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ABSTRACT
A powerful way to understand a complex query is by observing
how it operates on data instances. However, speci�c database in-
stances are not ideal for such observations: they often include large
amounts of super�uous details that are not only irrelevant to un-
derstanding the query but also cause cognitive overload; and one
speci�c database may not be enough. Given a relational query, is it
possible to provide a simple and generic “representative” instance
that (1) illustrates how the query can be satis�ed, (2) summarizes all
speci�c instances that would satisfy the query in the same way by
abstracting away unnecessary details? Furthermore, is it possible
to �nd a collection of such representative instances that together
completely characterize all possible ways in which the query can
be satis�ed? This paper takes initial steps towards answering these
questions. We design what these representative instances look like,
de�ne what they stand for, and formalize what it means for them
to satisfy a query in “all possible ways.” We argue that this problem
is undecidable for general domain relational calculus queries, and
develop practical algorithms for computing a minimum collection
of such instances subject to other constraints. We evaluate the e�-
ciency of our approach experimentally, and show its e�ectiveness
in helping users debug relational queries through a user study.

CCS CONCEPTS
• Theory of computation ! Data modeling; Incomplete, incon-
sistent, and uncertain databases.
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1 INTRODUCTION
A powerful way to understand a complex query is by observing how
it operates on data instances. A further in-depth approach may also
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consider the provenance of the query [10, 17, 29] as an indicator how
di�erent combinations of tuples in the database satisfy the query
and generate each result. Another approach [41] �nds a minimal
satisfying instance of the query. However, these characterizations
are highly dependent on the given database instance, even when
provenance is employed. In addition, such database instances can
contain many details that divert attention from the query features
themselves. For example, some queries are satis�ed by an empty
instance, but there may be other satisfying instances that are not
trivial. Thus, some parts of the query may be ignored since they
are not satis�ed by the instance. Furthermore, the evaluation on
an instance leads to a satisfaction of speci�c combination of query
atoms, but a di�erent combination of atoms that is not satis�ed by
the speci�c database instance may reveal new insights. While there
are approaches to �nding a query solution without a given database
instance [15], they provide only one way to satisfy a query, thereby
again possibly missing di�erent paths toward satisfying the query.

On the other hand, a single query can have in�nitely many sat-
isfying instances so showing all of them will not just be confusing,
it may be impossible. Therefore, to understand all possible solu-
tions to a query, we study the question of whether it is possible
to provide a simple and generic “representative” instance that (1)
illustrates how the query can be satis�ed, and (2) summarizes all
speci�c instances that would satisfy the query in the same way
by abstracting away unnecessary details. Further, we ask how we
can �nd a collection of such representative instances that together
completely characterize all possible ways to satisfy the query.

To answer these questions, we propose a novel approach to un-
derstanding queries based on conditional instances or c-instances,
by adapting the notion of c-tables [33] from the literature on incom-
plete databases, which are abstract database instances comprising
variables (labeled nulls) along with a condition on those variables.
Thus, each c-instance can be considered a representative of all
grounded instances that replace its variables with constants that
satisfy the conditions they are involved in. However, it may be im-
possible to capture all satisfying instances with a single c-instance.
Therefore, we use the idea of coverage, borrowed from the �eld of
software validation [5, 42, 43], where it has been well-studied in
the context of software testing. For example, a test suite is said to
cover a function if the function is invoked during the test. This idea
can be abstracted to program �ows, where an edge/branch in the
control-�ow graph (see [4] for details) is said to be covered if the
edge/branch has been executed. For our use, when given a query&
and a satisfying c-instance I, the atoms and conditions of & that
are satis�ed by all ground instances that I represents are said to
be covered by I. We intend to �nd a set of c-instances such that
for every grounded instance that satis�es & with some coverage C,
we have a c-instance that satis�es & with the same coverage C.
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name addr
Eve Edwards 32767 Magic Way

(a) Drinker relation

name brewer
American Pale Ale Sierra Nevada

(b) Beer relation
name addr

Restaurant Memory 1276 Evans Estate
Tadim 082 Julia Underpass

Restaurante Ra�aele 7357 Dalton Walks

(c) Bar relation

drinker beer
Eve Edwards American Pale Ale

(d) Likes relation
bar beer price

Restaurant Memory American Pale Ale 2.25
Restaurante Ra�aele American Pale Ale 2.75

Tadim American Pale Ale 3.5
(e) Serves relation

Figure 1: Database instance  0 of the Beers dataset. We as-
sume natural foreign key constraints from Serves and Likes to
Drinker, Bar, Beer.

The idea of providing a compact representation of all instances
that satisfy a query is appealing not just from a theoretical perspec-
tive, but also for multiple practical reasons.
• First, this approach can be used for explaining why a given
(wrong) query is di�erent than another (correct) one, as studied
in works on counterexamples [15, 41]. In this scenario, we are
given a query&1 and another query&2, the output is an instance
 such that &1 ( ) < &2 ( ) (i.e.,  is a satisfying instance for
&1 � &2 or &2 � &1). In an educational setting, such instances
would help instructors and students understand why a query
is wrong and debug it, without revealing the correct query to
students.

• Second, developers and data scientists who work with complex
queries can this approach to explore how various parts of the
queries can be triggered by di�erent data, or to help them debug
or re�ne these queries. For example, if there are no instances that
can trigger some part of a query, it may be possible to simplify
the query to remove “dead code” that logically contradicts other
necessary conditions in the query.

• Third, this approach o�ers a method for generating a suite of test
instances for a complex query such that together they “exercise”
all parts of the query. In the �eld of synthetic data generation,
previous works have proposed di�erent approaches to generating
data for testing workload queries [9, 37, 47]. Using our approach,
given a workload query & , we can generate a set of instances to
provide coverage testing for all parts of & ; furthermore, given a
set of workload queries, we can generate test instances where
a given subset of queries are satis�ed but others are not. These
generated instances can be used for automated, comprehensive
testing of queries.
We illustrate the �rst use case above with an example below.

E������ 1. Consider the database 0 shown in Figure 1 containing
information about drinkers (Drinker table), beers (Beer table), bars (Bar
table), which beer does a drinker like (Likes table), and which bar
serves which beer (Serves table). Also consider the queries &� and &⌫
written in Domain Relational Calculus (DRC) in Figures 2a and 2b,
respectively. The correct query &� returns a list of bars that serve the
most expensive beer liked by any drinker whose �rst name is ‘Eve’,
whereas &⌫ is a very similar query that chooses bars serving beers
not at the lowest price and only requires �rst names to have a pre�x
of ‘Eve’. Figure 3 shows the formula for &⌫ � &� but is not easily
understandable and does not clearly show the di�erence between the

&� ={(G1,11) | 931,?1
�
Serves(G1,11,?1) ^ Likes(31,11)^

31 LIKE ’Eve�%’ ^ 8G2,?2 (¬Serves(G2,11,?2) _ ?1 � ?2
�
}

(a) Query&� : for each beer liked by any drinker whose �rst name is Eve, �nd
the bars that serve this beer at the highest price

&⌫ = {(G1,11) | 931,?1
�
9G2,?2 (Serves(G1,11,?1) ^ Likes(31,11)

^ 31 LIKE 0⇢E4%0 ^ Serves(G2,11,?2) ^ ?1 > ?2
�
}

(b) Query&⌫ which is similar to&� but does not use the di�erence operator
and instead, �nd beers served at a non-lowest price

Figure 2: Correct query&� and incorrect query&⌫ . Note that
the formula in &� has a space after ‘Eve’ whereas &⌫ does
not. Here and later, denotes the space symbol.
&⌫ �&� = {(G1,11) | 931,?1

�
9G2,?2 (Serves(G1,11,?1) ^ Likes(31,11) ^ 31 LIKE 0⇢E4%0

^Serves(G2,11,?2) ^ ?1 > ?2
�
^ 832,?3

�
¬Likes(32,11) _ ¬(32 LIKE ‘Eve�%’)_

¬Serves(G1,11,?3) _ (9G3,?4 (Serves(G3,11,?4) ^ ?3 < ?4))
�
}

Figure 3: The di�erence query &⌫ �&� from Figure 2.

name addr
31 ⇤

(a) Drinker relation

name addr
G1 ⇤
G2 ⇤
G3 ⇤

(b) Bar relation

bar beer price
G1 11 ?1
G2 11 ?2
G3 11 ?3

(c) Serves relation

name brewer
11 ⇤

(d) Beer relation
drinker beer
31 11

(e) Likes relation
31 LIKE ‘Eve%’ ^?1 > ?2 ^ ?2 > ?3

(f) Global condition

Figure 4: C-instance I0 that satis�es&⌫ �&� and generalizes
the counterexample  0 in Figure 1.

queries. In this case, Figure 1 gives the minimum counterexample  0
for the di�erence between &� and &⌫ [41]. In particular, &⌫ returns
the tuples (Restaurante Ra�aele, American Pale Ale) and (Tadim,
American Pale Ale) while &� only returns the latter tuple.

Now consider the more general counterexample as a c-instance (de-
�ned in the next section) showing the di�erences between the queries
&⌫ �&� in Figure 4. This c-instance, I0, shows abstract tuples with
variables instead of constants (⇤ are ‘don’t care’ variables) and a
condition that the variables must satisfy (there should be a drinker
whose name is ‘Eve’ with a space after and the order of the prices in
Serves table should be ?1 > ?2 > ?3). Thus, I0 not only generalizes
the counterexample in Figure 1 (i.e., there exists an assignment to
the variables that results in the instance in Figure 1 and satis�es the
global condition), but, it also speci�es the ‘minimal’ condition for
which&⌫ di�ers from&� (the global condition). The ground instance
in Figure 1 contains speci�c values that may confuse the user and
divert attention from the core di�erences. This is one of the c-instances
in our universal solution that includes three c-instances. Each of the
c-instances captures a facet of the di�erence between &⌫ and &� .

