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Abstract—Federated learning (FL) is an emerging collaborative machine learning (ML) framework that enables training of predictive
models in a distributed fashion where the communication among the participating nodes are facilitated by a central server. To deal with
the communication bottleneck at the server, decentralized FL (DFL) methods advocate rely on local communication of nodes with their
neighbors according to a specific communication network. In DFL, it is common algorithmic practice to have nodes interleave (local)
gradient descent iterations with gossip (i.e., averaging over the network) steps. As the size of the ML models grows, the limited
communication bandwidth among the nodes does not permit communication of full-precision messages; hence, it is becoming
increasingly common to require that messages be lossy, compressed versions of the local parameters. The requirement of
communicating compressed messages gives rise to the important question: given a fixed communication budget, what should be our
communication strategy to minimize the (training) loss as much as possible? In this article, we explore this direction, and show that in
such compressed DFL settings, there are benefits to having multiple gossip steps between subsequent gradient iterations, even when
the cost of doing so is appropriately accounted for, e.g., by means of reducing the precision of compressed information. In particular,
we show that having O(log %) gradient iterations with constant step size - and O(log 1) gossip steps between every pair of these

€

iterations - enables convergence to within e of the optimal value for a class of non-convex problems that arise in the training of deep
learning models, namely, smooth non-convex objectives satisfying Polyak-Lojasiewicz condition. Empirically, we show that our
proposed scheme bridges the gap between centralized gradient descent and DFL on various machine learning tasks across different

network topologies and compression operators.

Index Terms—Federated learning, decentralized learning, communication-constrained distributed optimization, compressed communication,

nonconvex optimization

1 INTRODUCTION

OLLABORATIVE machine learning (ML) methods such as

federated learning (FL) [1] are among the fastest grow-
ing technological advances that find applications in numer-
ous parallel and distributed systems. In such scenarios,
there are a large number of clients (e.g., mobile phones or
sensors) each with their own data and resources, and there
is typically a central server (i.e., cloud) whose goal is to
manage the training of a centralized model using the decen-
tralized client data. Given the ever-increasing number of
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nodes in distributed systems, decentralized FL (DFL)
schemes which allow each client to exchange messages only
with their neighbors without exchanging their local data,
show great potential in terms of scalability FL.

DFL can be thought of as an optimization task over a net-
work with n client nodes where the objective function is
possibly nonconvex [2]. Formally

min { fo)=>" f,;(x)} , (1)
x€R4 =1

where f; : R? = R for i € [n] := {1,...,n} is the local objec-
tive function of the ' client. The goal of the clients in the
network is to collaboratively solve the above optimization
problem by passing messages over a graph that connects
them [1], [3]. The optimization task in (1) arises in many col-
laborative ML tasks such as object and pedestrian detection
in connected autonomous cars.

DFL is often facilitated by communication of clients’ local
model parameters over a network that governs their com-
munication capabilities. Compared to a centralized meth-
ods, FL and DFL enable locality of data storage and model
updates which in turn offers computational advantages by
delegating computations to multiple clients, and further
promotes preservation of privacy of user information [1].

1045-9219 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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As the size of ML models grows, exchanging information
across the network becomes a major challenge in DFL and
distributed optimization in general. It is therefore impera-
tive to design communication-efficient strategies which
reduce the amount of communicated data by performing
compressed communication while at the same time, despite
the use of compressed communication, achieve a conver-
gence properties that are on par with the performance of
centralized and distributed methods utilizing uncom-
pressed information.

1.1 Contribution

In this paper, we consider the task of DFL with nonconvex
objective (i.e., training loss) functions in communication-
constrained settings. In such scenarios, the clients may need
to compress their local updates (using, e.g., quantization
and/or sparsification) before transmitting them to their
neighbors. In particular, our main goal is to answer the fol-
lowing question

Given a fixed communication budget, what should be our com-
munication strategy to minimize the (training) loss as much as
possible?

To this end, we demonstrate that in DFL, given a fixed
communication budget per round, performing multiple
gossiping/consensus steps — a common practice in decen-
tralized optimization [2], [3] — in addition to aggressive
compression, can yield a faster convergence rate (almost lin-
ear) compared to the standard approach of performing just
one high-precision gossiping step. We argue that this faster
convergence rate may result in a smaller loss/error as a
function of the total number of communicated bits. Specifi-
cally, we will demonstrate that given a fixed communication
budget per iteration, having multiple consensus (aka gossip-
ing) steps with lower precision is a better alternative com-
pared to having just one consensus step with higher
precision. Motivated by this result, we theoretically study
the effect of the number of gossiping steps on the rate of
convergence of DFL in a communication-constrained set-
ting. Specific contributions of this work can be summarized
as follows:

e We propose Decentralized Linear Learning with
Communication Compression (DeLi-CoCo), an itera-
tive DFL algorithm with arbitrary communication
compression (both biased and unbiased compression
operators) that performs multiple gossip steps in
each iteration for faster convergence.

e By employing @ > 1 steps of compressed communi-
cation after each local gradient update, DeLi-CoCo
achieves a linear rate of convergence to a near-opti-
mal solution for smooth nonconvex objectives satis-
fying the Polyak-Lojasiewicz condition (see Theorem
1). This rate matches the convergence rate of decen-
tralized gradient descent (DGD) [4] - a DFL
approach — with no communication compression
under much milder conditions. The proposed Q-step
gossiping further helps to arbitrarily decrease the
sub-optimality radius of the near-optimal solution,
thereby improving upon the results of DGD [4] (see
Corollary 1.1).
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e Our novel theoretical contributions enables us to
demonstrate that given a fixed communication bud-
get, increasing ) and decreasing the precision of
compression theoretically improves the convergence
properties of DeLi-CoCo (see Section 5.1).

e We verify our theoretical results and show the effi-
cacy of the proposed communication strategy for
DFL via extensive numerical experiments on both
convex and nonconvex DFL tasks, including the task
of decentralized classification using deep learning
models.

