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Observability illustrate our results.

In this paper, we study the structural state and input observability of continuous-time switched linear
time-invariant systems and unknown inputs. First, we provide necessary and sufficient conditions
for their structural state and input observability that can be efficiently verified in O((m(n + p))?),
where n is the number of state variables, p is the number of unknown inputs, and m is the number
of modes. Moreover, we address the minimum sensor placement problem for these systems by
adopting a feed-forward analysis and by providing an algorithm with a computational complexity of
O((m(n+p)+a)?373), where « is the number of target strongly connected components of the system’s
digraph representation. Lastly, we apply our algorithm to a real-world example in power systems to
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1. Introduction

Scientists and engineers model systems by describing the na-
ture of their dynamics and the environment in which they inter-
act. One powerful tool to model complex switching dynamics is
to adopt a switched linear time-invariant framework. This model
assumes that the system under scrutiny transitions between dif-
ferent (yet known) linear time-invariant dynamics, where such
transitions are discrete in nature and are captured by a switching
signal for which the sequence of the switches may not be known
a priori. Examples of such systems include the power electric
grid (Du, Jiang, & Shi, 2015), where the change in dynamics may
be dictated by a faulty transmission line (Ramos, Pequito, Aguiar,
& Kar, 2015; Ramos, Pequito, Aguiar, Ramos, & Kar, 2013), or a
multi-agent system (Ramos, Silvestre and Silvestre, 2020; Sun,
Tian, & Xie, 2017), where the dynamics may change due to a loss
in communication among agents.

However, when modeling a process, it is common to neglect
the fact that the interaction of a dynamical system with its
environment introduces errors. We can describe these external
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environmental errors as unknown inputs entering into the dy-
namical system. For instance, in the power grid, the generated
power and/or the customer demand behave as unknown inputs.
Similarly, in multi-agent robotic systems, particularly in surface
vehicles, friction behaves as an unknown input, whereas in the
context of unmanned vehicles, airflow or ocean currents act as
unknown inputs. An alternate scenario is in networked systems
where the unknown input is due to the interconnections with
the remaining hidden network (Alur, 2015; Corradini & Cristofaro,
2017; Farivar, Haghighi, Jolfaei, & Alazab, 2019; Gupta, Pequito,
& Bogdan, 2018; Hutchison et al., 2013; Xie & Yang, 2018). As
is evident in the previously mentioned examples, a reoccurring
practice in control engineering is to model the unknown inputs in
a latent space that can capture the main features of the incoming
signal but does not model the system from which the unknown
input originates.

To monitor such switched linear time-invariant systems under
unknown inputs requires us to assess both the state and the
inputs by guaranteeing that the system is state and input observ-
able (Sundaram & Hadjicostis, 2012). Often, however, we cannot
accurately know the parameters of the system. Moreover, if the
parameters are known, the study of controllability and/or observ-
ability properties leads to NP-hard problems (Ramos, Pequito, &
Caleiro, 2018). Hence, we assume that only the structure of the
system is known meaning that a system parameter is either zero
or could take on any real scalar value (Ramos, Aguiar, & Pequito,
2022). In this context, we can rely on the notion of structural state
and input observability that yields state and input observability
for almost all system parameterizations.
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Previous work has provided the necessary and sufficient con-
ditions to ensure structural state and input observability for
discrete-time systems under unknown inputs (Sundaram & Had-
jicostis, 2006). Nonetheless, the counterpart for continuous-time
switched linear-time invariant systems under unknown inputs
were only studied in Boukhobza (2012), Boukhobza and Hamelin
(2011) and Boukhobza, Hamelin, Kabadi, and Aberkane (2011). In
particular, Boukhobza (2012) and Boukhobza and Hamelin (2011)
consider the graph-theoretic necessary and sufficient conditions
for generic discrete mode observability of a continuous-time
switched linear system with unknown inputs and proposed a
computational method to verify such conditions with a com-
plexity of O(n®), where n is the number of states. The works of
Boukhobza (2012) and Boukhobza et al. (2011) present sufficient
conditions for the generic observability of the discrete mode of
continuous-time switched linear systems with unknown inputs
and find an exhaustive location set to place sensors when these
conditions are not satisfied with a computational complexity of
0(n*). However, none of these works considered the minimum
number of required sensors and their placement to guarantee
structural state and input observability as we consider in this
work. This problem is important in designing control schemes
for large scale systems and is often referred to as the minimum
sensor placement. While this problem has been studied for a
variety of systems (Pequito, Kar, & Aguiar, 2015), to the best of
the authors’ knowledge, it has not been studied in the context
of continuous-time switched linear time-invariant systems under
unknown inputs.

