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ABSTRACT: The generalized quantum master equation (GQME) provides a
powerful framework for simulating electronic energy, charge, and coherence
transfer dynamics in molecular systems. Within this framework, the effect of the
nuclear degrees of freedom on the time evolution of the electronic reduced
density matrix is fully captured by a memory kernel superoperator. However, the
actual memory kernel depends on the choice of projection operator and is
therefore not unique. Furthermore, calculating the memory kernel can be done
in multiple ways that use different forms of projection-free inputs. Although the
electronic dynamics is invariant to those choices when quantum-mechanically
exact projection-free inputs are used, this is not the case when they are obtained
via more feasible semiclassical or mixed quantum-classical approximate methods.
Furthermore, the accuracy and numerical stability of the resulting electronic
dynamics has been observed to be sensitive to the above-mentioned choices
when approximate methods are used to calculate the projection-free inputs. In this article, we provide a systematic road map to 30
possible pathways for calculating the memory kernel and highlight how they are related as well as the ways in which they differ. We
also compare the performance of different pathways in the context of the spin-boson benchmark model, with the projection-free
inputs obtained via a mapping Hamiltonian linearized semiclassical method. In this case, we find that expressing the memory kernel
with an exponential operator where the projection operator precedes the Liouvillian yields the most accurate and most numerically
stable results.

1. INTRODUCTION
A variety of important chemical processes, ranging from
photosynthesis to photovoltaics, involve an intricate network
of interrelated electronic energy, charge, and coherence
transfer pathways.1−12 The simulation of the inherently
quantum-mechanical dynamics underlying these pathways
remains one of the most formidable challenges facing
computational chemistry. The exponential scaling of the
computational cost with system dimensionality makes the
quantum-mechanically exact simulation of such processes
nonfeasible in complex molecular systems, with the exception
of a subclass of Hamiltonians whose form makes such a
quantum-mechanically exact simulation possible.13−19

The generalized quantum master equation (GQME)
formalism, which was introduced by Nakajima20 and
Zwanzig21 more than 60 years ago, provides a formal
framework for deriving the exact equation of motion of an
open quantum system. Describing electronic energy, charge,
and coherence transfer in molecular systems via the GQME is
based on treating the electronic degrees of freedom (DOF)
as the quantum open system. This is accomplished by

projecting out the nuclear DOF and accounting for their
effect on the dynamics of the reduced electronic density
matrix in terms of a memory kernel superoperator. The
memory kernel superoperator, or its matrix representation in
terms of the electronic basis of choice, corresponds to the
minimal information about the nuclear DOF, which is needed
in order to fully capture their effect on the electronic DOF.
The matrix elements of the memory kernel typically represent
electronic energy, charge, and coherence transfer rate
coefficients, which are key for understanding function-
structure relations as well as developing rational design
principles in the aforementioned biologically and technolog-
ically relevant molecular systems.
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Efforts over the last two decades have been directed at
developing, testing, and applying computational methods for
calculating the memory kernel, using either quantum-
mechanically exact or approximate semiclassical and mixed
quantum-classical methods.22−40 The motivation for doing so
comes from the fact that the memory kernel is often short-
lived, which makes it possible to limit the use of exact or
approximate methods to relatively short times, where they are
often more accurate or more cost-effective or both. The short
lifetime of the memory kernel combined with its scaling with
the number of electronic states (∼Ne

4, where Ne is the
number of electronic states22) makes the GQME approach
most beneficial for systems with a small number of electronic
DOF and a memory time that is too long for weak coupling
to be valid but shorter than the time scale of system
dynamics.
The various computational schemes for calculating the

memory kernel under consideration in this article are all
based on the fact that the memory kernel can be obtained
from projection-free inputs by solving integral Volterra
equations, as was first shown by Shi and Geva in ref 22.
Shi and Geva also demonstrated the feasibility and usefulness
of this approach by calculating the memory kernel for the
spin-boson model from quantum-mechanically exact projec-
tion-free inputs,22 as well as from inputs obtained via an
approximate semiclassical method.23 Using semiclassical
projection-free inputs, Shi and Geva also calculated the
memory kernel for an anharmonic model of a two-level atom
coupled to a chain of Lennard-Jones atoms.23

The Shi−Geva approach was later extended and stream-
lined by Zhang, Ka, and Geva in a manner that made it
possible to account for a wider class of projection operators
and initial conditions.24 The Zhang−Ka−Geva approach was
also used to calculate the memory kernel for an atomistic
model of a two-state chromophore in liquid solution and to
study the sensitivity of photon echo signals to the
heterogeneity and non-Markovity of the underlying solvation
dynamics.25

Rabani and co-workers have calculated the memory kernel
of a quantum dot with electron-phonon interaction27 and the
Anderson impurity model26,28,29,31 from quantum-mechan-
ically exact projection-free inputs within the Zhang−Ka−
Geva approach and introduced a method for calculating the
memory kernel from the reduced system propagator.36 The
Shi−Geva and Zhang−Ka−Geva approaches were further
explored and extended by Montoya-Castillo and Reichman,
who introduced new forms of calculating the projection-free
inputs.33

Markland and co-workers proposed calculating the memory
kernel from projection-free inputs obtained via suface
hopping30 and the Ehrenfest mean-field method34 within
the Shi−Geva approach. By applying this scheme to the spin-
boson model, they demonstrated how limiting the use of the
Ehrenfest method to calculating the projection-free inputs
produced significantly more accurate results in comparison to
the direct application of the Ehrenfest method. Additional
applications of this scheme to an atomistic model of charge
transfer in water32 and photosynthetic light harvesting
systems37 provided additional demonstrations for the benefits
of limiting the use of the Ehrenfest method to calculating the
projection-free inputs within the Shi−Geva approach. Mark-
land and co-workers also explored the conditions that would
need to be satisfied in order for the Shi−Geva and Zhang−

Ka−Geva approaches to yield improved results compared to
direct application of the approximate method.35

More recently, a modified form of the GQME and
protocols for calculating the corresponding memory kernel
were introduced by Mulvihill et al.38 Unlike the previous
implementations, this modified GQME approach did not
require casting the Hamiltonian in a system-bath form and
was found to yield more numerically stable results when
combined with various approximate input methods on both
the spin-boson model and the Fenna−Matthews−Olson
(FMO) complex.38−40

In this article, we provide a systematic road map to 30
different pathways for calculating the memory kernel of the
GQME. Among those 30 pathways are previously reported
ones as well as new ones. The road map is designed in a
manner that highlights the relationships between different
pathways as well as the ways in which they differ. We also
provide a comprehensive analysis of the performance of the
different pathways in the context of the spin-boson
benchmark model with the projection-free inputs obtained
via a mapping Hamiltonian linearized semiclassical (LSC)
method. In this case, we find that the biggest factor in
determining the accuracy and numerical stability of a pathway
is the order in which the projection operator and Liouvillian
appear in the exponential operator within the memory kernel,
where having the projection operator precede the Liouvillian
yields the most accurate as well as most numerically stable
results.
The rest of this article is organized as follows. We start out

by presenting and discussing several preliminary consid-
erations in section 2.1. Two different types of GQME,
namely, the system-bath GQME and the modif ied GQME, are
described in section 2.2. Different representations of the
memory kernel of the system-bath and modified GQMEs are
described in section 2.3. The various approaches to obtain
the memory kernel are outlined in section 2.4. Different
forms of the projection-free inputs are outlined in section 2.5.
The results of applying each of the pathways to the spin-
boson model are reported in section 3 and discussed in
section 4. Concluding remarks are given in section 5.
Technical aspects are detailed in the Supporting Information.

2. THEORY
2.1. Preliminary Considerations. In what follows, we

focus on applying the GQME formalism to systems with an
overall Hamiltonian of the following form, which is
commonly used for modeling photosynthetic and photo-
voltaic systems:

∑ ∑̂ = ̂ | ⟩⟨ | + ̂ | ⟩⟨ |
= =

≠

H H j j V j k
j

N

j
j k
k j

N

jk
1 , 1

ee

(1)

Here, Ĥj = P̂2/2 + Vj(R̂) is the nuclear Hamiltonian when
the system is in the diabatic electronic state |j⟩, with the
index j running over the Ne electronic states, {V̂jk|j ≠ k} are
coupling terms between electronic states, and R̂ = (R̂1, ...,
R̂Nn

) and P̂ = (P̂1, ..., P̂Nn
) are the mass-weighted position and

momentum operators of the Nn ≫ 1 nuclear DOF.
Throughout this article, boldfaced variables, for example, A,
indicate vector quantities, a hat over a variable, for example,
B̂, indicates an operator quantity, and script font, for example,
*, indicates a superoperator.
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The initial state of the overall system is assumed to be of
the following single product form:

ρ ρ σ̂ = ̂ ⊗ ̂(0) (0) (0)n (2)

Here, ρ̂n(t) = Tre{ρ̂(t)} and σ̂(t) = Trn{ρ̂(t)} are the reduced
density operators that describe the states of the nuclear DOF
and electronic DOF, respectively, and Tre{...} and Trn{...}
stand for partially tracing over the electronic Hilbert space
and the nuclear Hilbert space, respectively.
The overall system state at a later time t is given by the

density operator

3

ρ ρ σ
ρ σ

̂ = ̂ ⊗ ̂
≡ ̂ ⊗ ̂

− ̂ ℏ ̂ ℏ

− ℏ

t( ) e (0) (0) e

e (0) (0)

iHt iHt

i t

/
n

/

/
n (3)

where Ĥ is the overall Hamiltonian given in eq 1 and
3 · = [ ̂ ·]H( ) , is the corresponding Liouvillian superoperator.
The reduced electronic density operator at time t is given by