1.2 Organization

The rest of the paper is organized as follows. Section 2 posi-
tions our contribution with respect to the related work. Sec-
tion 3 discusses the notation and overviews the preliminary
concepts on distributed optimization. In Section 4, we intro-
duce the communication strategy for DFL based on multiple
gossip steps. The theoretical analysis is discussed in Sec-
tion 5. The empirical evaluation is provided in Section 6
while the concluding remarks are stated in Section 7.

2 SIGNIFICANCE AND RELATED WORK

Designing efficient algorithms for federated learning is one
of the most active area of research in the parallel and distrib-
uted system community in recent years [5], [6], [7]. Decen-
tralized federated learning and optimization have drawn
significant attention in the past few years due to the increas-
ing importance of privacy and high data communication
costs of centralized methods. Decentralized topologies over-
come the aforementioned challenges by allowing each client
to exchange messages only with their neighbors without
exchanging their local data, showing great potential in
terms of scalability and privacy-preserving capabilities.

2.1 Consensus With Compressed Communication
While DFL is an emerging topic, the study of decentralized
optimization problems dates back to 1980s [8]. The main
focus of early research in this area was on the task of aver-
age consensus where the goal of a network is to find the
average of local variables (i.e., clients” model vectors) in a
decentralized manner. Conditions for asymptotic and non-
asymptotic convergence of the decentralized average con-
sensus in a variety of settings including directed and undi-
rected time-varying graphs have been established in the
seminal works [9], [10]. Recently, [11] proposed a communi-
cation-efficient average consensus/gossip algorithm that
achieves a linear convergence rate and improves the perfor-
mance of existing quantized gossip methods [12]. In [11] a
stochastic decentralized algorithm for strongly convex and
smooth objectives is further developed. Such linearly con-
vergent gossip methods have also recently been extended to
the scenario where the communication graph of clients is
directed and time-varying [13]. In our work, we aim to
study the benefits of performing multiple quantized gossip
steps in DFL to reduce the training error given a fixed com-
munication budget, and consider nonconvex learning tasks
in our theoretical analysis.
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2.2 Decentralized Optimization With Compressed
Communication

Distributed optimization is one of the richest topics at the
intersection of machine learning, signal processing and con-
trol. Consensus/gossip algorithms have enabled distributed
optimization of (non)convex objectives (e.g., empirical risk
minimization) by modeling the task of decentralized opti-
mization as noisy consensus. Examples include the cele-
brated distributed (sub)gradient descent algorithms (DGD)
[2], [4]. These schemes consider small-scale problems where
the clients can communicate uncompressed messages to
their neighbors. Designing communication-efficient distrib-
uted optimization algorithms is an active area of research
motivated by the desire to reduce the communication bur-
den of multi-core and parallel optimization of ML models.
Majority of the existing works consider distributed optimi-
zation tasks with master-slave architectures where the com-
pression of communication is accomplished by using
methods based on sparsification or quantization of gra-
dients [14], [15], [16]. Divergent from these master-slave
architectures, FL’s properties such as high heterogeneity,
partial participation, and periodic communication between
the clients and the server, make FL a practically appealing,
hard-to-analyze method [1]. Recent FL schemes that pro-
mote communication efficiency either focus on compressing
the size of the client-to-cloud messages or decreasing the
number of communication rounds [13], [16], [17]. In contrast
to that line of work, we consider the more general and chal-
lenging setting of communication-constrained decentralized
federated learning and exploit the error feedback mecha-
nism of [14], [15], [16] as part of our proposed communica-
tion strategy to enable compressed message-passing while
maintaining a linear convergence rate. More importantly,
our focus in this paper is the importance of organizing the
communication resources. That is, given a fixed communi-
cation budget in DFL, what is the best strategy for the num-
ber of consensus steps and the precision of compression in
order to achieve a smaller error in terms of the number of
communicated bits.

It is worth noting that unlike a majority of decentralized
optimization and FL schemes including those with uncom-
pressed communication that require strong convexity to a
achieve linear rate, e.g., [3], [4], we only assume the Polyak-
Lojasiewicz condition which enables us to analyze noncon-
vex learning tasks. Our proposed communication strategy
results in a linear convergence rate for DFL with com-
pressed communication under the Polyak-Lojasiewicz
condition.

3 PRELIMINARIES AND BACKGROUND

In this section, we briefly overview a few important con-
cepts and definitions with regard to the communication net-
work and characteristics of the loss function.

We consider the standard DFL setup [2] where n clients,
each having a local function f;(.), aim to collaboratively
reach x* € X* C R?, an optimizer of (1). Problem (1) can be
written equivalently as [2], [4], [11], [18]

min
X| ==X

P =Y ﬁ-(x»} , @
i=1
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where x; € R? is the vector collecting the local parameters of
client i, and X € R¥" is a matrix having x; as its i" column.
Therefore, the goal of the clients in the network is to achieve
consensus such that x; = x* for some x* € X*; in matrix
notation, X = X*, where all the columns of X* are equal to
x*, ie, X* =x"1T.

To solve (2), each client can communicate only with its
neighbors, where the communication in the network is
modeled by a graph. Specifically, we assume each node i
associates a non-negative weight w;; to any node j in the
network, and w;; > 0 if and only if node j can communicate
with node i, and w;; > 0 foralli. Let W = [w;;] € [0,1]"" be
the matrix that collects these weights. We call W the mixing
or gossip matrix and state some its properties (following
[10]) below.

Assumption 1 (Mixing Matrix). The gossip matrix W =
[w;;] € [0,1]"" associated with a connected graph is non-nega-
tive, symmetric and doubly stochastic, i.e.,

w=w', W1=1. 3)

Under this condition, eigenvalues of W can be shown to satisfy
1= AM(W)| > |[A(W)| > -+ > |\ (W)| [10]. Furthermore,
8:=1—|X(W)| € (0,1] is the so-called spectral gap of W.