The main contributions of this manuscript are as follows. We
first provide necessary and sufficient conditions for structural
state and input observability of continuous-time switched linear-
time invariant systems under unknown inputs. Moreover, we
can verify these conditions in O((m(n + p))?), where n is the
number of state variables, p is the number of unknown inputs,
and m is the number of modes. Furthermore, we address the min-
imum sensor placement for these systems using a feed-forward
analysis and an algorithm with a computational complexity of
O((m(n + p) + «)*33), where the n x n matrix multiplication
algorithm with best asymptotic complexity runs in O(n¢), with
¢ ~ 2.3728596 (Alman & Williams, 2021), and where « is the
number of target strongly connected components of the system'’s
digraph representation. Finally, we provide a real-world example
from power systems to illustrate our results.

We structure the remainder of our paper as follows. Section 2
provides the addressed problem formulation. Section 3 presents
the main results including two graph-theoretic conditions for
structural state and input observability for switched linear time-
invariant systems with unknown inputs as well as an algorithm
that determines the minimum set of state and input variables
for ensuring structural state and input observability. Section 4
presents a real-world example from power systems to illustrate
our results. Finally, Section 5 concludes the paper.

2. Problem statement
In this paper, we consider a continuous-time switched linear

time-invariant (LTI) system with (unknown) inputs that can be
described as follows:

X(t) =Aq)X(t) + Fopd(t), (1a)
d(t) =Qoryd(t), (1b)
Y(t) =CoyX(t) + Do(ryd(t), (1¢)

where x(t) € R" is the state, d(t) € RP represents the unknown
inputs, y(t) € R" is the output, and o(t) : [0,00) —> M =
{1, ..., m} is the unknown switching signal. System (1) contains
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m possible known subsystems also known as modes, which we
denote by the tuple (Ag, Fy, Qk, Cx, D), where o(t) = k € M.
Lastly, we implicitly assume that the dwell time of each mode
is greater than zero.

In what follows, we seek to assess and determine the mini-
mum sensor placement that ensures state and input observabil-
ity for the continuous-time switched LTI system with unknown
inputs in (1).

Definition 1 (State and Input Observability Molinari, 1976). The
switched LTI system described by (As(¢), Fo(r)y Qs(t)y Co(e)r Do(e
o(t); T) is said to be state and input observable for a time
horizon Ty if and only if the initial state x(to) and the unknown
inputs d(t) where t € [to, Tf] can be uniquely determined,
given ((As(t), Fott)s Qot)> Cot)> Do(ry, 0(t); Tr) and measurements
y(t)(to <t <Tp). o

In this paper, we focus on the sensor placement problem. For
the sake of simplicity, we assume that the measurements take the
following form

y(t) = Cx(t) + Dd(t). (1)

Simply speaking, we assume that the output and feed-forward
matrices are the same across all modes. Notice that this assump-
tion can be waived as we discuss in the following Remark 2.

Remark 2. We can consider a fixed set of measurements rep-
resented by C and D without loss of generality since taking the
union of the measurements made in different modes, represented
by Co(¢) and D, (s), will result in the total set represented by C and
D. ¢

We assume that each sensor is dedicated, meaning that each
sensor can measure only one state or only one input. Considering
an arbitrary set of sensors would lead to an NP-hard problem
as this is the case for the linear time-invariant systems (Pequito
et al.,, 2015). We state this formally in the following assumption.

A1 The output matrix and feed-forward matrix are written as
C=1I"”and D = ]I;,7d, where I;* is a matrix where its rows
are composed of canonical identity matrix rows that are each
multiplied with any arbitrary value. These canonical rows are
indexed by 7, = {1, ..., n}. Similarly, I[I‘fd is a matrix where its
rows are composed of canonical identity matrix rows that are
each multiplied with any arbitrary value. These canonical rows
are indexed by 7; = {1, ...,p}.

Due to uncertainty in the system’s parameters, we consider a
structural systems framework (Ramos et al.,, 2022). We introduce
the following definition for a structural matrix.