∑σ ρ σ̂ = { ̂ } = | ⟩⟨ |
=

t t t j k( ) Tr ( ) ( )
j k

N

jkn
, 1

e

(4)

The electronic populations and coherences are given by
{σjj(t) = ⟨j|σ̂(t)|j⟩} and {σjk(t) = ⟨j|σ̂(t)|k⟩|j ≠ k}, respectively.
Importantly, the time evolution of the electronic populations
and coherences underlies energy, charge, and coherence
transfer dynamics.
2.2. System-Bath GQME vs Modified GQME. In this

article, we will compare and contrast two types of GQMEs,
which differ with respect to the form of the overall
Hamiltonian with which one starts out. One type is based
on casting the overall Hamiltonian in eq 1 in a system-bath
form, that is, as a sum of system, bath, and system-bath
coupling terms, and therefore this type is denoted the system-
bath GQME. Since the overall Hamiltonian of the form given
in eq 1 can be cast in multiple different system-bath forms,
another type of GQME was recently proposed that avoids
recasting the overall Hamiltonian in a system-bath form. The
type of GQME obtained this way has been denoted the
modif ied GQME. Importantly, while the two types of GQMEs
are expected to yield the same electronic dynamics when the
memory kernel is obtained from quantum-mechanically exact
projection-free inputs, this need not be and is often not the
case when the projection-free inputs are obtained via
approximate methods.
In the next two subsections, we will provide short

summaries of these two types of GQMEs. For the system-
bath GQME, the reader is referred to refs 22−24 for further
details. For the modified GQME, the reader is referred to refs
38−40 for further details.
2.2.1. The System-Bath GQME. The derivation of the

system-bath GQME starts out by casting the Hamiltonian in
eq 1 in a system-bath form:

̂ = ̂ + ̂ + ̂H H H HS B BS (5)

Here, ĤS is the system Hamiltonian, ĤB is the bath
Hamiltonian, and ĤBS is the coupling between system and
bath. For the type of systems under consideration here, the
system would stand for the electronic DOF, the bath would
stand for the nuclear DOF, and the system−bath coupling,
ĤBS, would stand for the coupling between the nuclear and
electronic DOF. However, it should be noted that these

assignments do not dictate a unique system-bath form.38

Finally, we note that each term on the r.h.s. of eq 5 has a
matching Liouvillian operator, that is, 3 3 3 3= + +S B BS,
where 3 = [ ̂ ·]H ,S S , 3 = [ ̂ ·]H ,B B , and 3 = [ ̂ ·]H ,BS BS .
Within the system-bath GQME, the initial nuclear density

operator [see eq 2] typically corresponds to thermal
equilibrium with respect to the bath Hamiltonian:

ρ ρ̂ = ̂ =
{ }

β

β

− ̂

− ̂(0) e
Tr e

H

Hn B
eq

B

B

B (6)

Here, TrB{...} corresponds to tracing over the bath/nuclear
DOF. It is also often assumed, without loss of generality, that
ĤBS is defined such that

ρ⟨ ̂ ⟩ ≡ { ̂ ̂ } =H HTr 0BS B
eq

B B
eq

BS (7)

Using a projection operator of the form

7 ρ· = ̂ ⊗ {·}( ) TrB
eq

B (8)

the quantum-mechanically exact dynamics of the system
reduced density operator can then be shown to be governed
by the system-bath GQME, which has the following form:

3 2∫σ σ τ τ σ τ̂ = − ℏ ̂ − ̂ −
t

t i t td
d

( ) ( ) d ( ) ( )
t

S
0

SB
(9)

Here, 3 σ− ̂ ℏi t( )/S and 2∫ τ τ σ τ− ̂ −td ( ) ( )
t

0
SB correspond

to the bath-free and bath-induced contributions to the
system’s reduced dynamics, respectively, and 2 τ( )SB is the
memory kernel superoperator (the explicit form of the
system-bath memory kernel will be given in section 2.3).
As discussed in ref 38, while the system-bath approach has

been used successfully in the past, it is neither natural nor
convenient for an overall Hamiltonian of the form given in eq
1. This is because it is impossible to come up with a uniquely
defined bath Hamiltonian, ĤB, since the first term in eq 1,
∑jĤj|j⟩⟨j|, associates a different nuclear Hamiltonian, Ĥj, with
each electronic state |j⟩. This lack of a unique system-bath
form can give rise to complications when using a GQME-
based approach:

• Different choices of ĤB, ĤS, and ĤBS can lead to
different results when an approximate method is used
to obtain the projection-free inputs needed for
calculating 2 τ( )SB , with no clear criterion for choosing
between them.

• The assumption that the nuclear DOF start at
equilibrium with respect to ĤB [see eq 6] means that
the definition of ĤB needs to change whenever the
nuclear initial state does.

• Since the system-bath coupling, ĤBS, is often defined as
in eq 7 and the projection operator, 7, is as defined in
eq 8, the definition of ĤBS and 7 also depend on the
choice of ĤB.

• The second term in eq 1, ∑j,k≠jV̂jk|j⟩⟨k|, becomes
purely electronic within the Condon approximation, V̂jk
→ Vjk, and would be part of the system Hamiltonian,
ĤS. However, in the non-Condon case, it is part of the
system-bath coupling term, ĤBS, making it difficult to
create a unified framework for Condon and non-
Condon cases.
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2.2.2. The Modified GQME. In contrast to the system-bath
GQME, the modified GQME starts out by casting the overall
Hamiltonian in eq 1 as a sum of two terms, Ĥ = Ĥzero + Ĥint,
where the zero Hamiltonian, Ĥzero, and the interaction
Hamiltonian, Ĥint, are given by

∑ ∑̂ = ̂ | ⟩⟨ | ̂ = ̂ | ⟩⟨ |
= =

≠

H H j j H V j k,
j

N

j
j k
k j

N

jkzero
1

int
, 1

e e

(10)

Each term has a matching Liouvillian operator, given by
3 · = [ ̂ ·]H( ) ,zero zero and 3 · = [ ̂ ·]H( ) ,int int . In the Condon
approximation, the electronic coupling terms are constants,
V̂jk → Vjk, making Ĥint a purely electronic operator and 3 int a
purely electronic superoperator.
Defining the projection operator as

7 ρ· = ̂ ⊗ {·}( ) (0) Trn n (11)

leads to the following modif ied GQME for the electronic
reduced density operator, σ̂(t):

3 2∫σ σ τ τ σ τ̂ = − ℏ ⟨ ⟩ ̂ − ̂ −
t

t i t td
d

( ) ( ) d ( ) ( )
t

n
0

0

M
(12)

Here, 2 τ( )M is the modified memory kernel superoperator
[which is not the same as 2 τ( )SB and whose explicit form
will be given in section 2.3] and 3⟨ ⟩n0 is the overall
Liouvillian averaged over the initial state of the nuclear DOF,
resulting in a purely electronic superoperator, which is given
by

3 3

∑ ∑
ρ⟨ ⟩ · ≡ { ̂ } ·

= ⟨ ̂ ⟩ [| ⟩⟨ | ·] + ⟨ ̂ ⟩ [| ⟩⟨ | ·]
= =

≠

H j j V j k

( ) Tr (0) ( )

, ,
j

N

j
j k
k j

N

jk

n
0

n n

1
n
0

, 1
n
0

e e

(13)

It should be noted that the modified GQME does not suffer
from the aforementioned ambiguities that the system-bath
GQME suffers from.
2.3. Representations of the Memory Kernel. In this

section, we outline eight different possible representations of
the memory kernel. The eight representations can be grouped
based on the GQME to which they correspond, the system-
bath GQME, eq 9, or the modified GQME, eq 12.
Starting with the system-bath GQME, we will compare and

contrast the following four representations of the memory
kernel:22,24,38

2 3 33 3 7τ ρ=
ℏ

{ ̂ }τ− − ℏ( ) 1 Tr e iSB
2 B BS

( ) /
BS B

eqBS

(14)

2 3 8383τ ρ=
ℏ

{ ̂ }τ− ℏ( ) 1 Tr e iSB
2 B BS

/
B
eq

(15)

2 3 8383τ ρ=
ℏ

{ ̂ }τ− ℏ( ) 1 Tr e iSB
2 B BS

/
BS B

eq
(16)

2 3 8 338τ ρ=
ℏ

{ ̂ }τ− ℏ( ) 1 Tr e iSB
2 B BS

/
BS B

eq
(17)

where 8 0 7= − and 0 is the unity superoperator. It
should be noted that while these correspond to different
representations of the same memory kernel when calculated

via quantum-mechanically exact methods, they can and do
yield different results when approximate methods are used.
Starting with the modified GQME, we will also compare

and contrast four representations of the memory kernel. The
first two representations avoid the Condon approximation
and are given by

2 3 8383τ ρ=
ℏ

{ ̂ }τ− ℏ( ) 1 Tr e (0)iM
2 n

/
n (18)

2 38 338τ ρ=
ℏ

{ ̂ }τ− ℏ( ) 1 Tr e (0)n
iM

2
/

n (19)

The remaining two representations are only valid when the
Condon approximation is valid and are given by

2 3 88τ ρ=
ℏ

{ ̂ }τ− ℏ L( ) 1 Tr e (0)i LM
2 n zero

/
zero n (20)

2 3 8 33τ ρ=
ℏ

{ ̂ }τ− ℏ( ) 1 Tr e (0)i QM
2 n zero

/
zero n (21)

More details and derivations of these memory kernels can be
found in refs 22, 24, 33, and 38.
It should be noted that 3BS is usually not equivalent to

3zero and so, despite similar forms between eqs 16 and 20
and between eqs 17 and 21, these are different memory
kernels that can result in different results when approximate
methods are used.

