⎠

⎛
⎜⎜⎝

( ddtw-)
2

2 d
dtw-

d
dtw+

( ddtw+)
2

⎞
⎟⎟⎠

= −
(
∂z−E1 ∂e−E1
∂z−E2 ∂e−E2

)−1 (
∂z−z−E1 ∂z−k−E1 ∂k−k−E1
∂z−z−E2 ∂z−k−E2 ∂k−k−E2

)⎛
⎜⎜⎝

( ddt z−)
2

2 d
dt z−

d
dt k−

( ddt k−)
2

⎞
⎟⎟⎠
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− 2

(
∂z−E1 ∂e−E1
∂z−E2 ∂e−E2

)−1 (
∂z−w-E1 ∂z−w+E1 ∂k−w-E1 ∂k−w+E1
∂z−w-E2 ∂z−w+E2 ∂k−w-E2 ∂k−w+E2

)
⎛
⎜⎜⎜⎜⎜⎝

d
dt z−

d
dtw-

d
dt z−

d
dtw+

d
dt k−

d
dtw-

d
dt k−

d
dtw+

⎞
⎟⎟⎟⎟⎟⎠
.

(5.86)

By appealing to (5.78), (5.76), and (5.63), similarly to (5.79) we deduce that the right
side of (5.86) equals

⎛
⎝

3〈〈w〉〉
16[[w]]

d
dt z−

d
dt k− + 〈〈w〉〉2

16[[w]] (
d
dt k−)

2

0

⎞
⎠+O

((| ddt z−| + | ddt k−|
)2)

+
⎛
⎝−

8
〈〈w〉〉

d
dt 〈〈w〉〉 + 2[[w]]2−2〈〈w〉〉2

〈〈w〉〉2[[w]]
d
dt [[w]] 27[[w]]2−12〈〈w〉〉2

32[[w]]〈〈w〉〉
d
dt [[w]] + 3

8
d
dt 〈〈w〉〉

− 24[[w]]
〈〈w〉〉3

d
dt [[w]] − 21[[w]]

2〈〈w〉〉2
d
dt [[w]] − 12

〈〈w〉〉
d
dt 〈〈w〉〉

⎞
⎠

( d
dt z−
d
dt k−

)

+O
(
[[w]]2 (∣∣ ddt [[w]]

∣∣+ ∣∣ d
dt 〈〈w〉〉

∣∣) (| ddt z−| + | ddt k−|
))
. (5.87)

Similarly, one may verify that the sum of the last two terms on the left side of (5.86)
is given by

⎛
⎜⎝

27[[w]]2
16〈〈w〉〉2

d2

dt2
[[w]] − 9[[w]]3

8〈〈w〉〉3
d2

dt2
〈〈w〉〉

− 12[[w]]2
〈〈w〉〉3

d2

dt2
[[w]] + 12[[w]]3

〈〈w〉〉4
d2

dt2
〈〈w〉〉

⎞
⎟⎠+

⎛
⎜⎝

9[[w]]
4〈〈w〉〉2 (

d
dt [[w]])2 + 27[[w]]2

2〈〈w〉〉3
d
dt [[w]] ddt 〈〈w〉〉

− 24[[w]]
〈〈w〉〉3 (

d
dt [[w]])2 + 72[[w]]2

〈〈w〉〉4
d
dt [[w]] ddt 〈〈w〉〉

⎞
⎟⎠

+O
(
[[w]]3 (∣∣ ddt [[w]]

∣∣+ ∣∣ d
dt 〈〈w〉〉

∣∣)) (5.88)

where the implicit constants only depend on κ,b, c, and m.
To conclude we use the bounds (5.63), (5.84), (5.85), (5.69), and (5.81) in the

equality given by (5.86), (5.87), and (5.88), to arrive at

∣∣∣ d2dt2
z− + 27[[w]]

16〈〈w〉〉2
(
2
( d
dt [[w]]

)2 + [[w]] d2
dt2
[[w]]

)∣∣∣ � C (5.89)

and by also appealing to d2

dt2
k− = e−k− d2

dt2
e− − ( ddt k−)2 we obtain

∣∣∣ek− d2

dt2
k− − 12[[w]]

〈〈w〉〉3
(
2
( d
dt [[w]]

)2 + [[w]] d2
dt2
[[w]]

)∣∣∣ � Ct
1
2 , (5.90)

where C = C(κ,b, c,m) > 0. To conclude, we combine (5.89)–(5.90) with the
precise estimates for [[w]] and its first two time derivatives, cf. (5.63), (5.84), and
(5.85) and arrive at (5.83). ��
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5.7 Transport Structure, Spacetime Regions, and Characteristic Families

5.7.1 A New Form of thew and z Equations

We first observe that using (3.5c) and recalling that c = 1
2 (w − z), we can write the

system (3.5) as

∂tw + λ3∂θw = − 8
3aw + 1

4c(∂t k + λ3∂θk) , (5.91a)

∂t z + λ1∂θ z = − 8
3az − 1

4c(∂t k + λ1∂θk) , (5.91b)

∂t k + λ2∂θk = 0 , (5.91c)

∂t a + λ2∂θa = − 4
3a

2 + 1
3 (w + z)2 − 1

6 (w − z)2 , (5.91d)

Our iteration scheme will be based on (5.91), and in particular on the estimates for
∂θw that the specific form of the equations (5.91a) and (5.91b) provide. It will be
convenient to introduce the vector of unknowns

U = (w, z, k, a) . (5.92)

5.7.2 Characteristic Families, Shock-Intersection Times, Spacetime Regions

Recalling the definition of the wave speeds (3.6), we let η denote the 3-characteristic
which satisfies

∂tη(x, t) = λ3(η(x, t), t) , η(x, 0) = x , (5.93a)

for t ∈ (0, ε). We also define the 1- and 2-characteristics as

∂sψt (θ, s) = λ1(ψt (θ, s), s) , ψt (θ, t) = θ , (5.93b)

∂sφt (θ, s) = λ2(φt (θ, s), s) , φt (θ, t) = θ , (5.93c)

for s ∈ (0, t). We note that η has a prescribed initial datum at time 0, while φt and
ψt have a prescribed terminal datum, at time t . Moreover, note that as opposed to η,
the characteristics φt and ψt may cross the shock curve (s(t), t)t∈[0,ε] in a continuous
fashion; this will be shown to be possible because λ1 and λ2 have bounded one-sided
derivatives on the shock.

Definition 5.15 For (θ, t) ∈ T × [0, ε] consider the integral curves ψt (θ, s) and
φt (θ, s) defined by the ODEs (5.93b)–(5.93c). If the curves (ψt (θ, s), s)s∈[0,t] and
(s(s), s)s∈[0,t], respectively (φt (θ, s), s)s∈[0,t] and (s(s), s)s∈[0,t], intersect then we
define the shock-intersection times T(θ, t) and J(θ, t) as the (largest) time at which

ψt (θ, J(θ, t)) = s(J(θ, t)) , and

φt (θ, T(θ, t)) = s(T(θ, t)) . (5.94)
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Fig. 11 Fix a spatial location (θ, t), just to the left of the given shock curve s, which is represented in red.
The flow η(x, s) defined in (5.93a), and the label x such that η(x, t) = θ , are also represented in red. The
flow φt (θ, s) defined in (5.93c), its associated shock-intersection time T(θ, t) from (5.94), and the curve s2
from (5.95), are represented in blue. The flow ψt (θ, s) defined in (5.93b), its associated shock-intersection
time J(θ, t) from (5.94), and the curve s2 from (5.95), are represented in green

If the curves (ψt (θ, s), s)s∈[0,t] and (s(s), s)s∈[0,t], respectively (φt (θ, s), s)s∈[0,t] and
(s(s), s)s∈[0,t], do not intersect, then we overload notation and define J(θ, t) = ε,
respectively T(θ, t) = ε.
Implicit in the above definition is the assumption that if the characteristics ψt (θ, ·) or
φt (θ, ·) intersect the shock curve, then they do so only once; we will indeed prove this
holds, due to the transversality of these characteristics (Fig. 11).

Definition 5.16 Define θ̊1, θ̊2 ∈ T implicitly by the equations J(θ̊1, ε) = 0 and
T(θ̊2, ε) = 0. For all t ∈ [0, ε] we define

s1(t) = ψε(θ̊1, t) , and s2(t) = φε(θ̊2, t) . (5.95)

In particular, s1(0) = s2(0) = 0, and J(s1(t), t) = T(s2(t), t) = 0. The spacetime
curves s1(t), s2(t), and s(t), divide the spacetime region Dε into four regions with
distinct behavior. We also define the sets

Dz
ε = {(θ, s) ∈ Dε : s1(s) < θ < s(s) , s ∈ (0, ε]} ,

Dk
ε = {(θ, s) ∈ Dε : s2(s) < θ < s(s) , s ∈ (0, ε]} .

Implicit in the above definition is the assumption that the points θ̊1 and θ̊2 exist, and
are uniquely defined; we will indeed prove that this holds, due to the monotonicity of
ψt (θ, s) and φt (θ, s)with respect θ , and the the regularity of these curves with respect
to y and s.

Definition 5.17 It is convenient to define the vectors

U = (w, z, k, c, a) and
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UL(t) = (w, z, k, c, a)(s(t)−, t) = (w−, z−, k−, c−, a−)(t) . (5.96)

Remark 5.18 (Notation for derivatives) Throughout the remainder of manuscript
we shall interchangeably use the following notations for the derivatives of vari-
ous functions f with respect to the Lagrangian label x or the Eulerian variable θ :
∂x f ↔ fx , ∂2x f ↔ fxx , ∂θ f ↔ fθ , ∂2θ f ↔ fθθ . Similarly, we shall sometimes
denote time derivatives as ∂t f ↔ ft . Derivatives for function restricted to the shock
curve, shall be denoted as d

dt ( f (s(t), t)) = ḟ |(s(t),t); this notation for instance shall
be used for the function UL defined in (5.96).

5.7.3 Identitities Up to the First Derivative forw, z, k, and a

There are particularly useful forms of the equations for w, z, k, and a and their first
derivatives. These identities will be used both for designing a simple iteration scheme
for the construction of unique solutions, and also for second derivative estimates in
Section 6.
Identies for w. Equation (5.91a) can then be written as

d
dt (w ◦ η) = 1

4c ◦ η d
dt (k ◦ η)− 8

3 (aw) ◦ η . (5.97)

Differentiating this equation, we find that

d
dt (wθ ◦ η ηx ) = 1

4c ◦ η d
dt (kθ ◦ η ηx )+ 1

4cθ ◦ η ηx (kt + λ3kθ ) ◦ η − 8
3∂θ (aw) ◦ η ηx

= 1
4

d
dt (c ◦ η kθ ◦ η ηx )− 1

4 (ct + λ3cθ ) ◦ η kθ ◦ η ηx
+ 1

4cθ ◦ η ηx (∂t k + λ3∂θk) ◦ η − 8
3∂θ (aw) ◦ η ηx

= 1
4

d
dt

(
(ckθ ) ◦ η ηx

)+ 1
6

(
ckθ (zθ + cθ + 4a)

) ◦ η ηx − 8
3 (aw)θ ◦ η ηx .

(5.98)

To obtain the last equality, we have used that (3.7) can be written as

∂t c + λ3∂θc = − 2
3c∂θ z − 8

3ca ,

and that ∂t k = −λ2∂θk with the fact that λ3−λ2 = 2
3c. Integrating (5.98) in time, we

obtain that

wθ ◦ η = w
′
0
ηx
+ 1

4 (cky) ◦ η + 1
ηx

∫ t

0

(
1
6ckθ (zθ + cθ + 4a)− 8

3∂θ (aw)
)
◦η ηxdt ′ .

(5.99)

We wish to emphasize that although (3.5a) appears to have derivative loss on the right
side, the structure of (5.91a) leads to the identity (5.99) which shows that there is, in
fact, no such loss incurred.
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Notice that by expanding the time derivative in (5.97) and using (5.91c), we find
that

∂tw ◦ η = −wθ ◦ η λ3 ◦ η + 1
6c

2kθ ◦ η − 8
3aw ◦ η

It follows that

(∂tw + ṡ∂θw) ◦ η = (ṡ− λ3 ◦ η)wθ ◦ η + 1
6c

2kθ ◦ η − 8
3aw ◦ η

= w′0
ηx
(ṡ− λ3 ◦ η)+ 1

4 (ckθ ) ◦ η(ṡ− λ3 ◦ η)
+ 1

6c
2kθ ◦ η − 8

3aw ◦ η
+ (ṡ−λ3◦η)

ηx

∫ t

0

(
1
6ckθ (zθ + cθ + 4a)− 8

3∂θ (aw)
)
◦η ηxdt ′ .

(5.100)

Identies for z and k. Equation (5.91b) can then be written as

d
ds (z ◦ ψt ) = − 1

4c ◦ ψt d
ds (k ◦ ψt )− 8

3 (az) ◦ ψt . (5.101)

Differentiating (5.101), a similar identity to (5.99) holds for ∂θ z. The analogous com-
putation to (5.98) shows that

d
ds (zθ ◦ ψt∂θψt ) = − 1

4
d
ds

(
(c kθ ) ◦ ψt∂θψt

)

−
(

1
12ckθ (wθ + zθ + 8a)+ 8

3∂θ (az)
)
◦ψt ∂θψt , (5.102)

and thus, upon integration in time from J(θ, t) to t , we find that

zθ (y, t) =
((
zθ (s(J), J)+ 1

4 (ckθ )(s(J), J)
)
∂θψt (s(J), J)

+ Fzθ (U , ψt , J)
)
(y, t) , (5.103a)

Fzθ (U , ψt , J) = − 1
4 (ckθ )(θ, t)

−
∫ t

J(θ,t)

(
1
12ckθ (wθ + zθ + 8a)+ 8

3∂θ (az)
)
◦ψt ∂θψt dt ′ .

(5.103b)

Again, the identity (5.103) shows that no derivative loss occurs for ∂θ z as well. This
formula is not yet in its final form. We shall view the given shock curve (s(t), t) as
a Cauchy surface for both z and k. As such, we shall write the first term on the right
in (5.103) in terms of the differentiated data on the shock curve, which we now make
precise.

The transport equation (5.91c) allows us to write d
ds (k ◦φt ) = 0, so that integration

from T(θ, t) to t shows that for all (θ, t) ∈ Dk
ε ,

k(θ, t) = k(s(T(θ, t)), T(θ, t)) . (5.104)
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Differentiation then gives

d
ds (∂θk ◦ φt ∂θφt ) = 0 , (5.105)

and integration using (5.93c) and (5.94) shows that

∂θk(θ, t) = ∂θk(s(T(θ, t)), T(θ, t)) ∂θφt (s(T(θ, t)), T(θ, t)) . (5.106)

Letting ˙k−(t) := d
dt k−(t) denote differentiation along the shock curve, from (5.91c)

we have the coupled system

˙k−(t) = ∂t k(s(t), t)+ ṡ(t)∂θk(s(t), t) , (5.107a)

0 = ∂t k(s(t), t)+ λ2(s(t), t)∂θk(s(t), t) . (5.107b)

We see that

∂θk(s(t), t) =
˙k−(t)

ṡ(t)− λ2(s(t), t) , (5.108)

and thus with (5.94),

∂θk(s(T(θ, t)), T(θ, t))) =
˙k−(T(θ, t)))

ṡ(T(θ, t)))− ∂sφt (θ, T(θ, t)) . (5.109)

Substitution of (5.109) into (5.106) shows that for all (θ, t) ∈ Dk
ε ,

∂θk(θ, t) =
˙k−(T(θ, t)))

ṡ(T(θ, t)))− ∂sφt (θ, T(θ, t)) ∂θφt (s(T(θ, t)), T(θ, t)) . (5.110)

Once again, we let ˙z−(t) denote differentiation along the shock curve so that using
(3.5b), we obtain the coupled system

˙z−(t) = ∂t z(s(t), t)+ ṡ(t)∂θ z(s(t), t) , (5.111a)

( 16c
2∂θk − 8

3az)(s(t), t) = ∂t z(s(t), t)+ λ1(s(t), t)∂θ z(s(t), t) . (5.111b)

Thus,

∂θ z(s(t), t) = ˙z−(t)−
1
6 (c

2∂θk)(s(t), t)+ 8
3 (az)(s(t), t)

ṡ(t)− λ1(s(t), t) , (5.112)

and hence with (5.108),

∂θ z(s(J), J) =
˙z−(J)− 1

6
c2−(J) ˙k−(J)

ṡ(J)−λ2(s(J),J) + 8
3a−(J)z−(J)

ṡ(J)− ∂sψt (θ, J) , (5.113)

123



   26 Page 110 of 199 T. Buckmaster et al.

where J = J(θ, t). We can now substitute (5.109) and (5.113) into (5.103) to conclude
that

∂θ z =
⎛
⎝ ˙z−(J)−

1
6

c2−(J) ˙k−(J)
ṡ(J)−λ2(s(J),J) + 8

3a−(J)z−(J)
ṡ(J)− ∂sψt (s(J), J)

+1

4

c−(J) ˙k−(J)
ṡ(J)− λ2(s(J), J)

)
∂θψt (s(J), J)+ Fzθ , (5.114)

for any (θ, t) ∈ Dz
ε. We define

Hzθ (UL, U̇L, ψt , J) :=
⎛
⎝ ˙z−(J)−

1
6

c2−(J) ˙k−(J)
ṡ(J)−λ2(s(J),J) + 8

3a−(J)z−(J)
ṡ(J)− ∂sψt (s(J), J)

+1

4

c−(J) ˙k−(J)
ṡ(J)− λ2(s(J), J)

)
∂θψt (s(J), J) , (5.115)

so that (5.114) is concisely written as

∂θ z = Hzθ (UL, U̇L, ψt , J)+ Fzθ (U , ψt , J) , (5.116)

with Fzθ and Hzθ given by (5.103b) and (5.115), respectively.
Identies for a. We next obtain identities for ∂θa, first in Dε. We write (5.91d) as
∂t a + λ2∂θa = − 4

3a
2 + 1

6 (w
2 + z2) + wz. We consider this equation along the

characteristics φt and integrate from time s ∈ [0, t] to t to find that

a(θ, t) = a(φt (θ, s), s)+
∫ t

s

(
− 4

3a
2 + 1

6w
2 + 1

6 z
2 + wz

)
◦ φt dr . (5.117)

Differentiation shows that

∂θa(θ, t) = ∂θa(φt (θ, s), s)∂θφt (θ, s)
+

∫ t

s
∂θ

(
− 4

3a
2 + 1

6w
2 + 1

6 z
2 + wz

)
◦ φt ∂θφt dr . (5.118)

5.8 Construction of Solutions by an Iteration Scheme

5.8.1 Wave Speeds, Characteristics, and Stopping Times

For each n � 1, the three wave speeds are given by

λ
(n)
1 = 1

3w
(n) + z(n) , λ

(n)
2 = 2

3w
(n) + 2

3 z
(n) , λ

(n)
3 = w(n) + 1

3 z
(n) . (5.119)
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For n � 1, we define ψ(n)t and φ(n)t as flows solving

∂sψ
(n)
t (θ, s) = λ(n)1 (ψ

(n)
t (θ, s), s) , ψ

(n)
t (θ, t) = θ , (5.120a)

∂sφ
(n)
t (θ, s) = λ(n)2 (φ

(n)
t (θ, s), s) , φ

(n)
t (θ, t) = θ . (5.120b)

We next define η(n) to be the solution of

∂sη
(n)(x, s) = λ(n)3 (η

(n)(x, s), s) , η(n)(x, 0) = x . (5.121)

Using the characteristics φ(n)t and ψ(n)t , we define the shock-intersection times
T(n)(θ, t) and J(n)(θ, t) as in Definition 5.15. Similarly, the curves s(n)1 (t) and s

(n)
2 (t)

and the spacetime regionsDz,(n)
ε andDk,(n)

ε are defined just as in Definition 5.16. The
rigorous justification of these definitions is provided in Lemma 5.24.

5.8.2 Specification of the First Iterates

We begin by defining the first iterate η(1) associated to the 3-characteristic and w(1)

as follows. First, we set

η(1)(x, s) = ηB(x, s) = x + sw0(x) , (5.122)

and then define

w(1)(θ, t) = wB(θ, t) = w0(η(1)inv(θ, t)) , z(1) = 0 , k(1) = 0 , a(1) = a0 ,
(5.123)

where η(1)inv := (η(1))−1 = ηB−1. We also define ψ(1)t and φ(1)t via (5.120a)–(5.120b)
as the characteristic flows of the velocity fields 1

3wB and respectively 2
3wB.

5.8.3 The Iteration Scheme forw(n+1)

We can now state the iteration scheme for all n � 1. We set

c(n) = 1
2 (w

(n) + z(n)) ,

and define w(n+1) as the solution to

d
dt (w

(n+1) ◦ η(n)) = − 8
3 (a
(n)w(n)) ◦ η(n) + 1

4c
(n) ◦ η(n) ddt (k(n) ◦ η(n)) , (5.124)

with initial condition w(n+1) ◦ η(n)(x, 0) = w0(x). Integrating in time shows that

w(n+1)(η(n)(x, t), t)
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= w0(x)− 8
3

∫ t

0
(a(n)w(n))(η(n)(x, t ′), t ′)dt ′

+ 1
4

∫ t

0
c(n)(η(n)(x, t ′), t ′) d

dt ′
(
k(n)(η(n)(x, t ′), t ′)

)
dt ′ . (5.125)

It follows that for all (θ, t) ∈ Dε, w(n+1) is the solution to

∂sw
(n+1) + λ(n)3 ∂θw

(n+1) = − 8
3a
(n)w(n) + 1

4c
(n)(∂t k(n) + λ(n)3 ∂θk

(n)) , (5.126a)

w(n+1)(x, 0) = w0(x) . (5.126b)

In terms of the restrictions of w(n+1) on the left and right sides of shock
curve, i.e. w(n+1)− (t) = limθ→s(t)− w

(n+1)(θ, t) and respectively w(n+1)+ (t) =
limθ→s(t)+ w

(n+1)(θ, t), via Lemma 5.12 we define the functions z(n+1)− (t) and

k(n+1)− (t) as the solutions of the system of equations (5.67)

E1(w(n+1)− , w
(n+1)
+ , z(n+1)− , e

(n+1)
− ) = E2(w(n+1)− , w

(n+1)
+ , z(n+1)− , e

(n+1)
− ) = 0

(5.127)

and k(n+1)− = log(1+ e
(n+1)
− ).

5.8.4 The Iteration Scheme for a(n+1)

For all n � 1 and (θ, t) ∈ Dε, we define a(n+1) to be the solution of the Cauchy
problem

∂t a
(n+1) + λ(n)2 ∂θa

(n+1) = − 4
3 (a
(n))2 + 1

3 (w
(n))2

+ 1
3 (z
(n))2 + w(n)z(n) , (5.128a)

a(n+1)(x, 0) = a0(x) . (5.128b)

In view of (5.117), this function is explicitly given by

a(n+1)(θ, t) = a0(φ
(n)
t (θ, 0))

+
∫ t

0

(
− 4

3 (a
(n))2 + 1

6 (w
(n))2 + 1

6 (z
(n))2 + w(n)z(n)

)
(φ
(n)
t (θ, s), s)ds .

(5.129)

5.8.5 The Iteration Scheme for z(n+1)

For all n � 1, and for all (θ, t) ∈ Dz,(n)
ε we define z(n+1) to be the solution of the

ODE

d
ds

(
z(n+1) ◦ ψ(n)t

) = − 8
3

(
a(n)z(n)

) ◦ ψ(n)t − 1
4c
(n) ◦ ψ(n)t

d
ds

(
k(n) ◦ ψ(n)t

)
, (5.130a)
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for all s ∈ (J(n)(θ, t), t], with Cauchy data defined on the shock curve by

z(n+1)(ψ(n)t (θ, J
(n)(θ, t)), J(n)(θ, t)) = z(n+1)(s(J(n)(θ, t))−, J(n)(θ, t))

= z(n+1)− (J(n)(θ, t)) (5.130b)

where the function zn+1− is defined on the shock curve (s(t), t)t∈[0,ε] as the correct
root of (5.127) given by Lemma 5.12. In Eulerian variables, we note that the equation
(5.130a) is merely

∂t z
(n+1) + λ(n)1 ∂θ z

(n+1) = − 8
3a
(n)z(n) − 1

4c
(n)(∂t k

(n) + λ(n)1 ∂θk
(n)) (5.131)

for (θ, t) ∈ Dz,(n)
ε . On the other hand, for (θ, t) ∈ (Dz,(n)

ε )�, we simply define

z(n+1)(θ, t) = 0 (5.132)

which corresponds to the solution of (5.130a) with k(n) ≡ 0, and Cauchy data at t = 0
given by z0 ≡ 0.

5.8.6 The Iteration Scheme for k(n)

Having defined w(n+1) and z(n+1), we solve for φ(n+1)t using (5.120b). In turn, this
defines the curve s

(n+1)
2 , the shock intersection times T(n+1)(θ, t), and the region

Dk,(n+1)
ε .

For n � 1 and (θ, t) ∈ Dk,(n+1)
ε , we define k(n+1) to be the solution of

d
ds

(
k(n+1) ◦ φ(n+1)t

) = 0 , (5.133a)

for all s ∈ (T(n+1)(θ, t), t], with Cauchy data defined on the shock curve by

k(n+1)(φ(n+1)t (θ, T(n+1)(θ, t)), T(n+1)(θ, t))

= k(n+1)(s(T(n+1)(θ, t))−, T(n+1)(θ, t)) = k(n+1)− (T(n+1)(θ, t)) (5.133b)

where the function kn+1− = log(1+e(n+1)− ) is defined on the shock curve (s(t), t)t∈[0,ε]
as the correct root of (5.127) given by Lemma 5.12. In Eulerian variables, we note
that the equation (5.133a) is the same as

∂t k
(n+1) + λ(n+1)2 ∂θk

(n+1) = 0 (5.134)

for all (θ, t) ∈ Dk,(n+1)
ε . On the other hand, for (θ, t) ∈ (Dk,(n+1)

ε )�, we define

k(n+1)(θ, t) = 0 , (5.135)

which is the solution of (5.133a) with Cauchy data at time t = 0 given by k0 ≡ 0.
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5.8.7 Alternative Forms of the Iteration forw(n+1), z(n+1), and c(n+1)

Using that ∂t k(n) = −λ(n)2 ∂θk
(n), we can also write (5.126a) and (5.131) as

∂tw
(n+1) + λ(n)3 ∂θw

(n+1) = − 8
3a
(n)w(n) + 1

6 (c
(n))2∂θk

(n) , (5.136a)

∂t z
(n+1) + λ(n)1 ∂θ z

(n+1) = − 8
3a
(n)z(n) + 1

6 (c
(n))2∂θk

(n) , (5.136b)

and therefore

∂t c
(n+1) = − 1

2λ
(n)
3 ∂θw

(n+1) − 1
2λ
(n)
1 ∂θ z

(n+1) − 8
3a
(n)c(n) , (5.137)

which has the equivalent forms

∂t c
(n+1) + λ(n)2 ∂θc

(n+1) + 1
2c
(n)∂θλ

(n+1)
2 = − 8

3a
(n)c(n) , (5.138a)

∂t c
(n+1) + λ(n)3 ∂θc

(n+1) + 2
3c
(n)∂θ z

(n+1) = − 8
3a
(n)c(n) , (5.138b)

∂t c
(n+1) + λ(n)1 ∂θc

(n+1) + 2
3c
(n)∂θw

(n+1) = − 8
3a
(n)c(n) . (5.138c)

Although it is not necessary to obtain any estimates, we record at this stage the evo-
lution equation for the specific vorticity given according to (3.8) by
(n) = 4(w(n)+
z(n) − ∂θa(n))(c(n))−2ek(n) . By combining (5.128a), (5.134), (5.136a), (5.136b), and
(5.138a), we obtain

∂t

(n+1) + λ(n)2 ∂θ


(n+1) − 8
3

c(n)

c(n+1) a
(n)
 (n+1) − 4

3

(
c(n)

c(n+1) )
)2
∂θk
(n)ek

(n+1)

=
(
8
3a
(n) + ∂θλ(n)2

)
c(n)

c(n+1)
(

(n+1) −
(n)

)

+
(
8
3a
(n) + ∂θλ(n)2

)
c(n)

(c(n+1))2

(n)ek

(n+1) (
c(n+1)e−k(n+1) − c(n)e−k(n)

)

+
(

c(n)

c(n+1) − ∂θk(n+1)
)

(n+1)∂θ

(
λ
(n+1)
2 − λ(n)2

)

− 16
3

c(n)

(c(n+1))2 e
k(n+1)∂θ

(
c(n+1) − c(n)

)
+ 4 1

(c(n+1))2 e
k(n+1)∂θλ

(n)
2

(
a(n+1) − a(n)

)
.

(5.139)

At this stageweonly remark that if (w, z, k, a,
)(n)were to equal (w, z, k, a,
)(n+1),
then the right side of (5.139) vanishes, as is natural.

5.8.8 The Iteration Space

We will prove stability under iteration n �→ n + 1 of the following bound

|||(w(n) − w(1), z(n), k(n), a(n))|||ε � 1 (5.140)
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where the norm ||| · |||ε is as defined in (5.10). For convenience of the reader, we recall
that (5.140) means

∣∣w(n)(θ, t)− w(1)(θ, t)∣∣ � R1t (5.141a)

∣∣∂θw(n)(θ, t)− ∂θw(1)(θ, t)
∣∣ � R2

(
b3t3 + (θ − s(t))2

)− 1
6

(5.141b)
∣∣z(n)(θ, t)∣∣ � R3t

3
2 (5.141c)

∣∣∂θ z(n)(θ, t)
∣∣ � R4t

1
2 (5.141d)

∣∣k(n)(θ, t)∣∣ � R5t
3
2 (5.141e)

∣∣∂θk(n)(θ, t)
∣∣ � R6t

1
2 (5.141f)

∣∣a(n)(θ, t)∣∣+
∣∣∣∂θa(n)(θ, t)

∣∣∣ � R7 , (5.141g)

for all (θ, t) ∈ Dε, where

R1 = 50m2 , R2 = m3 , R3 = R4 = m , R5 = R6 = m
1
2 , R7 = 4m .

(5.142)

Lemma 5.19 Assume that (w(n), z(n), k(n), a(n)) ∈ Xε. Then for all (θ, t) ∈ Dε,

∣∣∂tw(n)(θ, t)− ∂tw(1)(θ, t)
∣∣ � 3m4

(
(θ − s(t))2 + t3

)− 1
6
. (5.143)

Proof of Lemma 5.19 Using the identity (5.136a) and the fact that ∂tw(1)+w(1)∂θw(1) =
0, we have that

∂tw
(n) − ∂tw(1) = −λ(n−1)3 (∂θw

(n) − ∂θw(1))− (λ(n−1)3 − w(1))∂θw(1)
− 8

3a
(n−1)w(n−1) + 1

6 (c
(n−1))2∂θk(n−1) , (5.144)

Now from (5.37a) and (5.141), we have that for ε taken sufficiently small,

∣∣(λ(n−1)3 − w(1))∂θw(1)
∣∣ � R1 ,

8
3

∣∣a(n−1)w(n−1)∣∣ � 3mR7 , and

1
6

∣∣(c(n−1))2∂θk(n−1)
∣∣ � t

1
2 .

