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Sea star wasting disease (SSWD) refers to a suite of gross pathological signs
observed in Asteroidea species. It presents to varying degrees as abnormal
posture, epidermal ulceration, arm autotomy and eversion of viscera. We
report observations of SSWD in the sunstar Crossaster papposus, the first
observations of its kind in Europe. While the exact cause of SSWD remains
unknown, studies have proposed pathogenic and environmental-stress path-
ways for disease outbreaks. Although the present observations do not
support a precise aetiology, the presence of SSWD in a keystone predator
may have wide reaching ecological and management implications.

Sea star wasting disease (SSWD) is a poorly defined suite of gross observations
afflicting sea stars (Echinodermata, Asteroidea) first reported in coastal seas
around North America [1-4]. The condition manifests to varying degrees as
abnormal posture, epidermal ulceration, arm autotomy and the eversion of vis-
cera through the body wall that have coincided with mass mortality events in
over 20 species of sea stars [4-6].

The precise aetiology of SSWD is unknown, and previously asserted patho-
genic associations with a densovirus are questionable [7-10]. Furthermore,
given the widespread distribution of wasting-like syndromes across multiple
species of Asteroidea, it is unlikely to have a single aetiology and could refer
to several conditions that may or may not be pathognomic [11-14]. However,
despite the lack of precise aetiology, there is a linkage with environmental
conditions which may exacerbate the progression of tissue degradation [15].

Studies have indicated a correlation of SSWD with environmental con-
ditions such temperature and dissolved oxygen concentrations [15,16]. Some
species may exhibit symptoms with exceptionally elevated temperatures (e.g.
Heliaster kubinijl: [2]) or reduced temperatures (e.g. Pisaster ochraceus: [17]).
SSWD symptoms have even been observed with unremarkable seasonally
induced temperature fluxes [18]. There is some evidence that decreases in dis-
solved oxygen associated with elevated temperatures may stress the sea star
and exacerbate SSWD symptoms [7]. Increases in dissolved organic matter
(DOM), associated with enrichment events, may promote heterotrophic
microbial growth at the asteroid—water boundary which may reduce the avail-
ability of dissolved oxygen [15]. This thesis is further supported by the
susceptibility of larger more rugose species to SSWD; a bauplan that results
in a lower surface area to volume ratio that restricts hydrodynamic flow and,
by extension, diffusive respiratory potential, respectively [7,15]. Whatever the
environmental trigger, SSWD symptoms appear to progress faster during
periods of environmental instability [4,7,11,15].

While SSWD outbreaks in the northeast Pacific have attracted significant
attention, the presence of asteroid wasting has been reported worldwide [11].
Menge [5] and Dungan et al. [2] both report on cases that predate the 2013
northeast Pacific outbreaks, with the former concerning Asterias spp. in the
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Figure 1. Crossaster papposus specimens displaying gross signs of SSWD. Healthy/asymptomatic individual displaying no gross signs of SSWD (a). Individual dis-
playing viscera protruding from epidermis (b). Individual displaying viscera protruding from epidermis at multiple sites, limb degradation and contorted limbs (c).
Individual displaying white lesions on limbs, limb degradation, viscera protruding from epidermis and gross tissue disintegration around the aboral surface of the

body cavity (d).

North Atlantic. Further, similar signs of wasting have been
reported for Patirella vivipara in Tasmania [12], for Astropecten
johnstoni in Sardinia [13], and for Acanthaster planci on the
Great Barrier Reef [19].

Reporting new cases is therefore important for understand-
ing the geographical extent of SSWD, as well as the diversity of
species that are susceptible. Here we present the first confirmed
records of SSWD in a native European rugose sea star,
Crossaster papposus (Solasteridae). We discuss these obser-
vations in relation to proposed SSWD aetiologies, and discuss
the implications for European shelf sea management.

2. Material and methods

Specimens of C. papposus (n=12) were collected on an ad hoc
basis from crab creels from around 20-25 m depth in the Irish
Sea and returned to holding tanks at Queen’s University Belfast
Marine Laboratory, Portaferry in March 2022. Specimens were
collected for behavioural studies. All specimens presented a
normal, healthy appearance and were housed individually in
netted containers (L56 cm x W36 cm x H23 cm) within a covered

flow through system. The entire system was supplied with UV
and sand filtered seawater from the adjacent fully marine Strang-
ford Lough. The containers included rocks to provide additional
cover, and algal growth was permitted on the system’s surfaces.
While containers prevented contact between sunstars, water was
able to flow freely between containers.

Gross signs associated with SSWD were confirmed by
I. Hewson (2022, personal communication). Observations were
conducted each day until day 31 after capture. Mortality result-
ing from disease progression was recorded, with a Kaplan-
Meier survival curve produced for the month-long observation
period based on time-to-death.