2.4. Approaches for Obtaining the Memory Kernel.
In this section, we outline ten different approaches for
obtaining the memory kernel. These approaches can be
grouped based on whether they obtain the memory kernel of
the system-bath or modified GQME. This distinction will be
denoted by including either System-Bath and SB or Modif ied
and M in the name and abbreviation, respectively, that we
use for the approach.
The approaches for obtaining the memory kernel can be

further distinguished based on whether one needs one or two
integral equations to obtain the memory kernel from
projection-free inputs. Three approaches, one for the
system-bath GQME and two for the modified GQME,
require solving two integral equations to obtain the memory
kernel. The first equation is a Volterra integral equation of
the second type to obtain an auxiliary projection-dependent
input for the second equation, which yields the memory
kernel from the projection-free and projection-dependent
inputs. These three approaches are designated by including
Two-Equation and TE in their titles and abbreviations,
respectively.
All of the remaining seven approaches require solving a

single Volterra equation to obtain the memory kernel from
the projection-free inputs. These seven approaches can be
further distinguished based on the order in which the
projection superoperator, 8, and the overall Liouvillian
superoperator, 3, appear in the power of the exponential
operator within the memory kernel. More specifically, 8
precedes 3 for the memory kernel representations in eqs 15,
16, 18, and 20, while in contrast, 3 precedes 8 for the
memory kernel representations in eqs 17, 19, and 21. In light
of this, we denote the four approaches that use the
representation of the memory kernel in eqs 15, 16, 18, and
20 as Projection-First (PF) and the three approaches that use
the representation of the memory kernel in eqs 17, 19, and
21 as Projection-Second (PS).
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The system-bath GQME gives rise to four different system-
bath approaches: one two-equation approach, two projection-
first approaches, and one projection-second approach. The
modified GQME gives rise to three different ways for
calculating the memory kernel, each of which has a non-
Condon and a Condon version, thereby leading to a total of
six different approaches. Combined with the four approaches
that are based on the system-bath GQME, there are ten

different approaches for obtaining the memory kernel. The
list of titles and abbreviations of these approaches is given as

• system-bath two-equation (SB-TE)
• system-bath projection-first, version 1 (SB-PF1)
• system-bath projection-first, version 2 (SB-PF2)
• system-bath projection-second (SB-PS)
• modified two-equation non-Condon (M-TE-NC)
• modified two-equation Condon (M-TE-C)

Figure 1. Tree diagram of the ten approaches to obtaining the memory kernel of the GQME under consideration in this article.

Figure 2. Tree diagram of the ten approaches to obtaining the memory kernel of the GQME under consideration in this article, including
equations.
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• modified projection-first non-Condon (M-PF-NC)
• modified projection-first Condon (M-PF-C)
• modified projection-second non-Condon (M-PS-NC)
• modified projection-second Condon (M-PS-C)

and can be visualized using the titles-only tree diagram shown
in Figure 1. These ten approaches are further detailed in the
following subsections, with a more detailed tree diagram
given in Figure 2. The major aspects of and differences
between the approaches are also summarized in 1.

In the following subsections, we describe these ten
different approaches for obtaining the memory kernel of
the system-bath and modified GQMEs from projection-free
inputs. In all cases, the relationships between the memory
kernel and the projection-free inputs can be derived based on
one of the following two identities:22,24,41,42

) () ( ( )∫ τ= − ℏ ′ −τ τ τ τ τ τ− ℏ − ℏ − − ′ ℏ − ′ ℏie e d e ( ) ei i i i/ /

0

( )/ /

(22)

) () ( ( )∫ τ= − ℏ ′ −τ τ τ τ τ τ− ℏ − ℏ − ′ ℏ − − ′ ℏie e d e ( ) ei i i i/ /

0

/ ( )/

(23)

2.4.1. System-Bath Two-Equation Approach (SB-TE). The
system-bath two-equation approach (SB-TE) for calculating
the memory kernel is the same as the original Shi−Geva
approach introduced in ref 22 and also used in refs 23, 38,
and 40. It is based on the expression for the memory kernel
of the form given in eq 14. Substituting ( 3= and
) 3 3 7= − BS into the operator identity in eq 22 and
plugging that into the memory kernel in eq 14 gives the
following expression for the memory kernel

2 2 2 2∫τ τ τ τ τ= + − ′ ′
τ

i( ) ( ) ( ) ( )SB
1

0
1 2 (24)

where

2 3 33τ ρ=
ℏ

{ ̂ }τ− ℏ( ) 1 Tr e i
1 2 B BS

/
BS B

eq
(25)

2 33 3 7τ ρ= ℏ { ̂ }τ− − ℏ( ) 1 Tr e i
2 B

( ) /
BS B

eqBS

(26)

Repeating the process for 2 τ( )2 , since it is projection-
dependent, leads to the Volterra equation

2 2 2 2∫τ τ τ τ τ τ= + ′ − ′ ′
τ

i( ) ( ) d ( ) ( )2 3
0

3 2 (27)

where

2 33τ ρ= ℏ { ̂ }τ− ℏ( ) 1 Tr e i
3 B

/
BS B

eq
(28)

Thus, obtaining the memory kernel via the SB-TE approach
requires first calculating the projection-free 2 τ( )1 and 2 τ( )3 ,
then calculating 2 τ( )2 through eq 27, and finally calculating
2 τ( )SB via eq 24.

2.4.2. System-Bath Projection-First Approach, Version 1
(SB-PF1). The system-bath projection-first approach, version
1 (SB-PF1), is the same as the Zhang−Ka−Geva approach
introduced in ref 24 and also used in ref 38. It is based on
the expression for the memory kernel of the form given in eq
15. Substituting ( 3= and ) 83= into eq 22 and
plugging that into the memory kernel in eq 15 leads to the
following Volterra equation for 2 τ( )SB :

2 3 2∫τ τ τ τ τ τ τ= Φ̇ + ℏ Φ + ′Φ − ′ ′
τi( ) ( ) ( ) d ( ) ( )SB

S
0

SB

(29)

where Φ(τ) and Φ̇(τ) are the projection-free inputs

3 3τ ρΦ = ℏ { ̂ }τ− ℏi( ) Tr e i
B BS

/
B
eq

(30)

3 33τ ρΦ̇ =
ℏ

{ ̂ }τ− ℏ( ) 1 Tr e i
2 B BS

/
B
eq

(31)

It should be noted that although Φ̇(τ) is the time derivative
of Φ(τ), it is meant to be calculated explicitly (when
calculated via approximate methods), rather than obtained by
calculating the time derivative of Φ(τ) numerically.
Thus, obtaining the memory kernel via the SB-PF1

approach requires first calculating the projection-free Φ(τ)
and Φ̇(τ) and then calculating the memory kernel via eq 29.

2.4.3. System-Bath Projection-First Approach, Version 2
(SB-PF2). The system-bath projection-first approach, version
2 (SB-PF2), was previously introduced by Montoya-Castillo
and Reichman in ref 33. It is based on the expression for the
memory kernel of the form given in eq 16. Substituting

Table 1. Comparison of Approachesa

aThis table summarizes important aspects of the approaches for
obtaining the memory kernel of the GQME. Indicated in the second
column are the number of integral equations necessary to obtain the
memory kernel. The third column gives the projection-free inputs
involved in the calculation of the memory kernel, color-coded to assist
the identification of which approaches share projection-free inputs.
The last column indicates whether the nuclear operators in the
projection-free input are all static, all dynamic, or both (see section
2.5).
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( 3= and ) 83= into eq 22 and plugging that into eq
16 leads to a Volterra equation of the form

2 2 2∫τ τ τ τ τ τ= + ′ Φ − ′ ′
τ

( ) ( ) d ( ) ( )SB
1

0

SB
(32)

where 2 τ( )1 is given in eq 25 and Φ(τ) is given in eq 30.
Thus, obtaining the memory kernel via the SB-PF2

approach requires first calculating projection-free 2 τ( )1 and
Φ(τ) and then calculating the memory kernel from them
based on eq 32. Notably, this approach uses a combination of
projection-free inputs that are also used in the SB-TE [2 τ( )1 ]
and SB-PF1 [Φ(τ)] approaches. However, the way the
memory kernel is obtained from these projection-free inputs
is based on a different Volterra equation [eq 32] than that
used in the SB-TE and SB-PF1 approaches.
2.4.4. System-Bath Projection-Second Approach (SB-PS).

The system-bath projection-second approach (SB-PS) was
also previously introduced by Montoya-Castillo and Reich-
man in ref 33 and also used in ref 37. It is based on the
expression for the memory kernel of the form given in eq 17.
Substituting ( 38= and ) 3= into eq 23 and plugging
that into eq 17 leads to a Volterra equation of the form

2 2 2 2∫τ τ τ τ τ τ= + ′ − ′ ′
τ

i( ) ( ) d ( ) ( )SB
1

0

SB
3 (33)

where 2 τ( )1 is given in eq 25 and 2 τ( )3 is given in eq 28.
Thus, obtaining the memory kernel via the SB-PS approach

requires first calculating the projection-free 2 τ( )1 and 2 τ( )3
and then calculating the memory kernel via eq 33. Notably,
this approach uses the same projection-free inputs as the SB-
TE approach [2 τ( )1 and 2 τ( )3 ]. However, the way the
memory kernel is obtained from these projection-free inputs
is based on a single Volterra equation rather than on two
coupled equations.
2.4.5. Modified Two-Equation Non-Condon Approach

(M-TE-NC). The modified two-equation non-Condon ap-
proach (M-TE-NC) is based on the expression for the
memory kernel of the form given in eq 19. Substituting
( 3= and ) 38= into the operator identity in eq 22 and
plugging into eq 19 gives the following expressions for the
memory kernel

2 - 3 .