Definition 3 (Structural Matrix). A matrix M € {0, x)m>*m2 jg
referred to as a structural matrix if My = 0, then My = 0, and
if Mjj = «, then My € R, so Mj is any arbitrary real number and
M;; is assumed to be independent of Myy for all i, j, i’, j' such that
i#iandj#j.

With this notion in mind, we next define structural state and
input observability for the switched LTI system with unknown
inputs in (1).

Definition 4 (Structural State and Input Observability). The
switched LTI system with unknown inputs described by the
structural matrices

(As(t)s Fo(t)s Qo) Co(t)s Doy, o (t); Tr) is said to be structurally
state and input observable for a time horizon Ty if and only if
there exists a system described by (A (1), Fo(t)> Qo(t)> Co(t)> Do(r)> ©
(t); Ty) that is state and input observable and satisfies the struc-
tural pattern imposed by the structural matrices (Ay(t), Fo(t)» Qo (t)s

Co(t)» Do) ©
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Subsequently, the problem statement we seek to address in
this paper is as follows: given Ay, Fo(t), Qo(c), Which are the
known structural matrices of system in (1a) and (1b), and time
horizon T¢, we aim to find the minimum set of states J, and
inputs 74 that need to be measured to ensure structural state and

input observability. We present this formally as

min [Tl + |7l
JIxE(1,....n}
Tg<il,...p}

- P
s.t. (Ao, Fot)) Qo) I, T, 0 (); Ty) )

is struct. state and input observable.

For the sake of clarity, we assume that the matrix I:'U([) does
not have zero columns as this would correspond to having dis-
turbances that do not affect the dynamics of the system.

3. Minimum structural sensor placement for switched LTI sys-
tems with unknown inputs

In this section, we proceed as follows. First, we provide neces-
sary and sufficient conditions for the feasibility of the optimiza-
tion problem 7;. Next, we characterize the minimal solution of
problem 7. Lastly, we develop an algorithm to obtain a solution
to P4, and we assess its computational complexity.

We start by introducing the notion of generic rank, which
allows us to provide conditions for structural state and input
observability of continuous-time switched LTI systems with un-
known inputs.

Definition 5 (Generic Rank). The generic rank (g-rank) of an n; x
n, structural matrix M is

g — rank(M) = max rank(M),
Me[M]

where [M] = {M € R"*™ : M;; = 0 if My = 0}. o

Next, we introduce several graph-theoretical and algebraic

definitions required for defining the conditions for structural
state and input observability of switched LTI systems with un-
known inputs.
_ Adirected graph associated with any structural system matrix
M is constructed in the following manner. A directed graph is
written as (M) = (V, £), where V denotes the set of vertices (or
nodes) such that Vv = M,, and £ denotes the (directed) edges
between the vertices in the graph such that &€ = & o, =
{(m;, m;) : M;j # 0}. For a specific time t’ such that o(t') = k,
we associate the system in (1a) and (1b) with a system digraph
G = G(Ay, F, Qu, IV, I4) = (v, £5), where V = x UDU Y, X =
{x1,..., %}, D={d1,...,dp},and Y = {y1, ..., ya} are the state,
unknown input, and output vertices, respectively. Furthermore,
we have that £¥ = &% , U &k , Uek , Uexy Uépy, where
v x = (X, %)+ Adi,j) # 0}, €5 » = {(dj, x) = F(i, ) # 0,
% p = {(dj. di) : Qui.J) # 0}, Ex.y = (%, 1) : (i, j) # 0}, and
Ep,y = {(dj, yi) : ]Il‘,7d(i,j) # 0} are the state, input, and output
edges, respectively.

Next, we introduce a mathematical operator, which plays a
key role in presenting the conditions for structural state and input
observability of switched LTI systems with unknown inputs.

Definition 6 (Union of Structural Matrices). The mathematical op-
erator V is an entry-wise operation such that a structural matrix
A= \/Z':] A, =A1 VA,V - VA, has a non-zero entry at (i, j) if
at least one of the matrices A; has a non-zero entry in that same
location (i, j), and A(i, j) = 0, otherwise. o
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With this definition, we introduce the directed graphs g
(Vi1 Ay) and G (i, Ay, C'). More specifically, G (\/i_, A;) =
(X', Exr x) where Ex v = {(x, %) : ;L A(i,j) # 0} In
addition, G (\/;, A, 6’) = (V,€)where y = X’ UY and € =
Exr 2 Uy such that Exr v = {(x}, X]) : \/}_; Aj(i. j) # 0} and
Exry = {(fo,y;) : Ci(j # 0}. We next introduce the necessary and
sufficient conditions for structural state and input observability
for continuous-time switched LTI systems with unknown inputs.