Then from (5.141b) and with ε taken even small, we have that

∣∣∂tw(n) − ∂tw(1)
∣∣ � 2mR2

(
b3t3 + (θ − s(t))2

)− 1
6 + 3mR7 + R1

� 3m4
(
b3t3 + (θ − s(t))2

)− 1
6
,

where we have used (5.2), and that t � ε. Hence, we obtain the bound (5.143). ��
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5.8.9 The Behavior ofw(n), z(n), and k(n) on the Shock Curve

Lemma 5.20 Assume that (w(n−1), z(n−1), k(n−1), a(n−1)) ∈ Xε and that w(n) ∈ Xε.
Then for all t ∈ (0, ε] we have
∣∣[[w(n)(t)]] − [[w(1)(t)]]∣∣ � 2R1t ,

∣∣〈〈w(n)(t)〉〉 − 〈〈w(1)(t)〉〉∣∣ � R1t ,

(5.145a)∣∣∣ ddt [[w(n)]](t)− d
dt [[w(1)]](t)

∣∣∣ � 2R1,

∣∣∣ ddt 〈〈w(n)〉〉(t)− d
dt 〈〈w(1)〉〉(t)

∣∣∣ � R1 ,

(5.145b)

where R1 is as defined in (5.142). In particular, in view of (5.15a) and (5.15b), we
have that

∣∣[[w(n)]](t)− 2b
3
2 t

1
2
∣∣ � 3m3t ,

∣∣∣〈〈w(n)〉〉(t)− κ
∣∣∣ � 1

2m
4t , (5.146a)

∣∣∣ ddt [[w(n)]](t)− b
3
2 t−

1
2

∣∣∣ � 3m4,

∣∣∣ ddt 〈〈w(n)〉〉(t)
∣∣∣ � 2m4 , (5.146b)

for all t ∈ (0, ε].
Proof of Lemma 5.20 By assumption, w(n) satisfies the bound (5.141a), and so the
inequalities in (5.145a) follow. In order to prove (5.145b), we shall use that∣∣[[w(n−1)(t)]]∣∣ �

∣∣[[w(1)(t)]]∣∣ + ∣∣[[w(n−1)(t)− w(1)(t)]]∣∣, and hence by (5.15a) and
(5.141a),

∣∣[[w(n−1)(t)]]∣∣ � 21
10b

3
2 t

1
2 + 2R1t � 11

5 b
3
2 t

1
2 (5.147)

where we have taken ε sufficiently small for the last inequality. Next, we have that
from (5.144),

d
dt [[w]](n) − d

dt [[w(1)]]
= [[∂tw(n) − ∂tw(1)]] + ṡ[[∂θw(n) − ∂θw(1)]]
= (

ṡ(t)− w(1))[[∂θw(n) − ∂θw(1)]] +
(
λ
(n−1)
3 − w(1))[[∂θw(n) − ∂θw(1)]]

− [[λ(n−1)3 ]](∂θw(n) − ∂θw(1))
− (λ(n−1)3 − w(1))[[∂θw(1)]] − [[λ(n−1)3 − w(1)]]∂θw(1)
− 8

3a
(n−1)[[w(n−1)]] + 1

6 [[(c(n−1))2∂θk(n−1)]] .

By (5.1c), (5.13), and (5.20), we see that w(1) = wB evaluated on the shock curve,∣∣ṡ− w(1)∣∣ = O(t). Thus, using the bounds (5.141) and (5.147) shows that

∣∣∣ ddt [[w]](n) − d
dt [[w(1)]]

∣∣∣ �
∣∣[[λ(n−1)3 − w(1)]]∂θw(1)

∣∣+ Ct
1
2 � 2R1 ,

for ε taken sufficiently small. This proves the first bound in (5.145b), while the second
follows similarly. ��
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Having established Lemma 5.20, the conditions of Lemmas 5.12, Lemma 5.13, and
Corollary 5.14 are satisfied, which together yield

Lemma 5.21 (z(n)− and k(n)− on the shock curve)Letw(n) be as in Lemma 5.20. Applying

Lemma 5.12, on the shock curve we define z(n)− and k(n)− as the solutions of (5.127)

with n replacing n+1. In particular, z(n)− and k(n)− are explicit functions of [[w(n)]] and
〈〈w(n)〉〉 and satisfy the following bounds:

∣∣∣z(n)− (t)+ 9[[w(n)]](t)3
16〈〈w(n)〉〉(t)2

∣∣∣ � C0t
5
2 . (5.148a)

∣∣∣k(n)− (t)− 4[[w(n)]](t)3
〈〈w(n)〉〉(t)3

∣∣∣ � C0t
5
2 , (5.148b)

where C0 = C0(κ,b, c,m) > 0 is an explicitly computable constant. Moreover,

∣∣z(n)− (t)
∣∣ � 5b

9
2 κ−2t

3
2 ,

∣∣k(n)− (t)
∣∣ � 40b

9
2 κ−3t

3
2 , (5.149a)

∣∣ d
dt z
(n)
− (t)

∣∣ � 8b
9
2 κ−2t

1
2 ,

∣∣ d
dt k
(n)
− (t)

∣∣ � 50b
9
2 κ−3t

1
2 , (5.149b)

for all t ∈ (0, ε], assuming that ε is sufficiently small.

5.8.10 Existence, Uniqueness, and Invertibility of Characteristics

The following lemma follows from (5.39)–(5.45) and Lemma 5.10.

Lemma 5.22 (Bijection set of labels) Assume that (w(n), z(n), k(n), a(n)) ∈ Xε. Then,
for each t ∈ (0, ε], there exists a largest x (n)+ (t) > 0 and a smallest x (n)− = x−(t) < 0
such that

s(t) = η(n)(x (n)± (t), t) (5.150)

where

− 6
5 (bt)

3
2 < x (n)− (t) < − 4

5 (bt)
3
2 and 4

5 (bt)
3
2 < x (n)+ (t) < 6

5 (bt)
3
2 . (5.151)

Furthermore, there exists a set of labels

ϒ(n)(t) = T \ [x (n)− (t), x (n)+ (t)] ,

such that η(n)(·, t) : ϒ(n)→ T\{s(t)} is a bijection, and the inverse map η(n)inv : Dε →
T \ {0} is continuous in spacetime.
Lemma 5.23 (Bounds for 3-characteristics) Assume that (w(n), z(n), k(n), a(n)) ∈ Xε.
Then, we have

1
2 � ∂xη(n)(x, t) � 7

4 , for all x ∈ ϒ(n) ,
(5.152a)
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∣∣η(n)(x, t)− η(1)(x, t)∣∣ � 3
2R1t

2, for all x ∈ ϒ(n) ,
(5.152b)

∣∣∂xη(n)(x, t)− ∂xη(1)(x, t)
∣∣ � (16R1b−

3
2 + 8R2)t

1
2 , for all x ∈ ϒ(n) ,

(5.152c)

and

∫ t

0

∣∣∣∂θw(1)(η(n)(x, s), s)
∣∣∣ ds � 19

40 . (5.153)

Proof of Lemma 5.23 From Lemma 5.22, all of the conditions of Lemma 5.10 hold, so
the stated inequalities are thus obtained. ��
Lemma 5.24 For n � 1, assume that w(n) and z(n) satisfy the bounds (5.141a)–
(5.141d).

Then, for every (θ, t) ∈ Dε there exists a unique Lipschitz smooth integral curve
ψ
(n)
t (θ, ·) : [0, t] → Dε satisfying (5.120a). There exists a unique point θ̊ (n)1 ∈ T

such that ψ(n)ε (θ̊
(n)
1 , 0) = 0, which allows us to define as in Definition 5.16 the curve

s
(n)
1 and the space-time region Dz,(n)

ε . For every (θ, t) ∈ Dz,(n)
ε , there exists a unique

shock-intersection time 0 < J(n)(θ, t) < t satisfying (5.94). Moreover, for (θ, t) ∈
(Dz,(n)
ε )�, the characteristic curve (ψ(n)t (θ, s), s)s∈[0,t] does not intersect the shock

curve (s(s), s)s∈[0,t].
Similarly, for every (θ, t) ∈ Dε there exists a unique Lipschitz smooth integral

curve φ(n)t (θ, ·) : [0, t] → Dε satisfying (5.120b). There exists a unique point ẙ(n)2 ∈
T such that φ(n)ε (θ̊

(n)
2 , 0) = 0, which allows us to define as in Definition 5.16 the

curve s
(n)
2 and the space-time region Dk,(n)

ε . For every (θ, t) ∈ Dk,(n)
ε , there exists

a unique shock-intersection time 0 < T(n)(θ, t) < t satisfying (5.94). Moreover, for

(θ, t) ∈ (Dk,(n)
ε )�, the characteristic curve (φ(n)t (θ, s), s)s∈[0,t] does not intersect the

shock curve (s(s), s)s∈[0,t].
Lastly, we have the estimates

ψ
(n)
t (θ, s) = 1

3κs + (θ − 1
3kt)+O(t 43 )

= 1
3κs + (θ − s

(n)
1 (t))+O(t 43 ) , (θ, t) ∈ Dz,(n)

ε , (5.154a)

φ
(n)
t (θ, s) = 2

3κs + (θ − 2
3kt)+O(t 43 )

= 2
3κs + (θ − s

(n)
2 (t))+O(t 43 ) , (θ, t) ∈ Dz,(n)

ε , (5.154b)

and

sup
s∈[0,t]

∣∣∂θφ(n)t (θ, s)− 1
∣∣ � Ct

1
3 , sup

s∈[0,t]
∣∣∂θψ(n)t (θ, s)− 1

∣∣ � Ct
1
3 , (θ, t) ∈ Dε ,

(5.155)

where the constant C > 0 only depends on κ,b, and m.
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Proof of Lemma 5.24 We prove the lemma for the 1-characteristics ψ(n)t , the proof for
the 2-characteristics φ(n)t being exactly the same.

We begin with the existence and uniqueness of 1-characteristics passing through
any point (θ, t) ∈ Dε. Using the definition (5.120a), we see that

∂sψ
(n)
t (θ, s) = λ(n)1 (ψ

(n)
t (θ, s), s)

= 1
3w
(1)(ψ

(n)
t (θ, s), s)

+
(
1
3 (w

(n) − w(1))+ z(n)
)
(ψ
(n)
t (θ, s), s) , (5.156a)

ψ
(n)
t (θ, t) = θ , (5.156b)

where we recall cf. (5.123) that w(1) = wB and z(1) = 0. The bounds (5.37a),
(5.141b), and (5.141d) show that λ(n)1 is Lipschitz continuous in Dε; moreover, as

long as ψ(n)t (θ, s) ∈ Dε, we have the explicit estimate

∣∣∂θλ(n)1 (ψ
(n)
t (θ, s), s)

∣∣

� 4
15

(
(bs)3 + ∣∣ψ(n)t (θ, s)− s(s)

∣∣2)−
1
3

+ 1
3 R2

(
(bs)3 + ∣∣ψ(n)t (θ, s)− s(s)

∣∣2)−
1
6 + R4s

1
2

� 1
3b

(
(bs)3 + ∣∣ψ(n)t (θ, s)− s(s)

∣∣2)−
1
3 + 2m3 . (5.157)

Hence, by the Cauchy-Lipschitz theorem, for each such (θ, t) ∈ Dε, there is a unique
local in time solution time to (5.156). Using (5.157) and the bound |λ(n)1 | � 1

2m, this

solutionψ(n)t (θ, s)may bemaximally extended as a Lipschitz function of s on the time
interval [s∗, t], where ψt (θ, s∗) ∈ ∂Dε. In our case, this means that either [s∗, t] =
[0, t] (if (ψ(n)t (s), s) does not intersect the shock curve (s(s), s) for s ∈ (0, t]), or
[s∗, t] = [J(n)(θ, t), t], where we have denoted by J(n)(θ, t) ∈ [0, t) the largest value
of s at which ψ(n)t (θ, s) = s(s). Of course, if t < ε the solution ψt (θ, s) may also be
similarly maximally extended to times s past t , up to the time s∗ at which ψt (θ, s∗)
reaches ∂Dε.

In order to complete the existence and uniqueness part claimed in Lemma 5.24,
we need to show that if J(n)(θ, t) ∈ (0, t), then the integral curve may be uniquely
continued as a Lipschitz function of s also on the time interval [0, J(n)(θ, t)]. We note
that in this case the limit lims→J(n)(θ,t)+ ψ

(n)
t (θ, s) is well-defined, and so to ensure

continuity we let ψ(n)t (θ, J
(n)(θ, t)) equal this limit. The desired claim follows once

we prove the following two statements: first, that the shock surface (s(s), s)s∈[0,t]
is a non-characteristic surface for the ODE (5.156), so that ψ(n)t (θ, J

(n)(θ, t)) =
s(J(n)(θ, t) may serve as Cauchy data for the transversal characteristic ψt (θ, s) with
s < J(n)(θ, t); second, that the curve ψt (θ, s) does not intersect the shock curve
for s ∈ [0, J(n)(θ, t)), thereby ensuring the uniqueness/well-definedness of J(n)(θ, t)
implicitly assumed in Definition 5.15.
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The transversality of ψ(n)t and the shock surface is established as follows. We first
carefully estimate λ(n)1 in the vicinity of the shock curve. By (5.35), (5.22b), (5.141a),
and (5.141c), for any θ̃ such that |θ̃ − s(s)| � κt we have that
∣∣λ(n)1 (θ̃ , s)− 1

3κ
∣∣ � 1

3

∣∣w0(ηB−1(θ̃ , s))− κ
∣∣+ 1

3 R1s + R3s
3
2 � 3

2b(κt)
1
3 , (5.158)

since ε, and hence s � t , are sufficiently small. Note that if |θ̃−s(s)| � κs, then in the
upper bound (5.158) we may replace t

1
3 by s

1
3 . Next, we note that the vector normal

to the shock curve is given by
(−1, ṡ(s)) while the tangent vector to the characteristic

curve is given by
(
∂sψ

(n)
t (θ, s), 1

) = (
λ
(n)
1 (ψ

(n)
t (θ, s), s), 1

)
. Computing the dot-

product, and appealing to (5.13) and (5.158), we obtain that

(−1, ṡ(s)) · (∂sψ(n)t (s), 1
) = ṡ(s)− λ(n)1 (ψ

(n)
t (θ, s), s) = 2

3κ +O(s 1
3 ) � 1

2κ ,

(5.159)

since ε is small enough, and s = J(n)(θ, t). Therefore, the characteristic curve ψ(n)t
intersects the shock curve transversally, and the crossing angle is bounded from
below uniformly for on [0, ε]. As mentioned above, this means that we can use the
values of the flows ψ(n)t on the shock curve as Cauchy data, and continue the solu-
tions in a Lipschitz fashion for s < J(n)(θ, t). The fact that the angle measured in
(5.159) has a sign, and the smoothness of s, also ensures the uniqueness of the shock-
intersection time J(θ, t) ∈ (0, t), so that it is a well-defined object. This concludes the
proof of existence, uniqueness, and Lipschitz regularity for the characteristic curves
ψ
(n)
t (θ, ·) : [0, t] → T.
Next, we turn to the proof of the bound (5.155). Differentiating (5.156) shows that

∂θψ
(n)
t (θ, s) = e

∫ t
s (∂θ λ

(n)
1 )(ψ

(n)
t (θ,s

′),s′)ds′

= e
1
3

∫ t
s ∂θw

(1)(ψ
(n)
t (θ,s

′),s′)ds′e
∫ t
s

(
1
3 (∂θw

(n)−∂θw(1))+∂θ z(n)
)
(ψ
(n)
t (θ,s

′),s′)ds′
.

(5.160)

For s′ ∈ [s, t] such that |ψ(n)t (θ, s
′) − s(s′)| � κt , from (5.157) we deduce that

|∂θλ(n)1 (ψ
(n)
t (θ, s

′), s′)| � 1
3b(κt)

− 2
3 + 2m3 � 2

3b(κt)
− 2

3 , and thus the contribution
from such s′ to the integral on the right side of (5.160) is bounded from above by

exp(2bκ− 2
3 t

1
3 ). On the other hand, s′ ∈ [s, t] such that |ψ(n)t (θ, s

′)− s(s′)| � κt , we
may appeal to (5.158), so that ∂sψ

(n)
t (θ, s

′) � 1
2 s
′; this allows us to apply Lemma 5.11

with γ = ψ(n)t (θ, ·) and μ = 1
2 , for these intervals of s

′, and together with the bounds
(5.141) we deduce that the contribution from such s′ to the integral on the right side

of (5.160) is bounded from above by exp(30bκ− 2
3 t

1
3 ). Combining these estimates we

deduce that for all s ∈ [0, t] and t ∈ (0, ε],
∣∣∂θψ(n)t (θ, s)− 1

∣∣ � 40bκ−
2
3 t

1
3 , (5.161)
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when ε is sufficiently small. This proves (5.155) for the flow ψ(n)t , which implies that
ψ
(n)
t is continuous on T × [0, t], and is uniformly Lipschitz continuous both with

respect to θ and with respect to s.
The bound (5.161) does not just provide regularity with respect to θ of the flow

ψ
(n)
t (θ, s), but it also shows that it is a monotone increasing function of θ . This allows

us to show the existence and uniqueness of a point θ̊ (n)1 ∈ T such thatψ(n)ε (θ̊
(n)
1 , 0) = 0.

Existence follows by the intermediate function theorem, applied to ψ(n)ε (θ, 0) : T→
T: indeed, from (5.158) (applied with t = ε) and (5.13), we see that for s(ε) <
θ we have ψ(n)ε (θ, 0) � 1

4κε > 0; on the other hand, for θ < s(ε) − 3
4κε, we

have ψ(n)ε (θ, 0) � − 1
8κε < 0. The uniqueness of θ̊ (n)1 follows by the monotonicity

in θ guaranteed by (5.161). Note that the above argument gives the rough bound
s(ε)− 3

4κε � θ̊ (n)1 � s(ε).

Thus, as in Definition 5.16 the curve s
(n)
1 and the space-time region Dz,(n)

ε are

now well-defined. The fact that for (θ, t) ∈ (Dz,(n)
ε )� the curve (ψ(n)t (θ, s), s)s∈[0,t]

does not intersect the shock curve (s(s), s)s∈[0,t], and the fact that for (θ, t) ∈ Dz,(n)
ε

intersection does indeed occur at a unique time J(n)(θ, t), now follows from the mono-
tonicity ofψ(n)t (θ, s)with respect to θ , the definition of s

(n)
1 , the transversality (5.159),

and its consequences discussed earlier.
In order to conclude the proof, it remains to establish (5.154). From the aforemen-

tioned rough bound on θ̊ (n)1 , appealing to the definition s1(s) = ψ(n)ε (θ̊ (n)1 , s), the

bound (5.13), integrating (5.158) with θ̃ = s
(n)
1 (s), and using that s

(n)
1 (0) = 0 = s(0),

we see that

∣∣s(s)− s
(n)
1 (s)− 2

3κs
∣∣ �

∣∣s(n)1 (s)− 1
3κs

∣∣+ ∣∣s(s)− κs∣∣
� 3

2bκ
− 1

3 s
4
3 +m4s2 � 2bκ−

1
3 s

4
3 for all s ∈ [0, ε] .

(5.162)

More generally, for any (θ, t) ∈ Dz,(n)
ε , we may integrate (5.158) with θ̃ = ψ(n)t (θ, s)

and deduce that

ψ
(n)
t (θ, s) = θ −

∫ t

s
λ
(n)
1 (ψ

(n)
t (θ, s

′))ds′ = θ − 1

3
κ(t − s)+O(t 43 ) , (5.163)

which proves the first equality in (5.154). The second equality follows by combining

(5.163) with (5.162), which in turn shows via (5.13) that s(n)1 (t) = 1
3κt +O(t 43 ).

The arguments for the 2-characteristic φ(n)t (θ, s) are identical, except that
1
3κt must

be replaced with 2
3κt because λ

(n)
2 contains 2

3w
(1) instead of 1

3w
(1). We omit these

redundant details. ��
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5.8.11 Stability of the Iteration Space

Proposition 5.25 (Xε is stable under iteration) Let ε be taken sufficiently small with
respect to κ,b, c, and m. For all n � 1, the map

(w(n), z(n), k(n), a(n)) �→ (w(n+1), z(n+1), k(n+1), a(n+1))

maps Xε → Xε. In particular, the iterates (w(n+1), z(n+1), k(n+1), a(n+1)) satisfy the
bounds (5.141).

Proof of Proposition 5.25 In the course of the proof, we will repeatedly let ε, and hence
t , to be sufficiently small with respect to κ,b, c,m.
Estimates for w(n+1). By Lemma 5.22, for any (θ, t) ∈ Dε, there exists a label
x ∈ ϒ(n)(t) such that η(n)(x, t) = θ .

By the triangle inequality,

∣∣(w(n+1) − w(1)) ◦ η(n)∣∣ �
∣∣w(n+1) ◦ η(n) − w0

∣∣+ ∣∣w(1) ◦ η(1) − w(1) ◦ η(n)∣∣
= ∣∣w(n+1) ◦ η(n) − w0

∣∣+ ∣∣w0 ◦ ηB−1 ◦ η(n) − w0
∣∣ .

By the fundamental theorem of calculus,

w0 ◦ ηB−1 ◦ η(n) − w0 =
∫ t

0

d

dt

(
w0 ◦ ηB−1 ◦ η(n)

)
ds

=
∫ t

0
w′0 ◦ ηB−1 ◦ η(n)

(
(∂tηB

−1) ◦ η(n) + (∂θ ηB−1) ◦ η∂tη(n)
)
ds

=
∫ t

0
w′0 ◦ ηB−1 ◦ η(n)(λ(n)3 − w(1)) ◦ η(n)

(
ηx (ηB

−1 ◦ η(n)))−1ds .

The bounds (5.17b), (5.152a) and (5.141) show that

∣∣w0 ◦ ηB−1 ◦ η(n) − w0
∣∣ � 1

2 R1t . (5.164)

Next, using the identity (5.125), we have that

∣∣w(n+1) ◦ η(n) − w0
∣∣ � 8

3

∫ t

0

∣∣(a(n)w(n)) ◦ η(n)∣∣ds + 1
4

∫ t

0

∣∣c(n) ◦ η(n) dds
(
k(n) ◦ η(n)

)∣∣ds.

The bounds (5.141) with ε taken sufficiently small,

∣∣w(n+1) ◦ η(n) − w0
∣∣ � 3mR7t .

Together with the bound (5.164) and the fact that η(n)(x, t) is a diffeomorphism for
each label x ∈ ϒ(n), we have that for all (θ, t) ∈ Dε,

∣∣w(n+1)(θ, t)− w(1)(θ, t)∣∣ � 3
4 R1t ,
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as long as 12mR7 � R1. This inequality holds due to the choices in (5.142).
Let us now show that the estimate (5.141b) holds. Following the procedure we used

to obtain the identity (5.99), we differentiating (5.124), use (5.138a), and obtain that

d
dt

(
w
(n+1)
θ ◦ η(n) η(n)x

) = 1
4

d
dt

(
(c(n)k(n)θ ) ◦ η(n) η(n)x

)+ F(n)wθ ◦ η(n) η(n)x , (5.165)

where

F(n)wθ = k(n)θ

(
1
6c
(n)c(n)θ + 1

6c
(n−2)z(n)θ + 2

3a
(n−2)c(n−2)

+ 1
4 (λ
(n−2)
3 − λ(n)3 )c

(n)
θ

)
◦ η(n) η(n)x

− 8
3∂θ (a

(n)w(n)) . (5.166)

An equivalent form of (5.165) is given by

∂tw
(n+1)
θ + λ(n)3 w

(n+1)
θθ + ∂θλ(n)3 w

(n+1)
θ

= 1
4

(
d
dt

(
(c(n)k(n)θ ) ◦ η(n) η(n)x

)(
η(n)x

)−1) ◦ η(n)inv + F(n)wθ , (5.167)

Therefore,

d
dt

(
(w
(n+1)
θ − w(1)θ ) ◦ η(n)

)
+ w(n)θ ◦ η(n)(w(n+1)θ − w(1)θ ) ◦ η(n)

= −w(1)θ ◦ η(n)(w(n)θ − w(1)θ ) ◦ η(n) − (w(n) − w(1)) ◦ η(n)w(1)θθ ◦ η(n)

+ 1
4

d
dt

(
(c(n)k(n)θ ) ◦ η(n) η(n)x

)(
η(n)x

)−1 + F(n)wθ ◦ η(n) .

For 0 � s � t , let us define the integrating factor Is,t = e
∫ t
s w
(n)
y (η

(n)(x,r),r)dr . Then,
we have that

(w
(n+1)
θ − w(1)θ ) ◦ η(n)

=

I1︷ ︸︸ ︷∫ t

0
−It,s

(
w
(1)
θ ◦ η(n)(w(n)θ − w(1)θ ) ◦ η(n)

)
ds

+

I2︷ ︸︸ ︷∫ t

0
−It,s

(
(w(n) − w(1)) ◦ η(n)w(1)θθ ◦ η(n)

)
ds

+ 1
4

∫ t

0
It,s

(
d
dt

(
(c(n)k(n)θ ) ◦ η(n) η(n)x

)(
η(n)x

)−1)
ds

︸ ︷︷ ︸
I3

+
∫ t

0
It,sF(n)wθ ◦ η(n)ds

︸ ︷︷ ︸
I4

.

(5.168)
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From (5.141b),
∣∣w(n)θ −w(1)θ

∣∣ � R2t−
1
2 and thanks to (5.153), we have that for ε small

enough,

∣∣Is,t
∣∣ = e

∫ t
s

∣∣(w(n)y −w(1)θ )(η(n)(x,r),r)
∣∣dr e

∫ t
s

∣∣w(1)θ (η(n)(x,r),r)
∣∣dr � 17

10 .

Let us now estimate each integral I1, I2, I3, and I4 on the right side of (5.168). First, we
have that

|I1| � 17
10 R2

∫ t

0

∣∣∣w(1)θ ◦ η(n)
∣∣∣
(
b3s3 + (

η(n)(x, s)− s(s)
)2)− 1

6
ds . (5.169)

The Burgers characteristic satisfies ∂t (s(t) − ηB(x, t)) = ṡ(s) − w0(x). Integration
from s to t for 0 � s � t together with the inequality (5.13), the fact that |x | � 3

4 (bt)
3
2 ,

and taking ε sufficiently small, shows that

s(s)− ηB(x, s) � s(t)− ηB(x, t)+ (t − s)(κ − w0(x)− Ct)

� s(t)− ηB(x, t)+ ( 34 )
1
3b

3
2 t

1
2 (t − s)− C(t − s)t .

Using that that θ = η(n)(x, t), (5.1c) and (5.152b), and taking ε even smaller if
necessary, we see that

s(s)− η(n)(x, s) � s(t)− θ +
√
3
2 b

3
2 t

1
2 (t − s) ,

and hence

b3s3 + (
η(n)(x, s)− s(s)

)2 �
(
θ − s(t)

)2 + 3
4b

3t(t − s)2 + b3s3 .

The function 3
4b

3t(t − s)2 + b3s3 has a minimum at s = t
2 and takes the value there

of 5
16b

3t3, so that

b3s3 + (
η(n)(x, s)− s(s)

)2 � 5
16

((
θ − s(t)

)2 + b3t3
)
. (5.170)

Thus, with (5.170), the integral I1 in (5.169) is bounded as

|I1| � 17
10 (

5
16 )
− 1

6 R2

((
θ − s(t)

)2 + b3t3
)− 1

6
∫ t

0

∣∣∣w(1)θ ◦ η(n)
∣∣∣ ds

� 19
40

17
10 (

5
16 )
− 1

6 R2

((
θ − s(t)

)2 + b3t3
)− 1

6
, (5.171)

the last inequality following from (5.153). It is important to note that 19
40

17
10 (

5
16 )
− 1

6 <
99
100 .
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For the integral I2 in (5.168), the estimate (5.37b) shows that

|I2| � 217
10 R1b

∫ t

0
s
(
(bs)3 + |y − s(s)|2

)− 5
6
ds .

Using (5.170) and that ( 516 )
− 5

6 � 3, we then have that

|I2| � 317
10 R1b

(
(bt)3 + |θ − s(t)|2

)− 5
6
t2 � 6R1b

(
(bt)3 + |θ − s(t)|2

)− 1
6
.

Thus,w(n+1) satisfies (5.141b) as soon as we choose 1200R1b � R2. In view of (5.2),
this inequality is ensured by the choice of R2 and R1 given in (5.142).

To bound I3, we integrate-by-parts and find that

I3 = 1
4It,s

(
(c(n)k(n)θ ) ◦ η(n)

)
− 1

4

∫ t

0
(c(n)k(n)θ ) ◦ η(n) η(n)x

d
dt

(
It,s

(
η(n)x

)−1)
ds .

Since ∂tI0,t = I0,tw(n)θ ◦ η(n) and ∂t
(
η
(n)
x

)−1 = −(η(n)x
)−1
∂θλ
(n)
3 ◦ η(n), using the

bounds (5.141), we obtain

|I3| � Ct
1
2 .

Finally, using the definition of F(n)wθ in (5.166) and the bounds (5.141), we also find
that

|I4| � Ct
1
2 .

By combining the bounds for I1, I2, I3, and I4, we taking ε sufficiently small so we
have shown that

∣∣∣w(n+1)θ (θ, t)− w(1)θ (θ, t)
∣∣∣ � 999

1000 R2 ,

for all (θ, t) ∈ Dε, thus establishing that (5.141b) holds.

Estimates for z(n+1). Let (θ, t) ∈ Dz,(n+1)
ε . We integrate (5.136b) from J(n)(θ, t) to t

and obtain

z(n+1)(θ, t) = z(n+1)− (s(J(n)(θ, t)))−
∫ t

J(n)(θ,t)

( 8
3a
(n)z(n) − 1

6 (c
(n))2∂θk

(n)) ◦ ψ(n)t ds′ ,

(5.172)

Having shown that w(n+1) ∈ Xε (continuity will be established below), then w(n+1)
satisfies the criteria of Lemma 5.20 and thus we can appeal to Lemma 5.21 for the
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bound of z(n+1)− (s(J(n)(θ, t))). It follows from (5.141) and (5.149a) that

∣∣z(n+1)(θ, t)∣∣ � (5b
9
2 κ−2 + 1

8κ
2R6)t

3
2 ,

which shows that (5.141c) holds for z(n+1) if 5b
9
2 κ−2 + 1

8κ
2R6 � R3. Using (5.2),

this inequality holds due to the definition of R3 and R6 in (5.142).
Next, integrating (5.130a) from J(n) to t and using the definitions of Fzθ and Hzθ

given by (5.103b) and (5.115), respectively, for all (θ, t) ∈ Dz,(n+1)
ε ,

∂θ z
(n+1) = Hzθ (UL

(n), U̇L
(n)
, ψ
(n)
t , J

(n))+ Fzθ (U
(n), ψ

(n)
t , J

(n)) . (5.173)

It follows from (5.57a), (5.141), (5.149b), and (5.155) that for t sufficiently small,

∣∣∂θ z(n+1)(θ, t)
∣∣ � 2κ−3(8b

9
2 + 50b

9
2 )t

1
2 + κ2 R6t

1
2 � R4t

1
2 , (5.174)

which proves that (5.141d) holds for ∂θ z(n+1) whenever 116κ−3b
9
2 + κ2 R6 � R4.

Using (5.2), this inequality holds by defining R4 and R6 as in (5.142).

Estimates for k(n+1).Wehave shown thatw(n+1) and z(n+1) satisfy the bounds (5.141),
and we will prove below that both functions are continuous on Dε and hence are in
the set Xε. For each (θ, t) ∈ D(n+1), we then have existence of unique characteris-
tics φ(n+1)t (θ, s) and shock-intersection times T(n+1)(θ, t) satisfying the properties in
Lemma 5.24.

Let (θ, t) ∈ Dk,(n+1)
ε . We integrate (5.133a) from T(n+1)(θ, t) to t and obtain that

k(n+1)(θ, t) = k(n+1)− (s(T(n+1)(θ, t))) . (5.175)

Again, appealing to Lemma 5.21, the bound (5.149a) then gives

∣∣∣k(n+1)(θ, t)
∣∣∣ � 40b

9
2 κ−3t

3
2 , (5.176)

which shows that (5.141e) holds for k(n+1) if 40b
9
2 κ−3 � R5. The condition (5.2)

justifies the definition of R5 in (5.142).
In the same way that we obtained (5.106) and (5.109), we also have that

∂θk
(n+1)(θ, t) = K̇(n+1)(T(n+1)(θ,t)))

ṡ(T(n+1)(θ,t)))−∂sφ(n+1)t (θ,T(n+1)(θ,t))

∂θφ
(n+1)
t (s(T(n+1)(θ, t)), T(n+1)(θ, t)) , (5.177)

and thus from (5.149b), and (5.155) that for t sufficiently small,

∣∣∂θk(n+1)(θ, t)
∣∣ � 200b

9
2 κ−4t

1
2 , (5.178)
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which shows that (5.141f) holds for ∂θk(n+1) if 200b
9
2 κ−4 � R6. The condition

(5.2)justifies the definition of R6 in (5.142).
Estimates for a(n+1). We consider any point (θ, t) ∈ Dk,(n)

ε . By Lemma 5.24, the

characteristic curve φ(n)t (θ, s) exists for all s ∈ [0, t]. From (5.128a), we have that

d
dt

(
a(n+1) ◦ φ(n)t

) =
(
− 4

3 (a
(n))2 + 1

6 (w
(n))2 + 1

6 (z
(n))2 + w(n)z(n)

)
◦ φ(n)t ,

(5.179)

and hence

a(n+1)(θ, t) = a0(φ
(n)
t (θ, 0))

+
∫ t

0

(
− 4

3 (a
(n))2 + 1

6 (w
(n))2 + 1

6 (z
(n))2 + w(n)z(n)

)
◦ φ(n)t ds .