A large spectral gap implies a faster convergence rate of
decentralized algorithms. When the graph is fully con-
nected and deg(i) = n, with W = 11" /n, it holds that § = 1
which in turn implies consensus can be achieved exactly
after one iteration of message passing.

Designing the communication network and its associated
mixing matrix W with a large spectral gap is an important
task and an active area of research in multi-agent systems
and DFL (see e.g., [2], [10]) which is beyond the scope of
this work. Here, work under the standard consideration
that W and its spectral gap § are known and can be used as
inputs of our proposed DFL algorithm.

We now define some commonly assumed properties of
the objective function, i.e., the training loss in DFL."

Assumption 2 (Smoothness). Each local objective function is
L;-smooth, i.e., for all x,y € R4

00 < F) 4 -y VR 4 Dyl @

Also, define L := ), L;/n and L = max;L;.

Assumption 3 (Polyak-Lojasiewicz Condition). The
objective function satisfies the Polyak-Lojasiewicz condition
(PLC) with parameter u, i.e., for all x € RY

IVFOOI* = 2u(f() = £), w >0, f*=min f(x).

The Polyak-Lojasiewicz condition implies that when
multiple global optima exist, each stationary point of the
objective function is a global optimum [19]. This setting ena-
bles studies of modern large-scale ML tasks such as training
of deep neural networks that are generally nonconvex but
are fairly likely to satisfy PLC [20]. It is worth noting that

1. ||.|| denotes the euclidean norm.
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u-strongly convex functions satisfy PLC with parameter 11 —
thus, PLC is a weaker assumption than strong convexity.
Convergence of centralized gradient descent under PLC
follows a very simple analysis [19]. However, in decentral-
ized federated learning settings with compression, analysis
of the existing algorithms, e.g., [3], [4], [11], relies on a key
property of strongly convex objectives known as co-coerciv-
ity (see Theorem 2.1.11 in [21]). Unfortunately, the results of
such analysis do not generalize to PLC settings. In this paper,
by performing a novel convergence analysis, we establish
convergence of DeLi-CoCo for decentralized nonconvex
problems with compressed communication under PLC.
Finally, we characterize the compression operator C that
we use in our DFL algorithm. The following assumption is
standard and has been previously made by [11], [16], [22].

Assumption 4 (Contraction Compression). The compres-
sion operator C satisfies

Ee[[lc0) —x|* | x| < (1= ) x|, )

forall x € R where 0 < o < 1and the expectation is over the
internal randomness of C.

Note that C can be a biased or an unbiased compression
operator including:

e Random selection of k out of d coordinates or k coor-
dinates with the largest magnitudes. In this case v =
k/d [16]. We denote these two by rand(w) and
top(w), respectively.

e Setting C(x) = x with probability p and C(x) = 0 oth-
erwise. In this case w =p [11]. We denote this by
rand2(w).

e b-bit random quantization (i.e., the number of quan-
tization levels is 2°) from [23]

_sign(|Ix][ |, x|

d, — |2’
where w =1+ min{v/d/2",d/2}, u~[0,1, and
qsed, (0) = 0. In this case, v = 1/w .

4 COMPRESSED DECENTRALIZED LEARNING

In this section, we present our proposed DFL algorithm for
solving (2) iteratively in a decentralized manner where the
clients are restricted to communicate compressed informa-
tion (See Fig. 1 for the block diagram of the proposed
method) In particular, we aim to develop a scheme that by
relying on performing multiple low-precision compressed
gossiping steps achieves a smaller error in terms of the
number of communicated bits.

The proposed DFL algorithm, DeLi-CoCo (see Algorithm
1), consists of two main subroutines: (i) update of the local
variable x; via gradient descent, and (ii) exchange of com-
pressed messages between neighboring clients by perform-
ing @ >1 compressed gossiping steps via employing
Choco-gossip [11].

Let t =1,...,T denote the ' iteration of Algorithm 1
and let ¢ =0,....Q — 1 denote the ¢"" compressed gossip-
ing/consensus step Each client ¢ maintains three local vari-
ables: xij, z;l), and s(,‘z) Here, x§7 denotes the vector of
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current local parameters of node i, while z,ﬁ?}, and sii-) are
maintained locally to keep track of the compression noise
and be used as an error feedback for subsequent iterations,
respectively [11], [16].

Algorithm 1. The Proposed DFL Algorithm (DeLi-CoCo)

1: Input: stepsize 5, consensus stepsize y, number of gradient
iterations 7', number of consensus steps per gradient iteration
@), mixing matrix W; initialize X((]

2: fort=1,...,T do

3: Xg[)) = Xi?{ —nVF (Xg?i) (local gradient update)
70 — 50 — x©

4: forq=0,1,. ..,Q—ldo

5: S = gl C( ,("))W (Exchanging messages)

6: Zﬁqﬂ) = +C( 7" (Compression error
feedback)

7: X = x4 (81 — 71y (Local gossip update)

8: end for

9: end for

Consider a matrix notation where we store these quanti-
ties as the " column of matrices X,(q , 7" (@ and Stq , respec-
tively. At iteration ¢, each client updates 1ts own parameters
by performing a simple gradient descent update according
to step 3, where n > 0 is a constant learning rate specified
in Theorem 1. Following the gradient update, we propose to
perform @) compressed gossiping steps in to update the
local parameters as well as the error feedback variables.
This Q-step procedure is a crucial part of Algorithm 1 that

© .
enables updated parameters x;; to converge to their aver-
age value.

To perform the (¢ + 1) gossiping step, each client gen-

erates the compressed message C(x” - z, ) which in turn

is communicated to update s§7 , and then it is further used

by the transmitting client as an error feedback to update zi 9
(steps 5 and 6). Then, at (¢ + 1) gossiping step, each client
performs a gossip update [10] in step 7 with a gossiping/
consensus learning rate 0 < y <1 whose exact value will
be specified in Theorem 1. After performing compressed
gossiping for @ steps, the "' iteration of Algorithm 1 is
complete.