Our contributions. Our contributions are summarized below.

• We propose a framework for characterizing all query answers
using c-instances using the notion of coverage and a universal
solution that captures di�erent ways a given DRC query can be
satis�ed.

• We argue that deciding whether a universal solution or even any
satisfying c-instance exists is undecidable for general DRC queries,
by giving a reduction from the �nite satis�ability problem for First
Order Logic formulas [50]. However, for the class of conjunctive
queries with negation ⇠&¬, the universal solution can be found
in poly-time in the query size.
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• Since the problem in general is undecidable, we give two practical
algorithms for �nding a minimal set of satisfying c-instances.
The �rst algorithm runs an exhaustive search subject to a size
limit on the c-instances inspired by the chase procedure from
Data Exchange [21, 22]. Then, we provide a more e�cient chase
algorithm that may return a smaller set of satisfying c-instances.

• We experimentally show scalability and quality of the c-instances
returned by our algorithms varying di�erent parameters. Our
experiments use a real collection of wrong queries submitted by
students of an undergraduate database course as well as queries
over the TPC-H schema. Finally, we provide a comprehensive user
study and a case study that show the usefulness of our approach.

2 RELATEDWORK

Test data generation. QAGen [9] was among the �rst systems
that focused on data generation in a query-aware fashion. The
system aimed at testing the performance of a database manage-
ment system given a database schema, one parametric Conjunctive
Query, and a collection of constraints on each operator. MyBench-
mark [37] extends [9] by generating a set of database instances
that approximately satis�es the cardinality constraints from a set
of query results. HYDRA [47] uses a declarative approach that al-
lows for the generation of a database summary that can be used
for dynamically generating data for query execution. Cosette [15],
which targets checking SQL equivalence without any test instances,
encodes SQL queries to constraints using symbolic execution, and
uses a constraint solver to �nd one counterexample that di�eren-
tiates two input queries. RATest [41] proposes an instance-based
counterexample for distinguishing two queries, where the empha-
sis is on the cardinality of the generated counterexample. The
main di�erences between our work and [41] are that (1) we provide
abstract instances with variables and conditions to pinpoint the
source of error while comparing a wrong query against a correct
query, (2) we only use the query and the schema to generate the
counterexample and do not need a database instance to provides
a counterexample, whereas [41] requires a database instance to
output one sub-instance as the counterexample, (3) [41] provides
one grounded instance where the correct and wrong queries di�er,
while we generate a set of c-instances aims to show all possible ways
two queries can di�er. XData [11] generates test data by covering
di�erent types of query errors that can commonly occur. Qex [52]
is a tool for generating input relations and parameter values for a
parameterized SQL query and aims at unit testing of SQL queries.
It also generates one instance that satis�es the query and does
not support nested queries and set operations, and thus does not
support the full class of DRC queries. Olston et. al. [44] studied the
problem of generating small example data for data�ow programs
to help users understand the behavior of their programs.

Explanations for query results using provenanceData prove-
nance has been studied from many aspects [6, 10, 13, 24, 25, 27, 29,
48]. A multitude of approaches have used provenance for query
answers and non-answers explanations [12, 18, 19, 30–32, 35, 36, 40,
46, 51] using various approaches including ideas inspired by causal-
ity [45] and Shapley value [49]. Our approach suggests a query
characterization that is independent of a speci�c database instance
and thus also its provenance.

Coverage in software testing Test coverage is used to measure
the percentage of a given software that is executed during the tests.
Intuitively, the higher the test coverage, the lower the likelihood
of the software containing bugs and unforeseen errors [39, 42, 53].
Di�erent criteria for coverage have been proposed [43, 53], e.g.,
function coverage (checking the percentage of functions in the
program that are executed during testing) and branch coverage
(checking the percentage of branches, i.e., decisions that have true
and false outcomes, in the program that are executed during testing).
These ideas have certainly in�uenced our model.

Chase in schema mappings The chase procedure was orig-
inally suggested in the context of database dependencies [3, 38]
and later used for generating schema mappings [14, 21]. The latter
application aims to map one database schema to another, by us-
ing tuple-generating and equality-generating dependencies. These
dependencies are then used in a chase procedure to generate the
mapping between the schemas. Previous work has explored the
complexity of the chase procedure and the types of solutions it is
able to generate [20, 23, 28]. Our notion of a universal solution is
therefore inspired by the notion of universal solution in the schema
mapping problem [21]. Recent work has proposed an abstraction of
schema mappings [7], which allows reusing meta schema mappings.
In this paper, the c-instances can be thought of as “meta-instances”
that can be mapped to concrete ones (e.g., [41]) as needed.

3 MODEL FOR QUERY CHARACTERIZATION
In this section, we describe some basic concepts and our framework.

3.1 Databases and Relational Calculus
First, we review and de�ne domains and Domain Relational Calcu-
lus which will be used for express queries in this paper. A database
schema R is a collection ('1, ...,'A ) of relation schemas. Each '8
is de�ned over a set of attributes denoted by Attr('8 ). For each
attribute A 2 Attr('8 ), its domain is a set of (possibly in�nite)
constants and is denoted as D��(A), and D�� = [AD��(A); for
simplicity, we will frequently use D�� instead of D��(A) with
the implicit assumption that the constants are from the right do-
main D��(A). Two relations can share the same attribute A; we use
'8 .A to explicitly denote an attribute A 2 Attr('8 ). Further, two
attributes may share the same domain (e.g., when they share the
same name or are related by foreign key constraints). A ground
instance (or simply an instance when it is clear from the context)
is a (possibly empty) �nite set of tuples with constant attribute
values that conform to the schema and corresponding domains. In
addition, we allow standard constraints like key constraints, foreign
key constraints, and functional dependencies in our framework.
DRC queries and tree representation.We next review the de�ni-
tion of Domain Relational Calculus (DRC) [34] and use it to de�ne
queries and syntax trees. It has been shown that DRC is equiv-
alent to Relational Algebra [16], which provides the theoretical
foundation to query languages such as SQL.

D��������� 1 (DRC ������). Given a schema R, a DRC query
& has the form & = {(G1, G2, ..., G? ) | P& (G1, ...G? )} where P& is a
standard �rst order logic (FOL) formula [1] involving relation names
'1, · · · ,'A , constants from D��, a set of query variables V& for
attribute values, quanti�ers 9,8, operators ¬,=, >, �, <, ,<, !� ⇢
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etc., and connectives ^,_. Here,V>DC
& = {G1, · · · , G? } ✓ V& denote

output variables of the query & , which can be an empty set for a
Boolean query. The output variables are free variables in %& ; the
remaining variables in % are quanti�ed under 8 or 9.

The formula P& is built up from DRC atoms of the following
forms: (1) '(~1 ...,~: ) or ¬'(~1 ...,~: ), where ' 2 R is a relation,
and each ~8 2 V& [ D�� is a query variable or a constant, and (2)
conditions G1 >? G2 or G1 >? 2 , where G1, G2 2 V& , 2 2 D��, and >?
is a binary operator.

A ground instance ⇡ is said to satisfy a DRC query& (denoted by
⇡ |= &) if & (⇡) < ; (for a Boolean query, & (⇡) = {{}} or true), i.e.,
there is a satisfying assignment U : V>DC

& ! D�� of the output
variables of & to the constants in ⇡ such that %& evaluates to true.

We make a few assumptions without loss of generality: (1) in the
FOL formula P& , all negations appear in DRC atoms (which can
be achieved by repeated applications of standard equivalences like
¬(8G% (G)) = 9G (¬% (G)) andDeMorgan’s laws like¬(0_1) = ¬0^
¬1, etc.); (2) the DRC queries are safe or domain independent [1],
i.e., any variable ~8 that appears in a negated relation ¬'(~1 ...,~: )
also appear under a positive relation, e.g., queries like {G : ¬'(G)}
are not allowed; and (3) each quanti�ed variable is unique in %&
(which can be achieved by renaming).

E������ 2. The queries&� and&⌫ are shown in Figure 2, whereas
Figure 3 gives the di�erence query &⌫ �&� that identi�es beers at
a non-lowest price but also not at the highest price. In Figure 3, the
output variables are G1,11 and the FOL formula is speci�ed on the
right hand side by renaming the variables in &�,&⌫ in Figure 2.
The ground instance  in Figure 1 satis�es &⌫ � &� in Figure 3,
since there is a satisfying assignment U from the output variables
G1,11 in the query &⌫ � &� , i.e., U (G1) = “Restaurant Ra�aele”,
U (11) = “American Pale Ale”, such that the formula in the query
is satis�ed when 31 = “Eve Edwards”, ?1 = 2.75, G2 = “Restaurant
Memory”, ?2 = 2.25, therefore the �rst part of the FOL formula from
&⌫ is true. The second part of the FOL formula with ^ is also true
for all 32, ?3: while the �rst two disjuncts under ¬ evaluates to false,
¬Serves(G1,11, ?3) = CAD4 for ?3 = 2.25, 3.5, and for ?3 = 2.75 the
fourth disjunct is satis�ed with G3 = “Tadim” and ?4 = 3.5.

D��������� 2 (S����� T��� ������). A syntax tree of a query
& is tree for the FOL formula P& satisfying the following rules:

(1) Each leaf node is a DRC atom.
(2) Each internal node is either a quanti�er with a single variable

(e.g., 8G and 9G) with a single child, or a connective (^ and _)
with two children.

Further, since in the formula P& all negations appear in the DRC
atoms, all negations in the syntax tree appear in the leaves; we do not
use separate nodes for negation.