Theorem 7 (Necessary and Sufficient Conditions for Structural State
and Input Observability). A continuous-time switched LTI system
with unknown inputs in (1a), (1b), and (1c’) is structurally state and
input observable if and only if the next two conditions hold:

(i) G (\/L":1 A_;C, 5/) has all state vertices that access at least one
output vertex; =

(ii) g-rank ([A}; ...; AL C') =n+p,

where, for k € M and the matrices A, and C' are defined as A, =

Q 0 P

[F;Ak] and C'=[p¢c]. o

Remark 8. Consider a switching signal that ensures the struc-

tural observability of the switched linear continuous-time sys-

tems. The order of transitions of system modes does not influence

its structural observability. This property comes from the fact

that:

e the “V” operation, in condition (i) Theorem 7, is commuta-
tive;

e a permutation of the matrices, in condition (ii) Theorem 7,
yields the same g-rank. <

Next, we define a few other important graph-theoretic con-
cepts. A bipartite graph denoted as B associates a matrix M of
dimension n; x n, to two vertex sets V, = {1,...,ny} and V, =
{1, ..., ny}, which are the set of row and column vertices, respec-
tively. The connections in the matrix M relate to the connections
between vertex sets V; and V. by an edge set &y, v, = {(vcj, vp)
M;j; # 0} thereby allowing the bipartite graph of matrix M to be
written as B(V., Vr, &y, ). A matching is a collection of edges
where the beginning vertex is different from the ending vertex
for all edges in the set and there are no two edges in the set that
have any of the same vertices. A maximum matching is the match-
ing that has the maximum number of edges among all possible
matchings. A weighted bipartite graph of a matrix M, denoted as
B((Ve, Vr, Ev.vy ), w), has weights w : £,y — R associated with
the edges in the bipartite graph. Finding the maximum matching
such that the sum of the weights is minimized in the weighted
bipartite graph is called the minimum weight maximum matching
(MWMM).

Now, we must introduce the notions of a strongly connected
component and non-accessible states. Let Z-( denote the set of
non-negative integers. First, we define a path of size | € Z> as
a sequence of vertices, ps = (v1, v, ..., v;), where the vertices
do not repeat, v; # v; for i # j, and (vj, viyq) is an edge of
the directed graph fori = 1,...,1 — 1. A subgraph denoted by
G(V', &) is a subset of vertices V' C V and its corresponding
edges £’ C & of a particular graph G(V, £). A connected component
is any subgraph with paths that connect any two vertices in
the subgraph. A connected component is said to be a strongly
connected component (SCC) if the subgraph is maximal meaning
there is no other subgraph that contains the maximal subgraph. A
sink SCC is a strongly connected component that is connected to
an output vertex. A source SCC is a strongly connected component
that is connected to an input vertex. A target-SCC is a strongly
connected component that does not have any outgoing edges.
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We note that every digraph can be represented as a directed
acyclic graph (DAG), where each node in the DAG represents an
SCC in the digraph. Finally, a non-accessible state is one that does
not have a path to an output vertex (either measuring a state or
input).

We present graph-theoretic conditions for structural state and
input observability of continuous-time switched LTI systems with
unknown inputs.

Corollary 9. A switched LTI continuous-time system (1) is struc-
turally observable if and only if the next two conditions hold:

(i) there exists an edge from one state variable of each target-SCC
0of G (\/ey Ay) to an output variable of G (\/—, Ay. C'):
(ii) B([A}; ...; Al C'1) has a maximum matching of size n + p;

q
k Ak

In the following remark, we outline the computational com-
plexity in which we can verify the conditions of Corollary 9.

|§|

where, for k € M, the matrices A, and C' are defined as A;, :[

-

and C' =[p¢]. o

Remark 10. We can verify the two conditions in Corollary 9
in O((m(n + p))?), where n is the number of state variables,
p is the number of unknown inputs, and m is the number of
modes (Section 3.3, Liu, Lin, and Chen (2013)). We notice that the
number of variables required to be measured is always less than
orequalton+p. ©