(5.180)

Using (5.1a), (5.4), and (5.141), we find that

∣∣a(n+1)(θ, t)∣∣ � m+ Ct � 2m . (5.181)

Differentiating (5.179) gives

d
dt

(
∂θa
(n+1) ◦ φ(n)t ∂θφ

(n)
t

) = ∂θ
(
− 4

3 (a
(n))2

+ 1
6 (w

(n))2 + 1
6 (z
(n))2 + w(n)z(n)

)
◦ φ(n)t ∂θφ

(n)
t ,

and so

∂θa
(n+1)(θ, t) = a′0(φ

(n)
t (θ, 0))∂θφ

(n)
t (y, 0)

+
∫ t

0
∂θ

(
− 4

3 (a
(n))2 + 1

6 (w
(n))2

+ 1
6 (z
(n))2 + w(n)z(n)

)
◦ φ(n)t ∂θφ

(n)
t ds .

Employing the bounds (5.1a), (5.57a), (5.141), and (5.155), we find that

∣∣∂θa(n+1)(θ, t)
∣∣ � m+ Ct

1
3 � 2m ,

which together with (5.181) shows that (5.141g) holds for a(n+1) given that R7 is
defined by (5.142).

Continuity of w(n+1), z(n+1), k(n+1), and a(n+1). Composing (5.125) with η(n)inv , we
see that

w(n+1)(θ, t) = w0(η(n)inv(θ, t))− 8
3

∫ t

0

(
a(n)w(n)

)
(η(n)(η

(n)
inv(θ, t), t

′), t ′)dt ′
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+ 1
4

∫ t

0
c(n)(η(n)(η(n)inv(θ, t), t

′), t ′) d
dt ′

(
k(n)(η(n)(η(n)inv(θ, t), t

′), t ′)
)
dt ′ .

By Lemma 5.22, η(n)inv is continuous on Dε, and hence by the definition of the set Xε
given in (5.140), we see that w(n+1) is then continuous on Dε.

Continuity of the shock-intersection time J(θ, t) follows from the continuity of ψt
on Dε and the continuity of s(t). From (5.149b), we see that z(n+1)− (t) is continuous.
Therefore, the identity (5.149b) together with the definition of Xε shows that z(n+1)
is continuous on Dε. Continuity of k(n+1) follows in the same way from the identity
(5.176). The identity (5.180) together with the (5.140) and the continuity of a0 shows
that a(n+1) is also continuous on Dε. ��

5.8.12 Contractivity of the Iteration Map

We set

δw(n) := w(n) − w(n−1) , δz(n) := z(n) − z(n−1) , δk(n) := k(n) − k(n−1) ,

δc(n) := c(n) − c(n−1) , δλi := λ(n)i − λ(n−1)i ,

for i ∈ {1, 2, 3}.
Proposition 5.26 (The iteration is contractive) The map

(w(n), z(n), k(n), a(n)) �→ (w(n+1), z(n+1), k(n+1), a(n+1)) : Xε → Xε

satisfies the contractive estimate

max
s∈[0,t]

(∥∥δw(n+1)(·, s)∥∥L∞ +
∥∥δz(n+1)(·, s)∥∥L∞

+ ∥∥δk(n+1)(·, s)∥∥L∞ +
∥∥δa(n+1)(·, s)∥∥L∞

)

� 3
4 max
s∈[0,t]

(∥∥δw(n)(·, s)∥∥L∞ +
∥∥δz(n)(·, s)∥∥L∞

+ ∥∥δk(n)(·, s)∥∥L∞ +
∥∥δa(n)(·, s)∥∥L∞ . (5.182)

Proof of Proposition 5.26 From (5.126a), we see that for any (θ, t) ∈ Dε,

∂tδw
(n+1) + λ(n)3 ∂θ δw

(n+1) + δλ(n)3 ∂θw
(n)

= 1
4c
(n)

(
∂tδk

(n) + λ(n)3 ∂θ δk
(n)

)
+ 1

4δλ
(n)
3 c(n)∂θk

(n−1)

+ 1
4δc
(n)

(
λ
(n)
3 − λ(n−1)2

)
∂θk
(n−1) − 8

3a
(n)δw(n) − 8

3δa
(n)δw(n−1) ,

and thus for all x ∈ ϒ(n)(t),
∂t

(
δw(n+1) ◦ η(n)

)
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= 1
4 c
(n) ◦ η(n)∂t

(
δk(n) ◦ η(n)

)
+ (δw(n) + 1

3 δz
(n))

(
1
4 c
(n)∂θ k

(n−1) − ∂θw(n)
)
◦ η(n)

+ 1
8 (δw

(n) + δz(n))
(
λ
(n)
3 − λ(n−1)2

)
∂θk
(n−1) ◦ η(n)

− 8
3 δw

(n)a(n) ◦ η(n) − 8
3 δa
(n)w(n−1) ◦ η(n).

Using (5.137) and integrating by parts in time,

1
4

∫ t

0
c(n) ◦ η(n)∂s

(
δk(n) ◦ η(n)

)
ds = 1

4c
(n)δk(n) ◦ η(n)

+ 1
8

∫ t

0

(
λ
(n−1)
3 w

(n)
θ + λ(n−1)1 z(n)θ + 64

3 a
(n−1)c(n−1)

)
δk(n) ◦ η(n)ds ,

and thus, we have that

δw(n+1) ◦ η(n) = −
∫ t

0
w
(1)
θ δw

(n) ◦ η(n)ds −
∫ t

0
(w
(n)
θ − w(1)θ )δw(n) ◦ η(n)ds

+ 1
4 δk
(n)c(n) ◦ η(n)

+ 1
8

∫ t

0
δk(n)

(
λ
(n−1)
3 w

(n)
θ + λ(n−1)1 z(n)θ + 64

3 a
(n−1)c(n−1)

)
◦ η(n)ds

+ 1
8

∫ t

0
δw(n)

((
2w(n) − 2

3 z
(n) − λ(n−1)2

)
− 64

3 a
(n)

)
∂θk
(n−1) ◦ η(n)

+ 1
24

∫ t

0
δz(n)

(
(4w(n) + z(n) − 3λ(n−1)3 )∂θk

(n−1) − 8∂θw
(n)

)
◦ η(n)ds

− 8
3

∫ t

0
δa(n)w(n−1) ◦ η(n)ds . (5.183)

Appealing to (5.56a) and (5.141), we find that

max
s∈[0,t]

∥∥δw(n+1)(·, s)∥∥L∞ �
(
1
2 + Ct

1
2

)
max
s∈[0,t]

∥∥δw(n)(·, s)∥∥L∞
+ C max

s∈[0,t]
∥∥δk(n)(·, s)∥∥L∞

+
(
1
6 + Ct

1
2

)
max
s∈[0,t]

∥∥δz(n)(·, s)∥∥L∞
+ Ct max

s∈[0,t]
∥∥δa(n)(·, s)∥∥L∞ . (5.184)

Using the evolution of z(n) given by (5.130a), in the same way that we obtained
(5.183), we find that for any (θ, t) ∈ Dz,(n)

ε ,

δz(n+1)(θ, t) = δz(n+1)− (s(J(θ, t)))+ 1
4 (δk

(n)
− c(n))(s(J(θ, t)))− 1

4 δk
(n)c(n)(θ, t)

+ 1
4

∫ t

J(θ,t)
δk(n)

(
(λ
(n)
1 − λ(n−1)1 )c(n)θ + 2

3 c
(n−1)w(n)θ

− 8
3a
(n−1)c(n−1)

)
◦ ψ(n)t (θ, s)ds
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+
∫ t

J(θ,t)
δw(n)

(
− 1

3 z
(n)
θ − 1

12 c
(n)k(n−1)θ + 1

3c
(n−1)k(n−1)θ

)
◦ ψ(n)t (θ, s)ds

+
∫ t

J(θ,t)
δz(n)

(
z(n)θ − 1

4 c
(n)k(n)θ + 1

3 c
(n−1)k(n−1)θ − 8

3a
(n)

)

◦ ψ(n)t (θ, s)ds − 8
3

∫ t

J(θ,t)
δa(n)z(n−1) ◦ ψ(n)t (θ, s)ds .

Using this identity together with (5.57a), (5.141), and (5.148) shows that

max
s∈[0,t]

∥∥δz(n+1)(·, s)∥∥L∞ � Ct max
s∈[0,t]

∥∥δw(n+1)(·, s)∥∥L∞ + Ct
3
2 max
s∈[0,t]

∥∥δw(n)(·, s)∥∥L∞
+ C max

s∈[0,t]
∥∥δk(n)(·, s)∥∥L∞ + Ct max

s∈[0,t]
∥∥δz(n)(·, s)∥∥L∞

+ Ct
5
2 max
s∈[0,t]

∥∥δa(n)(·, s)∥∥L∞ . (5.185)

Next, the identity (5.175) together with the bound (5.148) provides us with the esti-
mates

max
s∈[0,t]

∥∥δk(n+1)(·, s)∥∥L∞ � Ct max
s∈[0,t]

∥∥δw(n+1)(·, s)∥∥L∞ ,
max
s∈[0,t]

∥∥δk(n)(·, s)∥∥L∞ � Ct max
s∈[0,t]

∥∥δw(n)(·, s)∥∥L∞ . (5.186)

Finally, using (5.128a), we find that for (θ, t) ∈ Dk,(n)
ε ,

δa(n+1)(θ, t) =
∫ t

0
δw(n)

(
1
3δw

(n) + z(n) − 2
3a
(n)
θ

)
◦ φ(n)t ds

+
∫ t

0
δz(n)

(
1
3δz
(n) + w(n−1) − 2

3a
(n)
θ

)
◦ φ(n)t ds

−
∫ t

0
δa(n)δa(n) ◦ φ(n)t ds ,

and therefore

max
s∈[0,t]

∥∥δa(n+1)(·, s)∥∥L∞
� Ct max

s∈[0,t]

(∥∥δw(n)(·, s)∥∥L∞ +
∥∥δz(n)(·, s)∥∥L∞

+ ∥∥δk(n)(·, s)∥∥L∞ +
∥∥δa(n)(·, s)∥∥L∞

)
. (5.187)

Summing the inequalities (5.184)–(5.187) yields

max
s∈[0,t]

(∥∥δw(n+1)(·, s)∥∥L∞ +
∥∥δz(n+1)(·, s)∥∥L∞

+ ∥∥δk(n+1)(·, s)∥∥L∞ +
∥∥δa(n+1)(·, s)∥∥L∞

)
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� 1
2 max
s∈[0,t]

∥∥δw(n)(·, s)∥∥L∞ + 1
6 max
s∈[0,t]

∥∥δz(n)(·, s)∥∥L∞ + Ct max
s∈[0,t]

∥∥δw(n+1)(·, s)∥∥L∞

+ Ct
1
2 max
s∈[0,t]

(∥∥δw(n)(·, s)∥∥L∞ +
∥∥δz(n)(·, s)∥∥L∞

)

+ Ct max
s∈[0,t]

(∥∥δk(n)(·, s)∥∥L∞ +
∥∥δa(n)(·, s)∥∥L∞

)
.

Choosing ε sufficiently small, we obtain the bound (5.182). ��

5.8.13 Convergence of the Iteration Scheme

We define y = θ − s(t) and

w(y, t) = w(θ, t) , z(y, t) = z(θ, t) , k(y, t) = k(θ, t) , a(y, t) = a(θ, t) .

The space-time gradient is denoted as ∇y,t , and it is convenient to introduce

Dε = (T \ {0})× (0, ε) .

The contractive estimate (5.182) shows that (w(n), z(n), k(n), a(n)) → (w, z, k, a)
uniformly in Dε, and in particular we have that

lim
n→∞

∥∥w − w(n)
∥∥
L∞(Dε) = 0 . (5.188)

Let us now describe the bounds on derivatives. According to (5.141b) and (5.143),
for all y 
= 0 and t ∈ [0, ε], we have that

∥∥∥∥
(
t3 + y2

) 1
6 ∇y,t (w(n) − wB)

∥∥∥∥
Dε

� C .

By the Banach–Alaoglu theorem, there exists a limiting function f and a subsequence
such that

(
t3 + y2

) 1
6 ∇y,tw(n′)⇀

(
t3 + y2

) 1
6
f ,

the convergence in L∞(Dε)weak-*. Let us show that f = ∇y,tw, the weak derivative
of the uniform limit w, and that the convergence holds for any subsequence. For test
functions ϕ ∈ W 1,1

0 (Dε),

lim
n→∞

∫

Dε

(
w − w(n)

)
∂y

((
t3 + y2

) 1
6
ϕ
)
dydt

= lim
n→∞

1
3

∫

Dε

(
w − w(n)

)
y
(
t3 + y2

)− 5
6
ϕ dydt

+ lim
n→∞

∫

Dε

(
w − w(n)

)((
t3 + y2

) 1
6
∂yϕ

)
dydt .
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It follows that

∣∣∣∣ limn→∞

∫

Dε

(
w − w(n)

)
∂y

((
t3 + y2

) 1
6
ϕ
)
dydt

∣∣∣∣

� lim
n→∞

∥∥w − w(n)
∥∥
L∞(Dε)

(
1
3

∥∥ϕ∥∥L∞(Dε)
∫

Dε
y−

2
3 dydt + 2

∫

Dε
∂yϕ dydt

)
= 0

by (5.188). Similarly, if we replace ∂y with ∂t , then the integral 1
3

∫
Dε

y− 2
3 dydt is

replaced with 1
2

∫
Dε

t− 1
2 dydt - 1

3

∫
Dε

ṡ(t)y− 2
3 dydt , and the same conclusion holds,

since again both integrals are bounded (using (5.13)). This shows that8

(
t3 + y2

) 1
6 ∇y,tw(n)⇀

(
t3 + y2

) 1
6 ∇y,tw in L∞(Dε) weak-*,

and hence we have by lower semi-continuity that w satisfies (5.141a), (5.141b),
and (5.143). The weak convergence for (∂yz(n), ∂yk

(n), ∂ya(n))⇀(∂yz, ∂yk, ∂ya) in
L∞(Dε) weak-* is standard. We conclude that

(w, z, k, a) ∈ Xε . (5.189)

Let ϕ ∈ C∞0 (Dε). Integration of (5.136a) shows that

∫

Dε

(
∂tw(n+1) +

(
w(n) − wB

)
∂yw(n+1)

+ ( 1
3z
(n) + wB − ṡ(t)

)
∂yw(n+1) + 8

3a
(n)w(n) − 1

6 (c
(n))2∂yk

(n)
)
ϕ dydt

=
I1(w(n))︷ ︸︸ ︷∫

Dε

(
∂tw(n+1) +

(
w(n) − wB

)
∂yw(n+1)

)
ϕdydt

+
∫

Dε

( 1
3z
(n) + wB − ṡ(t)

)
∂yw(n+1) + 8

3a
(n)w(n) − 1

6 (c
(n))2∂yk

(n)
)
ϕ dydt

︸ ︷︷ ︸
I2(w(n),z(n))

.

Its clear that I2(w(n), z(n), k(n), a(n))→ I2(w, z, k, a). Let us show that I1(w(n))→
I1(w). We have that

∣∣∣I1(w)− I1(w(n))
∣∣∣

�
∣∣∣∣
∫

Dε

(
t3 + y2

) 1
6 (
∂tw − ∂tw(n+1)

)
ϕ
(
t3 + y2

)− 1
6
dydt

∣∣∣∣

8 In fact,
(
t3 + y2

) 1
6 w(n)⇀

(
t3 + y2

) 1
6 w in W 1,∞(Dε) weak-*.
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+
∣∣∣∣
∫

Dε

(
t3 + y2

) 1
6 (
∂yw − ∂yw(n+1)

)
ϕ (w − wB)

(
t3 + y2

)− 1
6
dydt

∣∣∣∣

+ ∥∥w − w(n)
∥∥
L∞(Dε)

∣∣∣∣
∫

Dε

(
t3 + y2

) 1
6
∂θw(n+1)ϕ

(
t3 + y2

)− 1
6
dydt

∣∣∣∣ .

Since
(
t3 + y2

)− 1
6 ∈ L1(Dε), we see that the first two summands converges to 0 by

weak-* convergence in L∞(Dε), while the second term converges to 0 by the strong
convergence (5.188). It follows that w satisfies

∫

Dε

(
∂tw + λ3∂yw + 8

3aw − 1
6c

2∂yk
)
ϕ dydt = 0 ,

and together with the standard weak convergence argument for the other variables, we
have that (w, z, k, a) are solutions to (5.91) in Dε.

Thanks to the uniform convergence (w(n), z(n), k(n), a(n))→ (w, z, k, a) in Dε, it
follows that the time derivatives ∂s(η(n), φ

(n)
t , ψ

(n)
t ) → ∂s(η, φt , ψt ) uniformly, and

that η(·, t) : ϒ(t)→ T \ {s(t)} is a bijection, and the inverse map ηinv : Dε → T \ {0}
is continuous in spacetime, where the set of labels ϒ(n)(t)→ ϒ(t) in the sense that
ϒ(t) = T \ [x−(t), x+(t)] and x (n)− (t)→ x−(t) and x (n)+ (t)→ x+(t) uniformly.

Moreover, the uniform convergence (w(n), z(n), k(n), a(n)) → (w, z, k, a) in Dε,
combined with the definitions (5.127) and the continuity of E1 and E2, implies that
E1(w-, w+, z−, e−) = E2(w-, w+, z−, e−) = 0. Thus, the equations relating z− and
k− to w− and w+ hold on the given shock curve.

5.9 Proof of Proposition 5.6

The analysis given in Sects. 5.5–5.8 completes the proof of Propoisition 5.6, here
we just summarize our findings. Given a regular shock curve s satisfying (5.13), we
have shown that there exists ε > 0 sufficiently small (solely in terms of κ,b, c,m)
such that the iteration described in Section 5.8 produces a limit point (w, z, k, a) ∈
Xε (see (5.189)), which solves the azimuthal form of the Euler equations (5.91) in
Dε; this proves items (i), and (ii). From the last paragraph of the above section, we
have that (w−, w+, z−, k−) satisfy the system of algebraic equations (3.13a)-(3.13b),
arising from the Rankine–Hugoniot conditions, and by passing n → ∞ in (5.146)
and (5.148), we have that [[w]], [[z]], and [[k]] satisfy the bounds claimed in (5.63) and
respectively (5.69); this proves items (iii), (v), (vi), and (vii). The stated bounds on
s1 and s2, which are uniform limits of s(n)1 and s

(n)
2 , follow by passing n → ∞ in

Lemma 5.24, proving item (iv).

5.10 Evolution of the Shock Curve

Proposition 5.6 shows that given a shock curve (s(t), t)t∈[0,ε] which satisfies assump-
tions (5.13), we may compute a solution (w, z, k, a) of the azimuthal form of the
Euler Eqs. (3.5)–(3.6) on the spacetime region Dε = (T × [0, ε]) \ (s(t), t)t∈[0,ε];
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moreover, this solution exhibits a jump discontinuity from the (w+, 0, 0) state on the
right of the shock curve to the state (w−, z−, k−) on the left of the shock curve, and
this jump is consistent with the system of algebraic Eqs. (3.13a)–(3.13b) arising from
the Rankine–Hugoniot conditions. Throughout this section we shall implicitly use that
we have a map

(s, w0, a0)
Proposition 5.6−−−−−−−−→ (w, z, k, a) . (5.190)

Since at this stage of the proof uniqueness has not yet been established (this is achieved
in Sect. 5.11 below), in the map (5.190) we select any one of the solutions guaranteed
by Proposition 5.6.

We note that throughout the proof of Proposition 5.6, the shock curve itself is fixed,
and does not solve an evolutionary equation. The goal of this section is to provide an
iteration scheme whose fixed point s is a C2 smooth curve which solves the equation
(3.12b) (recall that in view of Lemma 5.12 the jump conditions (3.12b) and (3.12a)
are equivalent), which we recall is

ṡ(t) = Fs(t) , s(0) = 0 , (5.191)

where

Fs(t) = 2

3

(w-(t)− z−(t))2(w-(t)+ z−(t))− w+(t)3
(w-(t)− z−(t))2 − w+(t)2 (5.192)

and we have implicitly used the notation (5.7) to denote the limits from the left
(indicated by a − index) and the limit from the right (indicated by a + index) at
the shock point (s(t), t) for the functions (w, z, k). We emphasize however that the
(w-, w+, z−, k−) appearing in (5.192) do not just depend on s because they are one
sided limits of their respective functions (w, z, k) on the curve (s(t), t); they also
depend on s because the functions (w, z, k) themselves arise from themapping (5.190)
given by Proposition 5.6; this mapping is implicit and nonlinear. Moreover, we note
that due to Lemma 5.12 the z− and k− appearing in (5.192) are themselves smooth
functions of w- and w+, so that Fs is truly a function that depends solely on w- and
w+, or alternatively, [[w]] and 〈〈w〉〉.

5.10.1 Properties ofFs

Before giving the iteration scheme used to construct a solution to (5.191), we establish
a few useful properties of the function Fs defined in (5.192).

Lemma 5.27 Assume that s satisfies (5.13), let (w, z, k) be defined via (5.190), and
Fs be given by (5.192). We then have that

|Fs(t)− κ| � 1
2m

4t , (5.193a)∣∣ d
dtFs(t)

∣∣ � 5m4 , (5.193b)
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for all t ∈ (0, ε].
Proof of Lemma 5.27 First we note that the function w satisfies (5.63) with

R j = 1+ 2R1 = 1+ 100m2 � m3 and Rm = 1
3m

4 + R1 � 1
3m

4 +m3 .

(5.194)

This holds in view of (5.15a), (5.141a), and the definition of R1 in (5.142).
Due to (5.68a), in order to approximate the function Fs it is natural to insert

− 9
16 [[w]]3〈〈w〉〉−2 in (5.192), instead of z−. Using the identities w- = 〈〈w〉〉 + 1

2 [[w]]
and w+ = 〈〈w〉〉 − 1

2 [[w]], this gives us the leading order terms in Fs defined by

Fapp
s = 2

3

(w- + 9[[w]]3
16〈〈w〉〉2 )

2(w- − 9[[w]]3
16〈〈w〉〉2 )− w3

+

(w- + 9[[w]]3
16〈〈w〉〉2 )

2 − w2
+

. (5.195)

Furthermore, since the formula in (5.195) is explicit, using (5.63) we obtain that

∣∣∣∣Fapp
s − 〈〈w〉〉 + 7[[w]]2

24〈〈w〉〉
∣∣∣∣ � Ct

3
2 (5.196)

since t � ε, and ε is sufficiently small; here C = C(κ,b, c,m) > 0. The error
we make in the approximation (5.195) may be bounded using the intermediate value
theorem and the bounds (5.63), (5.68a), (5.69a) as

∣∣Fs − Fapp
s

∣∣ � 2

3

∣∣∣∣z− +
9[[w]]3
16〈〈w〉〉2

∣∣∣∣
∣∣∣∣∣1+

[[w]](〈〈w〉〉 − 1
2 [[w]])

([[w]] − z∗)2
− 〈〈w〉〉

2 − 1
4 [[w]]2

(2〈〈w〉〉 − z∗)2

∣∣∣∣∣

� Ct
5
2

(
1+ 3b

3
2 κt

1
2

(b
3
2 t

1
2 − 5κ−2b

9
2 t

3
2 )2
+ κ2

4(κ − 5κ−2b
9
2 t

3
2 )2

)

� Ct2 (5.197)

since t � ε is sufficiently small; here z∗ lies in between z− and− 9
16 [[w]]3〈〈w〉〉−2, and

C = C(κ,b, c,m) > 0. Combining (5.196)–(5.197) and (5.63) — with R j and Rm as
determined by (5.194), we arrive at

|Fs(t)− κ| �
(
1
3m

4 +m3 + 2b3κ−1
)
t � 1

2m
4 ,

thereby proving (5.193a). In this last inequality we have also appealed to (5.2).
In order to prove (5.193b), we first differentiate (5.192) with respect to t , to arrive

at

3

2

d

dt
Fs =

(
1+ [[w]](〈〈w〉〉 −

1
2 [[w]])

([[w]] − z−)2
− 〈〈w〉〉

2 − 1
4 [[w]]2

(2〈〈w〉〉 − z−)2

)
d

dt
z−
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+ [[w]]
3 − 2[[w]]2z− + [[w]]z2− + z−(2〈〈w〉〉 − z−)2

2([[w]] − z−)2(2〈〈w〉〉 − z−)
d

dt
[[w]]

+
(
1+ (〈〈w〉〉 − 2[[w]])(〈〈w〉〉 + 1

2 [[w]] − z−)([[w]] + z−)
2([[w]] − z−)(〈〈w〉〉 − 1

2 z−)2

)
d

dt
〈〈w〉〉
(5.198)

By combining (5.198) with the bounds the derivative bounds (5.84) (which holds
due to (5.145b) with constant R = R1 � m3 as defined in (5.142)), (5.81), and the
amplitude estimates (5.63) (with (5.194)) and (5.69a), we arrive at

3

2

∣∣∣∣
d

dt
Fs

∣∣∣∣ � κb−
3
2 t−

1
2

∣∣∣∣
d

dt
z−

∣∣∣∣+ 2b
3
2 κ−1t

1
2

∣∣∣∣
d

dt
[[w]]

∣∣∣∣+
(
3

2
+ 2b3κ−2t

) ∣∣∣∣
d

dt
〈〈w〉〉

∣∣∣∣
� κb−

3
2 t−

1
2

(
8b

9
2 κ−2t

1
2

)
+ 2b

3
2 κ−1t

1
2

(
2b

3
2 t−

1
2

)
+ 2

(
3m4 + 3m3

)

� 7m4 . (5.199)

In the second inequality abovewe have used that t � ε is sufficiently smallwith respect
to κ,b, c, andm, while in the third inequality we have used (5.2). This concludes the
proof of (5.193b). ��

5.10.2 The Shock Curve Iteration

In view of (5.191) and (5.193a)–(5.193b) we note that the inequalities (5.13) are stable
(since 1

2 < 1 and 5 < 6). Upon integrating in time, the condition |ṡ(t) − κ| � m4t
present in (5.13), automatically implies s(t) ∈ �(t).

Next, we define a sequence of curves s(i) for i � 0, as follows. For i = 0, we
let s(0)(t) = κt . This curve trivially satisfies the conditions in (5.13). Next, given a
curve s(i) defined on [0, ε] which satisfies (5.13), we first compute via (5.190) a tuple
(w, k, z, a)(i) associated to s(i):

(s(i), w0, a0)
Proposition 5.6−−−−−−−−→ (w(i), z(i), k(i), a(i)) . (5.200)

Then, according to (5.192), from (w(i)- , w
(i)
+ , z

(i)
− ), which are one-sided restrictions on

s(i), we may uniquely define a velocity field Fs(i) (t), which may be in turn integrated
to define

s(i+1)(t) =
∫ t

0
Fs(i) (s)ds (5.201)

for all t ∈ [0, ε]. Since s(i) satisfies (5.13), by Lemma 5.27, we have thatFs(i) satisfies
the bounds in (5.193a)–(5.193b). Using (5.201) and Lemma 5.27, we in turn deduce
that s(i+1) satisfies (5.13), on the same time interval ε. Thus, under the above described
iteration s(i) �→ s(i+1), the set of inequalities (5.13) is stable.
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The sequence of curves {s(i)}i�0 is uniformly bounded in W 2,∞(0, ε), in light of
the bounds (5.13), and for i � 0 it satisfies (5.201). From the Arzela-Ascoli theorem,
we may thus deduce that there exists at least one sub-sequential uniform limit s, of the
family {s(i)}i�0, which inherits the bounds (5.13). However, in order to show that this
limit point s solves (5.191), we would need to show that Fs(i) → Fs when s(i) → s.
This continuity of Fs with respect to s is addressed in the next section, where we in
fact show that the sequence {s(i)}i�0 is in fact Cauchy in W 1,∞(0, ε).

5.10.3 Contraction Mapping and Convergence of the Shock Curve Iteration

By (5.192), in order to compare Fs(i+1) and Fs(i) , it is obviously sufficient and neces-
sary to compare the tuples (w(i+1)- , w

(i+1)
+ , z(i+1)− ) and (w(i+1)- , w

(i+1)
+ , z(i+1)− ). Note

however that these tuples represent restrictions of the functions (w(i+1), z(i+1)) and
(w(i), z(i)), which are themselves defined on different domains; thus in order to com-
pare (w(i+1), z(i+1)) and (w(i), z(i)), we need to re-map them of a fixed domain, by
shifting y = θ − s(i+1)(t), respectively y = θ − s(i)(t).

As such, for every i � 0, and for (y, t) ∈ (T \ {0})× [0, ε], we define

(w(i), z(i), k(i), a(i)) (y, t) = (w(i), z(i), k(i), a(i))
(
y + s(i)(t), t

)
, (5.202)

where s(0)(t) = κt , and for i � 1 the curve s(i) is defined recursively via (5.201) . Since
Proposition 5.6 and the bound (5.189) guarantee that (w(i), z(i), k(i), a(i)) ∈ Xε are
well-defined and differentiable on the spacetime domainT×[0, ε]\{(s(i)(t), t)}t∈[0,ε],
the new unknowns (w(i), z(i), k(i), a(i)) are all well-defined and differentiable on the
i-independent domain (T \ {0}) × [0, ε] with bounds inherited from the space Xε
defined in (5.140), allowing us to compare them to each other. Note that due to the
shift (5.202), we have

w(i)- (t) = lim
y→0−

w(i)(y, t) , w(i)+ (t) = lim
y→0+

w(i)(y, t) ,

z(i)− (t) = lim
y→0−

z(i)(y, t) , k(i)− (t) = lim
y→0−

k(i)(y, t) ,

the system of equations (5.66) (which encode the jump conditions) are satisfied for
every i � 0, t ∈ [0, ε], and Fs(i) may be expressed in terms of the above variables.
Moreover, by (5.91) we have that for each i � 0 the unknowns in (5.202) solve the
system of equations

(
∂t + (λ(i)3 − ṡ(i))∂y

)
w(i) = − 8

3a
(i)w(i) + 1

4c
(i)

(
∂t + (λ(i)3 − ṡ(i))∂y

)
k(i) ,

(5.203a)(
∂t + (λ(i)1 − ṡ(i))∂y

)
z(i) = − 8

3a
(i)z(i) − 1

4c
(i)

(
∂t + (λ(i)1 − ṡ(i))∂y

)
k(i) ,

(5.203b)(
∂t + (λ(i)2 − ṡ(i))∂y

)
k(i) = 0 , (5.203c)
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(
∂t + (λ(i)2 − ṡ(i))∂y

)
a(i) = − 4

3 (a
(i))2 + 1

3 (w
(i) + z(i))2 − 1

6 (w
(i) − z(i))2 ,

(5.203d)

in the interior of (T \ {0})× [0, ε], where we have denoted c(i) = 1
2 (w

(i) − z(i)), and
have use the usual notation for the three wave speeds at level i .

Since we have seen earlier that for all i � 0 the curves s(i) satisfy (5.13), by
the proof of Lemma 5.27 (see the first line of estimate (5.199)) and the mean value
theorem, for all i � 0 we have that

∣∣Fs(i+1) − Fs(i)
∣∣ � 2

3κb
− 3

2 t−
1
2
∣∣z(i+1)− − z(i)−

∣∣+ 4
3b

3
2 κ−1t

1
2
∣∣[[w(i+1)]] − [[w(i)]]∣∣

+
(
1+ 3b3κ−2t

) ∣∣〈〈w(i+1)〉〉 − 〈〈w(i)〉〉∣∣ , (5.204)

holds uniformly for t ∈ (0, ε]. Thus, it remains to estimate the right side of (5.204).
For this purpose, we fix an i � 0, and denote

(δw, δz, δk, δa, δc, δṡ) = (w(i+1), z(i+1), k(i+1), a(i+1), c(i+1), ṡ(i+1))
− (w(i), z(i), k(i), a(i), c(i), ṡ(i)) . (5.205)

We note that (δw, δz, δk, δa, δc)(x, 0) = 0. We subtract from (5.203) at level i + 1,
the equations (5.203) at level i , in order to estimate the increments defined above, via
the maximum principle, to obtain

• From (5.203c) we have that

(
∂t + (λ(i+1)2 − ṡ(i+1))∂y

)
δk = −∂yk(i)

( 2
3δw + 2

3δz − δṡ
)
.