- 3 . .∫
τ τ τ

τ τ τ τ τ τ

= ̇ − ℏ ⟨ ⟩

+ ′ ̇ − ′ − ℏ ⟨ ⟩ − ′ ′
τ ÄÇÅÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑÑ
i

i i

( ) ( ) 1 ( )

d ( ) 1 ( ) ( )

M
n
0

0
n
0

2

(34)

Here, - τ̇ ( ) is the time-derivative of - τ( ) and both are given
by

- 3 3τ ρ= ℏ { ̂ }τ− ℏ( ) 1 Tr e (0)i
n

/
n (35)

- 3 33τ ρ̇ = −
ℏ

{ ̂ }τ− ℏi( ) Tr e (0)i
2 n

/
n (36)

It should be noted that although - τ̇ ( ) is the time derivative
of - τ( ), it is meant to be calculated explicitly (when
calculated via approximate methods), rather than obtained by
calculating the time derivative of - τ( ) numerically. . τ( ) and
. τ( )2 are given by

. 33τ ρ= ℏ { ̂ }τ− ℏ( ) 1 Tr e (0)i
n

/
n (37)

. 338τ ρ= ℏ { ̂ }τ− ℏ( ) 1 Tr e (0)i
2 n

/
n (38)

Since . τ( )2 is projection-dependent, we need to repeat the
process to obtain a Volterra equation for . τ( )2 . Substituting
( 3= and ) 38= into the operator identity in eq 22 and
plugging into eq 38 leads to the following Volterra equation
for . τ( )2 :

. . . .∫τ τ τ τ τ τ= + ′ − ′ ′
τ

i( ) ( ) d ( ) ( )2
0

2 (39)

Thus, obtaining the memory kernel via the M-TE-NC
approach requires first calculating the projection-free - τ̇ ( )
and . τ( ), then calculating . τ( )2 through eq 39, and finally
calculating 2 τ( )M via eq 34.

2.4.6. Modified Two-Equation Condon Approach (M-TE-
C). The modified two-equation Condon approach (M-TE-C)
starts from a memory kernel of the form given in eq 21.
Substituting ( 3= and ) 38= into the operator identity
in eq 22 and plugging into eq 21 leads to the following
Volterra equation

2 - 3 .

- - 3

3 .

3 < 3 .

∫
τ τ τ

τ τ τ τ τ

τ τ

τ τ τ

= − ℏ ⟨ ⟩

+ ′ [ − ′ + ℏ − ′

− ℏ ⟨ ⟩ − ′

−
ℏ

⟨ ⟩ − ′ ] ′

τ
i

( ) ( ) 1 ( )

d ( ) 1 ( )

1 ( )

1 ( ) ( )

M
1 zero n

0
zero

0
1 2 int

zero n
0

zero

2 zero n
0

M int 2,zero (40)

with the derivation of eq 40 given in the Supporting
Information. - τ( )1 , - τ( )2 , . τ( )zero , and . τ( )2,zero are given
by

- 3 33τ ρ=
ℏ

{ ̂ }τ− ℏ( ) 1 Tr e (0)n
i

1 2 zero
/

zero n (41)

- 3 3τ ρ= ℏ { ̂ }τ− ℏ( ) 1 Tr e (0)i
2 n zero

/
n (42)

. 33τ ρ= ℏ { ̂ }τ− ℏ( ) 1 Tr e (0)i
zero n

/
zero n (43)

. 338τ ρ= ℏ { ̂ }τ− ℏ( ) 1 Tr e (0)i
2,zero n

/
zero n (44)

Since . τ( )2,zero is projection-dependent, we need to repeat
the process to obtain a Volterra equation for . τ( )2,zero .
Substituting ( 3= and ) 38= into the operator identity
in eq 22 and plugging into eq 44 leads to the Volterra
equation for . τ( )2,zero :

. . .

< 3 .

∫τ τ τ τ τ

τ τ τ

= + ′ − ′

+ ℏ − ′ ′

τ ÄÇÅÅÅÅÅÅÅÅÉÖÑÑÑÑÑÑÑÑ
i( ) ( ) d ( )

1 ( ) ( )

2,zero zero
0

zero

M int 2,zero (45)

with < 3τ ρ= { ̂ }τ− ℏ( ) Tr e (0)i
nM n

/ and the details of the
derivation given in the Supporting Information.
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Thus, obtaining the memory kernel via the M-TE-C
approach requires first calculating the projection-free - τ( )1 ,
- τ( )2 , and . τ( )zero , then calculating . τ( )2,zero through eq 45,

and finally calculating 2 τ( )M via eq 40.
2.4.7. Modified Projection-First Non-Condon Approach

(M-PF-NC). The modified projection-first non-Condon
approach (M-PF-NC) is the same as the non-Condon
modified approach introduced in ref 38 and described in
refs 39 and 40. This approach uses a memory kernel of the
form given in eq 18. Substituting ( 3= and ) 83= into
eq 22 and plugging the identity into eq 18 leads to the
Volterra equation

2 - - 3

- 2∫
τ τ τ

τ τ τ τ

= ̇ − ℏ ⟨ ⟩

+ ′ − ′ ′
τ

i

i

( ) ( ) 1 ( )

d ( ) ( )

M
n
0

0

M
(46)

where - τ( ) and - τ̇ ( ) are given in eqs 35 and 36,
respectively.
Thus, obtaining the memory kernel via the M-PF-NC

approach requires first calculating the projection-free - τ( )
and - τ̇ ( ) and then calculating 2 τ( )M via eq 46.
2.4.8. Modified Projection-First Condon Approach (M-PF-

C). The modified projection-first Condon approach (M-PF-
C) is the same as the Condon modified approach introduced
in ref 38 and used in refs 39 and 40. This approach uses a
memory kernel of the form given in eq 20. Substituting
( 3= and ) 83= into eq 22 and plugging the identity
into eq 20 leads to the Volterra equation

2 - - 3

- 2∫
τ τ τ

τ τ τ τ

= − ℏ ⟨ ⟩

+ ′ − ′ ′
τ

i

( ) ( ) 1 ( )

d ( ) ( )

M
1 2 zero n

0

0
2

M
(47)

where - τ( )1 is given in eq 41 and - τ( )2 is given in eq 42.
Thus, obtaining the memory kernel via the M-PF-C

approach requires first calculating the projection-free - τ( )1

and - τ( )2 and then calculating 2 τ( )M via eq 47.
2.4.9. Modified Projection-Second Non-Condon Ap-

proach (M-PS-NC). The modified projection-second non-
Condon approach (M-PS-NC) uses the same memory kernel
as the M-TE-NC approach, eq 19. Substituting ( 38= and
) 3= into eq 22 and plugging the identity into eq 19
results in the Volterra equation

2 - 3 .

2 .∫
τ τ τ

τ τ τ τ

= ̇ − ℏ ⟨ ⟩

+ ′ − ′ ′
τ

i

i

( ) ( ) 1 ( )

d ( ) ( )

M
n
0

0

M
(48)

where - τ̇ ( ) is given in eq 36 and . τ( ) is given in eq 37.
Thus, obtaining the memory kernel via the M-PS-NC

approach requires first calculating the projection-free - τ̇ ( )
and . τ( ) and then calculating 2 τ( )M via eq 48.
2.4.10. Modified Projection-Second Condon Approach

(M-PS-C). The modified projection-second Condon approach
(M-PS-C) uses the same memory kernel as the M-TE-C
approach, eq 21. Substituting ( 38= and ) 3= into eq
22 and plugging the identity into eq 21 results in the Volterra
equation

2 - 3 .

2 .∫
τ τ τ

τ τ τ τ

= − ℏ ⟨ ⟩

+ ′ − ′ ′
τ

i

( ) ( ) 1 ( )

d ( ) ( )

M
1 zero n

0
zero

0

M
zero (49)

where - τ( )1 is given in eq 41 and . τ( )zero is given in eq 43.
Thus, obtaining the memory kernel via the M-PS-C

approach requires first calculating the projection-free - τ( )1

and . τ( )zero and then calculating 2 τ( )M via eq 49.
2.5. The Bare, Static, and Dynamic Forms of the

Projection-Free Inputs. In this section, we consider three
different forms of the projection-free inputs, which we will
refer to below as bare, static, and dynamic. These forms were
first introduced by Montoya-Castillo and Reichman in ref 33
(though they referred to them as expansions rather than
forms), where they derived and tested them for the
projection-free inputs of the SB-PF2 and SB-PS approaches.
In what follows, we will derive and test these three forms for
all the projection-free inputs needed for the ten approaches
under consideration in this article.
We will demonstrate the derivation of the bare, static, and

dynamic forms in the case of the projection-free input - τ( )1 .
To this end, we will refer to the definition of - τ( )1 as given
in eq 41 as its bare form. When using this definition, the
matrix elements of - τ( )1 in terms of the diabatic electronic
basis {|j⟩; j = 1, ..., Ne}, are given by (here, a, b, c, d
correspond to indices of the electronic states in tetradic
notation):