Remark 1. Let Q =1, y =1, and assume there is no com-
pression, i.e., C(xg 9 _ ziql)) X! 1) ). Then Algorithm 1
reduces to the DGD [4]. If Q = 1, n = O(1/T), and clients
perform local stochastic gradient updates, the proposed
scheme reduces to Choco-SGD [11]. We will show in Sec-
tion 4 that by performing @) > 1 gossiping steps and
reducing the precision of compression, Algorithm 1
achieves a smaller training error compared to these
schemes, given a fixed communication budged.

4.1 Practical Considerations

In a scenario where there is negligible latency and synchro-
nization among the clients, Algorithm 1 that relies on multi-
ple compressed gossiping steps achieves a faster
convergence rate and also requires fewer total number of
bits for communication (see Section 6). With latency and
synchronization considerations, decentralized federated
learning schemes based on multiple uncompressed consensus

Authorized licensed use limited to: University of Texas at Austin. Downloaded on November 19,2022 at 20:02:42 UTC from IEEE Xplore. Restrictions apply.
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Fig. 1. The diagram of the proposed strategy. After computing the gradient and performing a local gradient update, each node communicates for @
steps with its neighbors using a compressed gossip mechanism while keeping track of the accumulated compress error.

steps are shown effective in training deep models [24],
while the study of their benefits in terms of savings in com-
munication resources has remained an open question until
the present paper. Hence, even if synchronization con-
straints are taken into account, given that we employ com-
pressed gossiping steps, the proposed algorithm leads to
significant savings in the total number of communicated
bits. In this case, certifying that our algorithm converges
faster (with respect to wall-clock time) is difficult without
knowing the actual time expended on synchronization and
the latency of the communication structure, and is left for
future work. Nonetheless, in order to simulate a network
that may suffer from a high latency issues, and hence the
emergence of straggler nodes, we consider a scenario where
each client can communicate with its neighbors only 95% of
times. That is, with probability 5%, each node may become
a straggler at each gossiping step. This implies while it may
receive messages from its immediate neighbors, it will not
be able to transmit. We consider the linear regression task
on SYN-1 using the torus topology with n = 9 (see Section 6)
and show the test and training errors in Fig. 2. As the figure
demonstrates, while ) = 2 results in a better performance,
due to the straggler effect, increasing the number of gossip-
ing steps to ) = 5 suffers from a slow convergence. There-
fore, we conclude that for low latency networks moderate @
values, say @ = 4,5 is preferred, while for high latency net-
works a smaller @) such as Q = 1,2 should be chosen. Thus,
in communication-constrained settings, Algorithm 1 with
multiple gossiping steps () > 1) is indeed preferable.

5 CONVERGENCE ANALYSIS

In this section we analyze the convergence properties of
DeLi-CoCo. First, We define the following quantities:

A= max Y ||VAEOO)P,  Ro=F(XE) - f*. 7
=1

x*eXx* £
=

The main results of our convergence analysis are summa-
rized in the following theorem, whose proof is provided in
the attached supplementary material, which can be found
on the Computer Society Digital Library at http://doi.

ieeecomputersociety.org/10.1109/TPDS.2021.3138977, due
to space constraints.

Theorem 1. Suppose Assumptions 1-4 hold. Define

Qo = {log (p746)/10g (1 —Zyﬂ pi=1 —nLLE,

Sw

Y= 3 . ®
_ 2 _
168 + 82 — 88w + (4 + 28) A2, (I — W)
10° Linear Regression Objective(SYN-1)

- top 1,Q=1
= top 0.5,Q=2
—— top 0.2,Q=5

2

2

=)

(=

£

g0

0 250 500 750 1000 1250 1500 1750 2000
Total Bits Communicated
(a) Training loss
100 Linear Regression Objective(SYN-1)

—— top 1,Q=1
= top 0.5,Q=2
= top 0.2,Q=5

a

e}

]

€101

0 250 500 750 1000 1250

Total Bits Communicated

(b) Test loss

1500 1750 2000

Fig. 2. Training and test errors for the linear regression task on SYN-1
data with straggler nodes.
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. Non-Convex Objective (SYN-2): Consensus Ir=0.05
10

=8 bit,Q=1 (Choco-GD)
=== 4 bit,Q=2 (DeLiCoCo)
=== 2 bit,Q=4 (DeLiCoCo)
=== 1 bit,Q=8 (DeLiCoCo)

10-1

Training Loss

102

1500 2000 2500 3000 3500 4000

Number of Bits Communicated

0 500 1000

Fig. 3. Empirical effect of increasing the number of gossiping steps on a
non-convex nonlinear regression task given a fixed communication bud-
get per iteration.

Then, if the nodes are initialized such that X((JQ> =0, for any
Q > Qo after T iterations the iterates of DeLi-CoCo with n =
1 satisfy

v8Q
Ale™T

+ |:1 + 2 (1 + 6_@)} R(),OT> . (9)
wp

Remark 2. Note that Theorem 1 implies that there exists an
implicit limit on the compression level since as @ — 0, the
minimum value of @ (i.e., Q) tends to infinity. Further,
note that as @ — 0, y (the consensus learning rate) tends
to 0; implying there is hardly any message-passing and
mixing among the nodes.

5.1 Implications

The result of Theorem 1 implies having multiple consensus
(aka gossiping) steps with aggressive compression results
in a smaller error in terms of the number of communicated
bits. In fact, we can observe this via a simple experiment:
Let us consider a decentralized federated learning scenario
where we aim to collaborative solve a nonlinear regression
task over a network of resource-constrained clients (see Sec-
tion 6 for more details). We depict the training error versus
the communicated bits in Fig. 3. As the figure shows
increasing the number of consensus steps (denoted by Q)
with a lower quantization precision requires fewer commu-
nicated bits to achieve a target accuracy.