Since Proposition 5.6 guarantees that k(i) ∈ Xε, the function k(i) satisfies the
bound (5.141f), and so similarly to (5.186) we may obtain

sup
[0,t]
‖δk‖L∞ � m3t

3
2

(
sup
[0,t]
‖δw‖L∞ + sup

[0,t]
‖δz‖L∞ + sup

[0,t]
|δṡ|

)
(5.206)

where the L∞ norms are taken over the domain T \ {0}.
• Similarly, from (5.203d) we have

(
∂t + (λ(i+1)2 − ṡ(i+1))∂y

)
δa = −∂ya(i)

( 2
3δw + 2

3δz − δṡ
)− 4

3 (a
(i+1) + a(i))δa

+ 1
3 (w

(i+1) + w(i) + z(i+1) + z(i))(δw + δz)
− 1

6 (w
(i+1) + w(i) − z(i+1) − z(i))(δw − δz) .
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Using that (w(i), z(i), k(i), a(i)) ∈ Xε, and since |w(1)(θ, t)| = |wB(θ, t)| � m,
similarly to (5.187) we obtain

sup
[0,t]
‖δa‖L∞ � m3t

(
sup
[0,t]
‖δw‖L∞ + sup

[0,t]
‖δz‖L∞ + sup

[0,t]
|δṡ|

)
+ 3m3t sup

[0,t]
‖δa‖L∞

+
(
mt +m3t2 +m3t

5
2

)(
sup
[0,t]
‖δw‖L∞ + sup

[0,t]
‖δz‖L∞

)

and thus, taking into account (5.142),

sup
[0,t]
‖δa‖L∞ � 4m3t

(
sup
[0,t]
‖δw‖L∞ + sup

[0,t]
‖δz‖L∞ + sup

[0,t]
|δṡ|

)
(5.207)

since t � ε 	 1.
• Next, we turn to (5.203a), which gives

(
∂t + (λ(i+1)3 − ṡ(i+1))∂y

)
δw = −∂yw(i)

(
δw + 1

3δz − δṡ
)− 8

3a
(i+1)δw − 8

3w
(i)δa

+ 1
4c
(i+1) (∂t + (λ(i+1)3 − ṡ(i+1))∂y

)
δk

− 1
4c
(i+1) (δw + 1

3δz − δṡ(i)
)
∂yk
(i)

+ 1
4δc

(
λ
(i)
3 − λ(i)2

)
∂yk
(i)

Recalling that c(i+1) solves (∂t+λ(i+1)3 ∂θ )c(i+1) = − 8
3a
(i+1)c(i+1)− 2

3c
(i+1)∂θ z(i+1),

see e.g. (5.138b), we obtain from the above that

(
∂t + (λ(i+1)3 − ṡ(i+1))∂y

) (
δw − 1

4c
(i+1)δk

)

= −∂yw(i)
(
δw + 1

3δz − δṡ
)− 8

3a
(i+1)δw − 8

3w
(i)δa

− 1
4δk

(
8
3a
(i+1)c(i+1) + 2

3c
(i+1)∂yz(i+1)

)

− 1
4c
(i+1) (δw + 1

3δz − δṡ(i)
)
∂yk
(i) + 1

6c
(i)∂yk

(i)δc .

Following (5.183), the above equation is composedwith the flow of λ(i+1)3 −ṡ(i+1),
which of course is just η(i+1) − s(i+1), and then integrated in time. Note that
∂yw(i) ◦ (η(i+1) − s(i+1)) = (∂θw(i)) ◦ η(i+1) and (5.56a) holds. Thus, using that
(w(i), z(i), k(i), a(i)) ∈ Xε and (w(i+1), z(i+1), k(i+1), a(i+1)) ∈ Xε similarly to
(5.184) we may deduce that

sup
[0,t]
‖δw‖L∞ � m

(
1+ 4m3t

)
sup
[0,t]
‖δk‖L∞ +

(
19
40 + 4m3t

)
sup
[0,t]
‖δw‖L∞
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+
(
1
6 + 2m4t

3
2

)
sup
[0,t]
‖δz‖L∞

+ 3mt sup
[0,t]
‖δa‖L∞ +

(
19
40 +m4t

3
2

)
sup
[0,t]
|δṡ| .

Upon taking ε to be sufficiently small with respect tom, taking into account (5.142)
we deduce

sup
[0,t]
‖δw‖L∞ � m3 sup

[0,t]
‖δk‖L∞ + 1

2 sup[0,t]
‖δz‖L∞ + 2m3t sup

[0,t]
‖δa‖L∞

+
(
19
21 + 8m3t

)
sup
[0,t]
|δṡ| (5.208)

• Lastly, from (5.203b) and (5.138c) we similarly deduce

(
∂t + (λ(i+1)1 − ṡ(i+1))∂y

) (
δz + 1

4c
(i+1)δk

)

= −∂yz(i)
( 1
3δw + δz − δṡ

)− 8
3a
(i+1)δz − 8

3z
(i)δa

+ 1
4δk

(
8
3a
(i+1)c(i+1) − 2

3c
(i+1)∂yw(i+1)

)

+ 1
4c
(i+1) ( 1

3δw + δz − δṡ(i)
)
∂yk
(i) + 1

6c
(i)∂yk

(i)δc

and then similarly to (5.208) we have

sup
[0,t]
‖δz‖L∞ � m3 sup

[0,t]
‖δk‖L∞ +m6t

3
2 sup
[0,t]
‖δw‖L∞

+ 3m3t
5
2 sup
[0,t]
‖δa‖L∞ +m6t

3
2 sup
[0,t]
|δṡ| . (5.209)

Combining the estimates (5.206)-(5.209), and defining

Ni (t) := sup
[0,t]
‖δw‖L∞ + t−

3
4 sup
[0,t]
‖δz‖L∞ + t−1 sup

[0,t]
‖δk‖L∞ + t−

1
2 sup
[0,t]
‖δa‖L∞ ,

(5.210)

where we recall the notation in (5.205), we arrive at

Ni (t) � 3(1+m3)t
1
4 Ni (t)+ ( 1921 + 6m3t

1
2 ) sup
[0,t]
|δṡ|

and thus upon taking t � ε to be sufficiently small in terms of m, we deduce

Ni (t) � 20
21 sup[0,t]

|δṡ| = 20
21 sup[0,t]

∣∣ṡ(i+1) − ṡ(i)
∣∣ . (5.211)
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Recalling the definitions (5.201) and (5.210), from the bounds (5.204) and (5.211)
we deduce that

sup
[0,t]

∣∣ṡ(i+2) − ṡ(i+1)
∣∣ = sup

[0,t]
∣∣Fs(i+1) − Fs(i)

∣∣

� 2
3κb

− 3
2 t−

1
2 sup
[0,t]

∥∥∥z(i+1) − z(i)
∥∥∥
L∞

+
(
1+ 3b

3
2 κ−1t

1
2 + 3b3κ−2t

)
sup
[0,t]

∥∥∥w(i+1) − w(i)
∥∥∥

� 2
3κb

− 3
2 t

1
4 Ni (t)+

(
1+ 8

3b
3
2 κ−1t

1
2 + 3b3κ−2t

)
Ni (t)

� (1+ t
1
5 )Ni (t)

� 20
21 (1+ t

1
5 ) sup
[0,t]

∣∣ṡ(i+1) − ṡ(i)
∣∣

� 41
42 sup[0,t]

∣∣ṡ(i+1) − ṡ(i)
∣∣ (5.212)

upon taking ε, and hence t , sufficiently small with respect to κ,b, c, andm. Note that
41
42 < 1, and so we have a contraction. Since s(0) = κt , and all the sequence of iterates
satisfy (5.13), we deduce that

sup
[0,t]

∣∣ṡ(i+1) − ṡ(i)
∣∣ �

( 41
42

)i
sup
[0,t]

∣∣ṡ(1) − κ∣∣ �
( 41
42

)i
m4t . (5.213)

The bounds (5.212)–(5.213) have as consequence the fact that the sequence of
shock curve iterates {s(i)}i�0 defined in (5.201) is Cauchy in W 1,∞(0, ε), and thus
has a unique limit point

s = lim
i→∞ s(i) in W 1,∞(0, ε) , (5.214)

which inherits the bound (5.13). The bound (5.212) moreover shows that Fs(i) → Fs

as i →∞ inC0(0, ε), and by (5.201) we obtain that s solves shock evolution equation
(5.191), as desired.

Lastly, in view of (5.190), associated to this limit point s, which satisfies the bound
(5.13), Proposition 5.6 determines a unique solution (w, z, k, a) ∈ Xε of the azimuthal
form of the Euler Eqs. (3.5)–(3.6) on either side of the shock curve, which also satisfies
the Rankine-Hugoniot jump conditions (3.13a)–(3.13b), and the shock speed ṡ is given
by (3.12b), as desired.

5.11 Uniqueness of Solutions

The uniqueness of solutions holds in the following sense. Considerw0 which satisfies
(5.1), and a0 which satisfies (5.4). For i ∈ {1, 2}, assume that s(i) is aC2 smooth shock
curve defined on [0, T ] for some T > 0, which satisfies (5.13) on [0, T ]. Assume that
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(w, z, k, a)(i) are C1
x,t smooth solutions of the azimuthal form of the Euler Eqs. (3.5)–

(3.6) on the spacetime domainDT , i.e., on either side of the shock curve s, with initial
datum (w0, 0, 0, a0). Moreover, assume that the restrictions of (w, z, k)(i) satisfy the
Rankine-Hugoniot jump conditions (3.13a)–(3.13b), and that the shock speed ṡ is
given by (3.12b). Lastly, assume that (w, z, k, a)(i) ∈ Xε, as defined in (5.141)–
(5.140). Then, if ε � T is sufficiently small (in terms of the constants κ,b, c,m), we
have that s(1) ≡ s(2) on 0, ε, and (w, z, k, a)(1) ≡ (w, z, k, a)(2) on Dε.

The proof of this statement is a direct consequence of the contraction mapping
established in Section 5.10, and of the fact that z(i)(·, t) ≡ 0 on T \ [s(i)1 (t), s(i)(t)],
and k(i)(·, t) ≡ 0 onT\[s(i)2 (t), s(i)(t)].More precisely, for i ∈ {1, 2}use the definition
(5.202) to remap the two sets of solutions to the same space-time domain, and then
use (5.205) (with i = 1) to denote their difference. As in (5.210), define

N (t) := sup
[0,t]
‖δw‖L∞ + t−

3
4 sup
[0,t]
‖δz‖L∞ + t−1 sup

[0,t]
‖δk‖L∞ + t−

1
2 sup
[0,t]
‖δa‖L∞ .

Then, as in (5.211) and (5.212), we may show that the bounds

N (t) � 20
21 sup[0,t]

|δṡ|

and

sup
[0,t]
|δṡ| � (1+ t

1
5 )N (t)

hold for all t ∈ [0, ε], whenever ε is chosen to be sufficiently small with respect to
the aforementioned parameters. This shows that N (t) = 0 = δṡ(t) for all t ∈ [0, ε].
Since s(i)(0) = 0, it follows that δs ≡ 0, and thus also that N ≡ 0, thereby concluding
the uniqueness proof.

5.12 Proof of Theorem 5.5

The proof of Theorem 5.5 is a direct consequence of Proposition 5.6, of the contraction
mapping established in Sect. 5.10, and of the uniqueness in Sect. 5.11, as described
next.

The parameter ε > 0 in item (i) is chosen to be possibly smaller than what is
required in Proposition 5.6, as required by the estimates in Sections 5.10 and 5.11.
The existence of the regular shock curve s and of the solution (w, z, k, a) ∈ Xε to the
azimuthal form of the Euler equations (3.5), follows from the contraction mapping
in Section 5.10. Note that in view of (5.191), the shock curve s obeys the correct
ODE, while the desired properties for (w, z, k, a) follow from Proposition 5.6 applied
to this limiting shock curve. The uniqueness of the solution (s, w, k, z, a) such that
s satisfies (5.13) and (w, z, k, a) ∈ Xε, is established in section 5.11. Taking into
account Proposition 5.6, we have thus established items (i), (ii), (iii), (iv), (vii), and
along with the support properties for k and z claimed in items (v) and (vi).
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In order to complete the proof of the theorem, it remains to establish the following:
the precise bounds for k near s2 (as claimed in item (v)), the precise bounds for z
near s1 (as claimed in item (vi)), the specific vorticity bounds (and its continuity
across s) claimed in item (viii), and the continuity of a, respectively the jump for ∂θa
across s, as claimed in item (ix). These properties of the solution are established in
Subsections 5.12.1 and 5.12.2, below.

5.12.1 Improved Bounds for z and k near s1 Respectively s2

The information (w, z, k, a) ∈ Xε does not directly provide estimates for z(θ, t) and
k(θ, t) which vanish as θ → s1(t)+, respectively θ → s2(t)+. Such bounds may
however be easily obtained, as follows.

From (3.5c), the definitions of the stopping time T and of the flow φt , and the
estimate (5.69b), we obtain

∣∣k(θ, t)∣∣ = ∣∣k−(s(T(θ, t)), T(θ, t))
∣∣ � 40b

9
2 κ−3T(θ, t)

3
2 (5.215)

for all (θ, t) ∈ Dk
ε . Similarly, from (5.110), (5.81), and (5.155) (with n → ∞) we

deduce that

∣∣∂θk(θ, t)
∣∣ � 4

κ

∣∣ d
dt k−(T(θ, t))

∣∣ � 200b
9
2 κ−4T(θ, t)

1
2 (5.216)

for all (θ, t) ∈ Dk
ε . Since T(θ, t) ≈ 3

κ
(θ − s2(t)), see e.g. (6.144a) below, the above

two estimates give a precise order of vanishing for k and ky as y→ s2(t)+.
Next, let us consider the behavior of z near s2(t). For (θ, t) ∈ Dk

ε , from (3.5b) we
obtain

z(θ, t) = z(s(J(θ, t)), J(θ, t))e−
8
3

∫ t
J(θ,t) a◦ψt ds

+ 1
6

∫ t

J(θ,t)
(c2kθ ) ◦ ψt e− 8

3

∫ t
s a◦ψt ds′ds . (5.217)

Using (5.69a), (5.141a), (5.141g), and (5.216), we deduce that

∣∣z(y, t)∣∣ � 5b
9
2 κ−2J(θ, t)

3
2 + 40m2b

9
2 κ−4

∫ t

J(θ,t)
T(ψt (θ, s), s)

1
2 ds .

In order to estimate the integral term in the above estimate, we use (5.154) to bound
5
2κ
−1(θ − s2(t)) � T(θ, t) � 7

2κ
−1(θ − s2(t)) for all s2(t) < θ < s(t), for ε

sufficiently small. As such, it is natural to define γ (s) = ψt (θ, s) − s2(s), and note
that due to (5.158), we have γ̇ (s) = λ1(ψt (θ, s), s)− ṡ2(s) ∈ [− κ2 ,− κ4 ]. Hence,

∫ t

J(θ,t)
T(ψt (θ, s), s)

1
2 ds � 2κ−

1
2

∫ t

J(θ,t)
γ (s)

1
2 ds
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� −8κ− 3
2

∫ t

J(θ,t)
γ̇ (s)(γ (s))

1
2 ds

= 6κ−
3
2

(
γ (J(θ, t))

3
2 − γ (t) 32

)

� 6κ−
3
2 (s(J(θ, t))− s2(J(θ, t)))

3
2

� 2J(θ, t)
3
2 .

Combining the above two inequalities we arrive at

∣∣z(θ, t)∣∣ � 12b
9
2 κ−2J(θ, t)

3
2 (5.218)

for all (y, t) ∈ Dk
ε . For (θ, t) ∈ Dz

ε \Dk
ε , the same bound as in (5.218) holds. Indeed,

for s ∈ [J(θ, t), t] such that ψt (θ, s) /∈ Dk
ε , we have that kθ (ψt (θ, s), s) = 0, so that

the integrand in the second term in (5.217) vanishes for such s. On the other hand, for
s ∈ [J(θ, t), t] such that ψt (θ, s) ∈ Dk

ε we again appeal to (5.216), and to the fact that
J(ψt (θ, s), s) = J(θ, t). Estimate (5.218) and the bound 5

2κ
−1(θ−s1(t)) � J(θ, t) �

7
2κ
−1(θ − s2(t)), which holds for s1(t) < θ < s2(t) and ε sufficiently small, gives

the rate of vanishing of z(θ, t) as θ → s1(t)+. Moreover, since z(s1(t), t) = 0 by
using the definition of the derivative as the limit of finite differences, from (5.218) we
immediately deduce also that

(∂θ z)(s1(t), t) = 0 . (5.219)

5.12.2 Bounds for the Specific Vorticity, the Radial Velocity, and Its Derivative

The continuity of the radial velocitya onT×[0, ε] is a consequence of the construction:
the continuous initial data a0 (see (5.4)) is propagated smoothly along the characteristic
flow of λ2 (which is continuous, in fact Lipschitz continuous in space and time) in
the domain (Dk

ε)
�, and in particular a limiting value for a from the right side of the

shock curve is obtained; these values of a on the shock curve then serve as Cauchy
data for the region Dk

ε , using that the flow of λ2 is transversal to the shock curve. In

detail, from (5.129), the the Lipschitz regularity of φ(n)t (θ, ·) with respect to both θ
and t (see Lemma 5.24 and its proof, the boundedness of ∂tφ

(n)
t follows in the same

way as (5.155), since ∂tφ
(n)
t solves the same equation as ∂θφ

(n)
t except with datum 0

instead of 1 at (θ, t)), the continuity of a0, and the bounds (5.141), inductively imply
that a(n) is continuous on T× [0, ε], and thus so is its uniform limit a. In particular,
[[a(·, t)]] = 0.

Concerning the specific vorticity, we note that from the uniform bound (5.140) and
the lower bound on w0 in (5.1b), we have that the sequence of specific vorticities
{
(n)}n�1, where
(n) = 4(w(n)+ z(n)− ∂θa(n))(c(n))−2ek(n) , is uniformly bounded
in L∞(Dε), by 300mκ−2. Thus the weak-* limiting vorticity
 also lies in L∞(Dε),
and inherits this global bound. By repeating the argument in Section 5.8.13, since
the right side of (5.139) vanishes as n → ∞ (when integrated against smooth test
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functions), we obtain that
 is a L∞x,t weak solution of (3.9) inDε. Since (w, z) ∈ Xε,
we have that λ2 is Lipschitz, giving uniqueness of weak solutions to (3.9), and thus

can be computed classically by integrating along the characteristics of λ2 (see (5.221)
below).

In order to obtain a sharper estimate for the limiting specific vorticity
 we recall
that from (5.5) that

10κ−1 � 
0(θ) � 28κ−1 (5.220)

for all θ ∈ T. Integrating the evolution (3.9) along the characteristics φt (θ, s), for
s ∈ [0, t], we obtain that


(θ, t) = 
0(φt (θ, 0))e
8
3

∫ t
0 a(φt (θ,s),s)ds

+
{

4
3

∫ t
T(θ,t) e

k(φt (θ,s),s)(∂θ k)(φt (θ, s), s)e
8
3

∫ t
s a(φt (θ,s′),s′)ds′ds , for (θ, t) ∈ Dk

ε

0 , for (θ, t) ∈ (Dk
ε)

� .

(5.221)

Then, for all (θ, t) ∈ Dε, using the bounds (5.141g), (5.141e), and (5.141f), we deduce
that

|
(θ, t)−
0(φt (θ, 0))| � 3R7t |
0(φt (θ, 0))| e3R7t

+ R6(t
3
2 − T(θ, t)

3
2 )e3R7t+R5t

3
2

� Ct . (5.222)

Since t � ε 	 1, it follows from the above estimate and (5.220) that

9κ−1 � 
(θ, t) � 30κ−1 , (5.223)

for all (θ, t) ∈ Dε.
The continuity of the specificvorticity across the shock curve s follows from (5.221),

the continuity of 
0 (see (5.5)), the continuity of a established earlier, the Lipschitz
continuity of φt (θ, ·) in both space and time (which holds in light of the argument
in Lemma 5.24 and the uniform convergence λ(n)1 → λ1), the transversality of the
flow φt (θ, ·) to the shock curve, the bounds (5.141), and the fact that by definition
T(θ, t)→ t as y → s(t)−.

It only remains to consider the behavior of ∂θa near the shock curve, claimed in
item (ix). From (3.8)we have that ∂θa = w+z− 1

4
c2ek and thus, using the continuity
of 
 across the shock curve, for every t ∈ (0, ε] we deduce that

[[∂θa]] = [[w]] + [[z]] − 1
4
 |(s(t),t)[[w]]〈〈c〉〉〈〈ek〉〉 + 1

4
 |(s(t),t)[[z]]〈〈c〉〉〈〈ek〉〉
− 1

4
 |(s(t),t)〈〈c2〉〉[[ek]]
= [[w]]

(
1− 1

4
 |(s(t),t)〈〈c〉〉〈〈ek〉〉
)

︸ ︷︷ ︸
=:Ja,1
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+ [[z]] + 1
4
 |(s(t),t)[[z]]〈〈c〉〉〈〈ek〉〉 − 1

4
 |(s(t),t)〈〈c2〉〉[[ek]]︸ ︷︷ ︸
=:Ja,2

.

Using the fact that (w, z, k, a) ∈ Xε, the precise information on wB provided by
Proposition 5.7, that the specific vorticity satisfies (5.223), and that the jumps in z and
k (hence also the jump in ek) satisfy (5.69), we obtain

∣∣Ja,2(t)
∣∣ � Ct

3
2

and that

Ja,2(t) =
(
2b

3
2 t

1
2 +O(t)

) (
1− 1

8
 |(s(t),t)κ +O(t)
)

(5.223)−−−−→ − 3b
3
2 t

1
2 � − 11

4 b
3
2 t

1
2 − Ct � Ja,2(t) � − 1

4b
3
2 t

1
2 + Ct � − 1

5b
3
2 t

1
2

for all t ∈ (0, ε]. By combining the above three displays we arrive at

−4b 3
2 t

1
2 � [[∂θa]](t) � − 1

6b
3
2 t

1
2

since ε, and hence t , is sufficiently small. The above estimate concludes the proof of
Theorem 5.5.

6 A Precise Description of the Higher Order Singularities

The goal of this section is to establish:

Theorem 6.1 (Shocks, cusps, and weak discontinuities) Let ε > 0, s ∈ C2, s1, s2 ∈
C1, (w, z, k, a) ∈ Xε be as in Theorem 5.5. For t ∈ (0, ε], we have the following
upper bounds on higher order derivatives:

∣∣wθθ (θ, t)
∣∣ �

⎧⎪⎨
⎪⎩

t− 5
3 , if θ � s2(t) or θ � s(t)+ κt3

t− 5
2 + T(θ, t)− 1

2 if s2(t) < θ < s(t)

t− 5
2 if s(t) < θ < s(t)+ κt3

, (6.1a)

∣∣zθθ (θ, t)
∣∣ �

{
T(θ, t)− 1

2 , if s2(t) < θ < s(t)

J(θ, t)− 1
2 if s1(t) < θ � s2(t)

, (6.1b)

∣∣kθθ (θ, t)
∣∣ � T(θ, t)−

1
2 if s2(t) < θ < s(t) , (6.1c)

∣∣aθθ (θ, t)
∣∣ �

⎧⎪⎨
⎪⎩

t− 2
3 , if y � s2(t) or θ � s(t)+ κt3

t−1 + tT(θ, t)− 1
2 if s2(t) < θ < s(t)

t−1 if s(t) < θ < s(t)+ κt3
, (6.1d)

∣∣
θ(θ, t)
∣∣ � 1+ 1(θ,t)∈Dk

ε
(t − T(θ, t)) T(θ, t)−

1
2 , (6.1e)
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Fig. 12 Schematic of the tuple (w, z, k, a) at t ∈ (0, ε]. On the left, we have sketched w in red, z in green,
k in blue, and a in orange. On the right, we have sketched the derivatives wθ in red, zθ in green, kθ in blue,
and aθ in orange

where the implicit constants in � only depend on m, cf. (6.8)–(6.13), and (6.14). In
particular, for every t > 0, the first and second derivatives of (w, z, k, a) are bounded
on both s(t)− and s(t)+.

Moreover, s1(t) and s2(t) are C1 smooth curves of weak characteristic discontinu-
ities in the following precise sense:

(i) The spacetime curve s2(t) is a weak contact discontinuity with the property that
second derivatives of (w, z, k, a) blow up on s+2 (t); in particular, for generic
constants c and C,

c(θ − s2(t))
− 1

2 � wθθ (θ, t),−zθθ (θ, t), kθθ (θ, t),−t−1aθθ (θ, t)
� C(θ − s2(t))

− 1
2 (6.2)

for s2(t) < θ and θ − s2(t) 	 t . The sum wθθ + zθθ remains bounded on s2(t)
and

∣∣wθθ (θ, t)+ zθθ (θ, t)
∣∣ � t−

1
2 , (6.3)

for s2(t) < θ < s2(t) + κt6 . Lastly, the functions (wθ , zθ , kθ , aθ ) form C
1
2 -cusps

along s2(t)+.
(ii) The spacetime curve s1(t) is a weak discontinuity such that only zθθ blows up on

s1(t)+,

c(θ − s1(t))
− 1

2 � −zθθ (θ, t) � C(θ − s1(t))
− 1

2 , (6.4)

for s1(t) < θ with θ − s1(t) 	 t , while second derivatives of (w, k, z) remain

bounded in terms of inverse powers of t . The function zθ forms a C
1
2 -cusp along

s1(t)+ (Fig. 12).

The proof of Theorem 6.1 is the subject of the remainder of this section: in Sec-
tion 6.1 we give the bootstrap assumptions which yield (6.1), Sections 6.2–6.6 are
dedicated to closing these bootstraps, while Sections 6.7 and 6.8 are dedicated to the
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analysis of the weak singularities emerging on s1 and s2. The summary of the proof
is given in Section 6.9.

We note that the bounds for the second order derivatives of (w, z, k, a) claimed in
Theorem6.1greatly differ according to the locationof the space-timepoint (θ, t)where
they are evaluated: while far away from s1, s2, s all information concerning w and a
is propagated smoothly from the initial datum, for (θ, t) near the space-time curves
s1, s2, s, obtaining upper bounds and matching lower bounds for second derivatives
is a delicate matter, which requires a region-by-region analysis. Accordingly, we shall
consider three separate cases:

• (θ, t) ∈ Dk
ε , the region between s2 and s. Here, for all t > 0 the second derivatives

of (w, z, k, a) are bounded as θ → s(t)−, but they all blow up as θ → s2(t)+,
due to the presence of the entropy.

• (θ, t) ∈ Dz
ε\Dk

ε , the region between s1 and s2. In this region k ≡ 0, and this implies
that the second derivatives of w remain bounded as θ → s2(t)−; nonetheless,
the second derivative of a still develops a singularity here, highlighting the two-
dimensional nature of Euler in azimuthal symmetry model. On the other hand,
approaching s1(t) from the right side, only the second derivative of z develops a
singularity.
• (θ, t) ∈ Dε \ Dz

ε, the region which is either to the left of s1 or the the right of
s. In this region we have that z ≡ 0 and k ≡ 0, and thus the analysis reduces
to the study of w and a alone. We show that for all t > 0, these quantities have
bounded second derivatives, uniformly in this region, essentially because they are
determined solely in terms of the initial data.

Remark 6.2 Naturally, the further away (θ, t) are from s1(t) (to the left) or s(t) (to
the right), the further away we are from any singular behavior, and so the bounds for
∂2θ w and ∂2θ a become better. As such, for simplicity of the presentation we only give

proofs of estimates for second derivatives at points (θ, t) ∈ Dε \ Dz
ε which are close

to s1 or s: either s1(t)− ε 12 � θ � s1(t), or s(t) < θ < s(t)+ ε 12 . In particular, the
closeness considered is t-independent, and thus on the complement of this region it is
not hard to establish bounds for ∂2θ (θ, t) and ∂

2
θ a(θ, t) which are uniform in time for

t ∈ [0, ε]; these bounds only depend on ε, which is a fixed parameter.

Remark 6.3 By the uniform convergence of our iteration scheme and (5.154), we have
that

ψt (θ, s) = 1
3κs +

(
θ − 1

3kt
)+O

(
t
4
3

)

= 1
3κs + (θ − s1(t))+O

(
t
4
3

)
, (θ, t) ∈ Dz

ε , (6.5a)

φt (θ, s) = 2
3κs +

(
θ − 2

3kt
)+O

(
t
4
3

)

= 2
3κs + (θ − s2(t))+O

(
t
4
3

)
, (θ, t) ∈ Dz

ε . (6.5b)

Remark 6.4 (Bounds on wave speeds 1 and 2) Recall that φt and ψt are the flows of
the wave speeds λ2 and λ1, which are the identity at time t . Throughout this section
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we shall use the following fact: for all t ∈ [0, ε], and all y ∈ [s1(t)− ε 12 , s(t)+ ε 12 ],
we have

∣∣∂sφt (θ, s)− 2κ
3

∣∣ = ∣∣λ2(φt (θ, s), s)− 2κ
3

∣∣ � 4b|φt (θ, s)− s(s)| 13 + 4b
3
2 s

1
2 (6.6a)

∣∣∂sψt (θ, s)− κ3
∣∣ = ∣∣λ1(ψt (θ, s), s)− κ3

∣∣ � 4b|ψt (θ, s)− s(s)| 13 + 4b
3
2 s

1
2 (6.6b)

for all s ∈ [0, t], where C = C(κ,b, c,m) > 0 is a constant. The proofs of (6.6a)

and (6.6b) are identical, and rely on the fact that z(·, s) = O(s 3
2 ), and that for y ∈

{φt (θ, s), ψt (θ, s)} we have

|κ − w(θ, s)| � |κ − wB(θ, s)| + R1s

� |κ − w0(ηB−1(θ, s))| + R1s

� 2b|ηB−1(θ, s)| 13 + R1s

� 3b
3
2 s

1
2 + 4b|θ − s(s)| 13 + R1s

The aforementioned restriction on θ not being too far to the left of s1(t) or too far to the
right of s(t)was used in the third inequality above, because in light of (5.1c) this allows

us to bound |w0(x) − κ| � 2b|x | 13 , since x = ηB−1(θ, s) satisfies |x | � ε 14 	 1.
Note that a direct consequence of (6.6a)–(6.6b) and (5.13), we have that

∣∣s(t)− s2(t)− κt3
∣∣ � Ct

4
3 and

∣∣s2(t)− s1(t)− κt3
∣∣ � Ct

4
3 (6.7)

holds uniformly for all t ∈ [0, ε], for a suitable constant C = C(κ,b, c,m) > 0.

6.1 Second Derivative Bootstraps

The core of the proof of Theorem 6.1 is to obtain suitable second derivative estimates
for the unknowns (w, z, k, a), and on the first derivative of 
 , consistent with (6.1).
We achieve this by postulating a number of bootstrap bounds — see (6.8), (6.10),
(6.12) below — and then show that these same bounds hold with a constant which is
better by a factor of 2. Note that the
θ and aθθ estimates are direct consequences of
these bootstrap bounds, see Lemmas 6.5 and 6.6, they are not part of the bootstraps
themselves. Rigorously, the bounds (6.8), (6.10), and (6.12) need to be established
iteratively for the sequence of approximations (w(n), z(n), k(n))whichwere considered
in Section 5.8; then, these estimates hold for the unique limiting solution (w, z, k) by
passing n→∞. When n = 1 the bounds (6.8), (6.10), and (6.12) are trivially seen to
hold in view of the definition given in (5.123). Then, assuming the bootstraps bounds
hold for (w(n), z(n), k(n)), the analysis in Sections 6.2–6.6 below, shows that they hold
for the next iterate (w(n+1), z(n+1), k(n+1)) defined in Section 5.8, and that they in fact
hold with a better constant. In the proof in this section, instead of carrying around the
super-indices ·(n) and ·(n+1) (as was done in Section 5.8), we write the proof as if we
had already passed n →∞, and work directly with the limiting solution. This abuse
of notation is justified as described above in this paragraph.
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6.1.1 Bootstraps for the ConeDk
"

For all (θ, t) ∈ Dk
ε , we suppose that

∣∣∣∂2θ w(θ, t)− ∂2θ wB(θ, t)
∣∣∣ � M1

(
T(θ, t)−

1
2 + t−2

)
(6.8a)

∣∣∣∂2θ z(θ, t)
∣∣∣ � M2T(θ, t)

− 1
2 (6.8b)

∣∣∣∂2θ k(θ, t)
∣∣∣ � M3T(θ, t)

− 1
2 , (6.8c)

where

M1 = 10m4 , M2 = 10m3 , M3 = 2m2 . (6.9)

6.1.2 Bootstraps for the ConeDz
"

\ Dk
"

For all (θ, t) ∈ Dz
ε \Dk

ε ,

∣∣∣∂2θ w(θ, t)− ∂2θ wB(θ, t)
∣∣∣ � N1t

− 2
3 (6.10a)

∣∣∣∂2θ z(θ, t)
∣∣∣ � N2J(θ, t)

− 1
2 (6.10b)

where

N1 = 5m4 , N2 = 8m3 . (6.11)

6.1.3 Bootstraps forD" \ Dz
"

For all (θ, t) ∈ Dε \Dz
ε.

