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Quantum computing promises to speed up machine-learning algorithms. However, noisy intermediate-
scale quantum (NISQ) devices pose engineering challenges to realizing quantum machine-learning (QML)
advantages. Recently, a series of QML computational models inspired by the noise-tolerant dynamics of
the brain has emerged as a means to circumvent the hardware limitations of NISQ devices. In this paper, we
introduce a quantum version of a recurrent neural network (RNN), a well-known model for neural circuits
in the brain. Our quantum RNN (qRNN) makes use of the natural Hamiltonian dynamics of an ensemble of
interacting spin-1/2 particles as a means for computation. In the limit where the Hamiltonian is diagonal,
the qRNN recovers the dynamics of the classical version. Beyond this limit, we observe that the quantum
dynamics of the qRNN provide it with quantum computational features that can aid it in computation. To
this end, we study a fixed-geometry qRNN, i.e., a quantum reservoir computer, based on arrays of Rydberg
atoms and show that the Rydberg reservoir is indeed capable of replicating the learning of several cognitive
tasks such as multitasking, decision making, and long-term memory by taking advantage of several key
features of this platform such as interatomic species interactions and quantum many-body scars.
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I. INTRODUCTION

Quantum computing promises to enhance machine-
learning algorithms. However, the implementation of these
advantages often relies on either fault-tolerant quan-
tum computers that are not yet available [1–5] or on
decoherence-limited variational quantum circuits that may
experience training bottlenecks [6,7]. Thus, the cur-
rently available noisy intermediate-scale quantum (NISQ)
devices thwart the quantum advantages in machine-
learning algorithms.

Recently, to counteract these challenges, several
quantum machine-learning architectures have emerged,
inspired by models for computation in the brain [8–
10]. These brain-inspired algorithms are motivated by the
inherent robustness of input and hardware noise in brain-
like computation and by the possibility of using the analog
dynamics of controllable many-body quantum systems for
computation without relaying on a digital circuit architec-
ture. Broadly speaking, these brain-inspired algorithms can
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be put into two categories, the first of which encompasses
systems quantizing the dynamics of biological computa-
tional models at the single-neuron level. Thus, the dynam-
ics of single qubits or of groups of qubits resemble the
dynamics of a neurons in a neural circuit of interest. Exam-
ples of these include quantum memristors [11], which
are electrical circuits with a history-dependent resistance,
quantum versions of the biologically realistic Hodgkin-
Huxley model for single neurons [12,13], and the unitary
adiabatic quantum perceptron [14].

The second category of brain-inspired algorithms relies
on a macroscopic resemblance between many-body quan-
tum systems and neural circuits. In this regard, the
algorithms that have received the most attention are
quantum reservoir computers, which use ensembles of
quantum emitters with fixed interactions to perform ver-
satile machine-learning tasks, relying on the complexity of
the unitary evolution of the system. Since these systems
can couple with both classical and quantum devices, which
may encode the input of the tasks, quantum reservoirs
have been used for time-series prediction [15–17], entan-
glement measurement [18,19], quantum state preparation
[20], continuous-variable computation [21], which can be
made universal [22], reduction of depths in quantum cir-
cuits [23], ground-state finding [24], and long-term mem-
ory employing ergodicity-breaking dynamics [25–27]. For
a comprehensive review of quantum reservoir computing,
see Ref. [10].
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In both categories, however, a thorough understand-
ing of the potential computational advantages and their
origins is slowly emerging. In this paper, we contribute
to this direction by proposing a quantum extension of a
well-known neural-circuit model called a recurrent neu-
ral network (RNN), of which reservoir computers are a
special case [28]. Our extension uses the Hamiltonian
dynamics of ensembles of two-level systems. In the limit
where the Hamiltonian is diagonal, we recover the classical
single-neuron dynamics that naturally encode RNNs into
quantum hardware. Recently, another natural encoding of a
reservoir computer has been proposed using superconduct-
ing qubits [29]. In our case, the general dynamics of the
quantum RNN (qRNN) present several new features that
can aid in the computation of both classical and quantum
tasks. In particular, a qRNN used for simulating stochas-
tic dynamics can exhibit speed-ups compared to classical
RNNs.