To see the verification of this result from Theorem 1, in
Lemma 3 in the supplementary, available online, we show
for o > 107, which is practical lower bound for the com-
pression/quantization rate in practice, the convergence rate
depends on

We shall analyze this upper bound to motivate the benefit of
advocating a higher @ by the proposed communication
strategy. Consider two pairs of (Q1, ;) and (Qq X ¢, w;/c)
where ¢ > 0 is an integer that determines the allocation of
communication resources, and (Qi,w;) satisfies the
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Fig. 4. Variation of g(c) versus ¢ for different values of 5.

conditions stated in Theorem 1. The proposed scheme for
both of these pairs require the same amount of communica-
tion budget. Upon defining

g(c) — e,gch(w/C):w _ 675201/4@03/47
in Fig. 4 we depict the value of g(c) versus c for various val-
ues of the spectral gap 8. As the figure shows g(c) is decreas-
ing in ¢ meaning that for a fixed communication budget,
increasing the number of gossiping steps () and decreasing
the compression parameter « theoretically results in
improved convergence properties given that both terms in
(9) incur smaller values. Intuitively, this is expected since
the rate depends on the product Qw**. This theoretical
result hence shows the advantage of Algorithm 1 that advo-
cates the use of multiple gossiping steps to achieve a smaller
error in terms of the number of communicated bits.

5.2 Further Discussions
We further highlight the following remarks:

1. Comparison to DGD. We compare our result to the prior
work in [4], [25] that assume exact communication. First, in
contrast to [4], [25], our analysis is carried out under PLC
without assuming (restricted) strong convexity. The radius
of the near-optimal neighborhood in [4] (see Theorem 4
there) is proportional to A/8 while in our case, by using the
proposed (- step compressed gossiping procedure, the
radius is proportional to A2(1 —§)2; in fact, we can make
the bound arbitrarily small by performing a sufficiently
large number of gossiping steps () (see Corollary 1.1).

2. Effect of Compression. Our results reveal that compres-
sion of messages using contraction operators can be thought
of as weakening the connectivity property of the communi-
cation graph by inducing spectral gap & = dw'/?. As
approaches zero, the consensus learning rate decreases.
Hence, as per intuition, a larger @ is required to satisfy the
conditions in the statement of Theorem 1.

3. Almost Linear Convergence. Our analysis further reveals
that at the cost of increased number of rounds of communi-
cation, the suboptimality radius can be arbitrarily reduced.
In particular, EC[F(Xt(Q))] — f* < eaccuracy can be achieved
after O(log?(1/¢)) rounds of communication by setting Q =
T =log (1/€). However, in practice it suffices to use a small
@ to achieve a competitive performance compared to cen-
tralized and decentralized schemes with no compression.
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4. Overparameterization. Consider the case that (1) corre-
sponds to a decentralized regression or classification task
wherein the model architecture is expressive enough to
completely fit or interpolate the training data distributed
among the clients [26], e.g., in the case of over-parameter-
ized neural networks or functions satisfying a certain
growth condition [27]. Then any stationary point of f will
also be a stationary point of each of the f;’s and thus A” = 0.
Therefore, in this setting and under PLC, Deli-CoCo con-
verges exactly at a linear rate of O(log (1/¢)) by setting @ to
be a constant independent of e.

Corollary 1.1. Instate the notation and hypotheses of Theorem 1.

In order to achieve ]EC[F(X(TQ))] — f* <, Deli-CoCo requires

= O(log?(1/€)) rounds of communication if A # 0, and © =
O(log (1/€)) if A = 0.

We emphasize that this result is new and to our knowledge,
DeLi-CoCo is the first algorithm attaining a linear convergence
rate for decentralized nonconvex FL with compressed communica-
tion in the interpolation regime. Notice that linear convergence
even in the centralized setting necessitates 7= O(log 1/e).
In the decentralized setting under strong convexity (SC),
without using techniques such as gradient tracking [18],
DGD based FL schemes use either n = O(}) to have O(1/¢)
rounds of communication (e.g., Choco-GD or DGD [2],
[11]), or a fixed stepsize (independent of T) to achieve linear
convergence to a near-optimal solution [4]. Corollary 1.1
states without over-parameterization @ = O(log1/€) ena-
bles our algorithm to converge to an e-accurate solution
under PLC with O(log®1/¢) rounds of communication,
which is a significant improvement over O(1/¢) for DGD
based schemes with decaying step-size.

5. Results Under Strong Convexity. Since PLC is implied by
strong convexity, Theorem 2 provides a convergence rate
for strongly convex and smooth objectives. In Theorem 2 by
explicitly exploiting the strong convexity of the individual
fi’s, we provide an alternative result that improves the
dependency of the rates on () and n.

Theorem 2. Suppose Assumptions 1,2, and 4 hold. Further,
assume each f; is strongly convex with pammeter i ! and define

w=>;u;/n, i =min;u; and Dy = ||XOQ) X*||%. Define
5 .
Qo = {log (é/46)/10g (1 ——”ﬂ, =11
2 L
dw
= . 10
Y166+ 87— Sbw+ (4+ 20002, (1— W) (10
Then, if the nodes are initialized such that X[(]Q> =0, for any

Q > Qo after T iterations the iterates of DeLi-CoCo with n =
W
7 satisfy
Ecl Xy — X°|*
VSQ

A2
—o(*+

5.3 Proof Outline

Here, we briefly discuss the technical difficulties and the
main ideas of the proof. Due to space limitations, the
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details are in the attached supplementary material, avail-
able online.