∣∣∣∂2θ w(θ, t)− ∂2θ wB(θ, t)
∣∣∣ �

{
N4t−

2
3 , if θ � s1(t) or θ � s(t)+ κt3

N5t−2, if s(t) < θ < s(t)+ κt3 ,
(6.12a)

where

N4 = 5m4 , N5 = 10m4 . (6.13)

6.1.4 Bounds for$� and a��

We first show that the bootstrap for the second derivative of k implies a good estimate
for the derivative for the specific vorticity.
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Lemma 6.5 Assume that (w, z, k, a) ∈ Xε is such that (6.8c) holds. Then, for all
(θ, t) ∈ Dε, we have

∣∣
θ(θ, t)
∣∣ � 2m+ 1(θ,t)∈Dk

ε
4m2 (t − T(θ, t)) T(θ, t)−

1
2 . (6.14)

Proof of Lemma 6.5 We differentiate the equation for the specific vorticity (3.9) with
respect to θ and obtain

(∂t + λ2∂θ )
θ +
(
∂θλ2 − 8

3a
)

θ = 8

3aθ
 + 4
3e

k
(
k2θ + kθθ

)
.

For any fixed (θ, t) ∈ Dε, we compose the above identity with φt (θ, s) and arrive at

d
ds

(

θ ◦ φt

)+ (
∂θλ2 ◦ φt − 8

3a ◦ φt
)
(
θ ◦ φt ) =

(
8
3aθ
 + 4

3e
k(k2θ + kθθ )

)
◦ φt .

Denoting the integrating factor associated to the above equation by

I
θ = I
θ (θ, t; s) = −
∫ t

s

(
∂θλ2(φt (θ, r), r)− 8

3a(φt (θ, r), r)
)
dr

= − 2
3

∫ t

s

(
∂θw(φt (θ, r), r)+ ∂θ z(φt (θ, r), r)

− 4a(φt (θ, r), r)
)
dr , (6.15)

and using that φt (θ, t) = θ , we then obtain


θ(θ, t) = 
 ′0(φt (θ, 0))eI
θ (θ,t;0) +
∫ t

0

( 8
3aθ


+ 4
3e

k(k2θ + kθθ )
)
(φt (θ, s), s)e

I
θ (θ,t;s)ds . (6.16)

First, we estimate the integrating factor in (6.15), for a fixed (θ, t) in the region of
interest, as described in Remark 6.2. Using (6.6a) and (5.13), we have that the curve

φt (θ, s) is transversal to the shock curve s, in the sense that ∂sφt (θ, s) � 2
3κ+O(ε

1
3 ) �

3
4κ < ṡ. Hence, we may apply Lemma 5.11 with γ (s) = φt (θ, s), separately on the
intervals [t ′, t] �→ [T(θ, t), t] and [t ′, t] �→ [s, T(θ, t)], with the second case being
of course empty if T(θ, t) � s. In this way, from estimate (5.57a), (5.141b), (5.141d),
and the triangle inequality, we deduce that

∣∣I
θ (θ, t; s)
∣∣ � 40bκ−

2
3 t

1
3 + 2R2b

− 1
2 t

1
2 + R4t

3
2 � 50bκ−

2
3 t

1
3 .

As such,

∣∣∣eI
θ (θ,t;s) − 1
∣∣∣ � 60bκ−

2
3 t

1
3 (6.17)

uniformly for s ∈ [0, t], since t � ε 	 1.
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Second,we appeal to the bounds (5.141e), (5.141f), (5.141g), and (5.223), to deduce
that

∫ t

0

∣∣ 8
3aθ
 + 4

3e
k(k2θ )

∣∣(φt (θ, s), s)ds � 12κ−1R7t + R2
6 t

2 � Ct (6.18)

for a suitable C = C(κ,b, c,m) > 0.
Third, we use (5.141e), (6.17), the bound (6.8c), and the fact that k ≡ 0 on [Dk

ε]�
to deduce that for all (θ, t) ∈ Dk

ε , we have

∣∣∣∣
∫ t

T(θ,t)

(
ekkθθ

)
(φt (θ, s), s)e

I
θ (θ,t;s)ds
∣∣∣∣ � 4m2 (t − T(θ, t)) T(θ, t)−

1
2 (6.19)

for a suitable C = C(κ,b, c,m) > 0. Here we have implicitly used that
T((φt (θ, s), s)) = T(θ, t).

Finally, by appealing to the 
 ′0 estimate in (5.5), we deduce from (6.16), (6.18),
and (6.19) that

∣∣
θ(θ, t)
∣∣ � m(1+ 60bκ−

2
3 t

1
3 )+ Ct + 1(θ,t)∈Dk

ε
4m2 (t − T(θ, t)) T(θ, t)−

1
2

� 2m+ 1(θ,t)∈Dk
ε
4m2 (t − T(θ, t)) T(θ, t)−

1
2 ,

which completes the proof of (6.14). ��
Thepreviously established estimate for the derivative of the specificvorticity, (6.14),

immediately implies a bound for the second derivative of the radial velocity a:

Lemma 6.6 Assume that (w, z, k, a) ∈ Xε is such that (6.8), (6.10), and (6.12) hold.
Then, for all (θ, t) ∈ Dε we have

∣∣aθθ (θ, t)
∣∣ �

⎧⎪⎨
⎪⎩

N3t−
2
3 , if θ � s2(t) or θ � s(t)+ κt3

M5(t−1 + tT(θ, t)− 1
2 ) , if s2(t) < θ � s(t)

N7t−1 , if s(t) < θ < s(t)+ κt3
(6.20)

where the constants N3, M5, and N7 are defined as as

N3 = m3 , M5 = m4 , N7 = m3 . (6.21)

Proof of Lemma 6.6 The proof directly follows from the bounds on the derivative of the
specific vorticity contained in the bootstrap estimate (6.14). We rewrite the definition
(3.8) as aθ = w + z − 1

4c
2e−k
 , and upon differentiating we see that

aθθ = wθ + zθ − 1
4c(wθ − zθ )e

−k
 + 1
4c

2e−kkθ
 − 1
4c

2e−k
θ
= − 1

4c
2e−k
θ + wθ

(
1− 1

4ce
−k


)
+ zθ

(
1+ 1

4ce
−k


)
+ 1

4c
2e−kkθ
 .
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By using that (w, z, k, a) ∈ Xε and the bound (5.223), it follows that for all (θ, t) in
the region of interest, we have

∣∣∣aθθ + 1
4c

2e−k
θ − ∂θwB
(
1− 1

4ce
−k


)∣∣∣ � Ct−
1
2 (6.22)

for a suitable C = C(κ,b, c,m) > 0. For ∂θwB estimates we refer to (5.37a), 
 is
bounded via (5.223), while for bounds on ∂θ
 we refer to (6.14). We deduce

∣∣aθθ (θ, t)
∣∣ � m3 + 1(θ,t)∈Dk

ε
m4 (t − T(θ, t)) T(θ, t)−

1
2

+m2
(
(bt)3 + |θ − s(t)|2

)− 1
3

(6.23)

The bound (6.23) now directly implies (6.20), as follows.

For θ � s2(t) or θ � s(t) + κt3 , we have that |θ − s(t)| � κt
3 − Ct

4
3 , and also

(θ, t) /∈ Dk
ε . As such, the first bound stated in (6.20) follows from (6.23) as soon

as N3 � 2m2(κ/4)− 2
3 . This condition motivates the choice of N3 = m3 in (6.21).

Similarly, the third bound in (6.20) follows from (6.23) as soon as N7 � 2m2b−1;
this condition holds since N7 = m3 as in (6.21). Lastly, we consider the case that
s2(t) < θ < s(t), case in which (6.23) implies

∣∣∣∂2θ a(θ, t)
∣∣∣ � m3 +m4(t − T(θ, t))T(θ, t)−

1
2 +m2(bt)−1

� m4(t−1 + tT(θ, t)−
1
2 ) . (6.24)

The bound (6.24) then clearly implies the second bound in (6.20) as soon asM5 � m4;
a condition which holds in view of the definition of M5 in (6.21). ��

6.2 Second Derivatives of the ThreeWave Speeds

6.2.1 Improved Estimates for Derivatives of � − �B

Lemma 6.7 Given (θ, t) ∈ Dε, define the label x ∈ ϒ(t) by x = η−1(θ, t), where we
recall that the set ϒ(t) is defined in (5.42). Then

|∂xη(x, t)− ∂xηB(x, t)| �
{
50mt

4
3 , if θ /∈ (s2(t), s(t)+ κt3 )

10mt, if θ ∈ (s2(t), s(t)+ κt3 ) ,
, (6.25a)

∣∣∣∂2xη(x, t)− ∂2xηB(x, t)
∣∣∣ �

{
10mt

1
3 , if θ /∈ (s2(t), s(t)+ κt3 )

20mt− 1
2 , if θ ∈ (s2(t), s(t)+ κt3 )

. (6.25b)

Proof of Lemma 6.7 We first record a few bounds for the derivatives of the Burgers
flow map ηB. Using (5.17c)–(5.17d), we have that for all s2(t) < θ < s(t) + κt3 and
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with x = η−1(θ, t)
∣∣∂2xηB(x, t)

∣∣ �
∣∣tw′′0(x)

∣∣ � 1
3b
− 3

2 t−
3
2 ,

∣∣∂3xηB(x, t)
∣∣ �

∣∣tw′′′0 (x)
∣∣ � 2mb−4t−3 .

(6.26)

The above estimates hold since |x | � 4
5 (bt)

3
2 , which in turn holds by the definition of

ϒ(t) and the bound (5.45). For the case that θ � s2(t) or θ � s(t)+ κt3 , similarly to
(5.50) we may show that

|η(x, s)− s(s)| � |η(x, t)− s(t)| + 4
5b

3
2 t

1
2 (t − s) � κt

4 (6.27)

and so |x | = |η(x, 0) − s(0)| � κt
4 . It follows from (5.1) that for labels x such that

|x | � κt
5

∣∣w′0(x)
∣∣ � bκ−

2
3 t−

2
3 ,

∣∣∂2xηB(x, t)
∣∣ �

∣∣tw′′0(x)
∣∣

� 4bκ−
5
3 t−

2
3 ,

∣∣∂3xηB(x, t)
∣∣ �

∣∣tw′′′0 (x)
∣∣ � 80mκ−

8
3 t−

5
3 , (6.28)

upon taking ε small enough.
In order to prove (6.25a), we appeal to the identities

ηBx (x, t) = 1+
∫ t

0
∂θwB ◦ ηBηBxds , ηx (x, t) = 1+

∫ t

0
(wθ + 1

3 zθ ) ◦ ηηxds .
(6.29)

In anticipation of subtracting the two identities above, we first derive a useful identity
for ∂θw ◦ ηηx . To do so, we return to (5.98), which we rewrite as

d
dt

(
(wθ − 1

4ckθ ) ◦ η ηx
)+ (( 8

3a − 1
12ckθ

) ◦ η) ((wθ − 1
4ckθ

) ◦ η ηx
)

= ( 1
48ckθ (ckθ + 4zθ )− 8

3waθ
) ◦ η ηx . (6.30)

At this stage it is convenient to introduce the w-good-unknown qw via

qw(θ, t) = wθ(θ, t)− 1
4c(θ, t)kθ (θ, t) , (6.31)

the integrating factor in (6.30) as

I(x, s, t) =
∫ t

s

8
3a(η(x, s

′), s′)− 1
12 (ckθ )(η(x, s

′), s′)ds′ , (6.32)

and the forcing term in (6.30) by

Qw = 1
48ckθ (ckθ + 4zθ )− 8

3waθ . (6.33)
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With this notation, integrating (6.30) and using that k0 = 0, we arrive at

qw(η(x, t), t)ηx (x, t) = w′0(x)e−I(x,0,t) +
∫ t

0
Qw(η(x, s), s)ηx (x, s)e

−I(x,s,t)ds

(6.34)

Upon recalling the fact that ∂θwB◦ηB ηBx = w′0, from (6.29), (6.34), and the definition

Q1 = 1
4ckθ + 1

3 zθ , (6.35)

we obtain

∂t (ηx − ηBx ) = wθ ◦ η ηx − ∂θwB ◦ ηB ηBx
= w′0(x)

(
e−I(x,0,t) − 1

)
+ Q1 ◦ η ηx

+
∫ t

0
Qw(η(x, s), s)ηx (x, s)e

−I(x,s,t)ds (6.36)

which is the main identity relating the derivatives of η and ηB.
We recall that (5.1), (5.141), and (5.142) imply

∣∣Qw(θ, t)∣∣ � 1
48 (mR6t

1
2 )(mR6t

1
2 + 4R4t

1
2 )+ 8

3 R7(R1t +m) � 12m2

∣∣Q1(θ, t)
∣∣ � ( 14mR6 + 1

3 R4)t
1
2 � 1

2m
3
2 t

1
2

while (5.54a) gives |ηx (x, s)| � 7
4 . Moreover, the integrating factor I defined in (6.32)

satisfies

∣∣I(·, s, t)∣∣ � 8
3 R7(t − s)+ 1

18mR6(t
3
2 − s

3
2 ) � 12m(t − s) . (6.37)

Estimate (6.37) will be used frequently throughout the remaining analysis.
In order to prove (6.25a), we integrate (6.36) on the interval [0, t], use that

ηx (x, 0) = 1 = ηBx (x, 0), and the fact that (w, z, k, a) ∈ Xε (expressed through
the bounds (5.141)), and obtain that

∣∣ηx (x, t)− ηBx (x, t)
∣∣ � |w′0(x)|

∫ t

0

∣∣∣e−I(x,0,s) − 1
∣∣∣ ds + 7

8m
3
2 t

3
2

� 8mt2|w′0(x)| + 7
8m

3
2 t

3
2 . (6.38)

In the case that θ = η(x, t) ∈ (s2(t), s(t) + κt3 ), since |x | = |η−1(θ, t)| � 4
5 (bt)

3
2 ,

from (5.17b) and (5.142), we obtain the second bound in (6.25a). On the other hand,
for θ = η(x, t) /∈ (s2(t), s(t)+ κt3 ), from (6.27) we have |x | � κt

4 and so from (6.28),
(6.38), and the working assumption (5.2), we obtain that the first bound in (6.25a)
holds.
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We next estimate ηxx − ηBxx . Notice that by differentiating the identity (6.36),
factors of ηxx appear in both the integral term, which at first leads to non-optimal
bounds. Instead, we twice differentiate the equations ∂sη = λ3◦η and ∂sηB = wB◦ηB,
to find that

∂s(ηxx − ηBxx ) = wθθ ◦ η η2x − wBθθ ◦ ηB ηB2x + wθ ◦ η ηxx − wBθ ◦ ηB ηBxx
= (
wBθθ ◦ ηB ◦ (ηB−1 ◦ η)− wBθθ ◦ ηB

)
η2x︸ ︷︷ ︸

K1

+ (wθθ − wBθθ ) ◦ η η2x︸ ︷︷ ︸
K2

+ wBθθ ◦ ηB (η2x − ηB2x )︸ ︷︷ ︸
K3

+ (wθ ◦ η − wBθ ◦ ηB)ηBxx︸ ︷︷ ︸
K4

+ wθ ◦ η (ηxx − ηBxx ) . (6.39)

We shall first provide bounds for the terms K1, K2, K3, and K4 on the right side of
(6.39) in the regions y far from s(t) and y close to s(t), and then apply the Grönwall
inequality to estimate ηxx − ηBxx in these two regions. To sharpen the bounds in the
region close to s(t), we then return to (6.36) and differentiate it in x .
The case θ � s2(t) or θ � s(t) + κt3 . We recall that x = η−1(θ, t) and define the
label x = ηB−1(θ, t). As earlier, from (6.27) and (5.44) we have |x |, |x | � κt

5 . Using
the mean value theorem, and estimates (5.17b), (5.36b), (5.22a), (5.44), and (6.28),
we obtain that

∣∣η−2x K1(x, s)
∣∣ � 2000R1mκ−

8
3 s−

2
3 + Cs−

1
3 ,

so that using (5.54a), (5.142), and (5.2)

∣∣K1(x, s)
∣∣ � m4s−

2
3 . (6.40)

Then, using (5.54a) and (6.10a) and (6.12a), we have that

∣∣K2(x, s)
∣∣ � 4(N1 + N4)s

− 2
3 . (6.41)

In the above estimate we have implicitly used the fact that η(x, s) /∈ Dk
ε , which is a

consequence of the assumption on θ being sufficiently far from s(t) and of the bound
(6.27). Next, by (5.36), the s-independent lower bound on x provided by (6.27), and
the w0 estimates (5.1) and (5.17b), we have

|∂θwB(ηB(x, s), s)| � 5
3 |w′0(x)| � 2b(κt)−

2
3 , (6.42a)∣∣∣∂2θ wB(ηB(x, s), s)

∣∣∣ � ( 53 )
3|w′′0(x)| � 16b(κt)−

5
3 , (6.42b)

for all s ∈ [0, t], and so by (5.54a) and (6.25a)

∣∣K3(x, s)
∣∣ � Cs

4
3 t−

5
3 � Cs−

1
3 , (6.43)
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for a suitable C = C(κ,b,m) > 0. Lastly, in order to bound K4, we write

(wθ ◦ η − wBθ ◦ ηB) = (wθ ◦ η − wBθ ◦ ηB)ηxη−1x ,

and

(wθ ◦ η − wBθ ◦ ηB)ηx =
(
wθ ◦ η ηx − ∂θwB ◦ ηB ηBx

)− ∂θwB ◦ ηB
(
ηx − ηBx

)
.

Using the second equality in (6.36), similarly to (6.38) but with t replaced by s, we
have that

∣∣wθ ◦ η ηx − wBθ ◦ ηB ηBx
∣∣ � 4R7s|w′0(x)| + Cs

1
2 � 20bκ−

2
3mst−

2
3 � Cs

1
3 ,

where in the second inequality we have also appealed to (6.28). Hence, by combining
the above three displays with (5.54a), (6.25a), (6.28), and (6.42), we have that

∣∣K4(x, s)
∣∣ � Ct−

2
3

(
s
1
3 + t−

2
3 s

4
3

)
� Cs−

1
3 , (6.44)

for a suitable C = C(κ,b,m) > 0.
Finally, using the bounds (6.40)–(6.44), and the estimates (5.56a) and (5.141a) we

apply Grönwall to (6.39) and find that

∣∣ηxx (x, t)− ηBxx (x, t)
∣∣ � e

1
2+2R2b

− 1
2 t

1
2 16(m4 + N1 + N4)t

1
3

� 30(m4 + N1 + N4)t
1
3 , (6.45)

in the case that y /∈ (s2(t), s(t)+ κt3 ).
The case s2(t) < θ < s(t)+ κt3 . We shall first use (6.39) to provide a (non optimal)
bound for the difference ηxx − ηBxx . Once we have such a bound, we will then return
to the differentiated form of (6.36) to obtain the optimal bound.

Recall the definitions of the labels x = ηB−1(η(x, t), t) and x = η−1(θ, t). At this
stage it is convenient to introduce s = ν�(x, t) ∈ [0, t), the largest time at which either
η(x, s) = s2(s) = s(s)− κs3 +O(s

4
3 ) or η(x, s) = s(s)+ κs3 . This time ν(x, t) exists in

view of the intermediate function theorem since, |η(x, 0)−s(0)| = |x | � 4
5 (bt)

3
2 > 0,

and is unique since as in (5.50) and in Lemma (5.24), we have that the flow η is
transversal to both s2 and to s. In fact, we recall from (5.50) that

|η(x, s)− s(s)| � |y − s(t)| + 4
5b

3
2 t

1
2 (t − s) (6.46)

and therefore, by also taking into account (6.7), we have that

ν�(x, t) � b
3
2 κ−1t

3
2 (6.47)

uniformly for all x = η−1(θ, t), and θ ∈ (s2(t), s(t)+ κt3 ).
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Next, we return to bounding the terms on the right side of (6.39). Then by (5.21a),
(5.36b), the mean value theorem, (5.44), and using (5.17b), (5.17c), (6.26) we obtain

∣∣K1(x, s)
∣∣ � 4

∣∣ηB−1(η(x, s), s)− x
∣∣
∣∣∣∣∣
(1+ sw′0(̃x))w′′′0 (̃x)− 3s(w′′0 (̃x))2

(1+ sw′0(̃x))4

∣∣∣∣∣
� 4R1s

2( 53 )
4
(
4mb−4t−4 + 16b−3st−5

)

� m4s2t−4 . (6.48)

Here we have use that x̃ lies in between x and ηB−1(η(x, s), s), and thus satisfies
|̃x | � 4

5 (bt)
3
2 . Next, by (5.54a), (6.8a), (6.10a), and (6.12a),

∣∣K2(x, s)
∣∣ � 4(M1 + N5)

(
s−2 + 1s2(s)<η(x,s)<s(s)T(η(x, s), s)

− 1
2

)
. (6.49)

Next, using (5.36b) and the fact that |x | � 4
5 (bt)

3
2 , combined with the estimates

(5.17b) and (5.17c) we obtain that |wBθθ (ηB(x, s), s)| � 3b−
3
2 t− 5

2 . Hence, by also
appealing to (5.54a) and (6.25a), we deduce

∣∣K3(x, s)
∣∣ � Cst−

5
2 . (6.50)

Finally, by (5.52), (5.141b), (5.142), and (6.26),

∣∣K4(x, s)
∣∣ �

(
4R1b

− 3
2 s−

1
2 + R2(bs)−

1
2

)
s|w′′0(x)|

�
(
4R1b

− 3
2 s−

1
2 + R2(bs)−

1
2

)
s 13b

− 3
2 t−

5
2 � m4s

1
2 t−

5
2 . (6.51)

Summing up the estimates (6.48)–(6.51), we obtain

∣∣K1(x, s)
∣∣+ ∣∣K2(x, s)

∣∣+ ∣∣K3(x, s)
∣∣+ ∣∣K4(x, s)

∣∣
�

(
4(M1 + N5)+ 2m4

)
s−2 + 4M11s2(s)<η(x,s)�s(s)T(η(x, s), s)

− 1
2 . (6.52)

Let ν̃(t) = b
3
2 κ−1t 32 be the lower bound in (6.47). With (6.52) in hand we apply

the Grönwall inequality to (6.39) on the time interval [̃ν(t), t], which in view of (6.47)
is slightly larger than [ν�(x, t), t]. The point here is that due to (6.47) we know that
either η(x, ν̃) < s2(̃ν), or η(x, ν̃) > s(̃ν) + κν̃3 , and thus (6.45) holds at the time ν̃.
We thus deduce that

∣∣ηxx (x, t)− ηBxx (x, t)
∣∣

� 30(m4 + N1 + N4)̃ν
1
3 + (4(M1 + N5)+ 2m4)

∫ t

ν̃

s−2ds

+ 4M1

∫ t

ν̃

1s2(s)<η(x,s)�s(s)T(η(x, s), s)
− 1

2 ds
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Fig. 13 Fix a point (θ, t) which lies in between s1 and s2, and let x be the label such that η(x, t) = θ . The
intersection time of η(x, s) with s2 is denoted by ν2(x), while the intersection time of η(x, s) with s1 is
denoted by ν1(x)

� Ct
1
2 + (4(M1 + N5)+ 2m4)κb−

3
2 t−

3
2

+ 4M1

∫ t

ν̃

1s2(s)<η(x,s)�s(s)T(η(x, s), s)
− 1

2 ds . (6.53)

Note that if θ > s(t), then {η(x, s)}s∈[0,t] does not intersect Dk
ε , and so the integral

term in the above is vacuous. We thus are left to consider the case θ ∈ (s2(t), s(t)).
In order to bound the integral term on the right side of (6.53), for every x ∈

[η−1(s2(t), t), η−1(s(t), t)) we define the intersection time s = ν2(x) at which the
3-characteristic η(x, s) intersects the curve s2(s). Just as we showed that φt (θ, s) is
transverse to the shock curve in the proof of Lemma 5.24, by the same argument, for
all labels x ∈ ϒ(t), the curve η(x, s) is transverse to the characteristic curve (s2(t), t),
and so there exists an s2(t)-intersection time ν2(x) such that

η(x, ν2(x)) = s2(ν2(x)) . (6.54)

Note that for these values of x , we have that ν2(x) = ν�(x, t), as was previously
defined above (6.46). When x /∈ [η−1(s2(t), t), η−1(s(t), t)) we overload notation,
and define ν2(x) = ε, to signify that η(x, ·) does not intersect s2.

For future purposes, for every x ∈ [η−1(s1(t), t), η−1(s(t), t)) we define the inter-
section time s = ν1(x) at which the 3-characteristic η(x, s) intersects the curve s1(s),
i.e.

η(x, ν1(x)) = s1(ν1(x)) . (6.55)

The existence and uniqueness of ν1(x) is again justified by the transversality of the
3-characteristic and the 1-characteristic. Again, for x /∈ [η−1(s1(t), t), η−1(s(t), t)),
we set ν1(x) = ε (Fig. 13).

With this notation, we return to the integral term in (6.53), and recall that 2κ−1(θ−
s2(s)) � T(θ, s) � 4κ−1(θ−s2(s)). This justifies defining the curve γ (s) = η(x, s)−
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s2(s). Note that in view of Remark 6.3 and 6.4, we have that γ̇ (s) = λ3(η(x, s), s)−
ṡ2(s) � 1

4κ . Hence,

∫ t

ν̃

1s2(s)<η(x,s)�s(s)T(η(x, s), s)
− 1

2 ds �
∫ t

ν2(x)
T(η(x, s))−

1
2 ds

� κ 1
2

∫ t

ν2(x)
(η(x, s)− s2(s))

− 1
2 ds

� 4κ−
1
2

∫ t

ν2(x)
γ̇ (s)(γ (s))−

1
2 ds

� 8κ−
1
2 γ (t)

1
2 = 8κ−

1
2 (θ − s2(t))

1
2

� 8t
1
2 . (6.56)

In the last inequality above we have used that |θ − s2(t)| � s(t)− s2(t) � κt
2 . From

(6.53) and (6.56), we deduce the non-sharp upper bound

∣∣ηxx (x, t)− ηBxx (x, t)
∣∣ � 4(M1 + N5 +m4)κb−

3
2 t−

3
2 , (6.57)

for x = η−1(θ, t), when y ∈ (s2(t), s(t)+ κt3 ).
Note that (6.57) is weaker than the bound claimed in the second line of (6.25b). This

rough bound (6.57) may now be used to establish an optimal bound for ηxx − ηBxx as
follows. Estimate (6.57) is combined with (6.26) and (6.28), together with the bound
(6.45), to show that for ε taken sufficiently small we have

∣∣ηxx (x, t)
∣∣ �

{
12bκ− 5

3 t− 2
3 , if θ /∈ (s2(t), s(t)+ κt3 )

8(M1 + N5 +m4)κb−
3
2 t− 3

2 if θ ∈ (s2(t), s(t)+ κt3 )
, (6.58)

for t ∈ [0, ε] where x = η−1(θ, t) ∈ ϒ(t). Moreover, by the definition of the time
ν�(x, t) appearing in (6.47), upon letting (θ, t) �→ (η(x, s), s) in (6.58), we obtain
that

∣∣ηxx (x, s)
∣∣ �

{
12bκ− 5

3 s− 2
3 , if s � ν�(x, t)

8(M1 + N5 +m4)κb−
3
2 s− 3

2 if ν�(x, t) < s � t
, (6.59)

wherewe have overloaded notation and have defined ν�(x, t) := t whenever η(x, s) <
s2(s) or η(x, s) > s(s)+ κs3 for all s ∈ [0, t].

Next, differentiating (6.36), we arrive at

∂s(ηxx − ηBxx ) = w′′0
(
e−I(·,0,s) − 1

)
− w′0e−I(·,0,s)∂xI(·, 0, s)

+ ∂θQ1 ◦ η (ηx )2 + Q1 ◦ η ηxx
+

∫ s

0

(
∂θQ

w ◦ η η2x + Qw ◦ η ηxx
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−Qw ◦ η ηx∂xI(·, s′, s)
)
e−I(·,s′,s)ds′ (6.60)

where we recall that I, Qw and Q1 are defined as in (6.32), (6.33), and (6.35). From
(5.56a), (5.141), (6.8c), and (6.56) we deduce

∣∣∂xI(·, s′, s)
∣∣ � 24ms + 1s>ν2(x)(m

1
2 +mM3)s

1
2 (6.61a)

∣∣Q1(·, s)
∣∣ � m2s

1
2 (6.61b)∣∣Qw(·, s)∣∣ � 12m . (6.61c)

Moreover, differentiating (6.33) and (6.35), using (5.141) we also obtain

∣∣∂θQ1(·, s)
∣∣ � (ms)

1
2
∣∣wθ(·, s)

∣∣+ m
4

∣∣kθθ (·, s)
∣∣+ 1

3

∣∣zθθ (·, s)
∣∣+ Cs (6.62a)

∣∣∂θQw(·, s)
∣∣ � m3s

1
2
∣∣kθθ (·, s)

∣∣+m2s
1
2
∣∣zθθ (·, s)

∣∣
+ 3m

∣∣aθθ (·, s)
∣∣+ 12m

∣∣wθ(·, s)
∣∣+ C . (6.62b)

These bounds are used to estimate the three lines on the right side of (6.60) as follows.
Using (6.37) and (6.61a), we obtain

first line on RHS of (6.60) � 24ms|w′′0(x)| + 2(m
1
2 +mM3)s

1
2 |w′0(x)| . (6.63)

Next, using (6.61b) and (6.62a), combined with (5.54a), (6.8b), (6.8c), (6.10b), and
(6.59), we estimate

second line on RHS of (6.60)

� m2s
1
2

(
12bκ−

5
3 s−

2
3 1s�ν�(x,t) + 8(M1 + N5 +m4)κb−

3
2 s−

3
2 1s>ν�(x,t)

)

+ 4(ms)
1
2
∣∣wθ(·, s)

∣∣
+ (mM2 + 2M3)T(η(x, s), s)

− 1
2 1s>ν2(x)

+ 2N2J(η(x, s), s)
− 1

2 1ν1(x)<s<ν2(x) + Cs . (6.64)

The estimate for the third line of (6.60) is more delicate, and proceeds in several
steps. By using (6.59), (6.61a), (6.61c), and (6.62b), combined with (5.54a), (5.56a),
(5.141b), (6.8), (6.10), and (6.12), we have

third line on RHS of (6.60)

� C + C
∫ min{s,ν�(x,t)}

0
(s′)−

2
3 ds′ + 1s>ν�(x,t)96(M1 + N5 +m4)κb−

3
2m

∫ s

ν�(x,t)
(s′)−

3
2 ds′

+ 4(m3M3 +m2M2 + s
1
2 M5)1s>ν2(x)s

1
2

∫ s

ν2(x)
T(η(x, s′), s′)−

1
2 ds′
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+ 4m2N21s>ν1(x)s
1
2

∫ min{s,ν2(x)}

ν1(x)
J(η(x, s′), s′)−

1
2 ds′

+ 12m

(
(M5 + N7)1s>ν2(x)

∫ s

ν2(x)
(s′)−1ds′ + N3

∫ min{s,ν�(x,t)}

ν1(x)
(s′)−

2
3 ds′

)
.

(6.65)

Next, by using (6.56), and the fact that in view of the relations J(θ, s) ≈ κ−1(θ −
s1(s)) and λ3(η(x, s), s) − ṡ1(s) � 1

2κ the same argument used to prove (6.56) also
establishes

∫ t

ν1(x)
J(η(x, s))−

1
2 ds � Ct

1
2 , (6.66)

and so from (6.65), (6.47), (6.56), and (6.66) we obtain that

third line on RHS of (6.60) � C + 1s>ν�(x,t)200(M1 + N5 +m4)κb−
3
2m(ν�(x, t))−

1
2

� C + 1
s>b

3
2 κ−1t

3
2
200(M1 + N5 +m4)κ

3
2 b−

9
4mt−

3
4 .

(6.67)

Finally, using the bounds (6.63), (6.64) (which needs to be combined with (5.56a),
(5.141b), (6.47), (6.56), (6.66)), and (6.67), we integrate (6.60) on [0, t], use (6.26),
and arrive at

(ηxx − ηBxx )(x, t) � 12mt2|w′′0(x)| + 2(m
1
2 +mM3)t

3
2 |w′0(x)|

+ C log
t

ν�(x, t)
+ Ct

1
2

+ 200(M1 + N5 +m4)κ
3
2 b−

9
4mt

1
4

� 12mt2|w′′0(x)| + C log t

� 5mb−
3
2 t−

1
2 (6.68)

for x = η−1(θ, t) with θ ∈ (s2(t), s(t)+ κt3 ). This concludes the proof of the second
inequality in (6.25b).
The case θ � s2(t) or θ � s(t) + κt3 revisited. In order to prove the Lemma,
we note that the constant claimed in the first inequality in (6.25b) is different than
the one previously established in (6.45); this issue plays an important role proof of
Lemma 6.12.