3. Results

Gross observations consistent with SSWD became notable in
previously healthy/asymptomatic individuals (figure 1a) 5
days following resettlement in holding tanks. Initial gross
signs displayed included white lesions appearing on the epi-
dermis, body contortion, loss of body turgor giving the
animal a ‘limp’ appearance when handled, however these
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Figure 2. Kaplan—Meier survival curve for 12 C. papposus over a 31-day observation period since capture. Shaded area represents 95% confidence intervals.

were not consistent in all animals. Progression of the disease
resulted in viscera (including pyloric caeca and gonads) pro-
truding from epidermis (figure 1b—d), progressive limb
degradation (figure 1c,d), and gross disintegration of the
body cavity (figure 1d4). Hydrostatic pressure in the water
vascular system is seemingly maintained and tube feet may
still be mobile at this point. Gross disintegration of the central
disc epidermis leads to a disintegration of the stomach, result-
ing in an unrestricted cavity from the mouth to the aboral
surface (figure 1d).

The survival probability of animals after 31 days was
0.333 (s.d.=0.136; 95% CI 0.150-0.742). Four animals
remained after 31 days of observation with the remaining
eight having died (figure 2). In all cases of mortality, disease
progression led to gross body disintegration.

We report observations of the common sunstar, C. papposus,
presenting gross signs consistent with SSWD. Previous
studies have observed SSWD in C. papposus in the northeast
Pacific (I. Hewson 2022, personal communication) with the
larger size and more rugose epidermis suggesting suscepti-
bility (sensu [7]). These findings represent the first case of
SSWD in any asteroid in Europe. However, previous record-
ings of mass die-offs of asteroids in European waters (e.g.
Astropecten jonstoni; [13]) may suggest that SSWD is under-
reported. Indeed, Staehli’s [13] experimental work and anec-
dotal observations highlight symptoms mirroring SSWD
related to elevated temperatures. In these cases, gross obser-
vations reported white lesions appearing on the epidermis,
followed by a loss of turgor and large blisters forming on
the aboral side, eversion of pyloric glands and rapid full
body disintegration, all of which are symptoms for SSWD
(sensu [1-4]).

With previous observations of wasting-like disease being
associated with elevated temperatures, and the present obser-
vations mirroring their appearance and progression [13], it

may be that the cases reported here are also linked to temp-
erature fluctuation. While this would further associate
SSWD with environmental fluxes, and highlights a thermally
induced condition [13,16,17], a pathogenic aetiology cannot
be ruled out. Disentangling environmental stressors from a
pathogenic aetiology remains challenging. It is additionally
possible that SSWD associated with thermal fluxes may
push epidermal pathogens towards their thermal optima
within host individuals and decrease immune responses
[2,11,13,18,20].

Asteroids appear to present a limited suite of disease
signs, and thus gross observations may never be consistent
with a single aetiology [15]. Wasting signs may present fol-
lowing periods of stress, i.e. capture and transportation,
and as such this cause cannot be ruled out. Field observations
would therefore be necessary to confirm the wider prevalence
of SSWD.

Supporting the pathogenic aetiology of SSWD, Fuess et al.
[21] report on signs presented in the sunflower sea star Pyc-
nopodia  helianthoides. Following homogenate inoculation
from symptomatic individuals, wasting signs in previously
healthy individuals appeared in all subjects, suggesting dis-
ease transmissibility. Further RNA-sequence analysis
highlighted differential immune system gene expression in
control versus inoculated animals. As C. papposus was
housed in netted containers that did not restrict waterflow
between individuals, the potential for transmissibility was
not prevented in the present study.

Corresponding with the period of capture, provisional
UK Met Office statistics reported an elevated temperature
anomaly of 1.7°C for late March 2022, along with a 90%
increase in sunshine hours in Northern Ireland [22]. High
atmospheric pressure led to unseasonably warm weather
[23]; however, targeted research would be needed to demon-
strate whether environmental fluxes are correlated to SSWD
prevalence in European C. papposus.

Nevertheless, the possibility of thermal association of
SSWD in European waters is concerning given projected
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climate change scenarios with more extreme weather events
[24]. An increase in seabed temperature fluxes, and the com-
pounding effects of increased primary production and higher
DOM concentrations [7,15], may lead to large SSWD out-
breaks in larger more rugose asteroids. As a subtidal sea
star [25-27], mass mortality events in C. papposus may have
gone undetected.

Many sea stars act as keystone predators responsible for
regulating benthic invertebrate communities [28-31]. Crossa-
ster papposus itself is an important predator of other
echinoderms, including the swarm-forming asteroid Asterias
rubens [32-34]. An increase in conditions supporting SSWD
outbreaks may have management implications for benthic
communities [11,17], the consequences of which will impact
ecosystem service provisioning [35].

The observations reported in this article provide the first
gross observations consistent with SSWD in the sunstar C.
papposus in Europe. While the exact aetiology of SSWD is
unknown, its prevalence is thought to be linked to rapid
environmental fluxes. These findings demonstrate the sus-
ceptibility of C. papposus to SSWD and suggest that SSWD
is more geographically widespread than initially thought.
Further research is needed to fully quantify the extent of

SSWD in this region; subtidal surveys and observations of
actively wasting asteroids would further support the pres-
ence of SSWD in European Waters. This finding would be
highly significant as many sea stars act as keystone species
in their respective communities. With increasing frequency
of temperature anomalies, targeted research into the mechan-
isms of SSWD outbreak and disease progression will be
needed to outline its full extent and wider implications.

The observations presented in this article follow the ethical
guidelines of Queen’s University Belfast.

Data are available from the Dryad Digital Repository:
https:/ /doi.org/10.5061/dryad.zgmsbccf7 [36].
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