With the graph-theoretic conditions for structural state and
input observability enumerated, we introduce Algorithm 1.
Briefly, the algorithm finds the minimum set of state and in-
put variables to ensure that the conditions of Corollary 9 are
satisfied. First, the algorithm finds the maximum collection of
variables that satisfy the condition of Corollary 9 by constructing
the MWMM of B([A};...; Al; T]), where T has as many rows
as target-SCCs, and the non-zero column entries of T specify
the indices of the augmented states that make up each target-
SCC. Furthermore, weights are considered on the edges of the
bipartite graph such that all edge weights are zero unless the
edges connect to a vertex established by T at which the weight
is set to one. If there is an edge in the MWMM that has a weight
of one, then the index of the column vertex connecting the edge
is the same index of the augmented state variable that satisfies
both conditions in Corollary 9. The algorithm then proceeds to
find the minimum set of variables from the maximum collection
that still ensure the conditions of Corollary 9.

In the next result, we show that Algorithm 1 finds the mini-
mum set of states and inputs to ensure structural state and input
observability.

Theorem 11. Algorithm 1 is sound, i.e., it provides a solution to
P4, and the computational complexity of Algorithm 1 is O((m(n +
p) + «)s), where ¢ < 2.373 is the exponent of the best known
computational complexity of performing the product of two square
matrices (Alman & Williams, 2021). o

Remark 12. The computational complexity presented in Theo-
rem 11 might not be amenable for ensuring the sensor placement
for very large systems. Nonetheless, there are some particular
classes of systems for which algorithms with lower computa-
tional complexity can be devised—see Reed, Ramos, Bogdan, and
Pequito (2021) for further details. <
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Algorithm 1 Dedicated solution to P,

1: Input: A structural switched LTI system with M = {1, ..., m} modes
described by {Ai,...,Am, F1,...,Fn, Qi1,...,Qn}, Where Ay €
{0, x}™", Fr € {0, x)™P, Q € {0, %}P*P, Vk € {1, ..., m}

2: Output: Output C = I7* and D = T, where 7 = Z U Ja,
Je=lieg:i<pland Jy={ie J:i> p}

. 7 _[&o
3: Set A, = [fk A

4: Compute the « target-SCCs of ¢ (\/}_, A;) = (x', &}, ), denoted
by {S1, ..., Su} _ oL
5: Build the bipartite graph B([A};...; A T]) = (Ve, Vi, Evevy )

where T € {0, }("*P*¢ and T;; = « if ¥, € Sj and T;; = 0, otherwise.

We denote the rows of matrix /Z\;( by {r{‘, e r,’f+p}, and the rows of
T by {t1, ..., t}.
6: Set the weight of the -edges e € Eveyy tO

1, ifee({t,...
0, otherwise

7: Find a MWMM M’ of the bipartite graph constructed in Step 5, with
the cost of the edges defined in Step 6.

8: Set the column vertices associated with T belonging to M/, i.e.,
J ={i: (tg)e M,jef{l,....,a}and¢ € V}and T = {j :
(t,c)e M,jefl,...,a}and ¢ € V,}

9:Set 7" =(1,....,n+p}\{ief{l,....n+p} : (rj",ci) e M, ke
{1,...,m},je{1,...,n+p}}

10: Set 7" to contain one and only one index of a state variable from
each target-SCC in {Ss : s € {t1, ..., t,} \ T}

11: Set 7 =7 UJ"UT"

12: Set jy={ieg:i<pland Jy={ie J:i>p}

e} X V)N Eype v,

4. Real-world example

In this section, we find the minimum sensor placement for a
real-world example from power systems by considering the IEEE
5-bus system (Ramos et al., 2013), which has three generators
and two loads. Through linearization, we can model this system
as a continuous-time switched LTI system with unknown inputs
by considering two modes. The union of the two modes are
shown in Fig. 1. One mode is the working system, and the second
mode contains a fault that disconnects generator 1 to load 1,
which corresponds to the connection between x14 and x;9 being
eliminated. The unknown inputs d; and d, capture the unknown
amount of load consumed by loads 1 and 2, respectively. Table 1
describes the states and unknown inputs of the network. The
shaded rows in the table correspond to the unknown inputs.
The variables/nodes that are not listed in the table but appear
in the system digraph correspond to the internal variables that
connect the different bus, generators, and loads. The blue nodes
correspond to load 1. The orange nodes correspond to load 2. The
green nodes correspond to generator 1. The red nodes correspond
to generator 2. The gray nodes correspond to generator 3.