For this purpose we combine (6.60) with the bounds (6.63), (6.64), (6.67) (the first
line of this inequality is used here), and use the fact that for y as above we have that
ν�(x, t), ν2(x) � t > s, to arrive at

∣∣∂s(ηxx − ηBxx )
∣∣ � 24ms|w′′0(x)| + 2(m

1
2 +mM3)s

1
2 |w′0(x)|
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+ 24bκ−
5
3m2s−

1
6 + 4m

1
2 s−

1
2

+ 2N2J(η(x, s), s)
− 1

2 1ν1(x)<s<ν2(x) + C .

Integrating the above estimate on [0, t] and appealing to (6.28) and (6.66) we obtain

∣∣(ηxx − ηBxx )(x, t)
∣∣ � 12mt2|w′′0(x)| + 2(m

1
2 +mM3)t

3
2 |w′0(x)| + Ct

1
2

� 48mbκ−
5
3 t

1
3 + Ct

1
2 .

Taking into account (5.2) and the fact that t is sufficiently small with respect to κ,b,m,
the above estimate proves the first inequality in (6.25b). ��

6.2.2 Derivatives of the 1- and 2-Characteristics

Lemma 6.8 For any (θ, t) ∈ Dε,

sup
s∈[0,t]

|∂θφt (θ, s)− 1| � 60bκ−
2
3 t

1
3 , sup

s∈[0,t]
|∂θψt (θ, s)− 1| � 30bκ−

2
3 t

1
3 .

(6.69)

Proof of Lemma 6.8 For any (θ, t) ∈ Dε and s ∈ [0, t], ∂s∂θφt = ∂θλ2 ◦ φt ∂θφt , and
since ∂θφt (θ, t) = 1, we see that

∂θφt (θ, s) = e−
∫ t
s ∂θ λ2◦φt dr = e−

2
3

∫ t
s ∂θwB◦φt dr e−

2
3

∫ t
s ∂θ (w−wB+z)◦φt dr .

Similarly, for s ∈ [0, t], ∂s∂θψt = ∂θλ1 ◦ ψt ∂θψt , and since ∂θψt (θ, t) = 1, so that

∂θψt (θ, s) = e−
∫ t
s ∂θ λ1◦ψt dr = e−

1
3

∫ t
s ∂θwB◦ψt dr e−

∫ t
s

(
1
3 ∂θ (w−wB)+∂θ z

)
◦ψt dr .

By combining the above two identities with the bounds (5.2), (5.141), and (5.57a)
(withμ = 3

4 for φt and μ = 1
2 forψt ), and using that ε is sufficiently small, the bound

(6.69) follows. ��

We next derive second derivative identities and bounds for these characteristics.
As we noted above, the bounds differ, depending on the spacetime region. In order
to state these bounds, we first define the 2-characteristic s1(t)-intersection time. Just
as we showed that φt (θ, s) is transverse to the shock curve in the proof of Lemma
5.24, by the same argument, the curve φt (θ, s) is transverse to the characteristic curve
(s1(t), t), and there exists an s1(t)-intersection time T1(θ, t) such that (Fig. 14)

φt (θ, T1(θ, t)) = s1(T1(θ, t)) .
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Fig. 14 Fix points: (θ ′, t) which lies in between s1 and s2, and (θ, t) which lies in between s1 and s. The
intersection time of φt (θ ′, s) with s1 is denoted by T1(θ

′, t), while the intersection time of φt (θ, s) with s
is denoted as usual by T(θ, t)

Lemma 6.9 Let (θ, t) ∈ Dε. Then, for all (θ, t) ∈ Dk
ε we have

sup
s∈[T(θ,t),t]

s
∣∣∣∂2θ φt (θ, s)

∣∣∣ � 3m2κ−3 , sup
s∈[J(θ,t),t]

s
∣∣∣∂2θ ψt (θ, s)

∣∣∣ � m
1
2 κ−

3
2 ,

(6.70)

while for all (θ, t) ∈ Dz
ε \Dk

ε it holds that

sup
s∈[T1(θ,t),t]

s
2
3

∣∣∣∂2θ φt (θ, s)
∣∣∣ � 4bm2κ−3 ,

sup
s∈[J(θ,t),t]

∣∣∣∂2θ ψt (θ, s)
∣∣∣ � m

1
2 κ−

3
2 J(θ, t)−1 . (6.71)

Lastly, for (θ, t) ∈ Dε \Dz
ε we have

sup
s∈[0,t]

∣∣∣∂2θ φt (θ, s)
∣∣∣ � 3m2κ−3t−1 ,

sup
s∈[0,t]

∣∣∣∂2θ ψt (θ, s)
∣∣∣ � m

1
2 κ−

3
2 t−1 , s(t) � θ � π , (6.72)

sup
s∈[0,t]

s
2
3

∣∣∣∂2θ φt (θ, s)
∣∣∣ � 3m2κ−3 ,

sup
s∈[0,t]

∣∣∣∂2θ ψt (θ, s)
∣∣∣ � m

1
2 κ−

3
2 t−

2
3 , −π � θ � s1(t) . (6.73)

Proof of Lemma 6.9 It is convenient to introduce the (temporary) variables C = c◦φt ,
B = ∂sφt = λ2 ◦ φt and A = a ◦ φt so that using the chain-rule, the equation for c
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given by (3.7) can be written as

∂sC + 1
2C(∂θφt )

−1∂θ B = − 8
3 AC .

It follows that

(∂θφt )
1
2 ∂sC + 1

2C(∂θφt )
− 1

2 ∂θ B = − 8
3 (∂θφt )

1
2 AC ,

and hence

∂s

(
(∂θφt )

1
2C

)
+ 8

3 A(∂θφt )
1
2C = 0 .

For (θ, t) ∈ Dk
ε , and letting s ∈ [T(θ, t), t), we integrate this equation from s to t and

find that

∂θφt (θ, s) = e
16
3

∫ t
s (a◦φt )(y,s′)ds′ c2(θ, t)

c2(φt (θ, s), s)
. (6.74)

Differentiating (6.74), we find that

∂2θ φt (θ, s) = 2e
16
3

∫ t
s a◦φt ds′ c(θ, t)

c3(φt (θ, s), s)

(
8
3c(θ, t)c(φt (θ, s), s)

∫ t

s
(aθ ◦ φt ∂θφt )ds′

+ c(φt (θ, s), s)cθ (θ, t)− c(θ, t)cθ (φt (θ, s), s)∂θφt (θ, s)
)
. (6.75)

In essence, the two worst terms in the above identity are cθ (θ, t) and cθ (φt (θ, s), s),
so that in view of (5.37) and (5.141) the bounds will be determined by how close y is
to s(t), respectively φt (θ, s) to s(s).

A similar argument can be used to obtain a formula for ∂θψt . To do so, we make
the observation (see also (5.138c)) that (3.7) can be written using λ1 as the transport
velocity in the special form

∂t c + λ1∂θc + 2c∂θλ1 = 2c∂θ z − 8
3ac .

We again introduce temporary variables C = c ◦ψt and B = λ1 ◦ψt = ∂sψt , so that

∂sC + 2C(∂θψt )
−1∂θ B =

(
2∂θ z − 8

3a
) ◦ ψt C .

Then,

∂s

(
(∂θψt )

2C
)
− (

2∂θ z − 8
3a

) ◦ ψt (∂θψt )2C = 0 ,
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and for any (θ, t) ∈ Dz
ε and s ∈ [T(θ, t), t), we integrate this equation from s to t and

find that

∂θψt (θ, s) = e
∫ t
s

(
4
3 a(ψt (θ,s

′),s′)−zθ (ψt (θ,s′),s′)
)
ds′ c

1
2 (θ, t)

c
1
2 (ψt (θ, s), s)

. (6.76)

Differentiating (6.76) once more yields

∂2θ ψt (θ, s) = 1
2e

∫ t
s (

4
3 a−zθ )◦ψt ds′ c

1
2 (θ, t)

c
1
2 (ψt (θ, s), s)

×
(∫ t

s

( 8
3aθ − 2zθθ

) ◦ ψt ∂θψt ds′ + ∂θc(θ, t)
c(θ, t)

− ∂θc(ψt (θ, s), s)
c(ψt (θ, s), s)

∂θψt (θ, s)
)
. (6.77)

As before, the worst terms in the above identity are cθ (θ, t) and cθ (φt (θ, s), s), but in
order to justify this heuristic we need to estimate the time integral of zθθ ◦ ψt .

For (θ, t) ∈ Dk
ε , we shall need a good bound for

∫ t
J(θ,t) zθθ (ψt (θ, s), s)ds, and to

this end, we employ an argument which is very similar to the one we used to obtain
(6.56). Let us define γ (s) = ψt (θ, s)− s2(s). Since λ1(ψt (θ, s), s)− ṡ2(s) � − 3

10κ ,
we obtain γ̇ (s) � − 3

10κ . Moreover, using (6.5) we have that for ε sufficiently small,
T(θ, t) � 5

2κ
−1(θ − s2(t)) for all s2(t) � θ � s(t). Hence,

∫ t

J(θ,t)
T(ψt (θ, s), s)

− 1
2 ds � 3

5κ
1
2

∫ t

J(θ,t)
(ψt (θ, s)− s2(s))

− 1
2 ds

� −2κ− 1
2

∫ t

J(θ,t)
γ̇ (s)(γ (s))−

1
2 ds

= 4κ−
1
2

(
γ (J(θ, t))

1
2 − γ (t) 12

)

� 4κ−
1
2 (s(J(θ, t))− s2(J(θ, t)))

1
2

� 5
2J(θ, t)

1
2 (6.78)

From (6.78) and the bootstrap assumption (6.8b), we get

∫ t

J(θ,t)
|zθθ ◦ ψt | ds � 3M2J(θ, t)

1
2 . (6.79)

First consider (θ, t) ∈ Dk
ε . Combining (6.75) and (6.77), with the bounds (5.37),

(5.141), (6.69), (6.79), and taking ε sufficiently small, we see that
∣∣∂2θ φt (θ, s)

∣∣ �
3m2κ−3s−1 and

∣∣∂2θ ψt (θ, s)
∣∣ � m

1
2 κ− 3

2 s−1, which are the bounds stated in (6.70).
Here we use that T(θ, t) and J(θ, t) are the shock intersection times for trajectories
φt (θ, s) and ψt (θ, s).
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We next consider the case (θ, t) ∈ Dz
ε \Dk

ε . From (6.75), by using (5.141), (5.37a),
and (6.69), we obtain

∣∣∣∂2θ φt (θ, s)
∣∣∣ � 4bm2κ−3s−

2
3 ,

for all s ∈ [T1(θ, t), t], which establishes the first bound in (6.71). Using the bootstrap
assumption (6.10b) and the bound (6.79) for s such that ψt (θ, s) ∈ Dk

ε , respectively

(6.10b) and the fact that J(ψt (θ, s), s) = J(θ, t) for ψt (θ, s) ∈ Dz
ε \Dk

ε , we obtain

∫ t

J(θ,t)

∣∣zθθ (ψt (θ, s), s)
∣∣ds � t N2J(θ, t)

− 1
2 + 3M2J(θ, t)

1
2 .

Therefore, the identity (6.77) together with (5.37), (5.141), (6.69), (6.75), (6.77), and
the above estimate, show that

sup
s∈[J(θ,t),t]

∣∣∣∂2θ ψt (θ, s)
∣∣∣ � m

1
2 κ−

3
2 J(θ, t)−1 ,

for all (θ, t) ∈ Dz
ε \Dk

ε , which establishes the second bound in (6.71). Note that this
bound is only sharp when s is very close to J(θ, t).

For the case that (θ, t) ∈ Dε such that θ > s(t),wehave that z = 0, and so the identi-
ties (6.75) and (6.77) show that second derivatives of these characteristics are largest at
points (θ, t)which are very close to s(t).Using that |φt (θ, s)−s(s)|, |ψt (θ, s)−s(s)| �
κt for s ∈ [0, t/2], using (5.37) and (5.141) it follows from (6.75) and respectively
(6.77) that

sup
s∈[0,t]

∣∣∣∂2θ φt (θ, s)
∣∣∣ � 3m2κ−3t−1 , sup

s∈[0,t]

∣∣∣∂2θ ψt (θ, s)
∣∣∣ � m

1
2 κ−

3
2 t−1 ,

which establishes (6.72) for s(t) � θ � π .
For the case that (θ, t) ∈ Dε such that −π � θ � s1(t) we again have that z = 0.

Using (5.37), (5.141), (6.69), it similarly follows from (6.75) and (6.77) that

sup
s∈[0,t]

s
2
3

∣∣∣∂2θ φt (θ, s)
∣∣∣ � 3m2κ−3 , sup

s∈[0,t]

∣∣∣∂2θ ψt (θ, s)
∣∣∣ � m

1
2 κ−

3
2 t−

2
3 , (6.80)

which is the stated bound (6.73). This improved growth rate of second derivatives
makes use of the fact that for−π � θ � s1(t), one the one hand we have |ψt (θ, s)−
s(s)| � |ψt (θ, s) − s2(s)| ≈ |θ − s2(t)| � κt for all s ∈ [0, t], while on the other
hand |φt (θ, s)− s(s)| � |s1(s)− s(s)| ≈ κs for all s ∈ [0, t]. ��

6.3 Second Derivatives forw Along the Shock Curve

Lemma 6.10 Assume that the shock curve s satisfies (5.13), that (w, z, k, a) ∈ Xε (as
defined in (5.141)–(5.142)), and that the second derivative bootstraps (6.8)–(6.12)
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hold. Then we have that
∣∣∣ d2dt2
w(s(t)±, t)− d2

dt2
wB(s(t)

±, t)
∣∣∣ � (4b3M1 +m5)t−1 (6.81)

where M1 = M1(κ,b, c,m) > 0 is the constant from (6.8a). In particular, the bound
(5.82) holds with the constant R∗ = 4b3M1 +m5, which in turn implies (5.83).

Proof of Lemma 6.10 First, we note that from (3.5), Lemma 5.8, and the fact that
(w, z, k, a) ∈ Xε cf. (5.141)–(5.142), we have that

|∂θw(θ, t)| � |∂θwB(θ, t)| + R2(bt)−
1
2 � 9

11 t
−1 + R2(bt)−

1
2 � t−1 (6.82a)

|∂tw(θ, t)| � (m+ R1t + 1
3 R3t

3
2 )t−1 + 8R7

3 (m+ R1t)+ R6
24 t

1
2 (m+ R1t + R3t

3
2 )2

� 2mt−1 (6.82b)

|∂t z(θ, t)| � ( 13 (m+ R1t)+ R3t
3
2 )R4t

1
2 + 8

3 R7R3t
3
2 + 1

24 (m+ R1t + R3t
3
2 )2R6t

1
2

� m3t
1
2 (6.82c)

|∂t a(θ, t)| � 1
2 (m+ R1t + R3t

3
2 )R7 + 1

2 (m+ R1t + R3t
3
2 )2 � m3 (6.82d)

for all (θ, t) ∈ Dε, and in particular as θ → s(t)±.
From the chain rule, we obtain that

d2

dt2
w(s(t)±, t) = s̈(t)(wθ )(s(t)

±, t)+ (ṡ(t))2(wθθ )(s(t)±, t)
+ 2ṡ(t)(wtθ )(s(t)

±, t)+ (wt t )(s(t)±, t) . (6.83)

From the evolution equations (3.5) and the definition of the wave speeds in (3.6) we
have the identities

wtθ = −
(
w + 1

3 z
)
wθθ −

(
wθ + 1

3 zθ
)
wθ − 8

3 (aw)θ

+ 1
12 (w − z) (wθ − zθ ) kθ + 1

24 (w − z)2kθθ (6.84a)

wt t = −
(
w + 1

3 z
)
wtθ −

(
wt + 1

3 zt
)
wθ − 8

3∂t (aw)+ 1
12 (w − z) (wt − zt ) kθ

+ 1
24 (w − z)2ktθ

= (
w + 1

3 z
) ((
w + 1

3 z
)
wθθ +

(
wθ + 1

3 zθ
)
wθ + 8

3 (aw)θ

− 1
12 (w − z) (wθ − zθ ) kθ − 1

24 (w − z)2kθθ
)

+
(
(w + 1

3 z)wθ + 8
3aw + 1

3 (
1
3w + z)zθ + 8

9az − 1
18 (w − z)2kθ

)
wθ

− 8
3∂t (aw)

+ 1
12 (w − z)(wt − zt )kθ − 1

36 (w − z)2 ((w + z)kθθ + (wθ + zθ )kθ ) (6.84b)

pointwise for (θ, t) ∈ Dε. We shall in fact use (6.84) only for θ → s(t)±, so that
the relevant bounds on second derivatives of w are given by (6.8a), the second branch
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in (6.12a), and from the estimate |∂2θ wB(θ, t)| � 11
4 b
− 3

2 t− 5
2 , which follows from

Lemma 5.8 and (5.36b); together, these bounds and the fact T(s(t)−, t) = t , imply
that

|∂2θ w(s(t)±, t)| � 11
4 b
− 3

2 t−
5
2 + Ct−2 � 3b−

3
2 t−

5
2 .

Similarly, for the second derivative of k we appeal to (6.8c), which gives

|∂2θ k(s(t)−, t)| � M3t
− 1

2 .

From the above two estimates, the bounds (6.84), the fact that (w, z, k, a) ∈ Xε
cf. (5.141)–(5.142), we deduce that at (s(t)±, t):

∣∣∣wtθ + wwθθ + (wθ )2
∣∣∣ � 1

3 |zwθθ | + 8
3 |awθ | + Ct−

1
2

� (R3b
− 3

2 + 3R7)t
−1 + Ct−

1
2

� 1
2m

3t−1 (6.85a)∣∣∣wt t − w2wθθ − 2w(wθ)
2
∣∣∣ � |w|

∣∣∣wtθ + wwθθ + (wθ )2
∣∣∣+ 1

3 |zwtθ | + 8
3 |awwθ |

+ 8
3 |a∂tw| + Ct−

1
2

� 1
2m

4t−1 + 3R3mb−
3
2 t−1 + 10mR7t

−1 + Ct−
1
2

� m4t−1 (6.85b)

upon taking ε, and hence t , to be sufficiently small, and using (5.2). Combining the s
bounds in (5.13) with (6.83) and (6.85), we thus deduce that
∣∣∣ d2dt2
w(s(t)±, t)− (ṡ− w(s(t)±, t))2wθθ (s(t)±, t)+ 2(ṡ− w(s(t)±, t))(wθ (s(t)±, t))2

∣∣∣
� 1

2m
5t−1 . (6.86)

In a similar fashion, we may show from (5.14) that ∂tθwB = −wB∂2θ wB − (∂θwB)2
and that ∂t twB = wB2∂2θ wB + 2wB(∂θwB)2, and thus, as in (6.83), we have that

d2

dt2
wB(s(t)

±, t)− (ṡ− wB(s(t)±, t))2wBθθ (s(t)±, t)
+ 2(ṡ− wB(s(t)±, t))(wBθ (s(t)±, t))2 = 0 . (6.87)

That is, for the Burgers solution we have (6.86) without the O(t−1) error term. In
order to prove (6.81) it remains to subtract (6.86) and (6.87). We obtain that

d2

dt2
(
w(s(t)±, t)− wB(s(t)±, t)

)

= 1
2

(
(ṡ(t)− w(s(t)±, t))2 + (ṡ(t)− wB(s(t)±, t))2

)
∂2θ (w − wB)(s(t)±, t))

+ (w − wB)(s(t)±, t))
(
ṡ(t)− 1

2 (w + wB)(s(t)±, t))
)
∂2θ (w + wB)(s(t)±, t))
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− 2
(
ṡ(t)− 1

2 (w + wB)(s(t)±, t))
)
∂θ (w − wB)(s(t)±, t))∂θ (w + wB)(s(t)±, t))

− (w − wB)(s(t)±, t))
(
(wθ (s(t)

±, t)))2 + (wBθ (s(t)±, t)))2
)
+O(t−1)

(6.88)

where the O(t−1) term is bounded by the right side of (6.86). The estimate (6.88) is
now combined with the working assumption (5.2), the ṡ(t)−κ bound in (5.13), thewB
estimates established in the proof of Proposition 5.7, the estimates (5.141a)–(5.141b),
and the bootstrap assumption (6.8a), to arrive at

∣∣∣ d2dt2
(
w(s(t)±, t)− wB(s(t)±, t)

)∣∣∣
� (b

3
2 t

1
2 + (2m4 + R1)t)

2(2M1t
−2)+ R1t(b

3
2 t

1
2 + (2m4 + R1)t)

(
6b−

3
2 t−

5
2

)

+ 2(b
3
2 t

1
2 + (2m4 + R1)t)R2(bt)−

1
2 (2t−1)+ R1t

(
2t−2

)
+m5b−

3
2 t−1

�
(
4b3M1 + 9m3 + 1

2m
5
)
t−1 . (6.89)

This completes the proof of the lemma, upon appealing to (5.2). ��

6.4 Improving the Bootstrap Bounds for k��

Lemma 6.11 For all (θ, t) ∈ Dk
ε we have that

∣∣∂2θ k(θ, t)
∣∣ � m2

T(θ, t)−
1
2 . (6.90)

This justifies the choice of the constant M3 in (6.9) and improves the bootstrap assump-
tion (6.8c).

Proof of Lemma 6.11 Differentiating (5.105), we have that

d
ds

(
∂2θ k ◦ φt (∂θφt )2 + ∂θk ◦ φt ∂2θ φt

)
= 0 , (6.91)

and integrating in time from T(θ, t) to t , we have that for each (θ, t) ∈ Dk
ε ,

∂2θ k(θ, t) = ∂2θ k(s(T), T)
(
∂θφt (θ, T)

)2 + ∂θk(s(T), T)∂2θ φt (θ, T) , T = T(θ, t) .
(6.92)

It follows from (5.109) that

∂2θ k(θ, t) = ∂2θ k(s(T), T)
(
∂θφt (θ, T)

)2 + ˙k−(T))
ṡ(T))−∂sφt (y,T) ∂

2
θ φt (y, T) , (6.93)
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where T = T(θ, t). Next, by differentiating the system (5.107), a lengthy computation
reveals that

∂2θ k(s(t), t) = ¨k−(t)
(ṡ(t)−λ2(s(t),t))2

−
(
s̈(t)− (

∂tλ2(s(t), t)+ (2ṡ(t)− λ2(s(t), t))∂θλ2(s(t), t)
))

˙k−
(ṡ(t)−λ2(s(t),t))3 . (6.94)

Substitution of (6.94) into (6.93) shows that for all (θ, t) ∈ Dk
ε ,

∂2θ k(θ, t) =
( ¨k−
(ṡ−λ2)2 −

(
s̈− (
∂tλ2 + (2ṡ− λ2)∂θλ2

)) ˙k−
(ṡ−λ2)3

)∣∣∣
(s(T(θ,t)),T(θ,t))(

∂θφt (y, T(θ, t))
)2 + ˙k−(T(θ,t)))

ṡ(T(θ,t)))−∂sφt (y,T(θ,t)) ∂
2
θ φt (y, T(θ, t)) . (6.95)

Given the bounds (5.141) together with (5.2), (5.13), (5.37), (5.81), (5.83), (6.6), (6.7),
(6.82), (6.69), and (6.70) we find that

∣∣∂2θ k(θ, t)
∣∣ �

(
1+ Ct

1
3

)2 (
16
κ2

∣∣ ¨k−(T(θ, t))
∣∣+ 64

κ3

(
6m4 + κ3T(θ, t)−1

) ∣∣ ˙k−(T(θ, t))
∣∣)

+ 9m2

κ4

∣∣ ˙k−(T(θ, t))
∣∣T(θ, t)−1 + C

� 50b
9
2 κ−5(1+ 10m2κ−2)T(θ, t)−

1
2

� m2
T(θ, t)−

1
2

for all (θ, t) ∈ Dk
ε . See the details in the proof of (6.152) below for a sharper bound

than the one given above. The estimate (6.90) thus holds, concluding the proof. ��

6.5 Improving the Bootstrap Bounds forw��

Lemma 6.12 For all (θ, t) ∈ Dε, we have that

∣∣wθθ (θ, t)− wBθθ (θ, t)
∣∣ �

⎧⎪⎨
⎪⎩

1
2 min{N1, N4}t− 2

3 , θ � s2(t) or θ � s(t)+ κt3
1
2M1(t−2 + T(θ, t)− 1

2 ) if s2(t) < θ < s(t)
1
2N5t−2 if s(t) � θ < s(t)+ κt3

,

(6.96)

where M1 is as defined as in (6.9), N1 is given by (6.11), while N4 and N5 are defined
in (6.13). In particular, we have improved the bootstrap bounds (6.8a), (6.10a), and
(6.12a). Moreover, we have

∣∣wθθ (θ, t)
∣∣ �

⎧⎪⎪⎨
⎪⎪⎩

15bκ− 5
3 t− 5

3 , if θ � s2(t) or θ � s(t)+ κt3
3b−

3
2 t− 5

2 + 5m4T(θ, t)− 1
2 if s2(t) < θ < s(t)

3b−
3
2 t− 5

2 if s(t) � θ < s(t)+ κt3
. (6.97)
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Proof of Lemma 6.12 Throughout this proof we will take ε, and hence t , to be suffi-
ciently small with respect to κ,b, c and m. For any (θ, t) ∈ Dε, we define x ∈ ϒ(t)
by x = η−1(θ, t).

Recall that the good unknown qw is defined in (6.31), and it satisfies (6.34). Dif-
ferentiating (6.34) with respect to the label x , we obtain the identity

∂θq
w(η(x, t), t) η2x (x, t) = −qw(η(x, t))ηxx (x, t)
+ ∂x

(
w′0(x)e−I(x,0,t) +

∫ t

0
Qw(η(x, s), s)ηx (x, s)e

−I(x,s,t)ds
)
. (6.98)

Taking into account the definition of qw in (6.31) and the identity ∂2θ wB ◦ ηB ηB2x +
∂θwB ◦ ηB ηBxx = w′′0(x), we thus obtain that

∂θq
w ◦ η η2x − ∂2θ wB ◦ ηB ηB2x
= w′0(x)ηB−1x

(
ηBxx − ηxx

)+ (
∂θwB ◦ ηB − ∂θw ◦ η + 1

4 (ckθ ) ◦ η
)
ηxx

+ w′′0
(
e−I(·,0,s) − 1

)
− w′0e−I(·,0,s)∂xI(·, 0, s)

+
∫ s

0

(
∂θQ

w ◦ η η2x + Qw ◦ η ηxx − Qw ◦ η ηx∂xI(·, s′, s)
)
e−I(·,s′,s)ds′ .

(6.99)

The key observation is that second line in (6.99) is precisely the first line in (6.60),
while the third line in (6.99) is precisely the third line in (6.60); we will use this fact
to avoid redundant bounds.
Bounds in the region s2(t) < θ < s(t)+ κt3 . By taking into account (5.54a), (6.25b),
(5.52), (6.26), (5.141) and (5.142), we obtain that

the first line on RHS of (6.99)

� 40mt−
3
2 +

(
8R1b

− 3
2 t−

1
2 + R2(bt)−

1
2 + 1

4mR6t
1
2

) (
1
3b
− 3

2 t−
3
2 + 20mt−

1
2

)

� m3(bt)−2 , (6.100)

since t is sufficiently small. Next, since second line in (6.99) equals the first line in
(6.60), from (6.63), (6.26), and the fact that t > ν�(x, t), we obtain

the second line on RHS of (6.99) � 24mt |w′′0(x)| + 2(m
1
2 +mM3)t

1
2 |w′0(x)|

� 10m(bt)−
3
2 . (6.101)

Similarly, since third line in (6.99) equals the third line in (6.60), from (6.67), (6.26),
and the fact that t > ν�(x, t), we obtain

the third line on RHS of (6.99) � Ct−
3
4 . (6.102)
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By adding (6.100), (6.101), and (6.102), since t is sufficiently small we deduce that

∣∣∂θqw ◦ η η2x − ∂2θ wB ◦ ηB ηB2x
∣∣ � 2m3(bt)−2 . (6.103)

Next, by recalling the definition of qw in (6.31), and appealing to (5.141), (5.142),
and (6.90), we deduce

∣∣wθθ ◦ η(ηx )2 − wBθθ ◦ ηB(ηBx )2
∣∣ � 3m3(bt)−2 +m3

T(θ, t)−
1
2 . (6.104)

With (6.104) in hand, we use the notation introduced in (6.39) to rewrite

wθθ (θ, t)− wBθθ (θ, t) = η−2x

(
wθθ ◦ η(ηx )2 − wBθθ ◦ ηB(ηBx )2

)

− η−2x K3 − η−2x K1 , (6.105)

and thus we may combine (5.54a), (6.48), and (6.50), to arrive at

∣∣wθθ (θ, t)− wBθθ (θ, t)
∣∣ � 5m4t−2 + 2m3

T(θ, t)−
1
2 (6.106)

sincem is large compared to b. The above estimate proves the second and third bounds
in (6.96) once we ensure that 1

2M1 � 5m4 and 1
2N5 � 5m4. These conditions hold in

view of the definitions (6.9) and (6.13).
Bounds in the region θ � s2(t) or θ � s(t) + κt3 . In order to estimate the first line
on the right side of (6.99), we rewrite

wθ ◦ η − wBθ ◦ η = η−1x

(
wθ ◦ η ηx − wBθ ◦ ηB ηBx

)− η−1x wBθ ◦ ηB
(
ηx − ηBx

)
(6.107)

so that from the second equality in (6.36), (5.54a), (6.37), (6.61b), (6.61c), and (6.25a),
we have

∣∣(wθ ◦ η − wBθ ◦ η)(x, t)
∣∣ � 40mt |w′0(x)| +m2t

1
2 + Ct + 200m|w′0(x)|t

4
3

� 50mt |w′0(x)| + 2m2t
1
2 . (6.108)

Thus, analogously to (6.100), using (5.54a), (6.25b), (6.28), and the fact that k(θ, t) =
0, we have

the first line on RHS of (6.99) � 20|w′0(x)|mt
1
3 +

(
50mt |w′0(x)| + 2m2t

1
2

)
(
4bκ−

5
3 t−

2
3 + 10mt

1
3

)

� Ct−
1
3 . (6.109)

Next, similarly to (6.101) we have that

the second line on RHS of (6.99) � 24mt |w′′0(x)| + 2(m
1
2 +mM3)t

1
2 |w′0(x)|
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� 96mbκ−
5
3 t−

2
3 + Ct−

1
6 . (6.110)

As in (6.102), but this time using that ν�(x, t) � t , we obtain from the first line in
(6.67) that

the third line on RHS of (6.99) � C . (6.111)

By adding (6.109), (6.110), and (6.111), using that k(η(x, s), s) = 0, since t is suffi-
ciently small we deduce

∣∣wθθ ◦ η(ηx )2 − wBθθ ◦ ηB(ηBx )2
∣∣ � 20mt−

2
3 . (6.112)

Here we have also used (5.2). Finally, using the decomposition (6.105), and appealing
to the bounds (6.40) and (6.43) we deduce that

∣∣wθθ (θ, t)− wBθθ (θ, t)
∣∣ � 2m4t−

2
3 . (6.113)

The above estimate proves thefirst bound in (6.96) onceweensure that 12 min{N1, N4} �
2m4. This condition holds in view of the definitions (6.11) and (6.13).