5.3.1 Technical Challenges

To show the advantage of employing multiple gossip steps
with compressed communication in the nonconvex setting
under PLC - a setting that is being analyzed for the first
time (in decentralized FL) — we develop a novel analysis
technique. In this technique — divergent from the existing
works, e.g., [3], [11], [28] — we model the task at hand as a
constrained optimization problem with a specific inexact
projection tailored towards decentralized optimization (i.e.,
approximating P,(.), the projection onto £, the linear sub-
space of d x n matrices having identical columns, see Sec-
tion 1 of the supplementary material, available online).
Note that because of inexact projection we cannot rely on
the existing convergence proof of projection-free first-order
methods under PLC, or proximal methods under proximal-
PLC stated in [29]. Instead, we utilize the specific structure
of the inexact projection that we define and its implications,
such as P (VF(X*)) =0 € L, to carry out the proof.
We now discuss the main steps of the proof.

5.3.2 Perturbed Iterate Analysis
Our proof relies on analyzing the (virtual) average iterates

Xz‘,Jrl :,Pﬁ(XT*UVF(Xf)L Xt = [i(t,...,i(t}7
- 1 _ B
P(VF(Xy)) === [Vf(xt), L V)], (12)
where x; = Z x“ is the average parameters at iteration

t. Then, we show the iterates of DeLi-CoCo satisfy

X9 = Pe(X, —nVF(X) + EY, (13)
for some error matrix EL@ € R,

Using a new result (Lemma 1) we show that the average
iterates converge linearly under PLC, i.e.,

F(%) - ' < [F(%0) - ] (1-289(1-51) ), (9

Ly 2

despite the projection and the fact that the global objective is
nonconvex. Evidently, given this result, we further need to
derive an upper bound on the error term EZE‘D

Bounding the Error. We first bound the error term of the
' jteration according to
Ecl| B < ef = Eell X[ - X" + Ec)| ;¥ - "

(15)

To analyze e in Lemma 4 we leverage the linear convergence
of {X;} and the gossiping steps with error feedback [10], [11]
to establish in Lemma 3 that with y as in Theorem 1

_&Q >
et < e % (Bell X" - Xl + Ee| X" - Z|)

2(4) —
< e # (Bl X — i) + Bl X - Z|).

Upon establishing this last result we argue that the
sequence e} and in turn the error term EY converge line-
arly to O(n?A%e"7") with the same rate as in (14). Finally,
we employ the smoothness and PLC assumptions on F to
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Fig. 5. Effect of different (Q, b) pairs (where b denotes the number of bits in gsgd) such that Qb = 8, on the total number of bits communicated for
SYN-2, with three different consensus learning rates y. In all three plots, torus topology is used with n = 16, ¢, regularization value = 0.001, and

n=0.1.

establish a recursive expression on the function sub-opti-
mality F(X!?)) — f*. However, given the inexact projection
in the iterates Xf , this recursive expression is involved.
Nonetheless, we show that using the choice n=1/L
together with specific properties of P.(.), by using the
Young's inequality and the variational characterization of
the projection [21] we can judiciously bound the additional
cross terms and establish the proof.

6 NUMERICAL EXPERIMENTS

We start our extensive empirical analysis by verifying our
theoretical results on common regression and classification
problems. Note that for these tasks Assumptions 1, 2, and 4
hold. Afterwards, we show the efficacy of our method in a
federated learning setting with partial participation and
periodic communication, which can be thought of as a
decentralized DL setting with a time-varying communica-
tion graph (see Fig. 11).

6.1 Verifying the Theory

Following [11], for all the experiments we plot the sub-opti-
mality, i.e., f(x;) — f* against the number of local gradient
computations (or steps). Here, f* is the optimal value
obtained by running vanilla gradient descent with the entire
data on a single machine — we shall refer to this setting as
”Centralized GD”. We consider the top(k) and gsgd com-
pression schemes and consider the ring and torus topolo-
gies to represent the communication graph of the network
(see Fig. 11 for an example of a torus graph with 16 nodes).
All plots are averaged over 3 independent runs. Before
describing our experimental set-up, we describe the tasks
and the datasets.

6.1.1 Tasks and Datasets

Let {s\", ..., s\/)} denote the samples being processed in the
i node where n; is the total number of samples in the i
node. Then, fi(x) = ;- >0, ((x, sgfl)), where £(.) denotes the
loss function of the tasks that we explain next.

Linear Regression. We train a linear regression model on
m = 10000 synthetic data samples {(a;,y;)}", generated
according to y; = (6%, a;) + ¢;, where 8* € R**?, the ;' input
a; ~ N(0, Irpp0), and noise ¢; ~ N(0,0.05). We refer to this
dataset as SYN-1. Here, we use the squared loss function

with /;-regularization.

Non-Convex Non-Linear Regression. We train a non-linear
regression model on m = 10000 synthetic data samples
{(a;,y:)}i~, generated as y; = relu((9*,a;)) + ¢;, where 6" €
R2% the " input a; ~ N(0, o), € ~N(0,0.05) and
relu(z) = max(z, 0) (i.e., the standard ReLU function). We call
this synthetic dataset SYN-2 henceforth. We model this task
as training a one-layer neural network having ReLU activa-
tion with the squared loss function and ¢;-regularization.

Logistic Regression. We use a binary version of MNIST [30]
where the first five classes are treated as class 0 and the rest
as class 1. We train a classifier with the binary cross-entropy
loss. We consider a decentralized setting where the data is
evenly distributed among all the nodes in a challenging
sorted setting (sorted based on labels) where at most one
node acquires examples from both classes.

Using the above tasks, next we study the effect of the fol-
lowing considerations.

6.1.2 Setup: Fixed Communication Budget Per lteration

In order to illustrate the value of having more gossiping
steps (i.e., larger ()), we consider a simple setting where our
communication budget in every iteration (involving one
gradient computation step and () gossiping steps) is fixed.
So for top-k/rand-k, we keep Qk constant, whereas for b-bit
qsgd, Qb is kept constant. Since Qk/ Qb is kept constant, the
total number of bits communicated will be proportional to
the number of iterations 7' (which is the horizontal axis of
the plots in Figs. 5 and 6). In Fig. 5, we consider a DFL set-
ting with n = 16 clients forming a torus topology, and plot
the training loss on the vertical axis (in log-scale) versus the
number of bits (order wise) on the horizontal axis for SYN-2
(non-convex non-linear regression) with qsgd. We maintain
Qb =28 and consider 3 different consensus learning rates
y ={0.05,0.1,0.15} (keeping everything else the same).