To show that our scheme is experimentally realizable,
we propose that arrays of Rydberg atoms can be used as
qRNNs (Sec. IV). Although our Rydberg qRNNs have
restricted connectivity, we are motivated to use Ryd-
berg arrays due to recent studies with equally restricted
qRNNs, which show significant computational capacity
when driven near criticality [17,24]. Moreover, recent
experiments using optical tweezers [30–37] have cata-
pulted the community’s interest in Rydberg arrays, as
they exhibit long coherence times, controllable and scal-
able geometries, and increasing levels of single-atom con-
trol [38]. Additionally, Rydberg arrays can be used for
novel programmable quantum simulations and universal
computations [30,39–43].

We numerically implement fixed-geometry Rydberg
qRNNs, i.e., Rydberg-reservoir computers, and we suc-
cessfully perform cognitive tasks even when just a few
atoms are available (Sec. V). The success of these tasks
is explained by the physics of Rydberg atoms. For exam-
ple, our Rydberg qRNNs excel at learning to multitask
since they can naturally encode RNNs with inhibitory and
excitatory neurons, which are vital for many cognitive
tasks [44]. This encoding relies on the different types of
interactions between Rydberg atoms with different princi-
pal quantum numbers [45]. Likewise, a Rydberg qRNN
exhibits long-term memory due to the weak ergodicity-
breaking dynamics of many-body quantum scars [35,46,
47]. Lastly, we discuss possible further research directions
in Sec. VI.

We remark that the notion of qRNNs has been previ-
ously coined relying on universal quantum circuits and
using measurements to implement the nonlinear dynamics
of a RNN [48]. Instead, what we define as a “quan-
tum RNN” leverages the inherent unitary dynamics of
ensembles of two-level systems to compute, deviating
from the quantum digital circuit model for computa-
tion.

II. CLASSICAL RECURRENT NEURAL
NETWORKS

We begin by reviewing an archetypal RNN consisting
of N binary neurons. Each neuron is in one of two possible
states sn(t) ∈ {−1, 1} and is updated from the time step t to
t + 1 following the update rule

sn(t + 1) = sign (hn(t)sn(t)) ,

hn(t) ≡ −�n(t)+
∑

m

Jnmsm(t),
(1)

where the Jnm = Jmn are symmetric synaptic connections
between neurons n and m. The time-dependent biases
�n(t) encode the inputs of the RNNs. To avoid memoriza-
tion during a learning task with inputs utask

n (t), the RNN
receives Gaussian-whitened inputs

�n(t) = utask
n (t)+ ξn, (2)

where ξn is a zero-mean Gaussian random variable with
variance σ 2

in, making the evolution of the RNN stochastic.
In RNNs, the value of σ 2

in is proportional to the value of the
inputs utask

n of the task.
When studying learning tasks similar to those in the

mammalian cortex [44], one turns to a continuous version
of the rule in Eq. (1) obtained in the case in which the time
interval τ in which neurons update is small compared to
Jnm. In this limit,

τ ṡn(t) = −sn(t)+ sign (hn(t)sn(t)) . (3)

Thus, the RNN obeys a system of nonlinear differential
equations. Note that Eq. (3) implies that sn ∈ [−1, 1] is a
continuous and bounded variable [28].

A third way to describe a RNN is via the probability
distribution pt(s) of observing each of the 2N different
configurations s at the tth time step. Due to the noise
in the inputs �n, the dynamics of the distribution fol-
low a Markov-chain description [28]. This description is
particularly useful for analyzing the stochastic dynamics
simulatable by a RNN. As we see in Sec. III A 3, this
representation is useful in explaining how, relative to clas-
sical RNNs, the unitary dynamics of a qRNN can speed up
stochastic process simulations.