Given a DRC query & , we can have a unique syntax tree fol-
lowing the order of quanti�ers in & (e.g., for 9G~, 9~ appears as
the child of 9G , and a �xed order of associative connectives with
appropriate parentheses, e.g., (?1_?2_?3) is always assumed to be
((?1_?2)_?3). However, two equivalent DRC queries may have dif-
ferent syntax trees, e.g., {G | '(G)} and {G | ('(G)^) (G))_ ('(G)^
¬) (G))}. The syntax tree for the query &⌫ �&� from Figure 3 is
shown in Figure 5 (to save space, we put multiple quanti�ers with

^

8d2,p3

_

9x3,p4

^

?3 < ?4Serves(G3,11, ?4)

_

¬Serves(G1,11, ?3)_

¬(32 LIKE ‘Eve�%’)¬Likes(32,11)

9d1,p1

^

9x2,p2

^

?1 > ?2Serves(G2,11, ?2)

^

Serves(G1,11, ?1)^

31 LIKE ‘Eve%’Likes(31,11)

Figure 5: Syntax tree of&⌫ �&� in Example 2. Atoms covered
by the c-instance in Figure 4 are in green dashed boxes.

name addr
31 ⇤

(a) Drinker relation

name addr
G1 ⇤
G2 ⇤

(b) Bar relation

bar beer price
G1 11 ?1
G2 11 ?2

(c) Serves relation

name brewer
11 ⇤

(d) Beer relation
drinker beer
31 11

(e) Likes relation
31 LIKE ‘Eve%’ ^¬(31 LIKE ‘Eve�%’) ^?1 > ?2

(f) Global condition

Figure 6: C-instance I1 that satis�es &⌫ �&�.
variables in the same node). The special treatment of the negation
operator ¬ is for the sake of convenience in our algorithms.

3.2 Conditional Instances or C-Instances
We next give the de�nition of a c-instance adapting the concepts
of v-tables and c-tables from the literature [33]. We distinguish be-
tween query variables whose domain is denoted byV (De�nition 1),
and variables in the c-instances whose domain is denoted by L;
we refer to the latter as labeled nulls (called marked nulls in [33])
for clarity. The c-instances involve conditions using atomic condi-
tions, which are either (1) an atom of the form [G >? 2] (¬[G >? 2])
or [G >? ~](¬[G >? ~]) where G and ~ are labeled nulls in L, 2 is a
constant inD��(G), and >? 2 {<, >, , �,=,<, !� ⇢, ...} is a binary
operator, or (2) a condition of the form ¬'(G1, . . . , G: ) where ' is a
relation on : attributes.

D��������� 3 (C���������� I������� �� ����������). A v-
table with a relational schema '8 2 R is a table T8 in which for each
tuple C 2 )8 and each attribute A 2 Attr('8 ), C [A] is either a constant
from D��(A) or is a labeled null from L.

A c-instance I of R is a tuple of the form ({T1, . . . , TA },q), where
for each 8 2 [1, A ], T8 is a v-table with schema '8 , and q is a con-
junction of atomic conditions, which is associated with the c-instance,
denoted as the global condition.

Our de�nition of c-instances is slightly di�erent from those
found in previous literature [33], as we only associate the instance
with a global condition, while there are no local conditions asso-
ciated with a single tuple or even a single table in the instance.
Table-level conditions might still appear in the global condition as
a conjunct that contains labeled nulls from a single table, e.g. in
Figure 4, the condition ?1 > ?2 is only relevant to the (4AE4B table.

A conditional table (c-table) is a special case of a c-instance when
there is only one relation in the instance, hence we only discuss c-
instances in the rest of this paper. Note that we also allow for labeled
nulls that do not a�ect the evaluation of q , and are not needed for
joins between tables. These are called “don’t care” labeled nulls and
are denoted by ⇤ for simplicity instead of having unique names.
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E������ 3. Consider the c-instance I0 shown in Figure 4. The
single tuple in the drinker table says that the name of the drinker is
31, its address is a “don’t care” token, and the condition says that the
name 31 must start with “Eve”. The condition also enforces an order
on the prices. 11 cannot be replaced with ⇤ because all three beers in
Serves must be the same.

C-instances de�ne a set of possible worlds, each de�ned by a
mapping (see below) to the labeled nulls in the c-instance.

D��������� 4 (M������ ��� C����������). Given a c-instance
I = (T1, . . . , TA ,q) over a schema R, a mapping ` : L ! D��
maps the labeled nulls L in I to their respective domains.

Extending ` to the c-instance I, we denote ` (I) as the ground
instance ` (I) = {` (G) : G is a labeled null in T8 , for 8 2 [1, A ]}.
Let L0 ✓ L be the labeled nulls appearing in q of I. Then, q` =
q (` (L0)) yields the evaluation of q (True or False) with the map-
pings given by `.

D��������� 5 (P�������W����� ��� C���������� ��� C����
�������). Given a c-instanceI = (T1, . . . , TA ,q) of schemaR, the set
of possible worlds for I is %,⇡ (I) = {` (I) : ` is a mapping ^
q` = )AD4}. A c-instance I is said to be consistent, denoted by
IsConsistent(I) if %,⇡ (I) < ;.

Note that ground instances in %,⇡ (I) cannot contain extra
tuples that are not in the c-instance I. They may, however, have
fewer tuples than the c-instance mapped to them because we con-
sider set semantics, where a mapping may map two tuples with
labeled nulls to the same tuple with constant values.

E������ 4. One possible world of the c-instance in Figure 4 is the
ground instance in Figure 1. In this ground instance, all labeled nulls
have a mapping such that the global condition is satis�ed.

3.3 Query Characterization by C-Instances
We next give de�nitions for our framework of query characteri-
zation through c-instances. The intuition is that the c-instances
should be sound, i.e., they should correctly capture a query, as well
as “complete” in terms of di�erent ways a query can be satis�ed
by ground instances, which requires more careful considerations
using “coverage” of ground and c-instances as we discuss below.

D��������� 6. [Satisfying c-instances] Given a query & , a c-
instance I is said to satisfy & (denoted I |= &) if I is consistent
(De�nition 5) and for every ground instance ⇡ in %,⇡ (I), ⇡ |= & .

E������ 5. Consider the query &⌫ �&� in Figure 3, and the c-
instance I0 shown in Figure 4. I0 |= &⌫ �&� since every mapping of
constants from the domain of its labeled nulls that satis�es the global
condition will generate a ground instance ⇡ such that ⇡ |= &⌫ �&� ;
⇡ =  0 in Figure 1 is an example.
Coverage. Given a DRC query, the Coverage of a (ground or c-)
instance captures di�erent parts of a DRC query, that are satis�ed
by the instance, and helps us de�ne the completeness of a set of
c-instances. An inductive de�nition of coverage is given below.

D��������� 7. [Coverage of ground instances] Given a DRC query
syntax tree& , a ground instance  such that  |= & , and a satisfying
assignment U : V>DC

& ! D�� of the output variables of & , the

name addr
31 ⇤
32 ⇤

(a) Drinker relation

name addr
G1 ⇤
G2 ⇤
G3 ⇤

(b) Bar relation

bar beer price
G1 11 ?1
G2 11 ?2
G3 11 ?3

(c) Serves relation

name brewer
11 ⇤

(d) Beer relation
drinker beer
31 11

(e) Likes relation

31 LIKE ‘Eve%’ ^ 31 LIKE ‘Eve�%’ ^¬Likes(32,11) ^
¬ (32 LIKE ‘Eve�%’) ^?1 > ?2 ^ ?2 > ?3

(f) Global condition

Figure 7: C-instanceI2 that satis�es&⌫�&�. It is notminimal
since one of the Serves tuples can be removedwithout changing
the coverage.

coverage cov(&, ,U) of& by  under U identi�es a subset of the
DRC atoms (leaves) of the query syntax tree recursively top-down by
extending U to all free variables in a subtree as follows:

(1) If & consists of a single DRC atom (here all variables in & are
free), then cov(&, ,U) contains the DRC atom of & if:

(a) & = '(G1, ..., G: ) and '(U (G1), ...,U (G: )) appears in  , or
(b) & = ¬'(G1, ..., G: ) and '(U (G1), ...,U (G: )) is not in  , or
(c) & = G >? ~ and U (G) >? U (~) evaluates to True;
otherwise cov(&, ,U) = ;.

(2) If& = &1^&2 or & = &1_&2 (here the sets of free variables in
&,&1,&2 are the same), then cov(&, ,U) = cov(&1, ,U) [
cov(&2, ,U).

(3) If& = 9G& 0(G) or & = 8G& 0(G) (here G is a new free variable
in& 0), then cov(&, ,U) = [22D�� cov(& 0, ,U [ {G ! 2}),
where D�� denotes the constants appearing in  .

The coverage of for& is de�ned as cov(&, ) =
–
U cov(&, ,U).

Intuitively, the coverage cov(&, ) is the set of atoms and condi-
tions of & that can be covered by a ground instance  , eventually
leading to a satisfying assignment of the output variables of & .
Therefore, we use union to combine the coverages in De�nition 7
for all cases, since we are interested in all possible ways to satisfy
a query. Since U is a satisfying assignment of the output variables,
the coverages of & 0 in case (3) in De�nition 7 for both 9,8, and for
both &1,&2 for a ^ node and for at least one of them for a _ node
in case (2) above is non-empty. For universal quanti�ers, it is worth
noting that when the quanti�ed variable takes di�erent constants,
di�erent branches of the inner query (& 0) may be satis�ed, and thus
provide di�erent coverages, and to take all of them into account,
we again employ union.