- -τ τ

ρ ρ

= { | ⟩⟨ | | ⟩⟨ |}

=
ℏ

{ ̂ ̂ − ̂ ̂ | ⟩⟨ |

× ̂ − ̂ | ⟩⟨ | }τ τ

†

̂ ℏ − ̂ ℏ

a b c d

H H c d

H H b a

( ) Tr ( ) ( )
1 Tr ( (0) (0) )

e ( ) e

abcd

c d

iH
a b

iH

1, e 1

2 n n

/ /
(50)

Thus, the matrix elements of - τ( )1 in the bare form are given
by correlation functions (CFs) of the form Tr{ÂB̂(τ)}, where
Â is a static operator, because it does not evolve in time while
B̂(τ) = eiĤτ/ℏB̂ e−iĤτ/ℏ is a dynamic operator, because it does
evolve in time. Importantly, the bare form gives rise to CFs
where the Ĥc and Ĥd nuclear operators are static, while the
Ĥa and Ĥb nuclear operators are dynamic. Thus, the bare
form involves both static and dynamic nuclear operators for
- τ( )1 .
In contrast to the bare form, the static and dynamic forms

of - τ( )1 are designed to be given in terms of CFs where the
nuclear operators [other than ρ̂n(0)] are either all static or all
dynamic, respectively. To obtain the static form of - τ( )1 , we
start out by considering the time derivative of . τi ( )zero [see
eq 43]:

. 3

3 3

3 3 3

3

3

3

τ τ τ ρ

ρ

ρ

= ℏ { ̂ }

=
ℏ

{ ̂ }

=
ℏ

{ + ̂ }

τ

τ

τ

− ℏ

− ℏ

− ℏ

i id
d

( ) d
d

Tr e (0)

1 Tr e (0)

1 Tr ( ) e (0)

i

i

i

zero n
/

zero n

2 n
/

zero n

2 n zero int
/

zero n

Since - τ( )1 and . τ( )zero are only used as projection-free
inputs in the Condon case, we can assume that 3 int is a
purely electronic superoperator, so that
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. 3 3

-

3 3

3 .

3

3

τ τ ρ

τ

ρ

τ

=
ℏ

{ ̂ }

+
ℏ

{ ̂ }

ℏ

τ

τ

− ℏ

− ℏ

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

i d
d

( ) 1 Tr e (0)

( )
1 Tr e (0)

1/ ( )

i

i

zero 2 n zero
/

zero n

1

2 int n
/

zero n

int zero

- τ( )1 can therefore be given in terms of . τ( )zero and its
time derivative:

- . 3 .τ τ τ τ= − ℏi( ) d
d

( ) 1 ( )1
static

zero int zero (51)

Equation 51 corresponds to the static form of - τ( )1 . This is
because it casts - τ( )1 in terms of . τ( )zero , whose matrix
elements correspond to CFs where the nuclear operators are
all static:

. τ ρ ρ= ℏ {[ ̂ ̂ − ̂ ̂ ] | ⟩⟨ | }τ τ̂ ℏ − ̂ ℏH H b a( ) 1 Tr (0) (0) e eabcd c n n d
iH iH

zero,
/ /

(52)

To obtain the dynamic form of - τ( )1 , we start out by
considering the time derivative of - τi ( )2 [see eq 42], which,
following a procedure similar to that used to derive the static
form, yields the following alternative form of - τ( )1 in terms
of - τ( )2 and its time derivative:

- - - 3τ τ τ τ= − ℏi( ) d
d

( ) 1 ( )1
dynamic

2 2 int (53)

Equation 53 corresponds to the dynamic form of - τ( )1 . This
is because it casts - τ( )1 in terms of - τ( )2 , whose matrix
elements correspond to CFs where the nuclear operators
[except for ρ̂n(0)] are all dynamic:

- τ ρ= ℏ { ̂ | ⟩⟨ | [ ̂ − ̂ ]| ⟩⟨ | }τ τ̂ ℏ − ̂ ℏc d H H a b( ) 1 Tr (0) e eabcd
iH

a b
iH

2, n
/ /

(54)

It should be noted that the bare, static, and dynamic forms
of - τ( )1 are completely interchangeable when - τ( )1 is
calculated via a quantum-mechanically exact method.
However, the different forms can and often do differ in
accuracy when calculated via approximate methods.
The bare, static, and dynamic forms of all of the

projection-free inputs needed for the ten approaches under
consideration in this article are summarized in Table 2. The
derivations of the static and dynamic forms of the projection-
free inputs are given in the Supporting Information.
Montoya-Castillo and Reichman also introduced a fourth

form of the projection-free inputs in ref 33, the propagator
form, which involves casting them in terms of the time
propagation superoperator for the reduced electronic density
matrix [< 3τ ρ= { ̂ }τ− ℏ( ) Tr e i

SB B
/

B
eq for the system-bath

GQME and < 3τ ρ= { ̂ }τ− ℏ( ) Tr e (0)i
M n

/
n for the modified

GQME ] and its time derivatives. However, as was shown by
Kelly et al. in ref 35, using this propagator form within the
SB-PF2 approach gives back the same dynamics as the direct
application of the input method used to obtain the
projection-free inputs. In other words, restricting the use of
the approximate method to calculating the memory kernel is

Table 2. Bare, Static, and Dynamic Forms of the Projection-Free Inputsa

bare form static form dynamic form

2 τ( )1 eq 25 2 3 2τ τ τ− ℏi d
d

( ) 1 ( )3 S 3 3τ τ τΦ + ℏ Φid
d

( ) ( ) S

2 τ( )3 eq 28 eq 28 < < 3τ τ̇ − ℏi ( ) 1 ( )SB SB S

Φ̇(τ) eq 31

2 < 3

3 < 3 3 2

τ τ τ

τ τ

+ ℏ
̇

−
ℏ

− ℏ

i id
d

( ) ( )

1 ( ) 1 ( )

3 SB S

2 S SB S S 3
τ τΦd
d

( )

Φ(τ) eq 30 < 3 <τ τ− ̇ − ℏ
i( ) ( )SB S SB eq 30

- τ̇ ( ) eq 36 .τ τd
d

( ) -τ τd
d

( )

- τ( ) eq 35 < τ̇i ( )M eq 35

- τ( )1 eq 41 . 3 .τ τ τ− ℏi d
d

( ) 1 ( )zero int zero - - 3τ τ τ− ℏi d
d

( ) 1 ( )2 2 int

- τ( )2 eq 42 < 3 <τ τ̇ − ℏi ( ) 1 ( )M int M eq 42

. τ( ) eq 37 eq 37 < τ̇i ( )M

. τ( )zero eq 43 eq 43 < < 3τ τ̇ − ℏi ( ) 1 ( )M M int

aThis table contains the bare, static, and dynamic forms of the projection-free inputs. All of the bare forms have already been given in section 2.4, so
this column only has references to the equations, while the static and dynamic columns give the explicit equation of that form, unless it is equivalent
to the bare form, in which case it will also reference the equation number. In this table, numerical derivatives of projection-free inputs are indicated
with d/dτ, to differentiate from projection-free inputs that have an overdot in their symbol, that is, - τ̇ ( ) and Φ̇(τ). However, the numerical first
derivative of the time propagation superoperators < τ( )SB and < τ( )M are denoted with a single overdot for compactness. The derivations of the
static and dynamic forms are given in the Supporting Information.
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not expected to improve its accuracy in comparison to the
direct use of the approximate method when projection-free
inputs in the propagator form are used. This conclusion turns
out to be true for all ten approaches under consideration in
this article. Below, we demonstrate that this is the case for
the M-PF-NC approach. Proofs for the other approaches are
provided in the Supporting Information. In light of the fact
that using the propagator form is expected to give back the
same results as direct use of the approximate input method
would, we refrain from reporting results for the propagator
forms of the projection-free inputs for the ten approaches
under consideration.
In the remainder of this section, we will show that using

the propagator form within the M-PF-NC approach gives
back the same dynamics as the direct application of the input
method used to obtain the projection-free inputs. We start
out by noting that the projection-free inputs for the M-PF-
NC approach are given by - τ( ) and - τ̇ ( ), whose bare forms
are given by eqs 35 and 36, respectively. The propagator
forms of - τ( ) and - τ̇ ( ) are easily obtained by noting that
- < -τ τ τ= ̇ ≡i( ) ( ) ( )M

prop a n d
- < -τ τ τ̇ = ̈ ≡ ̇i( ) ( ) ( )M

prop
. Here, - τ( )prop and - τ̇ ( )prop

correspond to the propagator forms of - τ( ) and - τ̇ ( ) where
those projection-free inputs are given in terms of the first and
second time derivatives of < τ( )M .
Next, we prove that when using the projection-free inputs

in the propagator form, - τ( )prop and - τ̇ ( )prop
, to calculate

the memory kernel within the M-PF-NC approach, the
dynamics generated by the modified GQME coincides with
that generated by a direct application of the input method
used for calculating the projection-free inputs. Proving this
equivalence is facilitated by working in the energy domain,
with the transformation from the time domain to the energy
domain given by the Fourier-Laplace transform (FLT):

∫=
∞ − ℏf E f t t( ) e ( ) diEt

0

/
(55)

It should also be noted that the FLT of the nth derivative of
f(t), =f t f t( ) ( )

t
nd

d
( )n

n , is given by

∫
∑

= ℏ

− ℏ =

∞ − ℏ

=

−
−

ikjjj y{zzz ikjjj y{zzz
f t t iE f E

iE f t

e ( ) d ( )

( 0)

iEt n
n

k

n n k
k

0

/ ( )

1

( 1)

(56)

and that the FLT of a convolution is given by

∫ ∫ τ τ τ− =
∞ − ℏ f t f t f E f Ee ( ) ( ) d d ( ) ( )iEt

t

0

/

0 1 2 1 2 (57)