Lastly, we describe how to use a RNN for compu-
tation. After the RNN evolves for a time tf , a sub-
set of M neurons is used to collect the vector r(tf ) =
(sn1(tf ), . . . , snM (tf ), 1) with the last entry accommodat-
ing a bias. The other N − M neurons are called hidden
neurons. The output of the RNN is obtained via a lin-
ear transformation yout = Woutr(tf ), where Wout is a real-
valued matrix. Thus, the computational complexity of the
RNN comes from the nonlinear activation function in Eq.
(1), which enables yout to be a nonlinear function of the
inputs.
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In a learning task with a target output ytarg, the RNN
is trained by minimizing a loss function L(yout, ytarg) with
respect to the network parameters such as Wout, Jnm, etc.
subject to the task-determined inputs in Eq. (2). We choose
the mean-square loss

L(yout, ytarg) = 1
Ns

Ns∑

i=1

||ytarg
i − yout

i ||2, (4)

where i labels the Ns different input instances. For the tasks
in Sec. V, we fix the connections Jnm such that our qRNNs
more closely resemble quantum reservoir computers.

III. QUANTUM RECURRENT NEURAL
NETWORKS

A. Quantum update rule

Let us now extend the classical RNN in Eq. (1) to the
quantum setting. We replace each of the N neurons with
a spin-1/2 particle for which a spin measurement along
the z axis yields the values {−1, 1}. Thus, each neuron n
is in a normalized quantum state in the Hilbert space Hn
with basis vectors {| − 1〉n, |1〉n} that are eigenstates of the
Pauli Z operator σ z

n = |1〉〈1|n − | − 1〉〈−1|n. The state of
the composite system lives in the product Hilbert space
H = ⊗N

n=1 Hn.
We choose spins interacting via the time-dependent

Hamiltonian

H(t) = −
N∑

n=1

�n(t)σ z
n +

∑

nm

Jnmσ
z
nσ

z
m + �(t)

2

N∑

n=1

σ x
n ,

(5)

where σ x
n = |1〉〈−1|n + | − 1〉〈1|n is the Pauli X opera-

tor. Indeed, the evolution under Eq. (5) encompasses the
update rule in Eq. (1). To see this, note that in the classical
case of Eq. (1), the RNN evolves under the rules

If hn > 0, sn does not change. (1C)

If hn < 0, sn flips. (2C)

Here, “C” denotes “classical.” Now, consider a qRNN
starting in the configuration |s1, s2, . . . , sN 〉 and evolv-
ing for a time t = 2 π�−1. In the limit where �n �
� or Jnm � �, each spin experiences the Hamiltonian
Hn = hnσ

z
n + (�/2)σ x

n , where hn = −�n + ∑
m Jnmsm is

the effective field generated by the rest of the spins, in
which sm denotes the measurement result of σ z

m on the
initial configuration. We then obtain the quantum update

rules

If |hn| � �, |sn〉 does not change. (1Q)

If |hn| � �, |sn〉 flips. (2Q)

Here, “Q” denotes “quantum.” Therefore, Eq. (5) can
implement Eqs. (1C) and (2C) but without the use of the
nonlinear activation function in Eq. (1). Nonetheless, Eq.
(5) allows for more general dynamics beyond the pertur-
bative limit for which Eqs. (1Q) and (2Q) hold. We now
highlight three features arising from the quantum evo-
lution of the qRNN: (i) the ability to compute complex
functions on the input by using quantum interference; (ii)
exploiting the choice of measurement basis; and (iii) effi-
ciently achieving stochastic processes that are inaccessible
to classical RNNs with no hidden neurons.