E������ 6. The only satisfying assignment to the di�erence query
&⌫ � &� depicted in Figure 3 w.r.t. the ground instance shown in
Figure 1 is given by the assignment U (G1) = “Restaurant Ra�aele”,
U (11) = ”American Pale Ale” described in Example 2. By applying
the recursive top-down process implied by De�nition 7, the DRC atoms
of the query covered by this assignment are the leaves colored in green
in Figure 5. Note that di�erent assignments of a 8 variable can cover
di�erent leaves, e.g., for 8?3 node in the right subtree, ?3 = 2.25, 3.5
covers the node ¬Serves(G1,11, ?3) atom whereas ?3 = 2.75 covers
Serves(G3,11, ?4) and ?3 < ?4 atoms as discussed in Example 2.

D��������� 8. [Coverage of satisfying c-instances] Given a DRC
query& and a c-instance I such that I |= & , the coverage of I for
& is de�ned as cov(&,I) = —

 2%,⇡ (I) cov(&, ).
Since %,⇡ (I) can contain ground instances with di�erent cov-

erages, the coverage of I is de�ned as the common coverage of all
possible worlds. Therefore, the coverage of a c-instance I is always
a (not necessarily strict) subset of any ground instance in %,⇡ (I).

Session 6: Data Cleaning and Integration SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

359



E������ 7. Reconsider the syntax tree of the query &⌫ � &�
shown in Figure 5. Every ground instance in %,⇡ (I0) (I0 is depicted
in Figure 4) has to have exactly three Serves tuples due to the global
conditions (recall that the mapping from a c-instance to each ground
instance in %,⇡ has to be onto). Thus, the coverage of the c-instance
I0 depicted in Figure 4 is exactly the coverage of the ground instance
in Figure 1/Example 6 and highlighted in green with dashed frames
in the tree shown in Figure 5. The c-instance I2 in Figure 7 covers all
DRC atoms in the query &⌫ �&� . To see this, note that there are two
drinker variables 31,32 in I2 such that ¬Likes(32,11) as well as ¬(32
LIKE ‘Eve %’) hold in all ground instances in %,⇡ (I2). Therefore, for
the above satisfying assignments of output variables, when the 832 in
the right subtree iterates over the constants corresponding to 32, the
two remaining uncovered leaves are covered as well.

Minimality of a c-instance. We now de�ne minimality w.r.t. the
coverage of a c-instance. In the next de�nition, we denote by |I |
the size of a c-instance |I |, de�ned as the total number of tuples
and atomic conditions of I. For instance, |I0 | = 12 in Figure 4 (9
tuples and 3 atomic conditions).

D��������� 9 (M������ ���������� ����������). Given a DRC
query & , a c-instance I with coverage C satisfying & is minimal if
for every other satisfying c-instance I 0 with coverage C, |I |  |I 0 |.

E������ 8. Following Example 7, the c-instance I0 in Figure 4 is
a minimal satisfying c-instance assuming natural foreign key con-
straints from Serves, Likes to Drinker, Beer, Bar, since any other c-instance
with the same coverage has a larger size. In particular, I1 of smaller
size (=10) in Figure 6 does not have the same coverage, since in the 8
nodes of right subtree when 32 (in query) =31 (in I1) and ?3 (in query)
= ?1 (in I1), the two rightmost leaves Serves(G3,11, ?4) and ?3 < ?4
are not covered by any ground instance in %,⇡ (I1).

Minimality ensures that we do not include redundant tuples or
conditions in our c-instances. While we adopt the above simple
notion of minimality, it is ensured by a post-processing step in our
algorithms, so any other reasonable form of minimality can also be
used in this framework.
Universal solution. Our framework for �nding solutions for a
query & is given in terms of a set of minimal c-instances I |= & ,
which immediately ensures soundness of our solutions, since any
output c-instance is guaranteed to satisfy the query. Conversely,
the notion of completeness is more challenging since there can
be satisfying ground instances of unbounded size with redundant
tuples that do not a�ect the query answer. The notion of coverage
helps us de�ne a notion of completeness using a universal solution,
which ensures that for all satisfying ground instances of a certain
coverage, a c-instance with the same coverage is included.

D��������� 10 (M������ ��S������� ��� U�������� S����
����). Let & be a DRC query over a schema R and domain D��.
A minimal c-solution of & is a set of minimal c-instances of & ,
SI = {I1, . . . ,I: }, such that for all I8 , I8 |= & , and for any two I8 ,I9
where 8 < 9 , cov(&,I8 ) < cov(&,I9 ).

Auniversal solution of& is aminimal c-solutionSI = {I1, . . . ,I: }
such that (1) if there exists a ground instance  , where  |= & , with
coverage C, there is a c-instance I8 2 SI with coverage C = C8 , (2) if
we remove any c-instance from SI , condition (1) does not hold.

Note that for the universal solution, we do not require that
 2 %,⇡ (I8 ) since  may contain more tuples than I8 and thus
may not be part of the set %,⇡ (I8 ).

E������ 9. Reconsider the &⌫ �&� shown in Figure 3. The set
{I0,I1} is a minimal c-solution for&⌫ �&� since they have di�erent
coverages and both satisfy &⌫ �&� . Two of the three c-instances in
the universal solution are I0, I1 shown in Figures 4, 6, 7, respectively
(the rest are shown in Section 5.2 in the case study).

3.4 Computability of the Universal Solution
P���������� 3.1. The computability and complexity of �nding a

universal solution is as follows:
(1) Finding a universal solution is poly-time in the size of the query

for ⇠&¬ (and therefore also for ⇠&s), where ⇠&¬ is the class
of conjunctive queries with negation that includes operators 9,
^, ¬ for individual atoms and conditions.

(2) Checking whether a universal solution exists (or even any min-
imal c-solution exist) is undecidable for general DRC queries
that may include the operators 8, 9, _, ^, and ¬.

P����. (1) The universal solution of @ 2 ⇠&¬ is a single c-
instance comprising all relational atoms '(G1, · · · , G: ) of the query,
and a global condition that is the conjunction of all comparisons
(G >? ~, G >? 2 with or without negation) and negated relational
atoms ¬'(G1, · · · , G: ) in the query. This implies a poly-time com-
plexity in the size of the query.

(2) Finding whether a universal solution exists is an undecidable
problem for general DRC queries due to a reduction from the �nite
satis�ability problem in �rst order logic (FOL) that is known to be
undecidable by the Trakhtenbrot’s Theorem [50]. An FOL sentence
q is �nitely satis�able if there exists a �nite ground instance  such
that q is true over  , which is true if and only if there is a satisfying
c-instance I. Hence the universal solution for & is non-empty if
and only if the global condition q& is �nitely satis�able, which is
undecidable when & is a general DRC query. ⇤

Note that the inclusion of 8 operators and arbitrary position-
ing of ¬ make general DRCs harder than ⇠&¬. In ⇠&¬, negations
are only allowed in front of relational atoms and conditions sub-
ject to standard ‘safety’ constraints [2]. The query that returns all
beers that are not liked by some drinker: {(1) | 9G,3,0 (Beer(1, G) ^
Drinker(3,0) ^ ¬Likes(3,1))} in the DRC form, and in the equivalent
(safe) Datalog with negation form: & (1) : � Beer(1, G), ¬Likes(3,1),
Drinker(3,0), is an example of ⇠&¬.

Since the problem of �nding a universal solution for general DRC
queries is undecidable, in Section 4 we give an algorithm that builds
an exhaustive minimal c-solution up to a certain limit on the size of
the c-instances to ensure halting. We also give a more e�cient algo-
rithm in Section 4.3 that relaxes the requirement of generating all
possible c-instances by providing a subset of satisfying c-instances.

4 ALGORITHM FOR MINIMAL C-SOLUTION
In this section we show how to compute an exhaustive set of satis-
fying c-instances up to a size limit for a DRC query & by adapting
ideas from the chase procedure [21, 22].
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4.1 Basic Notions and Overview
Given a query syntax tree& (De�nition 2), our algorithm constructs
an exhaustive set of c-instances in the minimal c-solution by recur-
sively extending each c-instance in multiple ways. To explore the
di�erent options of extending each c-instance, our algorithm takes
a similar approach to that of the chase procedure, that was origi-
nally proposed for database dependencies [3, 38]. It constructs the
di�erent options for c-instances using a breadth �rst search (BFS)
procedure, thereby implicitly generating a chase tree [8]. However,
unlike the classic chase algorithm that directly adds or modi�es
tuples, our procedure converts the syntax tree into a conjunction
of atoms and then maps the atoms in the conjunction to tuples
and conditions which are added to the c-instance. Each quanti�er
and connector in the tree triggers a tailored recursive call. While
creating the c-instances, the algorithm keeps track of the mappings
between the query variables and the labeled nulls in the c-instances.
We next formally de�ne this homomorphism between query and
c-instance; since we build the homomorphism in steps, we de�ne it
as a partial function.

D��������� 11 (H����������� ������� ���� ��� �����
������). Given a query & and a c-instance I on the same schema
and domain D��, with query variables V& and labeled nulls LI ,
and constants C& , CI ✓ D�� respectively, a homomorphism ⌘
from & to I is a partial function ⌘ : V& [ C& ! LI [ CI
such that, (1) for each constant 2 2 C& , ⌘(2) = 2 , and (2) for an
atom 0 = '(G1, ..., G: ) in & , if all of ⌘(G1), · · · ,⌘(G: ) are de�ned,
⌘(0) = '(⌘(G1), ...,⌘(G: )) is in relation ' in I.

As opposed to assignments from queries to ground instances, ho-
momorphisms to c-instances are not restricted to output variables
but can also map quanti�ed variables to labeled nulls. This allows
the algorithms to consider multiple di�erent homomorphisms of
variables to di�erent labeled nulls. For universally quanti�ed vari-
ables 8G , the algorithm keeps track of multiple homomorphisms
even within the same c-instance.