In order to complete the proof of the lemma, we note that (6.97) follows from (6.96),
the triangle inequality, and (5.37b) . ��

Lemma 6.13 Recall the definition of qw in (6.31). For all (θ, t) ∈ Dk
ε such that s2(t) <

θ < s2(t)+ κt6 , we have that
∣∣qwθ (θ, t)

∣∣ � 3b(κt)−
5
3 . (6.114)

Proof of Lemma 6.13 Combining (6.103) with (5.1), (5.36b), (5.54a), (6.46) (with s =
0), and (6.7) we deduce that |η−1(θ, t)| � κt

7 and thus

∣∣qwθ (θ, t)
∣∣ � 2

∣∣wBθθ (ηB(η−1(θ, t), t), t)
∣∣+ 2m3(bt)−2

� 10
∣∣w′′0(η−1(θ, t))

∣∣+ 2m3(bt)−2

� 3b(κt)−
5
3 . (6.115)

The bound (6.114) is thus proven. ��

6.6 Improving the Bootstrap Bounds for z��

Just as we defined the function qw(θ, t) in (6.31), we introduce the function

qz(θ, t) = zθ (θ, t)+ 1
4c(θ, t)kθ (θ, t) . (6.116)
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Using this unknown, we rewrite the equation (5.102) as

d
ds (q

z ◦ ψt∂θψt ) = −Qz ◦ψt ∂θψt , (6.117)

where

Qz = ckθ (
1
12wθ + 1

12 zθ + 2
3a)+ 8

3∂θ (az) . (6.118)

Differentiating (6.117), we have that

d
ds (q

z
θ ◦ ψt (∂θψt )2 + qz ◦ ψt∂2θ ψt ) = −∂θQz◦ψt (∂θψt )2 − Qz◦ψt ∂2θ ψt ,

(6.119)

which may be integrated on [J(θ, t), t] to obtain that

qzθ (θ, t) =
(
qzθ (∂θψt )

2 + qz∂2θ ψt
)∣∣∣
(s(J),J)

−
∫ t

J(θ,t)

(
∂θQ

z◦ψt (∂θψt )2 + Qz◦ψt ∂2θ ψt
)
ds . (6.120)

for all (θ, t) ∈ Dz
ε. Here we have used thatψt (θ, J(θ, t)) = s(J(θ, t)) and the fact that

ψt (θ, t) = θ , which implies ∂θψt (θ, t) = 1 and ∂2θ ψt (θ, t) = 0. In order to estimate
the right side of (6.120), we first establish:

Lemma 6.14 For (θ, t) ∈ Dz
ε,

∫ t

J(θ,t)

∣∣∣∂θQz◦ψt (∂θψt )2 + Qz◦ψt ∂2θ ψt
∣∣ds � 3m3

J(θ, t)−
1
2 . (6.121)

Proof of Lemma 6.14 We decompose ∂θQz = Q1 +Q2, where

Q1 =
Q1a︷ ︸︸ ︷

1
12ckθwθθ +

Q1b︷ ︸︸ ︷
1
24kθwθwθ +

Q1c︷ ︸︸ ︷
ckθθ (

1
12wθ + 1

12 zθ + 2
3a) ,

Q2 = ckθ (
1
12 zθθ + 2

3aθ )+ 8
3 (az)θθ + 1

24kθ zθwθ .

For (θ, t) ∈ Dz
ε \Dk

ε , is convenient to introduce a time J1(θ, t), which is defined as the
time at which the curve ψt (θ, ·) intersects the curve s2; recall that J(θ, t) is the time
at which ψt (θ, ·) intersects the shock curve s. From (6.7), (6.69), and the definitions
of J and J1, we note that

J1(θ, t) = 2J(θ, t)+O(J(θ, t) 43 ) . (6.122)

When (θ, t) ∈ Dk
ε , we abuse notation and write J1(θ, t) = t , emphasizing thatψt (θ, ·)

does not intersect s2. Bydefinition, note that for s ∈ (J1(θ, t), t], all the terms inQ1◦ψt
and Q2 ◦ ψt vanish.
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Fig. 15 Fix a point (θ, t) which lies in between s1 and s2. The intersection time of ψt (θ, s) with s2 is
denoted by J1(θ, t), while the intersection time with s is denoted as usual by J(θ, t)

Let us thus consider first the case (θ, t) ∈ Dk
ε . From (5.216) we have that

∣∣kθ (ψt (θ, s), s)
∣∣ � 200b

9
2 κ−4T(ψt (θ, s), s)

1
2 . (6.123)

for all s ∈ [J(θ, t), t]. Thus, using (6.123) together with (5.57c), (6.8a), and the fact
that T(ψt (θ, s), s) � J(ψt (θ, s), s) = J(θ, t), we have that

∫ t

J(θ,t)

∣∣Q1a ◦ ψt
∣∣(∂θψt )2ds � 1

4 (1+ Ct
1
3 )m

(∫ t

J(θ,t)

∣∣kθ (wθθ − wBθθ ) ◦ ψt
∣∣ds

+
∫ t

J(θ,t)

∣∣kθwBθθ ◦ ψt
∣∣ds

)

� 60mb
9
2 κ−4

(∫ t

J(θ,t)

(
M1 + J(θ, t)

1
2 s−2

)
ds

+20κ−1J(θ, t)− 1
2

)

� 40mJ(θ, t)−
1
2 . (6.124)

In the last inequality we have taken t to be sufficiently small, and have used (5.2).
Next, using (6.82a), (5.141b), (6.69), (5.57a), and (6.123), we have that

∫ t

J(θ,t)

∣∣Q1b ◦ ψt
∣∣(∂θψt )2ds � CJ(θ, t)−

1
2

∫ t

J(θ,t)
(
∣∣(wθ − wBθ ) ◦ ψt

∣∣+ ∣∣wBθ ◦ ψt
∣∣)ds

� Ct
1
3 J(θ, t)−

1
2 (6.125)

and with (5.141), (6.8c), and (6.78),

∫ t

J(θ,t)

∣∣Q1c ◦ ψt
∣∣(∂θψt )2ds � 2m

(
1
12J(θ, t)

−1 + 1
12 R4t

1
2 + 2

3 R7

)
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∫ t

J(θ,t)

∣∣kθθ ◦ ψt
∣∣ds

� 1
3mM3J(θ, t)

−1
∫ t

J(θ,t)
T(ψt (θ, s), s)

− 1
2 ds

� 2m3
J(θ, t)−

1
2 . (6.126)

In the last inequality we have taken into account the definition of M3 in (6.9),
Note that if θ ∈ (s1(t), s2(t)) then the integrals in (6.124), (6.125), and (6.126)

range from J(θ, t) up to J1(θ, t) < t , but this has no effect on the bounds established
in (6.124), (6.125), and (6.126).

Returning to our decomposition of ∂θQz as Q1 + Q2, we note that by the same
bounds and arguments as above, and by appealing also to (5.218), we also have that

∫ t

J(θ,t)

∣∣Q2 ◦ ψt
∣∣(∂θψt )2ds � 2

∫ t

J(θ,t)

(
3R7

∣∣zθθ ◦ ψt
∣∣+ CJ(θ, t)

3
2
∣∣aθθ ◦ ψt

∣∣+ C
)
ds

� CJ(θ, t)
1
2 + CtJ(θ, t)−

1
2

+ CJ(θ, t)
3
2 log t

J(θ,t) + Ct

� CtJ(θ, t)−
1
2 . (6.127)

We note that for the bounds (6.124)–(6.127), we have taken ε sufficiently small.
Lastly, from (6.70) we have that for (θ, t) ∈ Dk

ε we have
∣∣∂2θ ψt (θ, s)

∣∣ � Cs−1 so
with the definition of Qz in (6.118) and the bounds (5.57a), (5.141), and (6.123),

∫ t

J(θ,t)

∣∣Qz◦ψt ∂2θ ψt
∣∣ds � Ct

1
3 J(θ, t)−

1
2 . (6.128)

On the other hand, for (θ, t) ∈ Dz
ε \ D

k
ε , we have that

∣∣∂2θ ψt (θ, s)
∣∣ � CJ(θ, t)−1 for

s ∈ [J(θ, t), J1(θ, t)] and hence using (6.122)

∫ t

J(θ,t)

∣∣Qz◦ψt ∂2θ ψt
∣∣ds �

∫ J1(θ,t)

J(θ,t)

∣∣Qz◦ψt ∂2θ ψt
∣∣ds +

∫ t

J1(θ,t)

∣∣Qz◦ψt ∂2θ ψt
∣∣ds

� CJ(θ, t)−
1
6 + Ct

1
3 J(θ, t)−

1
2

� Ct
1
3 J(θ, t)−

1
2 . (6.129)

Combining the bounds (6.124)–(6.128), and taking ε sufficiently small, we obtain the
inequality (6.121). ��
Lemma 6.15 For all (θ, t) ∈ Dz

ε we have the bounds

∣∣zθθ (θ, t)
∣∣ �

{
1
2M2T(θ, t)−

1
2 , if (θ, t) ∈ Dk

ε
1
2N2J(θ, t)−

1
2 if (θ, t) ∈ Dz

ε \Dk
ε

, (6.130)
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where M2 and N2 are defined in (6.9), respectively in (6.11). Thus, the bootstrap
assumptions (6.8b) and (6.10b) are improved. Moreover, the quantity qz defined in
(6.116) satisfies the bound

∣∣qzθ (θ, t)
∣∣ � 4m3

J(θ, t)−
1
2 (6.131)

for all s2(t) < θ < s2(t)+ κt6 .
Proof of Lemma 6.15 Using (6.120) and the definition of qz in (6.116), we see that for
all (θ, t) ∈ Dz

ε and with J = J(θ, t), we have

zθθ (θ, t) =
H1︷ ︸︸ ︷(

zθθ (∂θψt )
2 + zθ ◦ ψt∂2θ ψt

)∣∣∣
(s(J),J)

+
H2︷ ︸︸ ︷

1
4

(
ckθθ (∂θψt )

2 + cθkθ (∂θψt )
2 + ckθ ∂

2
θ ψt

)∣∣∣
(s(J),J)

− 1
4 (ckθθ + cθkθ )(θ, t)︸ ︷︷ ︸

H3

−
∫ t

J(θ,t)

(
∂θQ

z◦ψt (∂θψt )2 + Qz◦ψt ∂2θ ψt
)
ds .

(6.132)

In order to get a good bound for the term H1 in (6.132) on the shock curve, it
remains for us to express zθθ (s(J(θ, t)), J(θ, t)) in terms of derivatives of functions
along the shock curve. Differentiating the system (5.111), taking into account the
identity d

dt ( f (s(t), t)) = ((∂t + ṡ∂θ ) f )(s(t), t), and the formulas

∂t (c
2kθ )+ λ2∂θ (c2kθ ) = −2(∂θλ2 + 8

3a)(c
2kθ ) ,

∂tθ z = −λ1zθθ − ∂θλ1zθ − 8
3 (az)θ + 1

6∂θ (c
2kθ )

which are direct consequences of (3.5b), (3.5c), and (3.7), after a straightforward but
lengthy computation we arrive at

¨z− = (∂t + ṡ∂θ )
2z − (∂t + ṡ∂θ )(∂t + λ1∂θ )z − (∂t + ṡ∂θ )

(
1
6 c

2kθ − 8
3az

)

= (ṡ− λ1)ztθ + ṡ(ṡ− λ1)zθθ + zθ (s̈− ∂tλ1 − ṡ∂θλ1)+ (∂t + ṡ∂θ )
(
1
6c

2kθ − 8
3az

)

= (ṡ− λ1)2zθθ − (ṡ− λ1)
(
∂θλ1zθ + 8

3 (az)θ − 1
6∂θ (c

2kθ )
)

+ zθ
(
s̈+ 1

3λ3wθ + λ1zθ − 2
9 c

2kθ + 8
9aw + 8

3az − ṡ
(
1
3wθ + zθ

))

− 1
3

(
∂θλ2 + 8

3a
)
(c2kθ )+ 1

6 (ṡ− λ2)∂θ (c2kθ )
− 8

3a
(
(ṡ− λ1) zθ − 8

3az + 1
6c

2kθ
)
− 8

3 z
(
(ṡ− λ2)aθ − 4

3a
2 + 1

6 (w
2 + z2)+ wz

)

= (ṡ− λ1)2zθθ + 1
3

(
ṡ− 1

2w − 5
6 z

)
c2kθθ
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+ 1
3

((
ṡ− 5

6w − 1
2 z

)
ckθ −

(
2ṡ− 4

3w − 4
3 z

)
zθ
)
wθ +Rzθθ (6.133)

where we have denoted the remainder termRzθθ by

Rzθθ := zθ
(
s̈+ 2 (λ1 − ṡ) zθ − 1

6 (2ṡ+ 1
3w − 3z)ckθ − 8

3a(2ṡ− 3λ1)
)

− 8
3a

(
1
2c

2kθ − 8
3az

)
− 8

3 z
(
(2ṡ− λ2 − λ1)aθ − 4

3a
2 + 1

6 (w
2 + z2)+ wz

)

(6.134)

At this stage we note that the reason we call the term Rzθθ a remainder term is as
follows; from (5.13), (5.141), and the properties of wB, we may directly show that

∣∣Rzθθ (s(t), t)
∣∣ � Ct

1
2 (6.135)

for a suitable constant C = C(κ,b, c,m) > 0. In comparison, the remaining terms in

(6.133) will be shown to be O(t− 1
2 ), so that Rzθθ is negligible.

The identities (6.133) and (6.134) are valid at any point (s(t), t) on the shock curve,
so in particular at (s(J), J). Hence, we see that

zθθ (s(J), J)

=
¨z− − 1

3

(
ṡ− 1

2w − 5
6 z

)
(c2kθθ )− 1

3

((
ṡ− 5

6w − 1
2 z

)
ckθ −

(
2ṡ− 4

3w − 4
3 z

)
zθ
)
wθ

(ṡ− λ1)2
∣∣∣
(s(J),J)

− Rzθθ

(ṡ− λ1)2
∣∣∣
(s(J),J)

. (6.136)

By combining (6.136) with (5.109) (in which we replace T with J), (5.113), (6.94)
(with t replaced by J), and the estimates (5.69), (5.81), (5.83), (5.15), (5.141), (6.69),
(6.90), and taking ε sufficiently small, we find that

∣∣zθθ (s(J), J)∂θψt (s(J), J)2
∣∣ � 3κ−2(4b

9
2 κ−2 + κ3m2 + (κ2R6 + κR4))J

− 1
2

+ CJ
1
2 � 6κm2

J
− 1

2 . (6.137)

On the other hand, from (5.141) and (6.70),

∣∣∣zθ (s(J), J)∂2θ ψt (s(J), J)
∣∣∣ � R4J

1
2m

1
2 κ−

3
2 J
−1 � m2

J
− 1

2 . (6.138)

Combining (6.137) and (6.138), we have thus bounded the first term H1 on the right
side of (6.132) as

∣∣H1
∣∣ � 7κm2

J(θ, t)−
1
2 . (6.139)

Next, we turn our attention to the second term,H2, in (6.132). Using (5.141), (6.69),
(6.70), (6.71), (6.90), and the fact that T(s(J(θ, t)), J(θ, t)) = J(θ, t), we similarly
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obtain that

∣∣H2
∣∣ � κm2

J(θ, t)−
1
2 + R6J(θ, t)

− 1
2 + κ− 1

2 R6m
1
2 J(θ, t)−

1
2 + C

� 2κm2
J(θ, t)−

1
2 . (6.140)

Since the integral term in (6.132) was previously estimated in Lemma 6.14, it thus

remains to bound the termH3 on the right side of (6.132). Note that if (θ, t) ∈ Dz
ε \D

k
ε ,

then k vanishes, and soH3 = 0. In the case that (θ, t) ∈ Dk
ε , by appealing to (5.141),

the bound κ5 � c(θ, t) � m, and (6.90), we obtain

∣∣H3
∣∣ � 1

4m
3
T(θ, t)−

1
2 + 1

8 (t
−1 + R4t

1
2 )R6t

− 1
2

� 1
4m

3
T(θ, t)−

1
2 +mt−

1
2

� m3
T(θ, t)−

1
2 . (6.141)

In the last inequality of (6.141) we have used that T(θ, t) � t .
By combining the identity (6.132) with the bounds (6.139), (6.140), (6.141),

(6.121), we have that

∣∣zθθ (θ, t)
∣∣ � 9κm2

J(θ, t)−
1
2 + 3m3

J(θ, t)−
1
2 +

{
m3T(θ, t)− 1

2 , for θ ∈ Dk
ε

0 , for θ ∈ Dz
ε \D

k
ε

.

(6.142)

Taking into account that for (θ, t) ∈ Dk
ε by (6.5) we have that T(θ, t) � J(θ, t), and

we have 9κ � m, the above bound completes the proof of (6.130), once we ensure
that 1

2M2 � 5m3 and 1
2N2 � 4m3. This justifies the choices of M2 and N2 are defined

in (6.9), respectively in (6.11).
In order to complete the proof of the Lemma,we need to establish the bound (6.131),

which is useful later in the proof. For this purpose, note that in view of (6.120), (6.132),
the fact that qzθ (θ, t) = zθθ (θ, t) + H3, and of the bounds bounds (6.139), (6.140),
(6.121), we have that

∣∣qzθ (θ, t)
∣∣ � 9κm2

J(θ, t)−
1
2 + 3m3

J(θ, t)−
1
2 (6.143)

which thus concludes the proof of (6.131), and of the lemma. ��

6.7 Lower Bounds for Second Derivatives

In this section we prove that various second derivatives of the solution blow up as
we approach the curves s1 and s2 from the right side. Throughout this section we fix
t ∈ (0, ε] and shall make reference to the following asymptotic descriptions:

lim
θ→s2(t)+

θ − s2(t)

T(θ, t)
= κ

3
(6.144a)
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lim
θ→s2(t)

J(θ, t) � t

3
(6.144b)

lim
θ→s1(t)+

θ − s1(t)

J(θ, t)
= κ

3
. (6.144c)

Here we have implicitly used that φt (s2(t), s) = s2(s), and ψt (s1(t), s) = s1(s). The
bounds are a consequence of (6.5), (6.69), and the definitions of s1, s2, φt , andψt . For
example, in order to prove (6.144a), note that by the mean value theorem we have

s(T(θ, t))− s2(T(θ, t)) = φt (θ, T(θ, t))− φt (s2(t), T(θ, t))
= (θ − s2(t)) ∂θφt (y, T(θ, t))︸ ︷︷ ︸

=1+O(T 1
3 )

while by (6.7) we have

s(T(θ, t))− s2(T(θ, t)) = κ3T(θ, t)+O(T(θ, t) 43 ) .

The proof of (6.144c) is similar. Lastly, in order to prove (6.144b), we use that one the
hand

s(J(θ, t))− s2(J(θ, t)) = κ3 J(θ, t)+O(J(θ, t) 43 ) ,

while on the other hand

s(J(θ, t))− s2(J(θ, t)) = ψt (s2(t), J(θ, t))− φt (s2(t), J(θ, t))
=

∫ t

J(θ,t)
(∂sφt − ∂sψt )︸ ︷︷ ︸
= κ3+O(r

1
3 )

ds

= (t − J(θ, t))
(
κ
3 +O(ε 13 )

)
.

By combining the above two estimates, it follows that J(s2(t), t) � t( 12−O(ε
1
3 )) � t

3 ,
proving (6.144b).

6.7.1 Singularities on s2, from the Right Side

Note that the second derivative upper bounds established in (6.8) blow up as θ →
s2(t)+; the purpose of this subsection is to obtain lower bounds which are within a
constant factor of these upper bounds, and thus also diverge as θ → s2(t)+.

In this proof we shall frequently use the following facts. First, that κ5 � c(θ, t) � m
for all (θ, t) ∈ Dε. This follows from the identity c(θ, t) = 1

2wB(θ, t)+ 1
2 (w−wB−z),

which in view of (5.35), and (5.141) implies c(θ, t) = 1
2w0(ηB

−1(θ, t)) + O(t); the
desired bound now follows from (5.1a) and (5.1b). Second, we note that a slightly
sharper bound is required for ∂θwB on the shock curve (when compared to (5.37a)).
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From (5.34) we note that ηB−1(s(t)−, t) = −(bt) 32 +O(t2). By appealing to (5.1d) we
then obtain that w′0(ηB−1(s(t)−, t)) = − 1

3 t
−1+O(t− 1

2 ) as t → 0. We then conclude
from (5.36a) that

∂θwB(s(t), t) =
− 1

3 t
−1 +O

(
t− 1

2

)

1+ t
(
− 1

3 t
−1 +O

(
t− 1

2

)) = − 1
2t +O(t− 1

2 ) (6.145)

as for 0 < t � ε.
Lower bound for |kθθ | on s+2 . The desired lower bound turns out to be a conse-

quence of (6.95).
We first consider the second line of (6.95). Let θ > s2(t)with θ−s2(t) � κt

6 . Note
in this range of θ , due to (6.144a) and the fact that t � ε, we have T(θ, t) � t

3 � ε.
We claim that for a constant C = C(κ,m,b, c) > 0 we have

∂2θ φt (θ, T(θ, t)) � κ2

100m3 T(θ, t)
−1 − Ct−

2
3 � κ2

100m3 T(θ, t)
−1 − CT(θ, t)−

2
3 � 0
(6.146)

for s2(t) < θ < s2(t)+ κt6 , once ε is sufficiently small. In order to prove (6.146), we
consider the formula (6.75) with s = T(θ, t). We note that the largest term in (6.75),
the one containing c(θ, t)cθ (s(T), T)∂θφt (θ, T), is positive. Indeed, from the bounds
κ
5 � c(θ, t) � m, (6.145), the bound (6.69), (5.141b), and (5.141d), we obtain that

c(θ, t)cθ (s(T(θ, t))
+, T(θ, t))∂θφt (θ, T(θ, t))

= 1
2c(θ, t)∂θφt (θ, T)

(
∂θwB(s(T)

+, T)+ ∂θ (w − wB − z)(s(T)+, T)
)

= 1
2c(θ, t)(1+O(t 13 ))

(
− 1

2T
−1 +O(T− 1

2 )
)

� − κ40T(θ, t)−1

since T(θ, t) � t
3 	 1. The remaining terms in (6.75) may be estimated from above

by

2e16mt
(
80m2

κ2
R7t + 25m

κ2

(
4b
5 (
κt
6 )
− 2

3 + R2(
κt
6 )
− 1

2 + R4t
1
2

))
� Ct−

2
3

for a constant C = C(κ,m,b, c) > 0. The above two estimates then imply

∂2θ φt (θ, T(θ, t)) � 2e−16mt κ
5m3

κ
40T(θ, t)

−1 − Ct−
2
3 ,

and (6.146) follows.
Next, we return to the second line of (6.95), from (5.81) we have

˙k−(T(θ, t)) = 48b
9
2

κ3
T(θ, t)

1
2 +O(T(θ, t)) � 0 (6.147)
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since T(θ, t) � t is small. Moreover, from (6.6a) and (5.13) we have κ4 � (ṡ −
∂sφt )(θ, T(θ, t)) � κ

2 . As a consequence, from (6.146) and (6.147), we obtain

second line of (6.95) � 2
κ

(
48b

9
2

κ3
T(θ, t)

1
2 − CT(θ, t)

)

(
κ2

100m3 T(θ, t)
−1 − CT(θ, t)−

2
3

)

� 48b
9
2

50κ2m2 T(θ, t)
− 1

2 − CT(θ, t)−
1
6

� b
9
2

2κ2m2 T(θ, t)
− 1

2 as θ → s2(t)
+ . (6.148)

Next, we consider the terms on the first line of (6.95). From the definition of λ2 in
(3.6) and the evolution equation (3.5a), we obtain that

(∂tλ2 + (2ṡ− λ2)∂θλ2)− s̈ = 2
3∂θw(ṡ− λ2 + ṡ− w − 1

3 z)

+ 2
3 (2ṡ− λ2)∂θ z + 1

2∂t z

+ 2
3

(
1
24 (w − z)2∂θk − 8

2aw
)
− s̈ .

Taking into account the bound (5.13), Proposition 5.7, and the fact that (w, z, k, a) ∈
Xε (in particular, that (6.82) holds), we obtain

(∂tλ2 + (2ṡ− λ2)∂θλ2) (s(T(θ, t)), T(θ, t))− s̈(T(θ, t))

= 2
3∂θwB(s(T(θ, t), T(θ, t))

(
2ṡ(T(θ, t))− 5

3wB(s(T(θ, t)), T(θ, t))
)

+O(T(θ, t)− 1
2 ) (6.149)

as θ → s2(t)+, or equivalently, as T(θ, t) → 0+. Next, from (5.81) and (5.83) we
note that

¨k−(T(θ, t))) = 1
2T(θ,t)

˙k−(T(θ, t)))+O(1) (6.150)

as T(θ, t) → 0+. By combining (6.149), (6.150), the bound κ2 � ṡ(T(θ, t)) −
λ2(s(T(θ, t)), T(θ, t)) � κ

4 , and (5.81), we deduce

first line of (6.95)

=
(

∂θφt (θ,T(θ,t))
ṡ(T(θ,t))−λ2(s(T(θ,t)),T(θ,t))

)2 ˙k−(T(θ, t))
(

1
2T(θ,t) + 2

3∂θwB(s(T(θ, t), T(θ, t))
)
+O(1) (6.151)

as T(θ, t)→ 0+. At this stage we appeal to (6.145) with t replaced by T = T(θ, t)→
0+, which is the relevant regime for θ → s2(t)+. From (6.151), (6.145), (6.69), and
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(5.81) we finally conclude that

first line of (6.95) =
(

∂θφt (θ,T(θ,t))
ṡ(T(θ,t))−λ2(s(T(θ,t)),T(θ,t))

)2 ˙k−(T(θ, t))) 1
6T(θ,t) +O(1)

� 3
κ2

48b
9
2 T(θ,t)

1
2

κ3
1

6T(θ,t) − C

� 24b
9
2

κ4
T(θ, t)−

1
2 (6.152)

as T(θ, t)→ 0+.
Lastly, by combining (6.148) with (6.152), we obtain that

lim
θ→s2(t)+

∂2θ k(θ, t)T(θ, t)
1
2 � 24b

9
2

κ4
. (6.153)

In view of (6.144a), the above estimate and (6.8c) thus precisely determines the blowup

rate of ∂2θ k(θ, t) as θ → s2(t)+: this rate lies within two constants of (θ − s2(t))−
1
2 .

Lower bound for |zθθ | on s+2 . Next, we show that the upper bound (6.8b) also has
a corresponding lower bound which blows up as θ → s2(t)+. We start by recalling
the function qz defined in (6.117), and the formula for its derivative in (6.120). As
above, we let s2(t) < θ < s2(t)+ κt6 and denote J = J(θ, t). From estimate (6.131),
and by appealing to (6.144a) which yields J(θ, t) � 1

4 t in the range of θ considered
here, we arrive at

∣∣zθθ + 1
4ckθθ + 1

4cθkθ
∣∣ (θ, t) = ∣∣∂θqz(θ, t)

∣∣ � CJ(θ, t)−
1
2 � Ct−

1
2 ,

for all θ > s2(t)which is close to s2(t). Furthermore, since (5.141) and (6.82a) imply

that |cθkθ | (θ, t) � 1
2 (t
−1 + R4t

1
2 )R6t

1
2 � Ct− 1

2 , the above estimate implies

∣∣zθθ + 1
4ckθθ

∣∣ (θ, t) � Ct−
1
2 , (6.154)

for a suitable constant C = C(κ,b, c,m) > 0.
Lastly, since κ5 � c(θ, t) � m, we see that the blowup rate for kθθ as θ → s+2 (t),

given by (6.153), is immediately transferred to zθθ , and we have

lim
θ→s2(t)+

∂2θ z(θ, t)T(θ, t)
1
2 � − 1

4 lim
θ→s2(t)+

c(θ, t)∂2θ k(θ, t)T(θ, t)
1
2 � −b

9
2

κ3
.

(6.155)

Here we have used the fact that limθ→s(t)+ T(θ, t)t− 1
2 = 0. The estimate (6.155), and

the upper bound (6.8b), show that ∂2θ z(θ, t)→−∞ as θ → s2(t)+, at a rate which is
proportional to −(θ − s2(t))−

1
2 .

Lower bound for |wθθ | on s+2 . The argument is nearly identical to the one for the
second derivative of z. We recall that the variable qw defined in (6.31) satisfies the
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derivative bound (6.114). By appealing to the fact that (w, z, k, a) ∈ Xε, the estimate
(5.37b) for the second derivative of the Burgers solution, and to (6.114), we arrive at

∣∣wθθ − 1
4ckθθ

∣∣ (θ, t) � 1
4 |cθkθ | (θ, t)+

∣∣qwθ (θ, t)
∣∣

� 1
8 (t
−1 + R4t

1
2 )R6t

1
2 + 3b(κt)−

5
3

� Ct−
5
3 (6.156)

for all θ ∈ (s2(t), s2(t) + κt6 ), for a suitable constant C = C(κ,b, c,m) > 0. This
estimate is the parallel bound to (6.154) for the second derivative of z. It implies, in a
similar fashion to (6.156), that

lim
θ→s2(t)+

∂2θ w(θ, t)T(θ, t)
1
2 � b

9
2

κ3
. (6.157)

The estimate (6.157), and the upper bound (6.8a), show that ∂2θ w(θ, t) → +∞ as

θ → s2(t)+, at a rate which is proportional to (θ − s2(t))−
1
2 .

Lower bound for |aθθ | on s+2 . As before, consider θ ∈ (s2(t), s2(t) + κt6 ). By
combining (5.37a), (5.141e), (5.223), and (6.22), we arrive at the bound

∣∣∣aθθ + 1
4c

2e−k
θ
∣∣∣ � Ct−

2
3 + Ct−

1
2 � Ct−

2
3 . (6.158)

The desired lower bound on aθθ is thus inherited from 
θ , which we recall is given
by (6.16). The principal contribution is due to the term containing the time integral of
kθθ . Indeed, using the same argument used to prove (6.14), we have that

∣∣∣∣
θ(θ, t)− 4
3

∫ t

T(θ,t)

(
ekkθθ

)
(φt (θ, s), s)e

I
θ (θ,t;s)ds
∣∣∣∣ � C . (6.159)

The analysis reduces to establishing a lower bound which is commensurate with the
upper bound (6.19). The main idea here is as follows. From (6.148) and (6.152), as

in (6.153) we have that ∂2θ k(θ, t) � 24b
9
2 κ−4T(θ, t)− 1

2 , for all θ sufficiently close to
s2(t), i.e. s2(t) < θ < s2(t)+ κt6 . Therefore, if the point (θ, t) is replaced by the point
(φt (θ, s), s), which in view of Remark 6.5 and estimate (6.7) is such that φt (θ, s) is
sufficiently close to s2(s), we have that

∂2θ k(φt (θ, s), s) � 24b
9
2 κ−4T(φt (θ, s), s)−

1
2 = 24b

9
2 κ−4T(θ, t)−

1
2

uniformly for all s ∈ [T(θ, t), t]. In particular, ∂2θ k ◦ φt > 0, and so by combining
(6.158)–(6.159), with (5.141f), (6.17), and with the estimate κ5 � c � m, we arrive at

aθθ (θ, t) � − 1
4c

2e−k
θ + Ct−
2
3

� − κ275
∫ t

T(θ,t)
kθθ (φt (θ, s), s)ds + Ct−

2
3
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� − b
9
2

4κ2
(t − T(θ, t))T(θ, t)−

1
2 . (6.160)

The above estimate implies

lim
θ→s2(t)+

T(θ, t)
1
2 aθθ (θ, t) � − b

9
2

4κ2
t , (6.161)

which may be combined with the upper bound (6.20) show that aθθ (θ, t)→ −∞ as

θ → s2(t)+, at a rate which is proportional to t(θ − s2(t))−
1
2 .

6.7.2 Singularities on s1, from the Right Side

Passing to the limit θ → s1(t)+ in the estimates (6.10), we obtain that

lim
θ→s1(t)+

|wθθ (θ, t)| � Ct−
5
3 , and lim

θ→s1(t)+
|aθθ (θ, t)| � Ct−

2
3 ,

for a suitable constant C = C(κ,b, c,m) > 0, which shows that these quantities do
not blow up as θ approaches s1 from the right side. The only quantity that does indeed
blow up is the second derivative of z.

Herewe establish a lower bound for |∂2θ z(θ, t)|which is commensuratewith (6.10b)
as θ → s1(t)+; more precisely we claim that

lim
θ→s1(t)+

J(θ, t)
1
2 zθθ (θ, t) � − 1

4b
9
2 κ−4 , (6.162)

which shows the precise rate of divergence of ∂2θ z towards −∞ as θ approaches s1
from the right side. The proof of (6.162) is quite involved, and will be broken up into
several parts, which correspond to estimating the various terms in (6.120). We rewrite
this identity as

zθθ (θ, t) = B1 + B2 + B3 , (6.163)

where we define

B1 := qzθ (s(J(θ, t)), J(θ, t))(∂θψt )
2(θ, J(θ, t))

+ qz(s(J(θ, t)), J(θ, t))∂2θ ψt (θ, J(θ, t))

= B11 + B12 (6.164)

B2 := −
∫ t

J1(θ,t)

(
∂θQ

z◦ψt (∂θψt )2 + Qz◦ψt ∂2θ ψt
)
ds (6.165)

B3 := −
∫ J1(θ,t)

J(θ,t)

(
∂θQ

z◦ψt (∂θψt )2 + Qz◦ψt ∂2θ ψt
)
ds (6.166)

and J1 is the time at which ψt (θ, ·) intersects the curve s2; as given by (6.122), see
also Figure 15. Since θ → s1(t)+ is equivalent in view of (6.144c) to J(θ, t) → 0,
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our goal is to extract the leading order term in B1 with respect to J 	 1, and then to
obtain sharp estimates for B2 and B3 with respect to J. In this direction we claim:

Lemma 6.16 Fix t ∈ (0, ε] and s1(t) < θ < s1(t)+ κt6 . Then we have that

− 86
16b

9
2 κ−4J(θ, t)−

1
2 � B1 � − 85

16b
9
2 κ−4J(θ, t)−

1
2 , (6.167)

where the term B is as defined in (6.164).