1. Quantum feature 1: Quantum interference as a
means for computation

The computational power of Eq. (1) is a result of its
nonlinear dynamics. For example, a RNN with linear
dynamics is incapable of computing the parity function
XOR(s1, s2) = s1s2 between two classical binary inputs. On
the other hand, quantum mechanics is a unitary theory. Yet
this does not limit a qRNN to linear computation. Indeed,
a qRNN can compute XOR by leveraging quantum inter-
ference, a resource fundamental to quantum computation.
Thus, we can use a qRNN for complex computing tasks.

As illustrated in Fig. 1, we can compute XOR(s1, s2)
using a qRNN of three spins initially in the state
|s1, s2, −1〉. The third spin is an outcome spin. This spin is
measured to tell us information about the parity of s1 and
s2. We let these spins evolve under the dynamics dictated
by Eq. (5), choosing �n, J12 = 0 and J13 = J23 = J � �.
Let J̃ = J (s1 + s2). In the frame rotating at the rate J̃ , the
output spin experiences the Hamiltonian

H3 = �

2

(
e2iJ̃ τ |1〉〈−1| + h.c.

)
. (6)

It is clear that if the spins have odd parity (i.e., s1 = −s2
so that J̃ = 0), the output spin flips to the state |1〉 when
we choose to evolve by t = 2 π�−1. On the other hand,
if J̃ �= 0, H3 contains only fast-rotating terms and the
rotating-wave approximation (RWA) allows us to neglect
the evolution of the output spin [49]. Physically, the RWA
can be thought of as the spin rotating along the x axis by
a small amount followed by a rapid precession of the spin
around the z axis. Indeed, as illustrated in Fig. 1, J � t−1

amounts to averaging out the position of the spin so that the
spin is along the z axis. Overall, this computation realizes
the operation |s1, s2, −1〉 → |s1, s2, XOR(s1, s2)〉.
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FIG. 1. The computation of the parity, XOR(s1, s2), of two
inputs s1 and s2 with a qRNN. Spin 3 (the output spin) expe-
riences an effective field J̃ = J (s1 + s2) with J � �. After
evolving for a time t = 2 π�−1, we measure the output spin. The
measurement outcome +1 is obtained when s1 = −s2, since J̃ =
0. If s1 = s2, so that J̃ �= 0, the inputs constructively interfere to
generate a large detuning on the output such that measurement
yields the outcome −1.

Note that this is a result of s1 + s2 constructively inter-
fering to produce a large effective detuning on the output
and blocking its evolution. Thus, interference serves as a
means for computation in qRNNs.

2. Quantum feature 2: Arbitrary measurement basis as a
means for computation

Equations (1Q) and (2Q) recover Eq. (1) when t =
2 π�−1. However, t = 2 π�−1 is not a necessary restric-
tion. This freedom results in the ability to rotate each
quantum neuron, which can be used as means for com-
puting on a different basis. Measuring on different bases
reveals the quantum correlations enhancing the perfor-
mance of a qRNN relative to its classical counterpart. In
this section, we show how to use the evolution of the
qRNN to change the basis on which an error occurs. This
freedom can detect a Z error, an error proper to quantum
computation.

Consider the repetition codes |0L〉 = |−y〉⊗3 and |1L〉 =
|+y〉⊗3 on qubits labeled L1,2,3, where |±y〉 = 1√

2
(| − 1〉 ±

i|1〉). Suppose that we prepare the state |ψ〉 = a|0L〉 +
b|1L〉 and consequently a Z error occurs. We can detect the
error by rotating all three spins L1,2,3 using Eq. (5) with the
dominant field being � for a time t = π/2�. Note that the
rotation conjugates the Z error by

e−iπσ x/4σ zeiπσ x/4 ∝ σ y , (7)

where σ y
n = i| − 1〉〈1| − i|1〉〈−1| is like a bit-flip error

except for a state-dependent phase. A bit-flip error can

TABLE I. The results of the parity measurements for the detec-
tion of a Z error. The measurement of spin Ai results in the
outcome ai. By comparing the outcomes, one can detect the
location of the Z error.

a2 a1
−1 +1

−1 Error in L2 Error in L1
+1 Error in L3 No error

then be detected by bringing two extra spins A1,2 and per-
forming parity measurements of the pairings (L1, L2), and
(L2, L3) as described in Sec. III A 1. Using Table I, the
final parity of (L1, L2), and (L2, L3) gives the measurement
results a1 and a2, which can be used to discern where the
Z error has occurred.