We also abuse terminology as follows. Given a query & and a
c-instance I such that there is a homomorphism ⌘ from & to I,
we refer to the domain of a query variable in & as the set of
labeled nulls with the same domain in I according to ⌘, i.e., the
labeled nulls in the same attribute or in corresponding attributes
in di�erent tables that share the same domain (e.g., by foreign key
dependencies).

The procedure starts by mapping the free variables of the query
to fresh labeled nulls in the c-instance. Then, it performs a BFS
where for each c-instance in the queue, it expands the homomor-
phism and the c-instance using a recursive procedure. For a syntax
tree with no quanti�ers, the recursive procedure adds its atoms as
tuples to the c-instance, ensuring that the variables in the atoms are
converted to their labeled null counterparts according to the homo-
morphism. Otherwise, it handles the syntax tree based on its root:
each quanti�er (8, 9) or connective (^, _) is handled separately.

To ensure the minimality of each c-instance in the obtained set
and the minimality of the set itself (De�nitions 9 and 10), we use
a post-processing procedure that checks the coverage of each c-
instance, and for any coverage, it keeps a single c-instance with
minimum size (breaking ties arbitrarily).

Algorithm 1 Tree-Chase-BFS

T����C�����BFS(R,&,⌘0, I0, ;8<8C )
Input: R: the database schema;& : a DRC query;
I0 : a c-instance of schema of R; ⌘0 : a mapping;
;8<8C : the maximum number of tuples and conditions in the c-instance;
Output: A list of satisfying c-instances for& .

1 res = [], queue = an empty queue
2 for G 2 �A44+0A (&)
3 Create a fresh variable G 0 in the domain of G
4 I0 .3><08= (G) = I0 .3><08= (G) [ {G 0 }
5 ⌘0 = ⌘0 [ {G ! G 0 }
6 queue.push(I0)
7 visited = ;
8 while ¬ queue.isEmpty()
9 � = queue.pop()
10 if I 2 visited or |� | > ;8<8C
11 continue
12 visited = visited [{� }
13 if T����SAT(&, � , ;) and IsConsistent(� )
14 A4B .0??4=3 (� )
15 continue
16 �;8BC = T����C����(R,&, � ,⌘0, ;8<8C )
17 for � 2 �;8BC
18 if IsConsistent( � ) and | � |  ;8<8C and � 8 E8B8C43
19 queue.push(� )
20 return A4B

4.2 Exhaustive Chase for C-Instances
Algorithm 1 and Algorithm 2 form the main body of our ‘chase’ pro-
cedure. The procedure starts by callingAlgorithm 1 (T����C�����BFS)
on the schema R, the entire query & , an empty instance I0, and
an empty mapping ⌘0. In addition, the size bound limit sets the
maximum number of tuples and atomic conditions in the global
condition allowed in the c-instance, and is meant to ensure halting
of the algorithm since �nding a satisfying c-instance for a general
DRC query is undecidable (Proposition 3.1).

Breadth-�rst search. First, to initialize the instance I0 and the
mapping ⌘0 from free variables in the query to labeled nulls and
constants in I0, for each free variable G in& , Algorithm 1 will create
a new labeled null and add it to the domain of G in I0 and update
⌘0 (Line 2-5). Then, the algorithm runs in a Breadth-�rst search
manner: I0 is initially added to the empty queue; every time the
algorithm takes the c-instance from the head of the queue, checks
whether the instance has already been generated and its size does
not exceeds ;8<8C (Line 10). The procedure for checking � 2 E8B8C43
takes into account renaming of variables; it �rst compares certain
properties of the c-instances (e.g., number of tuples, size of condi-
tions etc.) and �lters out candidates that cannot be equivalent to � ,
and then it checks all possible mappings to previously generated
c-instances. It also checks (Line 13) (1) whether � |= & by the T����
SAT procedure, and (2) whether it is consistent, i.e., %,⇡ (� ) < ;,
(we use an SMT solver in our implementation). It then runs the
recursive procedure on the current c-instance (Line 16) and adds
each one of the resulting c-instances to the queue (Lines 17–19).

Recursive generation of c-instances. The recursive procedure
Algorithm 2 (T����C����) handles the query according to its root
operator. It gets as input the schema of the relational database R,
the syntax tree of a DRC query & , the current c-instance � , and the
current homomorphism from & to � . For the case where the query
has no quanti�ers (Line 2-7), the algorithm converts the syntax tree
into a list of conjunction of atoms/atomic conditions, and then an
instance is created for each conjunction under the homomorphism
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Algorithm 2 Tree-Chase

T����C����(R,&, � ,⌘, ;8<8C )
Input: R: the database schema;& : the query as its syntax tree;
� : current c-instance; ⌘: current homomorphism from& to � ;
;8<8C .
Output: a list of c-instances

1 res = []
2 if there are no quanti�ers in&
3 ! = ������������(&)
4 fork 2 !
5 � = A������I��(R, � ,⌘ (k ))
6 if IsConsistent( � )
7 res.append(� )
8 elseif Q.root.operator 2 {^}
9 res = H������C����������(R,&, � ,⌘, ;8<8C )
10 elseif Q.root.operator 2 {_}
11 res = H������D����������(R,&, � ,⌘, ;8<8C )
12 elseif Q.root.operator 2 {9}
13 res = H������E����������(R,&, � ,⌘, ;8<8C )
14 elseif Q.root.operator 2 {8}
15 res = H������U��������(R,&, � ,⌘, ;8<8C )
16 return res

Algorithm 3 Handle-Conjunction

H������C����������(R,&, � ,⌘, ;8<8C )
1 res = []
2 lres = T����C�����BFS(R,& .A>>C .;2⌘8;3, � ,⌘, ;8<8C )
3 for � 2 ;A4B
4 if IsConsistent( � ) = 5 0;B4
5 Continue
6 rres = T����C�����BFS(R,& .A>>C .A2⌘8;3, � ,⌘, ;8<8C )
7 for  2 AA4B
8 if IsConsistent( )
9 res.append( )
10 return A4B

⌘ by A������I��. The algorithm proceeds according to the root of
the syntax tree (^,_, 9,8) by calling procedures that get the same
input as Algorithm 2, call Algorithm 1 recursively, and output a list
of c-instances that are sent back to Algorithm 1.
Handling conjunction (^).TheH������C���������� procedure
recursively calls Algorithm 1 on both children of the root, and every
pair of solutions to each child is merged into one instance by taking
a union of every solution to the left subtree with every solution to
the right subtree, and adding the consistent instances to the list of
c-instances.
Handling disjunction (_). TheH������D���������� procedure1
reduces the disjunctive tree into three conjunctive trees by replacing
& = &1 _&2 with &1 ^&2, &1 ^ ¬&2, and ¬&1 ^&2, since one of
the three is True i� &1 _ &2 is True. This conversion introduces
negation to some subtrees, such a negated subtree is translated into
a syntax tree with negation only on the leaves. Then, Algorithm 1
is called with each of the modi�ed trees, and each set of c-instances
obtained from the three cases is added to the result set.
Handling existential (9) and universal (8) quanti�ers. If the
root node has 9G , Algorithm 2 calls H������E���������� (see foot-
note 1) that iterates over all labeled nulls or constants in the domain
of G , also adds a fresh labeled null, updates the homomorphism (as
the quanti�ed variable becomes free in the subtree), and recursively
calls Algorithm 1. H������U�������� (see footnote 1) handles the
case when the root has 8G . The di�erence with 9 is that, like the
^ case, the solutions to all labeled nulls and constants that G is

1The pseudo code can be found in the full version [26]

mapped to are merged into one instance. The algorithm �rst checks
whether there is no root and returns the inputted c-instance in
that case (Lines 2–3) adds each mapping from G to a labeled null
or constant to the homomorphism, runs the recursive procedure
to �nd all c-instances with this mapping and merges it with other
c-instances generated with other homomorphism that map G to
other labeled nulls or constants (Lines 5–14). It further generates
c-instances by mapping G to a fresh labeled null (Lines 19–24).

Ensuring minimality in post-processing. After Algorithm 1
returns a set of c-instances, we remove the c-instances that are
not minimal in the following manner. For each c-instance in the
set, we compute a hash string for its coverage (we keep track of
the coverage of each c-instance as it is created). Then, for each
c-instance in the set, we get all other c-instances in the set with
the same string representing its coverage and remove all but the
minimal one according to their size. Note that the hash function is
applied to the coverage of the c-instance rather than the c-instances
themselves, i.e., the function hashes the covered atoms of the query.
Thus, it allows us to e�ciently detect c-instances with the same
coverage and remove those that are not minimal in terms of their
number of tuples and atomic conditions (ref. Section 3.3).
Soundness, termination, and complexity. Given a syntax tree
& of a DRC query, Algorithm 1 when given (R,&, ;, ;) will output
a list of c-instances that are consistent, minimal, and satisfy the
query denoted by & (validated in Line 13), i.e., our procedure is
sound and generates a valid minimal c-solution.

Although the problem of verifying if a satisfying c-instance
exists is undecidable (Proposition 3.1), Algorithm 1 is guaranteed
to terminate given the ;8<8C parameter. There are �nitely many
distinct c-instances (that are not isomorphic in terms of renaming
of variables) up to size ;8<8C given a query. If the size of a c-instance
increases over ;8<8C , the algorithm will ignore this c-instance and
not push it into @D4D4 (Lines 10-11). The algorithm will also not
get into an in�nite loop because of the E8B8C43 set. Every generated
c-instance is placed into this set and c-instance already found is
the set are ignored (including renaming of variables) and are not
pushed into @D4D4 (Lines 18–19). Since the size of the schema is
constant, given a limit on size of the c-instances, the domains of all
labeled nulls in the c-instances are also �nite since the domain is
derived from existing labeled nulls in the c-instance.