Since the system possesses nodal dynamics on all the inputs
and states, we only need to perform steps 1-4 and steps 10-
12 of Algorithm 1 to find the minimum set of dedicated sensors
to achieve structural observability, which involves only finding
the target-SCCs. We start by finding the union of the modes—see
Fig. 1. Next, we augment the system and relabel it with the state
X' = [dT x"]"—see Step 3 of Algorithm 1. With the system properly
combined and augmented, we continue by finding the target-
SCCs of G(\/;_, A)—see Step 4 of Algorithm 1. We find that there
are 3 SCCs, which are outlined in dashed polygons depicted in
Fig. 1. We also find that there is 1 target-SCCs, which is outlined
in a blue dashed polygon in Fig. 1, implying that « = 1. Next,
we find a single state in the target-SCCs and add its index to J—
see Step 10 of Algorithm 1. Hence, 7, = {12} or Jy = {10}—see
Step 12 of Algorithm 1. These solutions correspond to measuring
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Table 1

States and Unknown Inputs for IEEE 5-bus system.
Description Node
Frequency of G; X1
Turbine output mechanical power of G; X
Steam valve opening position of G; X3
Frequency of G, X4
Turbine output mechanical power of G, X5
Steam valve opening position of G, Xg
Frequency of G X7
Turbine output mechanical power of Gs Xg
Steam valve opening position of G3 Xg
Load consumed by L; X10
Unknown uncertainty of L, d,
Load consumed by L, X12

the load consumed from either of the two loads in the considered
power grid example, which matches the physical intuition for the
power grid.

5. Conclusions

In this paper, we investigated the structural state and input
observability of continuous-time switched LTI systems under
unknown inputs. To this end, we derived necessary and sufficient
conditions for the structural state and input observability of
continuous-time switched LTI systems. These conditions can be
verified in polynomial-time, more precisely in O((m(n + p))?),
where n is the number of state variables, p is the number of
unknown inputs, and m is the number of modes. Additionally,
adopting a novel feed-forward analysis, we addressed the mini-
mum sensor placement for these systems by designing an algo-
rithm with a computational complexity of O((m(n + p) + a)>373),
where « is the number of target strongly connected components.
Finally, we applied our algorithm to find the minimum sensor
placement to a real-world example in power systems to illustrate
our results.
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Appendix

Proof of Theorem 7. The continuous-time switched LTI system
with unknown inputs described in (1a), (1b), and (1c’) may be
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Generator 1
’ M Load 1
Generator 2
Load 2
Generator 3

_________

Fig. 1. This figure shows the union of the two modes of the continuous-time
system with unknowns for the IEEE 5-bus system. The SCCs are outlined by
two dotted black rectangles, and the target-SCCs is outlined by a dotted blue
polygon. The minimum output sensor and its placement is shown by y;. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

re-written as the following augmented continuous-time switched
LTI system where the new augmented system is x' = [dT XT]",

. 0 /
KO =[50 ]¥© and y(©) = [pc]x(e), (2)
~——
Y C/
A::(t) o(t)
Moreover, let M = {1, ..., m} be the ordered finite set of modes
where the function o(t) is constant in each mode. Then, we
have that A, = %:/?k and ¢’ = [pc].,Vk € M. There-

fore, when the system in (1a), (1b), and (1c¢’) is structurally
state and input observable, it is equivalent to when the system
in (2) is structurally state observable. Interestingly, despite the
fact that observability and controllability are not dual in general
for switched LTI systems, in Theorem 4 in Meng (2006), the
authors showed that switched LTI systems are dual in the case
of circulatory switching (see Definition 3 in Meng (2006)). From
Remark 3 in Liu et al. (2013), it readily follows that, in the context
of structural switched LTI systems, the order of the switches does
not play a role in attaining structural controllability. Therefore, in
particular, it follows that structural controllability can be attained
in the case of circulatory switching. As such, we can leverage
Theorem 4 in Meng (2006) and invoke duality between struc-
tural controllability and structural (state) observability. Hence, by
Theorem 3 of Pequito and Pappas (2017), the system in (2) is
structurally observable whenever the conditions (i) and (ii) hold.