Lemma 6.17 Fix t ∈ (0, ε] and s1(t) < θ < s1(t)+ κt6 . Then we have that

B2 � t
1
4b

9
2 κ−4J(θ, t)−

1
2 , (6.168a)

B3 � 9
2b

9
2 κ−4J(θ, t)−

1
2 + CJ(θ, t)−

1
6 , (6.168b)

where the terms B2 and B3 defined in (6.165) and respectively in (6.166). Note that
the sum of the estimates in (6.168) gives an improvement over (6.121), in the sense
that the constant is sharper.

Proof of (6.162) We note that the bound (6.162) follows from (6.163), (6.167),
(6.168a), (6.168b), and the inequality

9
2 + Ct

1
4 + CJ

1
3 − 85

16 � − 1
4 ,

for ε, and hence t and J, sufficiently small. Thus, in order to complete the proof of
the (6.162), it only remains to prove Lemmas 6.16 and 6.17. These proofs occupy the
remainder of this subsection.

Proof of Lemma 6.16 We recall that qz is defined in (6.116) as zθ + 1
4ckθ . The easiest

term is the sound speed. From (5.1c), (5.20), (5.141a), and (5.141c) we note that

c(s(J), J) = 1
2wB(s(J), J)+ 1

2 (w − wB + z)(s(J), J)

= 1
2w0(xB,−(J))+O(J)

= κ2 − 1
2b

3
2 J

1
2 +O(J) , (6.169)

as J→ 0. The next term we consider is the y derivative of k, restricted to the shock
curve. This term is given by (5.108), with t replaced by J. The denominator of this
fraction is given by ṡ(J) − λ2(s(J), J) = ṡ(J) − 4

3c(s(J), J) − 4
3 z(s(J), J) = 1

3κ +
O(J 1

2 ) , by appealing to (5.141c) and (6.169). By combining the above estimate with
the identity (5.81), we arrive at

kθ (s(J), J) =
48b

9
2

κ3
J

1
2 +O(J)

1
3κ +O(J 1

2 )
= 144b

9
2 κ−4J

1
2 +O(J) , (6.170)
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as J→ 0. The last ingredient needed to compute qz on the shock curve is to obtain a
leading order term for the derivative of z. For this term we appeal to identity (5.112)

with t replaced by J. As above, we may show that ṡ(J)− λ1(s(J), J) = 2
3κ +O(J 1

2 ),
and we may appeal to the estimate (5.81) and the already established (6.169) and
(6.170), to deduce

zθ (s(J), J) =

(
− 27b

9
2

4κ2
J

1
2 +O(J)

)
− 1

6

(
( κ2 +O(J 1

2 ))2 144b
9
2

κ4
J

1
2 +O(J)

)

2
3κ +O(J 1

2 )

= − 153
8 b

9
2 κ−3J

1
2 +O(J) . (6.171)

We then combine the definition of qz in (6.116) with (6.169)–(6.171) and arrive at

qz(s(J), J) = − 9
8b

9
2 κ−3J

1
2 +O(J) , (6.172)

as J→ 0. In order to have a complete asymptotic description of the second term on
the right side of (6.164), we need to determine ∂2θ ψt (θ, J). For this purpose, we use
(6.77) with s replaced by J = J(θ, t), and we recall that we are interested in the region
s1(t) < θ < s1(t)+ κt6 . By using (5.37a), (5.141), (6.69), (6.79), (6.145), (6.169)

∂2θ ψt (θ, J) = 1
2e

∫ t
J(

4
3 a−zθ )◦ψt ds′ c

1
2 (θ,t)

c
1
2 (s(J),J)

(∫ t

J

( 8
3aθ − 2zθθ

) ◦ ψt ∂θψt ds′

+ ∂θ c(θ,t)c(θ,t) − ∂θ c(s(J),J)c(s(J),J) ∂θψt (θ, J)
)

= 1
2e

O(t−J) ( κ2+O(t
1
3 ))

1
2

(
κ
2+O(J

1
2 ))

1
2

(
O(t − J)+O(J 1

2 )

− O(t−
2
3 )

κ
2+O(t

1
3 )
− −

1
4J
−1+O(J− 1

2 )

κ
2+O(J

1
2 )
(1+O(J 1

3 ))
)

= 1
4κ J
−1 +O(t− 2

3 )+O(J− 1
2 ) (6.173)

for J < t 	 1. From (6.172) and (6.173), and using that J � t , we finally obtain that
the second term in (6.164) is given by

B12 = −
(
9
8b

9
2 κ−3J

1
2 −O(J)

) (
1
4κ J
−1 +O(J− 2

3 )
)

= − 9
32b

9
2 κ−4J−

1
2 +O(J− 1

6 ) . (6.174)

It remains to consider the first term on the right side of (6.164). We recall that
qzθ = zθθ + 1

4cθkθ + 1
4ckθθ . Thus, in view of (6.169) and (6.170), we need to estimate

separately three terms on the shock curve: cθ , kθθ , and zθθ . First, similarly to (6.169),
we have from (6.145) and (5.141) that

cθ (s(J), J) = 1
2 (∂θwB)(s(J), J)+ 1

2∂θ (w − wB + z)(s(J), J)
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= − 1
4J
−1 +O(J− 1

2 ) , (6.175)

as J → 0. Next, we turn to ∂2θ k, which is given by (6.94). By appealing to (6.149),
(6.145), (5.81), (5.83), and (5.141), we obtain

kθθ (s(J), J) = ¨k−(J)
(ṡ(J)−λ2(s(J),J))2

+
((
∂tλ2(s(J), J)+ (2ṡ(J)− λ2(s(J), J))∂θλ2(s(J), J)

)

− s̈(J)
) ˙k−
(ṡ(J)−λ2(s(J),J))3

=
24b

9
2

κ3
J−

1
2+O(1)

( κ3+O(J
1
2 ))2

+
(
− κ9 J−1 +O(J− 1

2 )
) 48b

9
2

κ3
J

1
2+O(J)

( κ3+O(J
1
2 ))3

= 72b
9
2 κ−5J−

1
2 +O(1) (6.176)

as J→ 0. Lastly, we turn to ∂2θ z, which is given by the expression (6.136). By using
(5.13), (5.141), and (6.134), we first rewrite

zθθ (s(J), J) =
¨z− − 1

3 (κ − 1
2w)(c

2kθθ )− 1
3

(
(κ − 5

6w)ckθ − (2κ − 4
3w)zθ

)
wθ

(ṡ− λ1)2
∣∣∣
(s(J),J)

+O(J
1
2 ) . (6.177)

Then, by appealing to (5.83), (5.141), (6.145), (6.169), (6.170), (6.171), (6.175), and
(6.176), from the above formula we obtain

zθθ (s(J), J) =
¨z− − 1

3

(
κ − 1

2wB
)
(c2kθθ )− 1

3

((
κ − 5

6wB

)
ckθ −

(
2κ − 4

3wB
)
zθ
)
∂θwB

(
2κ
3 +O

(
J

1
2

))2
∣∣∣
(s(J),J)

+O(1)

=
− 27b

9
2

8κ2
J
− 1

2 − 1
3
κ
2
κ2

4
72b

9
2

κ5
J
− 1

2 − 1
3

(
κ
6
κ
2
144b

9
2

κ4
J

1
2 + 2κ

3
153b

9
2

8κ3
J

1
2

)(
− 1

2J

)

(
2κ
3 +O

(
J

1
2

))2

+O(1)

= − 81
16b

9
2 κ−4J−

1
2 +O(1) , (6.178)

as J → 0. Using the definition of qzy , upon combining (6.169), (6.170), (6.175),
(6.176), and (6.178) we obtain

qzθ (s(J), J) = − 81
16b

9
2 κ−4J−

1
2 +O(1)+ 1

4

(
− 1

4J
−1 +O(J− 1

2 )
)

(
144b

9
2 κ−4J

1
2 +O(J)

)

+ 1
4

(
κ
2 +O(J 1

2 )
) (

72b
9
2 κ−5J−

1
2 +O(1)

)

= − 81
16b

9
2 κ−4J−

1
2 +O(1) . (6.179)
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Lastly, by combining (6.69) with (6.179), and using that J � t , we obtain that the first
term in (6.164) is given by

B11 =
(
− 81

16b
9
2 κ−4J−

1
2 +O(1)

) (
1+O(t 13 )

)2

= −
(
81
16b

9
2 κ−4 +O(t 13 )

)
J
− 1

2 +O(1) . (6.180)

Adding the bounds (6.174) and (6.180) completes the proof of the lemma. ��
Proof of Lemma 6.17 Recall from (6.118) thatQz = ckθ (

1
12wθ+ 1

12 zθ+ 2
3a)+ 8

3∂θ (az).
As in the proof of Lemma 6.14, we write ∂θQz = Q1 +Q2, where

Q1 =
Q1a︷ ︸︸ ︷

1
12ckθwθθ +

Q1b︷ ︸︸ ︷
1
24kθwθwθ +

Q1c︷ ︸︸ ︷
ckθθ (

1
12wθ + 1

12 zθ + 2
3a) ,

Q2 = ckθ (
1
12 zθθ + 2

3aθ )+ 8
3 (az)θθ + 1

24kθ zθwθ .

We first give the proof of the more difficult bound, (6.168b). Several times in this
proof we require a bound on

∫ J1
J |kθθwθ | ◦ ψt . In order to obtain a suitable estimate,

we recall the bound of J1 in (6.122), and introduce the time which lies half way in

between J and J1, namely J2 = J+ 1
2 (J1−J) = 3

2J+O(J
4
3 ). The reason is as follows.

For s ∈ [J, J2], from Remark 6.3 we may deduce that T(ψt (θ, s), s) � 1
5J(θ, t); this

lower bound is useful when combined with (6.8c), (6.69), (5.141b), and (5.57a) for
γ (s) = ψt (θ, s):
∫ J2

J
|kθθwθ | ◦ ψt (∂θψt )2ds � J

− 1
2

∫ J2

J
(|∂θwB ◦ ψt | + s−

1
2 )ds � J

− 1
6 . (6.181)

On the other hand, for the contribution coming from s ∈ [J2, J1], the trick is to use
that |ψt (θ, s) − s(s)| � κs

8 . Then, we may appeal to the bound (6.78), to (5.141b),
and to the estimate (5.37a), which in this region gives that |∂θwB(ψt (θ, s), s)| �
4
5b|ψt (θ, s)− s(s)|− 2

3 � s− 2
3 � J

− 2
3 , concluding in

∫ J1

J2

|kθθwθ | ◦ ψt (∂θψt )2ds � J
− 2

3

∫ J1

J2

T(ψt (θ, s), s)
− 1

2 ds � J
− 1

6 . (6.182)

Combining the above two bounds, and the fact that κ5 � c � m, we conclude that

∫ J1

J
|ckθθwθ | ◦ ψt (∂θψt )2ds � J

− 1
6 . (6.183)

The remaining contribution to Q1c is bounded as

∫ J1

J

∣∣ckθθ ( 112 zθ + 2
3a)

∣∣ ◦ ψt (∂θψt )2ds � J
1
2 . (6.184)
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Next, let us estimate − ∫ J1(θ,t)
J(θ,t) Q1b ◦ψt (∂θψt )2ds. From (6.122), we see that

J1(θ, t) = 2J(θ, t)+O(t 43 ). Hence, using the bounds (5.57a), (5.141b), (6.123), and
(6.145), we have that

∫ J1

J

(
kθ (wθ )

2) ◦ ψt (∂θψt )2ds � J
− 1

2

∫ J1

J

(∣∣wθ − wBθ
∣∣ ◦ ψt +

∣∣wBθ
∣∣ ◦ ψt

)
ds

� J
− 1

6 . (6.185)

Next, in order to bound the contribution from Q1a , we define

A = − 1
12

(
ckθwθθ + cwθkθθ

)

G = 2
3cwθkθθ + 1

3ccθ (kθ )
2 + 1

6c
2kθθkθ − 8

3 (aw)θkθ − kθ (wθ )
2 + kθwθ zθ .

A straightforward computation shows that the product kθwy solves the equation

∂s(kθwθ )+ λ1∂θ (kθwθ )+ 2(kθwθ )∂θλ1 = 48
3 A+ G . (6.186)

We now obtain an explicit solution to (6.186). In order to solve (6.186), we set

χ = (kθwθ ) ◦ ψt , F = ( 483 A+ G) ◦ ψt ,

and by employing the chain-rule, we write (6.186) as

∂sχ + 2χ(∂θψt )
−1∂s(∂θψt ) = F .

It follows that

d
ds

(
(∂θψt )

2χ
)
= (∂θψt )2F ,

and integration from J to J1 yields the identity

(kθwθ )(s2(J1), J1)(∂θψt (θ, J1))
2 − (kθwθ )(s(J), J)wθ (s(J), J)(∂θψt (θ, J))2

=
∫ J1

J

( 48
3 A+ G

) ◦ ψt (∂θψt )2ds

=
∫ J1

J

(
G− 4

3cwθkθθ
) ◦ ψt (∂θψt )2ds − 48

3

∫ J1

J

( 1
12ckθwθθ

) ◦ ψt (∂θψt )2ds .
(6.187)

First, we note that since T(s2(J1), J1) = 0, the estimate (5.216) implies that
kθ (s2(J1), J1) = 0, and so the first term on the left side of (6.187) vanishes. The
first term on the right side of (6.187) is estimated using (5.37a), (5.141), (6.8c), (6.69),
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(6.78), (6.123), (6.183), and (6.185) as

∫ J1

J

∣∣G− 4
3cwθkθθ

∣∣ ◦ ψt (∂θψt )2ds � J
− 1

6 . (6.188)

Moreover, the estimates (5.141b), (6.69), (6.145), and (6.170) show that

−(kθwθ )(s(J), J)(∂θψt (θ, J))2 =
(

144b
9
2

κ4
J

1
2 +O(J)

)(
1
2J
−1 +O(J− 1

2 )
)

(
1+O(J 1

3 )
)2

= 72b
9
2

κ4
J
− 1

2 +O(J− 1
6 ) . (6.189)

By using (6.187), the observation kθ (s2(J1), J1) = 0, and the bounds (6.188) and
(6.189) we obtain that

−
∫ J1

J

( 1
12ckθwθθ

) ◦ ψt (∂θψt )2ds = 9b
9
2

2κ4
J(θ, t)−

1
2 +O(J− 1

6 ) . (6.190)

Combining (6.183), (6.184), (6.185), (6.188), and (6.190), we have proven that for ε
small enough,

−
∫ J1(θ,t)

J(θ,t)
Q1◦ψt (∂θψt )2ds � 9b

9
2

2κ4
J(θ, t)−

1
2 + CJ(θ, t)−

1
6 . (6.191)

In addition to the bounds (5.37a), (5.141), (6.8c), (6.69), (6.78), (6.123), by also
appealing to (6.8b) and (6.79), we deduce that

−
∫ J1(θ,t)

J(θ,t)
Q2◦ψt (∂θψt )2ds � J(θ, t)

1
2 . (6.192)

Moreover, by using the identity (6.77) for ∂2θ ψt , we see that the integrand Qz◦ψt ∂2θ ψt
is estimated in the identical fashion as the term Q1b in (6.185), and hence we have
that

−
∫ J1(θ,t)

J(θ,t)
Qz◦ψt ∂2θ ψt ds � J

− 1
6 . (6.193)

Together, the bounds (6.191), (6.192), and (6.193) establish the desired inequality
(6.168b), for J(θ, t)	 1.

The proof of the lemma is completed once we establish (6.168a). These estimates
are however simpler because by the definition of the time J1(θ, t), for all s1(t) < θ <

s1(t)+ κt6 , and for all s ∈ (J1(θ, t), t), we have that (ψt (θ, s), s) ∈ Dz
ε \Dk

ε , and k ≡ 0
in this region. In particular, this means that in this region we have that Qz = 8

3∂θ (az),

123



Simultaneous Development of Shocks . . . Page 193 of 199    26 

and ∂θQz = Q2 = 8
3∂

2
θ (az); there are no dangerous k terms. As such the bounds we

seek directly follow from (6.127) and (6.128):

B2 �
∫ t

J1(θ,t)

∣∣∂θQz ◦ ψt
∣∣(∂θψt )2ds +

∫ t

J1(θ,t)

∣∣Qz◦ψt ∂2θ ψt
∣∣ds � Ct

1
3 J(θ, t)−

1
2

(6.194)

for a suitable constantC . The bound (6.168a) follows since t � ε 	 1. This completes
the proof of Lemma 6.17. ��

6.8 Precise Hölder Estimates for Derivatives

Here we combine the upper bounds established in Section 6.1, with the lower bounds
proven in Section 6.7, to precisely characterize the behavior of (wθ , zθ , kθ , aθ ) as
θ → s1(t)+ and θ → s2(t)+.

We first consider the behavior of these derivatives on s1(t). Note that on the left
side of s1(t), by (6.12) and (6.97) we have that the order second derivatives of w and
a are finite for every t ∈ (0, ε], but that the bounds are not uniform in t as t → 0+
(as should be expected, since w0, a0 /∈ C2). On this left side of s1(t), we moreover
have that k ≡ z ≡ 0. Similarly, on the right side of s1(t), the second derivative of
w is bounded due to (6.97), the second derivative of a is bounded in light of (6.20),
these bounds not being uniform as t → 0+, while k ≡ 0. It remains to consider the
behavior of zθ (θ, t) as θ → s1(t)+. From (5.219) we know that zθ (s1(t), t) = 0, so
that using (6.10b) and (6.144c)

sup
0<h<κt6

∣∣zθ (s1(t)+ h, t)− zθ (s1(t), t)
∣∣

hα
� sup

0<h<κt6

h1−α
∫ 1

0

∣∣zθθ (s1(t)+ λh, t)
∣∣dλ

� N2 sup
0<h<κt6

h1−α
∫ 1

0
J(s1(t)+ λh, t)− 1

2 dλ

� 2N2κ
− 1

2 sup
0<h<κt6

h1−α
∫ 1

0

∣∣λh∣∣− 1
2 dλ

= 32m3κ−
1
2 sup
0<h<κt6

h
1
2−α . (6.195)

The right side of (6.195) is finite whenever α � 1
2 . Thus, from (6.10b), (6.144b), and

(6.195), we deduce that z ∈ C1, 12 inDz
ε\Dk

ε . The remarkable fact is that due to (6.162),
this upper bound is sharp: for any α > 1

2 , z /∈ C1,α near s1. Indeed, by (6.162), we
have that for h sufficiently small but positive,

zθ (s1(t)+ h, t)− zθ (s1(t), t)

hα
= h1−α

∫ 1

0
zθθ (s1(t)+ λh, t)dλ
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� − 1
8b

9
2 κ−4h1−α

∫ 1

0
J(s1(t)+ λh, t)− 1

2 dλ

� − 1
16b

9
2 κ−

9
2 h1−α

∫ 1

0
(λh)−

1
2 dλ

� − 1
8b

9
2 κ−

9
2 h

1
2−α . (6.196)

For α > 1
2 , the right side of (6.196) converges to −∞ as h → 0+, proving that

zθ /∈ Cα in the vicinity of s1.
Next, we consider the behavior of derivatives on s2(t). On the left side of s2(t) we

have that k ≡ 0, while the second derivatives of w, z, and a are bounded in terms of
inverse powers of t in view of (6.10b), (6.144b), (6.20), and (6.97). On the right side
of s2, the situation is different. Similarly to (6.195), we may use (6.97), (6.8b), (6.20),
and (6.144a) to show thatwθ, zθ , kθ , aθ ∈ Cα near s2, for any α � 1

2 . Indeed, the only

difference to (6.195) is that J(s1(t) + λh, t)− 1
2 is replaced by T(s1(t) + λh, t)− 1

2 �
2κ− 1

2 (λh)− 1
2 . Moreover, for any α > 1

2 , similarly to (6.196), we may use (6.153),
(6.155), (6.157), and (6.161) to prove

kθ (s2(t)+ h, t)− kθ (s1(t), t)

hα
� 12b

9
2 κ−

9
2 h

1
2−α (6.197a)

zθ (s2(t)+ h, t)− zθ (s1(t), t)

hα
� − 1

2b
9
2 κ−

7
2 h

1
2−α (6.197b)

wθ(s2(t)+ h, t)− wθ(s1(t), t)
hα

� 1
2b

9
2 κ−

7
2 h

1
2−α (6.197c)

aθ (s2(t)+ h, t)− aθ (s1(t), t)

hα
� − 1

8b
9
2 κ−

5
2 th

1
2−α , (6.197d)

for h > 0 sufficiently small. The estimates in (6.197) show that kθ , zθ , wθ , aθ /∈ Cα

for any α > 1
2 .

6.9 Proof of Theorem 6.1

The bounds in (6.1) are merely a restatement of the bootstrap bounds stated in (6.1)
for (wθθ , zθθ , kθθ ). The bounds for aθθ and 
θ follow as shown in Lemmas 6.5
and 6.6. These bootstrap estimates were closed (i.e., improved by a factor of 2) by
the analysis in Sections 6.2–6.6. As discussed in the first paragraph of Section 6.1,
this analysis should formally be carried out at the level of the approximating sequence
(w(n), z(n), k(n)), but we have not chosen to do so for simplicity of the presentation.
One remark is in order at this point: when dealing with the approximating sequence
(w(n), z(n), k(n), a(n)) the identities (6.75) and (6.77) for the second derivatives of φt
and ψt are not available; this is because the structure of the equation for the sound
speed at c(n+1), given in (5.138a)–(5.138c), lacks a necessary n → n + 1 symmetry;
in this case, estimates for ∂2θ φ

(n)
t and ∂2θ ψ

(n)
t are obtained simply by differentiating

(5.120a) and (5.120b) twice with respect to y and appealing to the bootstrap bounds
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for ∂2θ w
(n) and ∂2θ z

(n); the resulting bounds are however exactly the same as the ones
given in Lemma 6.9.

The bounds in (6.2) follow from (6.1) on the one hand, and (6.144), (6.153), (6.155),
(6.157), (6.161), on the other hand. The estimate (6.3) follows by adding the bounds
in (6.154) and (6.156), observing that the terms 1

4ckθθ cancel. The characterization

of the singularity formed by (wθ , zθ , kθ , aθ ) as θ → s2(t)+ as being precisely a C
1
2

cusp is given by Section 6.8, estimate (6.197). The estimate (6.4) is implied by bounds
(6.1) and (6.162). The characterization of the singularity formed by zθ as θ → s1(t)+

as being precisely a C
1
2 cusp is given by Section 6.8, estimate (6.196). This concludes

the proof of Theorem 6.1.

7 Shock Development for 2D Euler

In view of the transformations (uθ , ur , σ, S) �→ (b, c, k, a) �→ (w, z, k, a) described
in (3.2) and (3.4), the results obtained in Sections 4–6 for the azimuthal variables
(w, z, k, a,
) imply the following results for the usual hydrodynamic variables
(u, ρ, E, p). First, from Theorem 4.1 we deduce:

Theorem 7.1 (Shock formation for 2D Euler with azimuthal symmetry) There exists
κ0 > 1 sufficiently large, and ε > 0 sufficiently small, such that the following holds.
Consider initial data at time −ε given by

(ur , uθ , σ, S) (r , θ,−ε) :=
(
ra(θ,−ε), r2w(θ,−ε), r2w(θ,−ε), 0

)
,

with (w, a)(·,−ε) ∈ C5(T) satisfying conditions (4.17)–(4.26). In particular, the ini-
tial data is smooth and has azimuthal symmetry. Then, there exists T∗ > −ε (explicitly
computable), and a unique solution (u, σ, S) ∈ C0([−ε, T∗);C4(R2 \ {0})) of the
Euler equations (2.33), which has the azimuthal symmetry (3.2). The associated den-
sity is ρ = 1

4σ
2e−S = 1

16r
2w2, and the total energy is E = 1

2ρ |u|2 + 1
2ρ

2eS =
1
32r

4w2(a2 + 5
16w

2). Moreover, at time blowup time T∗ we have S(θ, T∗) = 0, and
there exists a unique angle ξ∗ ∈ T (explicitly computable) such that an azimuthal
pre-shock forms on the half-infinite ray {(r , ξ∗, T∗)}r∈R+ . The azimuthal pre-shock is
described by the fact that for |θ − ξ∗| 	ε 1 we have

uθ (r , θ, T∗) = 1
2r

(
κ∗ + a1(θ − ξ∗) 13 + a2(θ − ξ∗) 23 + a3(θ − ξ∗)+O((θ − ξ∗) 43 )

)

ur (r , θ, T∗) = r
(
a′0 + a′1(θ − ξ∗)+ a′2(θ − ξ∗)

4
3 +O((θ − ξ∗) 53 )

)

ρ(r , θ, T∗) = 1
16r

2
(
κ2∗ + 2a1κ∗(θ − ξ∗) 13 + (a21 + 2a2κ∗)(θ − ξ∗) 23 +O(θ − ξ∗)

)

E(r , θ, T∗) = 1
32r

4
(
κ2∗ (a′20 + 5κ2∗

16 )+ a1κ∗(2a′20 + 5κ2∗
4 )(θ − ξ∗)

1
3 +O((θ − ξ∗) 23 )

)

where κ∗, a1, a2, a3, a′0, a′1, a′2 are suitable constants which may be computed in terms
of the data. Moreover, in view of (4.4) we have that these asymptotic descriptions
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are valid (to leading order), for the first three derivatives of the solution, and for
|θ−ξ∗| 	ε 1. For angles θ which are at any fixed distance away from ξ∗, the functions
(u, ρ, E)(r , θ, T∗) are C4 smooth. Lastly, the specific vorticity and its derivatives
remain uniformly bounded up to T∗.

The above result, which establishes the formation of the pre-shock and gives its
detailed description, is nothing but a rewriting ofTheorem4.1 in terms of the usual fluid
variables. This is possible in view of themapping (ur , uθ , σ, S) = (ra, 12rw, 12rw, 0),
valid on [−ε, T∗], and the above mentioned formulas for the density and energy. The
series expansion for the radial velocity ra(θ, T∗) is not explicitly stated inTheorem4.1,
but it immediately follows from the fact that a has regularity precisely C1,1/3 and no
better, and from the bounds on a ◦ η obtained in Section 4.

For the development part of our result, for simplicity of notation it is convenient to
re-label the pre-shock location (r , ξ∗, T∗) �→ (r , 0, 0). Moreover, the fields at which
we arrive at the end of the formation part, namely (u, σ, S)(·, T∗), are re-labeled as
(u0, σ0, S0). Then, from Theorems 5.5 and 6.1 we obtain:

Theorem 7.2 (Shock development for 2D Euler with azimuthal symmetry)Given pre-
shock initial data

(ur , uθ , σ, S)|t=0 := (ra0, r2 (w0 + z0),
r
2 (w0 − z0), k0),

with (w0, z0, a0, k0) satisfying conditions (5.1)–(5.5), there exist:

(i) ε > 0 sufficiently small;
(ii) a shock surface S := {(r , θ, t) ∈ R

2 × [0, ε] : θ = s(t)} with s ∈ C2([0, ε]);
(iii) fields (u, ρ, E) with ρ = 1

4σ
2e−S and E = 1

2ρ |u|2 + 1
2ρ

2eS, such that the
(u, ρ, E,S) is a regular shock solution of the compressible Euler equations (1.1)
on the time interval [0, ε], in the sense of Definition 1.1;

(iv) two C1 smooth functions s1, s2 : [0, ε] → T, with s1(0) = s2(0) = 0 and s1(t) <
s2(t) < s(t) for t ∈ (0, ε], such that Si := {(r , θ, t) ∈ R

2 × [0, ε] : θ = si (t)} is
a characteristic surface for the λi wave-speed, where λ1 = uθ − 1

2σ and λ2 = uθ ;

such that for any t ∈ (0, ε] all fields are twice differentiable at points (r , θ) with
θ /∈ {s1(t), s2(t), s(t)}, and the following hold:

(v) letting D(2)ε = {(r , θ, t) ∈ R
2 × (0, ε] : s2(t) < θ < s(t)} we have that

• S ∈ C1,1/2(D(2)ε ), S ≡ 0 on (D(2)ε )�, and
1
C � (θ − s2(t))

1
2 ∂2θ S(r , θ, t) � C

as θ → s2(t)+,
• p, uθ ∈ C2(D(2)ε ), |∂2θ uθ (r , θ, t)| � Crt− 1

2 and |∂2θ p(r , θ, t)| � Cr4t−2 as
θ → s2(t)+,
• ur ∈ C1,1/2(D(2)ε ) and −r tC � (θ − s2(t))

1
2 ∂2θ ur (r , θ, t) � − 1

C rt as θ →
s2(t)+,
• ρ ∈ C1,1/2(D(2)ε ) and −r2C � (θ − s2(t))

1
2 ∂2θ ρ(r , θ, t) � − 1

C r
2 as θ →

s2(t)+,

for a suitable constant C > 0;
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(vi) letting D(1)ε = {(r , θ, t) ∈ R
2 × (0, ε] : s1(t) < θ < s2(t)}, we have

• S(r , θ, t) = 0 on D(1)ε ,

• uθ ∈ C1,1/2(D(1)ε ) and
1
C r � (θ − s1(t))

1
2 ∂2θ uθ (r , θ, t) � Cr as θ → s1(t)+,

• ur ∈ C2(D(1)ε ) and |∂2θ ur (r , θ, t)| � Crt−1 as θ → s1(t)+,
• ρ ∈ C1,1/2(D(1)ε ) and −r2C � (θ − s1(t))

1
2 ∂2θ ρ(r , θ, t) � − 1

C r
2 as θ →

s1(t)+,

for a suitable constant C > 0;
(vii) on S, the functions uθ (r , ·, t) and ∂θur (r , ·, t) exhibit O(r t 12 ) jumps, the density

ρ(r , ·, t) exhibits anO(r2t 12 ) jump, the entropy S(r , ·, t) exhibits anO(t 32 ) jump,
the total energy E(r , ·, t) exhibits an O(r4t 12 ) jump (cf. (5.63) and (5.69)), while
ur (r , ·, t) does not jump.

Moreover, this solution is unique in the class of entropy producing regular shock
solutions (cf. Definition 1.1) with azimuthal symmetry, such that the corresponding
azimuthal variables (w, z, k, a) belong to the space Xε (cf. Definition 5.3).

The above theoremdirectly follows fromour previous twoTheorems 5.5 and 6.1, by
taking into account the relation between the fluid variables and the azimuthal variables
in (3.2), and in turn to theRiemann variables in (3.4). The bounds on second derivatives
are all a consequence of Theorem 6.1. In the region D(2)ε , the bounds for the entropy
S and radial velocity ur follow from (6.2). Since uθ = r

2 (w + z), the bound for the

second derivative of uθ in the region D(2)ε , which does not blow up as θ → s2(t)+

in positive time, follows from (6.3). Since ρ = r2
4 c

2e−k , the claimed bound for the
second derivative of the density follows from (5.11), (6.2), (6.114), and (6.131) since
we may write

16
r2
∂2θ ρ = ce−k (2cθθ − ckθθ )+ (terms which are bounded as θ → s2(t)

+

in terms of powers of t−1)
= ce−k

(
qwθ − qzθ − 1

2ckθθ
)+ (terms which are bounded as θ → s2(t)

+

in terms of powers of t−1)
= − 1

2c
2e−kkθθ + (terms which are bounded as θ → s2(t)

+

in terms of powers of t−1) .

and so the singularity of kθθ on s2 carries over to ρ. Lastly, the claimed estimate for
the second derivative of pressure, which does not blow up as θ → s2(t)+ in positive
time, follows from the identity p = 1

32r
4c4e−k and a similar computation as above

32
r4
∂2θ p = c3e−k (4cθθ − ckθθ )+ (terms which are bounded as θ → s2(t)

+

in terms of powers of t−1)
= 2c3e−k

(
qwθ − qzθ

)+ (terms which are bounded as θ → s2(t)
+
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in terms of powers of t−1)
= (terms which are bounded as θ → s2(t)

+ in terms of powers of t−1) .
(7.1)

The dependence of the bound on t−1 follows from (5.11), (6.114), and (6.131).
In the region D(1)ε , we have that wθθ is bounded in terms of inverse powers of t

and zθθ satisfies (6.4), which gives the bounds on uθ and ρ. The bound for the radial
velocity appears in (6.1a).

The size of the jumps along the shock curve, and the uniqueness statement, follow
directly from Theorem 5.5. To avoid redundancy we omit further details.
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