The running time of the algorithm is exponential in the number
of operators and size of the c-instances (bounded by ;8<8C ⇥ no. of
relations ⇥ max no. of attributes) since the algorithm performs an
exhaustive search on c-instances subject to the size limit, resulting
in a high complexity. This motivates us to design a more e�cient
algorithm by generating a possibly smaller minimal c-solution that
we describe in the next subsection.

4.3 Optimization by Conjunctive Tree Chase
The optimized approach converts the original syntax tree into a set
of syntax trees where each tree does not contain disjunctions (_)
and then performs the chase procedure described in Algorithm 1
on each one of the trees. This speeds up the solution dramatically
since there is no need to expand every disjunctive operator in the
tree into a set of trees that do not contain disjunction.
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Conversion of a tree with _ into conjunctive trees. For sets,
&1 _&2 is equivalent to three sets {&1 ^&2,¬&1 ^&2,&1 ^ ¬&2}.
However, this is not always true for FOL formulae, since 51 =
8G (% (G) _ & (G)) is not equivalent to 52 = (8G% (G) ^ & (G)) _
(8G¬% (G) ^& (G)) _ (8G% (G) ^ ¬& (G)) and only 52 ) 51 holds;
we demonstrate this below, �rst with a toy example and then using
our running example.

E������ 10 (T�� �������). Consider 5 = 8G (4E4=(G)_>33 (G))
where the predicate 4E4=(G) (>33 (G)) is true if G is even (odd). Sup-
pose the domain of G is {3, 4}. 5 is clearly satis�ed with this do-
main. Now consider the conversion of 5 into three conjunctions: 51 =
8G (4E4=(G) ^ >33 (G)), 52 = 8G (¬4E4=(G) ^ >33 (G)), and 53 =
8G (4E4=(G) ^ ¬>33 (G)). 51 is not satis�ed since neither 3 nor 4 are
both even and odd, 52 is not satis�ed since 4 is even, and 52 is not
satis�ed since 3 is odd, thereby losing completeness in the conversion.

E������ 11. Consider the syntax tree of&⌫ �&� in Figure 5, and
a sub-formula of its right subtree:

8?3
�
¬Serves(G1,11, ?3) _ 9G3, ?4 (Serves(G3,11, ?4) ^ ?3 < ?4)

�
We can convert this into the following three formulae:

{8?3
�
¬Serves(G1,11, ?3) ^ 9G3, ?4 (Serves(G3,11, ?4) ^ ?3 < ?4)

�
,

8?3
�
¬Serves(G1,11, ?3) ^ 8G3, ?4 (¬Serves(G3,11, ?4) _ ?3 � ?4)

�
,

8?3
�
Serves(G1,11, ?3) ^ 9G3, ?4 (Serves(G3,11, ?4) ^ ?3 < ?4)

�
}.

These three formulae are equivalent to the original one if there
is only one variable that ?3 can be mapped to in the price domain
(in this case the original formula would be unsatis�able). However,
when there are more than two variables or constants in the domain,
this conversion is not equivalence-preserving and will miss satisfying
c-instances. For example, the c-instance I0 in Figure 4 satis�es the
original formula but does not satisfy any of the three conjunctive
formulae - assigning ?1 from I0 to the universally quanti�ed ?3 will
not satisfy any of the formulae.

Bearing this in mind, we describe an algorithm that performs
this conversion. Given a syntax tree & , the algorithm converts it
into a set of conjunctive syntax trees based on the above principal.

We start with a syntax tree & that may contain the _ operator
in di�erent nodes. The algorithm recurses on the tree where the
base case is a & that contains a single atom, then the algorithm
simply creates a conjunctive tree from this atom, or its negation if
it is negated. If the root of & is an ^ node, the algorithm continues
to recurse over the two children and joins each pair of obtained
subtrees. If the root of & is an _ node, the algorithm considers
three cases, as mentioned above: (1) converting the root into ^ and
recursing over both of its children, (2) converting the root into ^,
negating the right child, and recursing over both of its children,
and, �nally, (3) converting the root into ^, negating the left child,
and recursing over both of its children, All solutions to the three
cases are added to the list of c-instances A4B . If the root of & is a
8 or 9 quanti�er, the algorithm recurses over the child of the root
and adds the resulting trees to A4B .
Chase for conjunctive trees. The main chase procedure utilizes
Algorithm 1 and applies it on the conjunctive tree obtained from
the conversion algorithm. It gets a schema, a syntax tree, and a limit
as input. It �rst converts the input tree into a set of conjunctive

trees using the conversion algorithm. It then calls Algorithm 1 with
each one of the conjunctive trees and adds the resulting c-instances
to the list of results which is then outputted.
Soundness and complexity. The soundness of the algorithm, i.e.,
that it returns a set of minimal satisfying c-instances, follows from
the fact that the �nal set is returned by Algorithm 1. Although
there is an exponential dependency in the number of operators,
the algorithm gives a better running time by avoiding recursive
calls to split a query tree into three query trees recursively for the
disjunction operator, at the cost of possibly not generating some
satisfying c-instances that are generated by Algorithm 1.
Other optimizations. The time complexity is also largely a�ected
by the number of labeled nulls in each domain, especially when han-
dling universal quanti�ers. Hence, we disallow universal quanti�ers
from adding new labeled nulls, though this might lose completeness.
Moreover, notice that our T����C�����BFS is always initially called
with I0 =an empty c-instance, we could manipulate it to achieve
di�erent coverage by calling T����C�����BFS on a c-instance that
is properly initialized with the tuples or atomic conditions we target
to cover. We further evaluate these optimizations in Section 5.
Setting the limit parameter in Algorithm 1. The ;8<8C parame-
ter can be set in several di�erent manners in practice. One approach
is setting a default ;8<8C according to query complexity. ;8<8C de-
termines the maximal size of the c-instance. In our experimental
results (Section 5) we have seen that it can be set to some multiple
of the number of query atoms to safely allow for a c-instance to
covers all the atoms of the query (we have used a multiple of 2
in our evaluation). Another alternative, aimed at an interactive
experience, is to set a timeout parameter instead of the ;8<8C (as
done in Section 5), thus allowing Algorithm 1 to explore higher
limits as needed up to the allotted time.

5 EXPERIMENTS
We investigate the performance of our approach and compare it
to di�erent variations of our approach in the following aspects:
(1) runtime for varying query complexity (2) varying the limit
parameter in Algorithm 1, (3) properties of the output c-instances,
and (4) case studies showing the actual obtained c-instances for a
sample of the experimental queries.
Setup. We implemented our methods in Python 3.7. We ran all ex-
periments locally on a 64-bit Ubuntu 18.04 LTS server with 3.20GHz
Intel Core i7-8700 CPU and 32GB 2666MHz DDR4 RAM. We com-
pare the following variants of our algorithms and optimizations.

• D����N����: this method implements the exhaustive chase
procedure described in Section 4.2.

• C����N����: this method implements the optimized con-
junctive tree chase procedure described in Section 4.3 that
converts the original syntax tree into a set of syntax trees
without disjunction.

• D����EO/C����EO: this method adapts D����N����/C����
N���� by only allowing the algorithm to add labeled nulls to
the c-instance when handling an existential quanti�er node.

• D����A��/C����A��: this method �rst runs D����EO(or
C����EO) on the empty c-instance, then gets the minimal
c-solution. If there are still leaf atoms not covered by any of
the c-instance in the c-solution, then it iterates over every
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Figure 8: Running time vs. various measures of query complexity. ;8<8C = 10, C8<4>DC = 600B42 .

Dataset # Queries Mean # Atoms Mean # Quanti�ers Mean # Or Mean Height

Beers 35 6.40 13.94 2.17 9.54
TPC-H 28 11.96 23.07 4.18 12.07

Table 1: Dataset statistics.
remaining uncovered leaf atom, creating corresponding la-
beled nulls and adding the atom to the initial c-instance, and
runs D����EO (C����EO resp.) on the initialized c-instance.

We evaluate both the e�ciency/scalability of our algorithms in
terms of runtime and the quality of results with respect to di�erent
measures, and compare them against systems from related work.
Datasets. We used two datasets in our experiments, Beers and
TPC-H. For the Beers dataset, queries in these experiments come
from submissions by students for an assignment in an undergrad
database course. We picked 5 questions (skipped those with only
simple selection and join) and sampled a few students’ queries, then
manually rewrote them into domain relational calculus. There were
5 (correct) standard queries and 10 students’ wrong queries; we
also considered the di�erence between the standard queries and
the wrong queries (and also the opposite direction), resulting in
additional 20 queries. Some queries are very complex as they use
the di�erence operator multiple times, resulting in nested universal
quanti�cation in the DRC query. Similarly, for TPC-H, we picked
4 queries (Q4, Q16, Q19, and Q21) and dropped their aggregate
functions, then made two wrong queries each, resulting in 28 test
queries in total [26]. The statistics of the datasets are in Table 1.

5.1 Performance Evaluation
Scalability. To evaluate the scalability of our approach, we study
how query complexity a�ects the running time. We consider four
measures of query complexity: (1) number of nodes in the query
tree, (2) the height of the query tree, (3) number of universal quanti-
�ers plus number of disjunction that is below a universal quanti�er,
and (4) the number of both universal and existential quanti�ers.
Although most of these parameters are speci�c to our algorithms
that operate on DRC queries, the number of universal quanti�ers
also has a corresponding complexity notion in SQL form since each
8 in DRC leads to at least one negated sub-query in SQL.

E������ 12. Recall the query in Figure 3 and its syntax tree in
Figure 5. The number of nodes in the tree is 27 (measure (1)), the
height of the tree is 8 (measure (2)), the query contains 2 universal
quanti�er, 3 disjunctions below it, and 6 existential quanti�ers, so
measure (3) is 5 and (4) is 8. For reference, the queries &� and &⌫
from our running example are shown in SQL in Figure 9.