Using eqs 55 and 56, we can find the FLT of - τ( )prop and
- τ̇ ( )prop

:

- <= − ℏ −E E E i( ) ( )prop
M (58)

- < 3̇ = −
ℏ

+ ℏ − ℏ ⟨ ⟩E iE E E( ) ( ) 1prop 2

2 M n
0

(59)

where we have used the fact that < =t( 0)M and <̇ =t( 0)M
are given by

< ρ= = { ̂ } =t( 0) Tr (0) 1M n n

< 3 3ρ̇ = = − ℏ { ̂ } = − ℏ ⟨ ⟩t i i( 0) Tr (0)M n n n
0

In the next step, we transform the Volterra equation for the
memory kernel within the M-PF-NC approach, eq 46, to the
energy domain:

2 - - 3 - 2= ̇ − ℏ ⟨ ⟩ +E i E E i E E( ) ( ) 1 ( ) ( ) ( )M
n
0 M

(60)

It should be noted that we used the FLT of a convolution, eq
57, in order to obtain eq 60. Rearranging eq 60, we obtain
the following expression for the memory kernel in the energy
domain:

2 - - - 3= [ − ] ̇ − ℏ ⟨ ⟩−
ÄÇÅÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑÑE i E i E E( ) 1 ( ) ( ) 1 ( )M 1

n
0

(61)

Plugging eqs 58 and 59 into eq 61 and simplifying, it can
then be shown that

2 <= − Ω−E E E( ) ( ) ( )M,prop
M

1
M (62)

where 3Ω = + ⟨ ⟩ℏ ℏE E( ) i i
M n

0 .
Finally, transforming the modified GQME, eq 12, to the

energy domain [with the help of eqs 56 and 57], we obtain

3 2σ σ σ σℏ ̂ − ̂ = = − ℏ ⟨ ⟩ ̂ − ̂iE E t i E E E( ) ( 0) ( ) ( ) ( )n
0 M

(63)

Rearranging eq 63, we obtain the following expression for
σ̂(E)

2σ σ̂ = [Ω + ] ̂ =−E E E t( ) ( ) ( ) ( 0)M
M 1 (64)

Substituting 2 E( )M from eq 62 into eq 64 leads to the
following result:

<
<

σ σ
σ

̂ = [Ω + − Ω ] ̂ =
= ̂ =

− −E E E E t

E t

( ) ( ) ( ) ( ) ( 0)

( ) ( 0)

prop
M M

1
M

1

M (65)

which implies that the results obtained from the GQME will
be identical to the result obtained from the direct application
of the approximate method via < t( )M .

3. RESULTS
In section 2.4, we introduced ten different approaches to
calculating the memory kernel and in section 2.5, we outlined
three forms of the projection-free inputs (bare, static, and
dynamic), giving a total of 30 different pathways for
calculating the memory kernel of the GQME. In this section,
we compare the accuracy and numerical stability of these 30
pathways in the case of the spin-boson benchmark model and
with a mapping Hamiltonian LSC approach called LSCI as
the input method. We also note that LSCI has been
previously referred to as the Poisson-bracket mapping
equation (PBME).43 The reader is referred ref 39 for a
detailed discussion of calculating projection-free inputs via
LSCI.
The spin-boson Hamiltonian is put in the form of eq 1

with Ĥj and V̂jk → Vjk given by
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(66)

Here, the two electronic states are designated as donor and
acceptor (|D⟩ and |A⟩, respectively), 2ϵ is the shift in
equilibrium energy between the donor (D) and acceptor (A)
states, and Γ is a positive constant describing the electronic
coupling between the donor and acceptor states. Since Γ is a
constant, this system satisfies the Condon approximation so
we can test both the non-Condon and Condon variations of
the modified GQME.
For the system-bath form of the spin-boson Hamiltonian

given in eq 5, we use the following commonly used
definitions of the system, bath, and system−bath coupling
terms:

∑

∑

ω

̂ = ϵ[| ⟩⟨ | − | ⟩⟨ |] + Γ[| ⟩⟨ | + | ⟩⟨ |]
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(67)

Following refs 38 and 39, the spectral density is assumed
to be Ohmic with exponential cutoff:

∑ω π
ω δ ω ω π ξω= − ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ∞ ℏ ω ω

=

−J
c N

( )
2

( )
2

e
k

N
k

k
k

1

2
n /

n
c

(68)

where ξ is the Kondo parameter and ωc is the cutoff
frequency. The discretization procedure to obtain the Nn
nuclear mode frequencies, {ωk}, and coupling coefficients,
{ck}, is given in Appendix C of ref 38. The initial state of the
nuclear DOF was chosen as

ρ ̂ =
{ }

=
{ }

β

β

β

β

− ̂

− ̂

− ̂ + ̂

− ̂ + ̂(0) e
Tr e

e
Tr e
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H

H H

H Hn
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( )/2
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( )/2

B

B

D A
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It should be noted that this particular choice is dictated by
our desire to compare the modified approaches to the
system-bath approaches, which require that the initial nuclear
state corresponds to thermal equilibrium with respect to the
bath Hamiltonian, by definition. At the same time, it is also
important to emphasize that the modified approaches are
designed to accommodate arbitrary initial nuclear states of
one’s choice.
Calculations were carried out for three different sets of

parameter values adopted from refs 38 and 39 (see Table 3).
Models 1 and 2 differ only in the value of the cutoff
frequency, and model 3 corresponds to an unbiased, weakly
coupled system at a higher temperature. The numerical
integration scheme was adopted from ref 39. The results
reported in this article were obtained with a time step of Δt
= 0.001 Γ−1 and by averaging over 106 trajectories for each
pathway and model. Quantum-mechanically exact results
were adopted from ref 34 for models 1 and 2 and from ref 44

for model 3. Numerical derivatives were calculated with the
fourth-order central finite difference method.
The following paragraphs describe the behavior of each

pathway for the three models from Table 3, as seen in their
corresponding figures. A summary of the results is given in
Table 4. Section 4 will discuss the possible causes for the
differing behavior of the pathways described in this section.
Shown in Figure 3 are the electronic population difference

results, σz(t) = σDD(t) − σAA(t), for each approach with the
bare, static, and dynamic forms for model 1 in Table 3 with a
memory time of 20 Γ−1. For better visibility, the results are
divided between the system-bath approaches (left panels) and
the modified approaches (right panels) and between the bare
(top panels), static (middle panels), and dynamic (bottom
panels) forms for a total of six graphs. The results in Figure 3
show that for model 1 there is no difference between the bare
and static forms within each approach, while the dynamic
form gives back the same results as the direct application of
LSCI for all approaches. For the bare and static forms, all the
projection-first approaches (i.e., SB-PF1, SB-PF2, M-PF-NC,
and M-PF-C) yield accurate results for model 1. SB-TE and
SB-PS yield the same slightly larger amplitudes than the exact
results, while M-TE-NC and M-PS-NC give the same
damped results compared to the exact results. The M-PS-C
approach also gives damped oscillations compared to the
exact results, though they are slightly less damped than the
M-TE-NC and M-PS-NC approaches. The M-TE-C gives
results that trend below the exact results.
Shown in Figure 4 are the electronic population difference

results for each approach with the bare, static, and dynamic
forms for model 2 in Table 3 with a memory time of 20 Γ−1.
Compared to model 1, model 2 has a higher ωc, and
therefore quantum nuclear effects are expected to be more
pronounced. Thus, the classical treatment of the nuclear
DOF within LSCI is expected to be less valid, which leads to
bigger differences between the results obtained via different
pathways (see Figure 4). This is consistent with previously
seen results in refs 38 and 39. The results in Figure 4 show
that for model 2 as well there is no difference between the
bare and static forms within each approach, while the
dynamic form gives the same dynamics as LSCI regardless of
approach. With the bare and static forms, the most accurate
approaches are the projection-first approaches (i.e., SB-PF1,
SB-PF2, M-PF-NC, and M-PF-C), which are in excellent
agreement with the exact results. SB-TE and SB-PS again
have larger oscillations than the exact results, with a more
significant difference than in model 1. The M-TE-NC and M-
PS-NC approaches give damped oscillations that trend above
the exact results. The M-TE-C and M-PS-C approaches give
damped oscillations.
Shown in Figure 5 are the electronic population difference

results for each approach with the bare, static, and dynamic
forms for model 3 in Table 3 with a memory time of 20 Γ−1.
The results in Figure 5 show that for model 3 there is no
difference between the bare and static forms within each

Table 3. Spin-Boson Model and Simulation Parameters

model parameters numerical parameters

model no. ϵ Γ β ξ ωc ωmax Nn Δt
1 1.0 1.0 5.0 0.1 1.0 5 400 0.001
2 1.0 1.0 5.0 0.1 2.0 10 400 0.001

3 0.0 0.333 3.0 0.1 1.0 5 400 0.001
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approach, while the dynamic forms of all approaches give the
same dynamics as LSCI, consistent with models 1 and 2.
Within the short time scale for which exact results are
available, the bare and static forms of all the approaches
except the M-TE-NC and M-PS-NC yield accurate dynamics.
However, we also see differences between the approaches at
longer times, with SB-TE and SB-PS having larger amplitudes
than the SB-PF1 and SB-PF2. This is similar to models 1 and
2, where the SB-PF1 and SB-PF2 approaches were observed
to be accurate at long times (see Figures 3 and 4). M-TE-C,
M-PF-NC, and M-PF-C give similar results to SB-PF1 and
SB-PF2 at long times, while M-PS-C gives larger oscillations
similar to SB-TE and SB-PS.
Shown in Figures 6, 8, and 10 are the results obtained for

the system-bath approaches with the bare form at memory
times increasing by 2 Γ−1 from 6 Γ−1 to 20 Γ−1 for models 1,
2, and 3 in Table 3, respectively. The results for the static
form are the same as the bare form (not shown). The SB-
PF1 and SB-PF2 approaches yield converged results with
increasing memory time, while SB-TE and SB-PS do not,
particularly for model 2. This is consistent with previously
shown results for the spin-boson model with SB-TE, SB-PF1,
and M-PF-C in ref 38 and for a model of the FMO complex
with SB-TE and M-PF-C in ref 40. In those references, the
projection-free inputs were obtained with the Ehrenfest
method rather than LSCI, and the SB-TE approach also
did not give converged results with increasing memory time,
while the SB-PF1 and M-PF-C results were converged.