Proof of Corollary 9. First, we construct the augmented sys-
tem (2) from the original system (1). Second, we need to ensure
that the conditions in Theorem 7 are satisfied. When the digraph
g (\/km:1 A, C/) has no non-accessible output vertices, it is equiv-
alent to the existence of an edge from a state variable in each
target-SCC G (\/}_, A;) to an output vertex of g (\/\_; A}, C').
Thus, condition (i) is equivalent to condition (i) of Theorem 7.
Subsequently, we recall the result from Commault, Dion, and
van der Woude (2002), which states that for M e {0, x}"1*"2,
when the g-rank(M) = min{n;, n,}, it is equivalent to when there
exists a maximum matching of B(M) of size min{n, n,}. Hence,
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by the previous result, condition (ii) is equivalent to condition (ii)
of Theorem 7.

Proof of Theorem 11. To address the problem P;, we augment
the system in (1a) and (1b) to be written as in (2) where x' = [dT
XxT]. With this augmented system, Algorithm 1 constructs three
minimum sets of dedicated outputs that combine to satisfy the
two conditions outlined in Theorem 7, which guarantee structural
state and input observability. Minimality of the combined sets is
ensured as we use maximum matchings to build the three sets.

Subsequently, we use Algorithm 1 with the structural
switched LTI system vyith M = {1,...,m} moges described by
the magrices {A}, ..., A}, where the matrices A, are defined as

=20 ] wkem

First, we observe that 7/ comprises of a minimum set of ded-
icated outputs, which maximizes the g-rank([A}; ...; A, ; ]I(Jn;p)]),
where ]I(Z;p) is a diagonal matrix whose entries in 7' are nonzero.
Concatenating [A}; ...; A, ] with H(“Z;p) increases the generic rank
by |7’| and produces dedicated outputs assigned to state vari-

ables in distinct target-SCCs. In fact, B([A}; ...; Al ; Hg;p)]) yields

a MWMM M with weight 0 and size | M|. Hence, by the result
from Commault et al. (2002) used in the proof of Corollary 9, it
follows that g-rank([A': ...; Ay 17, 1) = [ M.

Next, a MWMM M’ of B([A}; ...; Al; T]) has size |AM’|. This

corresponds to an increase in g-rank([A’; . ..; A;n; ]IEH{L;J )]) from

g-rank([A}; ...; A ; ]Ig;p)]) of [M’| — |M]|. Observe that, by the
construction of the matrix T, we have that H(‘le) corresponds to
dedicated outputs assigned to state variables in distinct target-
SCCs. This means that |7”| target-SCCs will have outgoing edges
to different outputs of the system digraph. This is necessary to
satisfy condition (i) of Theorem 7 but may not be sufficient.

Therefore, we have to finally consider a third set, 7", to
ensure that condition (i) is fulfilled. In other words, there might
still be target-SCCs that are not accounted for by state variables
indexed in 7’ U J”, which we account for in 7"

By minimizing the number of additional dedicated outputs
H({lm, in step 8, we satisfy condition (ii) in Theorem 7 since

g-rank([A]; ... ;;\;n; Hgﬂ;f //)]) = n + p. Additionally, the set 7"

of minimum extra dedicated outputs, found in step 9, ensures
that there are not state vertices that do not access at least one
output vertex in G (\/}_, Ay, ]I(“Zﬂ])), where 7 = 7/U 7" U 7",
thereby fulfilling condition (i) of Theorem 7. Notice that ]Ifﬁp) are
not assigned to previously assigned target-SCCs, as they would
have been considered in ]I({;p).

Consequently, by the construction, setting 7 = 7' U J” U
J" in step 10 yields a solution ]I(‘Z .p) that is minimal, ensuring
both conditions of Corollary 9. Notice that the produced solution
easily translates to the original problem P, solution by setting the
originals C = I7* and D = I, where Jx = {i € 7 : i > p} and
Ja={ieJ :i<p}

The computational complexity of Algorithm 1 comes from
the step with the highest computational cost (step 6) since the
remaining steps of the algorithm have lower complexity. The
computational complexity of step 6 can be solved by resorting
to the Hungarian algorithm (Kuhn, 1955) that finds a MWMM
of B([A); ...; Al; T]) in O(max{|V;[, [V¢|}*), where V; and V. are
defined in step 5, and ¢ < 2.373 is the exponent of the best
known computational complexity of performing the product of
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two square matrices. Since V.| < [V,|, this results in a computa-
tional cost of O(|V;|¢) = O((m(n + p) + «)%).
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