We set the limit threshold to be 10 for the Beers dataset and
15 for TPC-H, and stops the algorithm if it does not �nish in 10
minutes (20 minutes for TPC-H). The results are shown in Figure 8

SELECT l.beer, s.bar
FROM Likes l, Serves s
WHERE l.drinker LIKE �Eve�%� AND
l.beer = s.beer
AND NOT EXISTS(

SELECT * FROM Serves
WHERE beer = s.beer AND price >

s.price);

(a) Correct query&�

SELECT S1.beer, S1.bar
FROM Likes L, Serves S1, Serves S2
WHERE L.drinker LIKE �Eve%� AND
L.beer = S1.beer AND L.beer = S2.

beer
AND S1.price > S2.price;

(b) Incorrect query&⌫

Figure 9: Queries from our running example in SQL.
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Figure 10: Result quality by query complexity. ;8<8C =
10, C8<4>DC = 600B42 .

and Figure 11, respectively. We report the average running time for
di�erent queries with the same value of the complexity measure.

As shown in in Figure 8, the running time increases with query
complexity. D����N���� has the worst time complexity (more than
exponential), which did not �nish for most of the complex queries
with more than 10 quanti�ers, followed by D����EO and D����A��,
whereas C����N����, C����EO, C����A�� perform better. The
running time of C����N����, C����EO, C����A�� increases ex-
ponentially as expected since their complexity largely depends on
the number of conjunctive syntax trees generated from the origi-
nal query. Compared to the total number of nodes and the height,
the number of universal quanti�ers and the number of disjunction
nodes are more crucial to the growth in the running time. Similar
trends are illustrated in Figure 11, whereas C����EO still performs
better than D����EO, while the running time of C����A�� is very
close to D����A��. We conjecture that this is because the overall
complexity of queries in the TPC-H dataset is much higher than the
Beers dataset, as shown in Table 1, leading to more generated con-
junctive syntax trees. Our results indicate that our solution scales
well for complex schemas and queries (except for very complex and
long queries: for only 4 extremely complex cases out of the 28 cases
in the TPC-H dataset, our algorithm failed to return any results) .

Result quality. Our optimized approaches (C����EO, D����EO,
C����A�� and D����A��) run much faster than D����N���� by com-
promise on the completeness of the minimal c-solution to di�erent
extents. To evaluate the result quality of these approaches in terms
of both completeness and minimality, we show in Figure 10 the
number of distinct coverage from the returned c-solutions and the
average size of the c-solutions. Notice that the number of returned
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Figure 11: Running time and result quality by query complexity
on TPC-H dataset ;8<8C = 15, C8<4>DC = 1200B42 .
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Figure 12: Parameter sensitivity varying limit. D����A��.
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Figure 13: Parameter sensitivity varying limit. C����A��.

minimal c-solution of each variant can be di�erent (either they
are unable to �nd some results, e.g. D����EO returns a subset of
D����A��; or some variants �nish before the timeout but the others
do not), to guarantee a fair comparison, for each query we only con-
sider c-solutions with a coverage set returned by all of the variants.
For example, for a query & if C����N���� returns two c-solutions
with coverage ⇠1 and ⇠2, and D����A�� returns three c-solutions
with coverage⇠1,⇠2,⇠3, we will only report the average c-solution
size of the two with coverage ⇠1 and ⇠2 for & .

Figure 10 shows that D����A�� returns more distinct coverage
sets in most cases, while C����A��, C����N����,C����EO, and
D����EO might fail to return any satisfying instances. There are a
few exceptions for some very complex queries where D����A�� did
not �nish before timeout and thus C����A�� returns more distinct
coverage sets. Although D����N���� did not �nish running in most
cases, the c-solutions it returns can be smaller than other variants
when there are more than 10 quanti�ers in the query. There are few
cases where the D����A�� and D����EO return smaller c-solutions
compared to the variants using conjunctive trees.

Parameter sensitivity. To ensure that the algorithm terminates,
we used a limit parameter to restrict the size of the c-instances.
Figure 12 and Figure 13 show how this limit a�ects the running
time and completeness for D����A�� and C����A��. Although the
running time grows exponentially with the query complexity, D����
A�� runs one order of magnitude faster when limit=6 than limit=10,
losing completeness only when the query tree is very complex. For
C����A��, the di�erence in running time when varying the limit
is negligible in most cases, and the number of distinct returned
coverage sets only changes for the most complex queries.

Interactivity. To improve interactivity, our algorithms can output
the instances one at a time as soon as they are generated, so users
can start exploring immediately and have a more interactive expe-
rience. The time to produce the �rst instance for our algorithms
on the Beers dataset is only 4.78 seconds on average (DisjAdd) or
0.77 seconds (ConjAdd), and the average delay between two con-
secutive output instances with di�erent coverage is 18.34 seconds
(DisjAdd) or 5.22 seconds (ConjAdd). While on the TPC-H dataset,
the time to produce the �rst instance is longer but still tolerable:
101.25 seconds on average (DisjAdd) or 88.02 seconds (ConjAdd),
and the average delay between two consecutive output instances
with di�erent coverage is 19.12 seconds (DisjAdd) or 54.16 seconds
(ConjAdd). Note that doing so may risk returning non-minimal
instances, as minimality is veri�ed in postprocessing (Section 4.2).
Another option is to start with the optimized version (Section 4.3)
and if further insights are needed, run the exhaustive search (Sec-
tion 4.2). We also note that slightly longer wait times might be
acceptable in some scenarios, e.g., providing o�ine feedback to
student solutions, or to help students/instructors when manual
debugging would take signi�cantly more e�ort for complex queries
or subtly wrong solutions.

5.2 Case Study
By providing the “basis” to a query & , our work yields a set of
abstract instances that can help users understand and debug their
query in practice. To evaluate the usefulness of the set of abstract
instances (the minimal c-solution returned by the algorithms, pro-
viding a proxy for the universal solution), we report one case study
on the same real-world dataset as the performance evaluation from
an undergrad database course. We pick two most complex stan-
dard solution queries from an assignment each with one wrong
query from student submissions. Table 2 shows the solution queries,
wrong queries, and the universal solution for the di�erence query
of the standard and wrong queries.

The universal solution captures di�erent errors in the wrong
query. To compare, we use the ground instances that serve as “coun-
terexamples” for the wrong queries by a previous system [41] based
on a randomly generated testing database instance.

For &1 (the same as our running example), the �rst and the
second c-instances pinpoint that if the drinker’s �rst name is not
‘Eve’ but has ‘Eve’ as its pre�x. While the �rst c-instance does not
contain the �rst name condition, it shows that if all three bars serve
the same beer at di�erent prices, the query would go wrong. Note
that if we add to the last instance the condition ¬(31LIKE‘Eve�%’),
it is still a satisfying c-instance, but it is not minimal because its
coverage is the same as the second c-instance. In comparison, while
the ground instance by [41] (as in Figure 1) is in the represented
world of the �rst c-instance, it does not highlight that the reason
behind the wrong query result is that the prices are ordered in a
particular way, but the actual values are unimportant.

For&2, the c-instances in the universal solution indicate that the
query would go wrong if there is a drinker frequents to a bar that
does not serve any beer, no matter the drinker likes a beer or not
(the 1st and 3rd instances). This may pinpoint the error that the
Likes table does not interact with the Serves table. Furthermore, the
2nd, 5th, and 6th c-instances imply that if there is a beer served at a
bar, to make the query return a wrong result, the drinker should not
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Query description Queries (DRC) c-instances
&1 : for each beer liked by any
drinker whose �rst name is Eve,
�nd the bars that serve this beer
at the highest price

Correct query:&� in Figure 2a.
Wrong query:&⌫ in Figure 2b.

�0 in Figure 4
�1 in Figure 6
Drinker(31, ⇤), Drinker(32, ⇤), Beer(11, ⇤), Bar(G1, ⇤), Bar(G2, ⇤), Likes(31,11), Serves(G1,11,?1),
Serves(G2,11,?2),31LIKE‘Eve%’ ^ ¬(31LIKE‘Eve�%’) ^ ¬(Likes(32,11)) ^ ?1 < ?2

&2 : Find names of all
drinkers who frequent
only bars that serve
some beer they like

Correct Query:
&2� = {(31) | 901

�
Drinker(31,01)^

8G18C1
�
¬Frequents(31,G1, C1) _ 911,?1

(Serves(G1,11,?1) ^ Likes(31,11))
� ⌘
}

Wrong Query:

&2⌫ = {(31) | 901
⇣
Drinker(31,01)^

811
�
8C1, C1,?1 (¬Frequents(31,G1, C1)_

¬Serves(G1,11,?1)) _ Likes(31,11)
� ⌘
}

Showing universal solution for&2⌫ �&2�

Drinker(31, ⇤), Beer(11, ⇤), Bar(G1, ⇤), Likes(31,11), Frequents(31,G1, C1)
Drinker(31, ⇤), Beer(11, ⇤), Bar(G1, ⇤), Bar(G2, ⇤), Likes(31,11), Serves(G1,11,?1),
Frequents(31,G2, C1),¬(Frequents(31,G1, C1))
Drinker(31, ⇤), Beer(11, ⇤), Bar(G1, ⇤), Frequents(31,G1, ⇤),
Drinker(31, ⇤), Beer(11, ⇤), Bar(G1, ⇤), Bar(G2, ⇤), Likes(31,11),
Serves(G1,11,?1), Frequents(31,G1, C1), Frequents(31,G2, C1)
Drinker(31, ⇤), Beer(11, ⇤), Bar(G1, ⇤), Bar(G2, ⇤), Serves(G1,11,?1), Frequents(31,G2, C1),
¬(Likes(31,11)) ^ ¬(Frequents(31,G1, C1))
Drinker(31, ⇤), Drinker(32, ⇤), Beer(11, ⇤), Bar(G1, ⇤), Bar(G2, ⇤), Likes(32,11),
Serves(G1,11,?1), Frequents(32,G2, C1),¬(Frequents(32,G1, C1)) ^ ¬(Likes(31,11))