Shown in Figures 7, 9, and 11 are the results of the
modified approaches with the bare form at memory times
increasing by 2 Γ−1 from 6 Γ−1 to 20 Γ−1 for models 1, 2,
and 3 in Table 3, respectively. The results for the static form
are the same as the bare form (not shown). The M-PF-NC
and M-PF-C approaches are seen to converge with increasing
memory time for all models. M-TE-NC and M-PS-NC do
not give converged results with increasing memory time,
particularly for models 2 and 3. The M-PS-C approach also
does not give converged results with increasing memory time,
particularly for models 1 and 2. The M-TE-C approach gives
unconverged results for models 1 and 2, while it gives
converged results for model 3 with increasing memory time.
The results of increasing the memory time with the

dynamic form are not shown because they converged for all
approaches.
In Table 4, the results of the bare and static forms from

Figures 3−11 are summarized, and two columns with details
about the approaches from Table 1 are included to help
facilitate the discussion of the results in section 4. The
dynamic form results are not included because all approaches
give back the same dynamics as the input method and
converge with increasing memory time.

4. DISCUSSION
Comparing and contrasting the results obtained via the
different pathways for calculating the memory kernel and
projection-free inputs in the previous section gives rise to

Table 4. Comparison of Results Obtained with the Bare and Static Formsa

aIn the accuracy column, the accuracy of each approach is given, with check marks indicating that the approach is accurate, slashed check marks
indicating slight deviations from the exact results, and × indicating significant deviations from the exact results. In the converged with increasing
memory timecolumn, the stability with increasing memory time is given, with check marks indicating that the approach converges with increasing
memory time, slashed check marks indicating that the approach becomes slightly unstable with increasing memory time, and × indicating that the
approach becomes significantly unstable with increasing memory time. The last two columns (also given in Table 1) are included to help facilitate
the discussion of the results.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c05719
J. Phys. Chem. B 2021, 125, 9834−9852

9845



several valuable insights, which are summarized in the
following subsections.
4.1. Pathways of Choice. While the bare and static

forms of the TE and PS approaches were able to give
accurate and numerically stable results for model 3, the bare
and static forms of the PF approaches gave accurate and
numerically stable results for all three models. Combining this
with the disadvantages of the system-bath form outlined in
section 2.1 seems to point to the bare and static forms of M-
PF-NC and M-PF-C as the pathways of choice.
4.2. System-Bath GQME vs Modified GQME. Looking

at the bare and static forms of the projection-free inputs, for
the two-equation and projection-second approaches, the
system-bath approaches (SB-TE and SB-PS) give rise to
larger oscillations than the exact results. Among the modified
approaches, the non-Condon approaches (M-TE-NC and M-
PS-NC) have smaller oscillations and can be shifted from the
exact results, and the Condon approaches (M-TE-C and M-
PS-C) tend to outperform their system-bath and non-Condon
equivalents, though they are still unable to quantitatively
capture the exact results for two of the three models.
In contrast, the projection-first approaches gave rise to

accurate results for both the system-bath approaches (SB-PF1
and SB-PF2) and the modified approaches (M-PF-NC and
M-PF-C). Thus, the accuracy appears to be affected most
strongly by whether one expresses the memory kernel in
terms of an exponential operator where the projection
operator precedes the Liouvillian [projection-first (PF)
approaches] or the other way around [projection-second

(PS) approaches], rather than by whether one uses the
system-bath or modified forms of the GQME (with the
projection-first approaches being significantly more accurate).
However, considering the disadvantages of the system-bath
form outlined in section 2.1, it can still be argued that the
modified form of the GQME is preferable to the system-bath
form for systems whose Hamiltonian has the form of eq 1.

4.3. Effect of Number of Equations for the Memory
Kernel. The SB-TE and SB-PS approaches and the M-TE-
NC and M-PS-NC approaches share the same projection-free
inputs but correspond to a different number of equations
needed to obtain the memory kernel (see Table 1). The TE
approaches require first calculating a projection-dependent
input with a Volterra equation before calculating the memory
kernel with an equation of the projection-free and projection-
dependent inputs. In contrast, the PS approaches have a
single Volterra equation for the memory kernel. As shown in
Figures 3−5, this difference in number of equations does not
affect the accuracy of the results. The M-TE-C and M-PS-C
approaches do give different results, but the M-TE-C
approach contains a projection-free input that the M-PS-C
approach does not have (see Table 1). This observation
suggests that it is the projection-free inputs that effect the
differences between the approaches, rather than the number
of equations needed to get the memory kernel from them.

4.4. Effect of the Projection-Free Inputs and Their
Forms on Accuracy and Convergence. In this section, we
point out correlations between the type and form of the
projection-free inputs and the accuracy and numerical

Figure 3. Electronic population difference, σz(t) = σDD(t) − σAA(t),
for model 1 in Table 3 with a memory time of 20 Γ−1. Shown are
the results of (a) bare form of system-bath approaches, (b) bare
form of modified approaches, (c) static form of system-bath
approaches, (d) static form of modified approaches, (e) dynamic
form of system-bath approaches, and (f) dynamic form of modified
approaches. On graphs c and d, a magnified inset is included to help
distinguish between the approaches. There is no difference between
the results of the bare and static forms and the projection-first
approaches yield the most accurate results.

Figure 4. Electronic population difference, σz(t) = σDD(t) − σAA(t),
for model 2 in Table 3 with a memory time of 20 Γ−1. Shown are
the results of (a) bare form of system-bath approaches, (b) bare
form of modified approaches, (c) static form of system-bath
approaches, (d) static form of modified approaches, (e) dynamic
form of system-bath approaches, and (f) dynamic form of modified
approaches. On graphs c and d, a magnified inset is included to help
distinguish between the approaches. There is no difference between
the results of the bare and static forms and the projection-first
approaches yield the most accurate results.
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stability of the results. To this end, we will use Table 5,
which summarizes the integral equations used to obtain the
memory kernel within each pathway. The integral equations

are broken down into their linear terms (LTs) and integral
terms (ITs). For example, looking at the Volterra equation of
the M-PF-NC approach given in eq 46, it contains two linear
terms and one integral term:

Figure 5. Electronic population difference, σz(t) = σDD(t) − σAA(t),
for model 3 in Table 3 with a memory time of 20 Γ−1. Shown are
the results of (a) bare form of system-bath approaches, (b) bare
form of modified approaches, (c) static form of system-bath
approaches, (d) static form of modified approaches, (e) dynamic
form of system-bath approaches, and (f) dynamic form of modified
approaches. On graphs c and d, a magnified inset is included to help
distinguish between the approaches. There is no difference between
the results of the bare and static forms and the projection-first
approaches yield the most accurate results.

Figure 6. Electronic population difference, σz(t) = σDD(t) − σAA(t),
as a function of memory time for the system-bath approaches with
the bare form for model 1 in Table 3: (a) SB-TE approach, (b) SB-
PF1 approach, (c) SB-PF2 approach, and (d) SB-PS approach. The
memory times are given in the legends in units of Γ−1. SB-PF1 and
SB-PF2 are seen to converge with increasing memory time, while
SB-TE and SB-PS become slightly unstable with increasing memory
time.

Figure 7. Electronic population difference, σz(t) = σDD(t) − σAA(t),
as a function of memory time for the modified approaches with the
bare form for model 1 in Table 3: (a) M-TE-NC, (b) M-TE-C, (c)
M-PF-NC, (d) M-PF-C, (e) M-PS-NC, and (f) M-PS-C. The
memory times are given in the legends in units of Γ−1. M-PF-NC
and M-PF-C are seen to converge with increasing memory time, M-
TE-NC and M-PS-NC are seen to be slightly unstable with
increasing memory time, and M-TE-C and M-PS-C are seen to be
significantly unstable with increasing memory time.

Figure 8. Electronic population difference, σz(t) = σDD(t) − σAA(t),
as a function of memory time for the system-bath approaches with
the bare form for model 2 in Table 3: (a) SB-TE, (b) SB-PF1, (c)
SB-PF2, and (d) SB-PS. The memory times are given in the legend
in units of Γ−1. SB-PF1 and SB-PF2 are seen to converge with
increasing memory time, while SB-TE and SB-PS are seen to be
significantly unstable with increasing memory time.
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The explicit expressions for the memory kernels of each
pathway are given in the Supporting Information.
Inspection of the results in section 3 reveals two main

trends:
1 The bare and static forms of the projection-free inputs
result in GQME-based results that are significantly
more accurate compared to direct application of LSCI,
while the dynamic form gives back GQME-based
results that are the same as the results obtained via
direct application of LSCI.

2. While the bare and static forms of the PF approaches
exhibit stable behavior with increasing memory time,
the bare and static forms of the TE and PS approaches
do not.