In Fig. 6, we show similar plots for SYN-1 (strongly con-
vex linear regression task) with top-k. Let w = (k/d) % 100 (d
being the dimension of the vectors). We keep Qw = 100
(note that this is the same as maintaining @k constant) and
consider 3 different values of the number of nodes n =
{9,16,25} (keeping everything else the same).

In Fig. 8, we show results for the logistic regression task
on MNIST with rand(w). Let w = (k/d) * 100 (d being the
dimension of the vectors). We keep Qw = 100 (note that this
is the same as maintaining Q& constant) and consider the
two most commonly used topologies, ring and torus with
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Fig. 6. Effect of different (Q, w) pairs (where w denotes the percentage of largest magnitude co-ordinates retained in the top-% quantization) such that
Qw = 100, on the total number of bits communicated for SYN-1. We consider the torus topology with three different values of n. In all three plots, y =

0.05, ¢, regularization value = 0.001, and n = 0.1.

n = 9. Everything else is kept the same. Significance of large
Q. In both Figs. 5 and 6, observe that higher ) at the expense
of more aggressive compression leads to fewer gross total
number of bits communicated — as predicted by the results
established in the beginning of Section 5.1. Consistent with
the results of Figs. 5 and 6, observe that in Fig. 8, using a
higher @ at the expense of more aggressive compression
leads to fewer gross total number of bits communicated —
for both ring and torus topologies.
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Fig. 7. (a) Runtime versus network size for the linear regression task on
SYN-1 dataset with the torus topology. All schemes experience a slower
convergence as the size of the network increases. (b) Training loss ver-
sus network size given 30 sec runtime budget for the linear regression
task on SYN-1 dataset with the torus topology. The figure shows the
benefit of the proposed approach.

Note that if latency/synchronization time between the
nodes is negligible, then having higher () also leads to faster
convergence (since the total number of bits is proportional
to 7" in our setting). Further, in Fig. 6 (for SYN-1, which has
a strongly convex objective), observe that higher @) results
in almost straight line curves (recall that the training loss is
plotted in log-scale) — implying linear convergence. Further
note that for @ =1 the curves are not straight lines. This
verifies in turn Corollary 1.1.

Extreme Compression Effect. As we discussed in Section 5.1,
as long as the compression rate is not too severe, our theoreti-
cal results establishes that increasing @ is beneficial. Too ver-
ify this result, we consider the SYN-1 dataset for the linear
regression task and show the results of training and test per-
formance in Fig. 10. In this scenario we used the torus topol-
ogy with n = 9 and kept the learning rates n and y fixed for
all curves. As the figure demonstrates, increasing ) helps
improving the performance, but up to a point (i.e., a com-
pression rate higher than 2%). When the compression rate is
too small, i.e., 1%, the algorithm diverges. This observation
is consistent with our preceding argument that a higher @
helps as long as the compression rate is not too small. Note
that the smallest compression rate may depend on how diffi-
cult learning the parameters of the model are for a given task.

Slightly Convex Curves. Note that the curves in Figs. 5, 6,
and 8 are slightly convex. This phenomenon stems from the
fact that the tested ) might be smaller than @)y specified in
Theorem 1. To further investigate this we ran a test on SYN-
1in Fig. 9. As we see, given a fixed w, with increasing @) the
convergence curves approach that of the centralized algo-
rithm (which attains a linear rate).

Runtime Comparison. Finally, we aim to determine the
effect of the network size and a fixed runtime budget on the
accuracy. Fig. 7 summarizes the result of this study for the
linear regression task on SYN-1 dataset with the torus topol-
ogy. Fig. 7a shows all schemes experience a slower conver-
gence as the size of the network increases. Fig. 7b shows
given a fixed runtime budget of 30 sec the proposed
approach finds higher quality models.

6.2 Deep Learning Experiments

Having verified our theoretical contribution via linear, non-
linear, and logistic regression tasks in the previous section,
we now resort to large-scale experiments with deep
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Fig. 8. Effect of different (Q, w) pairs (where » denotes the percentage of
random co-ordinates picked in the rand quantization) such that Qw =
100, on the total number of bits communicated for MNIST logistic regres-
sion task. We consider the ring and torus topology with n = 9. In both
plots, y = 0.05, ¢, regularization value = 0.001, and n = 0.2.

learning models to identify parameters of a predictive
model in a federated learning scenario, thereby demonstrat-
ing the efficacy of the proposed communication strategy.

6.2.1 Classification on CIFAR-10

To show the benefit of the multi-step gossiping in large-
scale non-convex optimization tasks, we consider the task
of distributed classification of the CIFAR-10 dataset. We
assume a DFL scenario where n = 10 clients form a time-
varying undirected communication graph (see Fig. 11 for a
simple illustration). Specifically, at each time step a random

SYN-1, Consensus learning rate = 0.2
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Fig. 9. As Q increases the convergence curves approach to a linear
curve.
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Fig. 10. Training and test errors for linear regression task on SYN-1 data.
Increasing @ helps improving the performance as long as the compres-
sion rate is not too small.

subset of r = 0.5n (= 5 for this case) nodes form a fully con-
nected component and perform compressed gossiping
among themselves. Note that the overall graph at each time
step is disconnected. However, the union of these graphs
over all time steps is going to be connected with high proba-
bility and therefore decentralized learning methods are
expected to converge [31], [32]. The described setting mod-
els a federated learning task with periodic communications
[1] (see [33]), where in each communication round only r
out of n clients share their local models with the server.