Drinker(31, ⇤), Beer(11, ⇤), Beer(12, ⇤), Bar(G1, ⇤), Bar(G2, ⇤), Likes(31,11),
Serves(G1,11,?1), Frequents(31,G1, C1), Frequents(31,G2, C1),¬(Likes(31,12))

Table 2: Queries used in the case study; universal solutions generated using D����A��, ;8<8C = 10. Note that the symbols in
queries (representing the query variables) and the symbols in c-instances (representing labeled nulls) are not the same.

frequent this bar, which could be interpreted as the correct solution
uses the frequents table together with negation in a di�erent way.
Actually, the wrong query joins Frequents with Serves, while the
correct solution joins Likes with Serves. Therefore, the universal
solution provides di�erent perspectives in understanding the query
and formulates a hint on how to modify the wrong query. The
ground instance by [41] only consists of four tuples: Drinker(“Bryan”,
“39934 Main St.”), Beer(“Amstel”, “A. Brewer”), Bar(“The Edge”, “802
Morris St.”), and Frequents(“Bryan”, “The Edge”, 3), which is in the
represented world of the third c-instance from our universal solu-
tion in Table 2. Such a simple counterexample might be less helpful
for users to understand why the query goes wrong, as one would
bene�t from the explicit conditions with negation.

5.3 User Study
We conducted a user study for the Beers dataset to evaluate: (R1)
how e�ective our approach is for explaining and understanding
bugs in queries, and (R2) whether completeness as a quality met-
ric is helpful. For (R1), we speci�cally compare our approach (c-
instances) with concrete instances [41] having constant values.
Note that our approach takes only the queries and the schema as
input, whereas [41] also takes a database instance as input and
outputs a sub-instance as a concrete counterexample2.
Participants.We recruited 64 participants, including 22 graduate
students from CS departments and 42 undergraduate students from
an undergraduate database course. Participation was voluntary
and anonymous, though the undergraduates were o�ered small
souvenirs as a reward for their participation (we did not get enough
responses from the undergraduates in our initial pilot surveys). The
undergraduate students were already familiar with the schema of
the Beers dataset from an earlier homework; while for the graduate
students, we explained the schema details and also asked about their
familiarity with SQL. We note that the undergraduate students have
also been exposed to the tool using concrete instances developed
by [41] (but only for relational algebra queries); because of this
2In a pilot study we also compared these approaches against a baseline of not providing
any instances (c-instance or concrete). We found that study questions involving this
baseline signi�cantly increased the length and di�culty of the survey demanding
higher participant e�orts to the point of discouraging participation, and that from the
preliminary results we collected, participants didmuch better with the help of instances.
Hence, in the �nal user study we excluded the baseline, but asked the question: “When
you learn SQL queries in the future, would you like to see the example instances shown in
this survey to help you understand incorrect queries?” All 64 participants answered yes.

familiarity, concrete instances might hold a slight advantage over
c-instances for these students. Half of the graduate students (11 out
of 22) graduate students declared high familiarity with SQL queries
and the rest reported moderate or low familiarity; our observations
for both groups were similar in this study, therefore we report the
overall statistics for graduate students.

Tasks. We asked all participants to spot errors in two SQL queries
(each has two major errors, see Table 3) querying the Beers data-
base, with the help of either our c-instances or concrete instances
from [41]. We provided each participant with one query followed by
c-instances and other query followed by concrete instances as coun-
terexamples, randomly dividing them into two groups: one group
saw (&1, c-instances) + (&2, concrete instances) and the other saw
(&1, concrete instances) + (&2, c-instances). The order of showing
these two questions for both groups was chosen at random to avoid
any familiarity bias against either c-instances or concrete instances.
Instead of showing completely abstract c-instances, we added an
example concrete value to each variable in the c-instance, showing
one way that it can be grounded. This is a trivial extension done
to help alleviate novices’ potential discomfort with seeing symbols
and conditions alone. This approach somewhat blurs the line be-
tween c-instances and concrete instances, but faithfully represents
how in practice c-instances would be deployed in an educational
setting. Then, for each query we have the treatment group (with
c-instances as explanation) and the control group (with concrete-
value-only instances as explanation). To study (R2), following the
task involving the �rst c-instance above, we presented a second
c-instance for the same query but with a di�erent coverage (which
would illustrate a di�erent error), and asked the participant what
errors they found upon seeing both c-instances, and whether they
felt the second c-instance provided additional help. (Note that [41]
and other related work, there is no option for generating additional
concrete instances that illustrate di�erent errors in the same query.)
At the end of the study, back to (R1), we also asked the participants
about their preferences between c-instances and concrete instances
for spotting errors in queries.

Results and analysis. Objectively, we evaluate the user perfor-
mance by the number of errors they spotted. Figures 14 show the
percentage of users who failed to spot any error, spotted one error,
and spotted both errors in each group.For example, consider the
last three bars in the left sub-�gure in Figure 14, which show the
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overall statistics (combining both queries) for all undergraduate
participants. Showing the concrete instance alone is already quite
helpful: only 31% of the users failed to �nd an error (“total-conc”).
Going from “total-conc” to “total-CI1,” we see a clear performance
improvement among users who were shown c-instances: percent-
age of the users failing to �nd an error goes down to 19%. Going
further from “total-CI1” to “total-CI2,” we see that as soon as users
are show a second c-instance, practically all of them were able to
spot at least one error, and the majority (64.3%) of them indeed spot
both errors in the query; in contrast, no users were able to spot
both errors with only a concrete instance (“total-conc”). Similar
conclusions can be drawn from per-query statistics (shown by the
�rst two batches of three bars in the left part of Figure 14) as well
as from statistics for graduate students (shown in the right part of
Figure 14). Overall, these results convincingly show that for (R1),
c-instances hold a clear advantage over concrete instances in ob-
jectively improving participants’ performance in spotting errors in
queries; and for (R2), showing multiple c-instances with di�erent
coverage dramatically improves participants’ ability in spotting
remaining errors in queries.

A number of other observations from these results are worth
noting but largely con�rms intuition. First, &2 was easier to debug
than &1. Second, graduate students overall perform better than
undergraduates. The coupling of these factors explains why we
did not see any di�erence from “Q2-conc” to “Q2-CI1” in the right
part of Figure 14; apparently most graduate students got enough
help from the concrete instance in order to spot at least one error
in the simpler &2. Nonetheless, they still needed the help with an
additional c-instance to uncover the second error.

Figures 15 and 16 summarize the subjective responses from par-
ticipants regarding their preference for c-instances vs. concrete
instances, and their opinion on the usefulness of additional c-
instances. A clear majority of the participants found the additional
c-instance useful per Figure 16. However, from Figure 15, it is ap-
parent that many participants prefer viewing concrete instances,
despite the fact that they perform objectively better with the help
of c-instances. This preference is stronger among undergraduates—
only a third preferred c-instances, compared with more than a
half for concrete instances. A relatively lower fraction of graduate
students—but still a half of them—preferred concrete instances. It
would be interesting to conduct additional study to pinpoint their re-
luctance to embrace c-instances despite their objective advantages,
but there are several possible explanations. First, the abstraction
provided by variables and conditions the c-instances may be seen
as more intimidating, especially for undergraduates. This conjec-
ture is corroborated by some of the free-form feedback comments
we received. Second, as mentioned earlier in this section, the un-
dergraduates already had some familiarity working with concrete
instances before this user study. Overall, the fact that still about
a third of the participants preferred c-instances shows that there
is a sizable and compelling demand for this approach. We also be-
lieve we can mitigate some of the reluctance in this user base with
improved interfaces and familiarity.

6 CONCLUSIONS AND FUTUREWORK
We have de�ned and studied the problem of compact query char-
acterization using the coverage of abstract c-instances. We have

Query description Wrong Queries
&1 : for each beer liked by any drinker whose
�rst name is “Eve”, �nd the bars that serve
this beer at the highest price

&⌫ in Figure 9 (our running example)

&2 : Among the drinkers who frequent “The
Edge”, �nd the names of those who do not
like “Erdinger”.

SELECT DISTINCT S.beer FROM Serves S,
Likes L WHERE S.bar = ’Edge’ AND S.beer
= L.beer AND L.drinker <> ’Richard’;

Table 3: Queries used in the user study.

Figure 14: User performance on spotting errors; *-conc: concrete
instance only, *-CI1: the �rst C-Instance, *CI2: the second C-Instance
(left: undergrad, right: graduate).
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18.2%

50.0%
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Figure 15: Preference on explanation types (left: undergraduate,
right: graduate).
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23.8%

Agree

Disagree

Neither 
agree nor 
disagree

68.2%
9.1%
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Neither 
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Figure 16: User feedback on “The second C-Instance provided addi-
tional help” (left: undergraduate, right: graduate).
devised algorithms and optimizations for computing such character-
izations building on the concept of chase and utilizing the structure
of the syntax tree. We experimentally showed that our approach
is e�ective at �nding c-instances that characterize the query and
examined the e�ect of query complexity and parameter changes
on the scalability of our approach. In future work, we plan to study
the development of further optimizations for �nding such solution
for more query classes di�erent properties of c-instances. In this
paper we showed that the problem of �nding a universal solution
is poly-time for CQ¬ queries, while the decision version is unde-
cidable for general DRC queries: understanding the computability
and complexity for universal solutions for other query classes in
between is another interesting research direction. Finally, while
our model can support queries with the same �nal aggregate and
di�erent bodies by removing the aggregate, extending our model to
support arbitrary aggregate queries is another intriguing direction
of future work.
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