Matching these to trends in Table 5, we see that
1. For all approaches, the bare and static forms of the

memory kernel Volterra equations always have at least
one projection-free input with either both static and
dynamic nuclear operators (purple in Table 5) or only
static nuclear operators (teal in Table 5) in their LTs,
while the dynamic form never has projection-free
inputs with static nuclear operators in its LTs.

2. The bare and static forms of the TE and PS
approaches always have at least one projection-free
input with both static and dynamic nuclear operators
(purple in Table 5) or only static nuclear operators
(teal in Table 5) in their ITs, while the PF approaches
never have projection-free inputs containing static
nuclear operators in their ITs.

Figure 9. Electronic population difference, σz(t) = σDD(t) − σAA(t),
as a function of memory time for the modified approaches with the
bare form for model 2 in Table 3: (a) M-TE-NC, (b) M-TE-C, (c)
M-PF-NC, (d) M-PF-C, (e) M-PS-NC, and (f) M-PS-C. The
memory times are given in the legend in units of Γ−1. M-PF-NC
and M-PF-C are seen to converge with increasing memory time; M-
TE-C is seen to be slightly unstable with increasing memory time;
and M-TE-NC, M-PS-NC, and M-PS-C are seen to be significantly
unstable with increasing memory time.

Figure 10. Electronic population difference, σz(t) = σDD(t) −
σAA(t), as a function of memory time for the system-bath
approaches with the bare form for model 3 in Table 3: (a) SB-
TE, (b) SB-PF1, (c) SB-PF2, and (d) SB-PS. The memory times are
given in the legends in units of Γ−1. SB-PF1 and SB-PF2 are seen to
converge with increasing memory time, while SB-TE and SB-PS are
slightly unstable.

Figure 11. Electronic population difference, σz(t) = σDD(t) −
σAA(t), as a function of memory time for the modified approaches
with the bare form for model 3 in Table 3: (a) M-TE-NC, (b) M-
TE-C, (c) M-PF-NC, (d) M-PF-C, (e) M-PS-NC, and (f) M-PS-C.
The memory times are given in the legends in units of Γ−1. M-PF-
NC, M-PF-C, and M-TE-C are seen to converge with increasing
memory time; M-PS-C is seen to be slightly unstable with increasing
memory time; and M-TE-NC and M-PS-NC are seen to be
significantly unstable with increasing memory time.
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Addressing the first trend, in ref 33, Montoya-Castillo and
Reichman argued that the reason for why the bare and static
forms provided improvements in accuracy for the SB-PF1 and
SB-PS approaches (with Ehrenfest as input method) was that
the sampling of the static nuclear operators provides
additional information about the system-bath interaction
that the direct application of Ehrenfest and the dynamic form
do not. Our results show that this trend extends to other
approaches and another input method, thereby reinforcing
the importance of static nuclear operators in providing
accuracy improvements. Montoya-Castillo and Reichman also
argued that dynamic nuclear operators could introduce error
due to their oscillatory nature. However, examining
approaches in which all projection-free inputs contain
dynamic nuclear operators in the bare form (i.e., SB-PF1,
SB-PF2, M-PF-NC, and M-PF-C) reveals no difference
between the bare and static results. It therefore appears
that at least for the system under consideration here, any
errors introduced by dynamic nuclear operators are negligible.

Addressing the second trend, we note that the fact that
certain pathways converge with increasing memory time while
others do not has been observed in our previous papers.38,40

As stated above, within the integral equations for the memory
kernel, the bare and static forms of the TE and PS
approaches always have at least one projection-free input
containing static nuclear operators in the integral terms, while
the PF approaches never do. It should be noted that the
integral term corresponds to a convolution of the memory
kernel and a projection-free input quantity. Based on the
appearance of long-time oscillations in the memory kernel of
the bare and static forms of the TE and PF approaches (with
graphs provided in the Supporting Information and this trend
noted also in ref 38), a static nuclear operator projection-free
input appears to overlap more with the memory kernel at
long times.
While these observations are based on results obtained for

the spin-boson model with LSCI as the input method, they
are consistent with similar observations in the case of the

Table 5. Comparison of the Pathways’ Integral Equations for the Memory Kernelsa

aIn this table, we compare the integral equations used to obtain the memory kernel (and projection-dependent input, for the TE approaches) for
each pathway. The Volterra equation for the memory kernel (and projection-dependent input for the TE approaches) are given in a column to the
right of the title of the pathway. The Volterra equations are broken down into their linear terms (LTs) and integral terms (ITs). Terms with
projection-free inputs which contain both a static and a dynamic nuclear operator [i.e., 2 τ( )1 , Φ̇(τ), - τ̇ ( ), and - τ( )1 ] are highlighted by a purple
rectangle; terms with projection-free inputs that contain only a static nuclear operator [i.e., 2 τ( )3 , . τ( ), and . τ( )zero ] are highlighted by a teal
rectangle; terms with projection-free inputs that contain only a dynamic nuclear operator [i.e., Φ(τ), - τ( ), and - τ( )2 ] are highlighted by a blue
rectangle; and terms containing only the time propagation superoperator [i.e., < τ( )SB or < τ( )M ] or its time derivatives are highlighted by a beige
rectangle. For each form, the average of the memory-time convergence for the three models are color-coded, with green representing stable results
and red representing unstable results with increasing memory time, while gray represents that the form was stable but did not give any accuracy
benefit over the input method. We can see that green forms always have at least one projection-free input with either both static and dynamic
nuclear operators (purple) or only static nuclear operators (teal) in their LTs and no projection-free inputs with a static nuclear operator (purple or
teal) in their ITs, while the red forms have at least one projection-free input with either both static and dynamic nuclear operators (purple) or only
static nuclear operators (teal) in their LTs and ITs. The gray forms have no projection-free inputs with both static and dynamic nuclear operators
(purple) or only static nuclear operators (teal) in their LTs or ITs.
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spin-boson model with Ehrenfest as the input method33,38

and in the FMO complex with Ehrenfest as the input
method,40 indicating that these could be general trends.
Additional study with different systems, spectral densities, and
input methods would be needed to verify the generality of
these trends.

5. CONCLUSIONS
The GQME provides a general framework for simulating
electronic energy, charge, and coherence transfer dynamics in
molecular systems. Within this framework, the effect of the
nuclear DOF on the time evolution of the electronic reduced
density matrix is fully captured by a memory kernel
superoperator. Multiple pathways for calculating the memory
kernel of the GQME from projection-free inputs have been
proposed over the past two decades. These pathways differ
with respect to the actual memory kernel, which depends on
the choice of projection operator, the way in which the
memory kernel is calculated, and the form of the projection-
free inputs used for calculating it. Regardless of these
differences, all of those pathways are expected to generate the
same electronic energy, charge, and coherence transfer
dynamics when the projection-f ree inputs are calculated in a
quantum-mechanically exact manner. However, such a
quantum-mechanically exact approach is not feasible for
many systems of practical interest. As a result, approximate
semiclassical and mixed quantum-classical methods are used
instead for calculating the projection-free inputs, which leads
to a situation where different pathways for calculating the
memory kernel can and often do give rise to results that
differ in accuracy as well as numerical stability.
In this article, we mapped out 30 different pathways to

calculating the memory kernel of the GQME. Those 30
pathways are based on combining ten different approaches to
calculating the memory kernel with three different forms
(bare, static, and dynamic) of the projection-free inputs. To
the best of our knowledge, while some of those pathways
have been previously proposed and applied (the bare forms
of SB-TE, SB-PF1, M-PF-NC, and M-PF-C and all forms of
SB-PF2 and SB-PS), others are introduced here for the first
time (the static and dynamic forms of SB-TE, SB-PF1, M-PF-
NC, and M-PF-C and all forms of M-TE-NC, M-TE-C, M-
PS-NC, and M-PS-C). We have also compared and
contrasted results obtained via those 30 different pathways
for a benchmark spin-boson model with three sets of
parameters and the approximate LSCI as the input method.
The results clearly show notable differences in accuracy and
numerical stability between the pathways, thereby demon-
strating that the choice of pathway can be critical for the
success of a GQME-based approach.
Analysis of the results obtained for the spin-boson model

with LSCI as the input method suggests that there are two
choices that make the most difference when it comes to the
accuracy and numerical stability of the GQME-based
approach. One important choice is the form of the
projection-free inputs, with pathways based on the bare and
static forms outperforming pathways based on the dynamic
form. This is likely due to additional information about the
system-bath interaction that static nuclear operators provide.
Another important choice is the order in which the
projection operator and Liouvillian appear in the exponential
operator within the memory kernel. More specifically,
projection-first (PF) pathways, where the projection operator

precedes the Liouvillian, seem to yield the most accurate as
well as the most numerically stable results, while projection-
second (PS) pathways, where the Liouvillian precedes the
projection operator, tend to be either inaccurate or
numerically unstable or both.
We view the results of the comprehensive analysis

presented in this article as encouraging, since certain
pathways clearly demonstrate the gains in accuracy and
computational cost that can be achieved by restricting the use
of approximate methods to calculating the memory kernel,
over their direct application for simulating the dynamics of
the overall system. At the same time, it is also clear that not
all pathways were created equal and that some may offer no
advantage over direct application or give rise to numerical
instabilities.
The results and analysis presented in this article, as well as

related observations made in refs 38−40 seem to point to the
modified projection-first non-Condon (M-PF-NC) and
Condon (M-PF-C) as the pathways of choice. Additional
theoretical analysis as well as applications to other systems
and spectral densities with a wider variety of approximate
input methods would be necessary in order to establish the
generality of those observations or lack thereof. Work on
such extensions is currently underway in our group and will
be reported in future publications.
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