The model in each client is a two-layer neural network
with ReLU activation with 500 neurons in each hidden
layer. Furthermore, the clients employ stochastic gradients
with local batch size of 256 (as opposed to full gradients
considered in our theoretical results). We consider a hetero-
geneous setting where each client can have data from at
most five (out of 10) classes.

We now describe the procedure that we have used to gen-
erate heterogeneous data. The entire training data is first
sorted based on labels and then divided into 50 equal data-
shards in the sorted order, i.e., for CIFAR-10 each data shard
is assigned 1000 samples. Further, this way of splitting
ensures that each shard can have data belonging to just one
class. Each client is then assigned 5 shards chosen uniformly
at random without replacement to cover the whole dataset.
Thus, each client can have data from at most five classes.

We train the models using the categorical cross-entropy
loss with /;-regularization. The weight decay value in
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Fig. 11. Left: DFL on a ring topology with n = 16 clients used in SYN-1 and SYN-2 experiments. The nonzero weights in the mixing matrix are equal to
1/(degree + 1) = 1/3. The plus one is to account for a “self-loop” as each node always communicates with itself. Middle: DFL on a Torus graph with
n = 16 used in SYN-1 and SYN-2 experiments. The nonzero weights in the mixing matrix are equal to 1/(degree + 1) = 1/5. Note that we use differ-
ent colors for edges only for clarity. Right: An example of DFL with a time-varying undirected communication graph with uniformly at random client
selection used in distributed classification with neural networks on CIFAR-10 and Fashion MNIST. While n = 10 in the experiments, for the ease of
demonstration we only show six clients in the figure.
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PyTorch for applying ¢;-regularization is set to be le-4. The  bits to compress the communication in the network). The
experiments are run on one NVIDIA TITAN Xp GPU. initial learning rate for all pairs of (Q, b) is set to 1072

We follow the same experimental setting as that in the The results are shown in Fig. 12a. As the figure shows,
previous section, i.e., keeping the communication budget in  similar to the results on regression tasks, the proposed
every iteration fixed to Qb = 16, where b denotes the num- approach benefits from increasing @ while reducing b, and
ber of bits in gsgd (i.e., we use the QSGD operator with b given a fixed communication budget the achievable error
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Fig. 12. Training loss and Test accuracy for distributed classification with neural networks via the considered DFL setting with a time-varying graph on
CIFAR-10 (left) and Fashion MNIST (right). The z-axis is the normalized number of communicated bits where the normalization factor is 0.5nd (d
being the dimension of the parameters). Note that for CIFAR-10, (Q = 4, b = 4) does not do better than (Q = 1, b = 16) due to which we have not
shown it in the plot. We suspect that with just 4 bits, the learned model parameters are not “precise” enough to classify CIFAR-10 very well — even
with multiple gossip steps. Note that for the CIFAR-10 experiment Q = 4, b = 4 is not shown since given the large number of parameters in this
experiments, b = 4 will be a sever quantization level that results in slow convergence.
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reduces by adopting the proposed multiple-step approach.
We note that due to the fact that the data distribution is het-
erogeneous, a phenomenon known as client drift [34] slows
the convergence of the average model. This is captured in
Theorem 1 by the quantity A? which is a notion quantifying
to what extent the clients’ data distribution is different. As
Theorem 1 shows, by increasing (), we can reduce the effect
of a high A%, thereby reducing the effect of client drift.

Note that as predicted by Theorem 1, the convergence
curves are relatively linear, even though we use stochastic
gradients for each client.

6.2.2 Classification on Fashion-MNIST

We consider the same task as the one in Section 6.2.1, now
using the Fashion-MNIST dataset [35] instead. We use two-
layer neural network in each node with ReLU activation
and 300 neurons in each hidden layer. Here, we use n = 20
clients each having data from at most two classes — note that
this is a high degree of heterogeneity. We use a similar pro-
cedure as described in Section 6.2.1 for generating heteroge-
neous data here. The only change we make here is that the
number of shards is set to 40 due to which each client gets
the data of two shards (each of which has data from just one
class as before). The graph topology is the same as that
described in Section 6.2.1. We also use the same weight-
decay value and initial learning rate as Section 6.2.1.

Keeping the communication budget in every iteration
fixed (Qb = 16) by using qsgd with b bits, we show the train-
ing loss curves corresponding to different pairs of (Q,b) in
Fig. 12b. The result shows yet again the benefit of the pro-
posed multiple-step approach in reducing the the client drift
phenomenon in FL and thereby lowering the the training
error under a fixed communication budget per (stochastic)
gradient computation.

7 CONCLUSION

In this work, we considered the problem of communication-
constrained decentralized federated learning to learn param-
eters of a deep predictive model in a collaborative fashion.
We proposed a communication strategy that under a fixed
communication budget aims to minimize the (training) loss
as much as possible. The key insight behind the proposed
strategy is using multiple gossip steps — given a fixed com-
munication budget per iteration, having multiple gossip
steps with lower precision communication is preferable to
having just one gossip step with higher precision communi-
cation, in terms of the total number of bits communicated.

In particular, we showed that having O(log ) gradient
iterations with constant step size - and O(log 1) gossip steps
between every pair of these iterations - enables convergence
to within e of the optimal value for smooth non-convex objec-
tives satisfying Polyak-Lojasiewicz condition that arise in the
training of deep learning models. Our extensive empirical
study on a range of machine learning tasks such as regres-
sion, and collaborative classification via deep learning mod-
els across different network topologies and compression
operators validates our theoretical contribution and shows
the efficacy of the proposed scheme.

As part of the future work, it would be of interest to con-
sider other practical extensions and considerations including
communication strategies for directed and time-varying

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

networks, dealing with communication-dropout and noisy
communication channels, and use of stochastic local gradients
and momentum. Another extension would be incorporating
momentum to have an accelerated version of the proposed
method.
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