As an example, Fig. 2 illustrates the two final states of
L3 if no error occurs (bottom left) and if a Z error occurs
on L3 (bottom right).

Detection of the Z error hinges on Eq. (7) and can be
achieved by using the evolution of the qRNN to rotate the

FIG. 2. The detection of a Z error on three spins L1,2,3 using a
quantum RNN. A Z error is conjugated into a bit-flip-like error
using a Hamiltonian generating a rotation along the x axis, where
t = π/2� and � is the dominant field of the Hamiltonian. The
state of each of the Li after the rotation (orange region) depends
on whether a Z error occurs, as illustrated at the bottom of the
figure. As exemplified here for L3, a Z error results in a spin
flipping from what we would expect in the absence of errors.
To detect the Z error, a set of auxiliary qubits A1,2 is brought in
to perform a parity measurements of pairs (L1, L2) and (L2, L3).
Since under no Z error the parity measurements must match, the
parity measurements allow us to detect the location of the Z error
as specified in Table I.
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measurement basis. Note that rotation allows us to mea-
sure the error syndrome of the stabilizer state |ψ〉, bringing
out the quantum correlations of the state. Thus, the native
evolution of the qRNN can be used to perform quantum
computational tasks. After the error is detected on spin Li,
all qubits are rotated again by U† and σ z

i can be applied to
correct the error. We note that using a repetition code for
error detection is a well-known technique in the quantum
computing community.

The previous two quantum features show that qRNNs
are naturally suited for solving important problems in
machine learning and quantum computing. Recently,
qRNNs have been used to compress quantum circuits [23].
However, studies on using qRNNs for error correction in
circuitlike quantum computing are warranted and are left
for further studies.

3. Quantum feature 3: Stochastic processes accessible to
a qRNN

We now explore how a qRNN can be used to stochas-
tically evolve a probability distribution faster than any
classical RNN. First, we note that if we initialize a RNN
according to an initial distribution p0(s), the dynamics in
Eq. (1) dictate that for t > 0, the RNN obeys a distribution
given by the Markov-chain dynamics

pt(s) =
∑

s′
P(s|s′)pt−1(s′), (8)

where P(s|s′) is the transition probability between states s′
and s, the particular value of which is given by Eq. (1) [28]
(for details, see Appendix A).

Given this observation, we see that a RNN can be used
for the task evolving a probability distribution p0 into pf =
Ltargp0 by a series of stochastic transition matrices Lout =
Ptf . The goal is to adjust the parameters of the RNN (i.e.,
biases and connection weights) to simulate the stochastic
matrix encoded in Lout ≈ Ltarg in as few steps as possible.
Then, one may ask if a qRNN can do this more efficiently
than any RNN.

We answer this in the affirmative. It is worth not-
ing that not all stochastic transition matrices Ltarg are
embeddable in a Markov process (for a review of clas-
sical and quantum embeddability, see Appendix A). To
simulate the future behavior of a stochastic system, infor-
mation about its past must be stored and thus memory is a
key resource. Quantum information processing promises a
memory advantage for stochastic simulation [50]. In sim-
ulating stochastic evolution with classical resources there
is a trade-off between the temporal and physical resources
needed [51] and it has been shown that certain stochas-
tic evolutions, when simulated with quantum hardware,
may not suffer from such a trade-off, since the evolution
arising from quantum Lindbladian dynamics is far more
general than classical Markovian evolution [52]. That is,

there exist matrices Ltarg that are quantum embeddable
but not classically embeddable. Moreover, even if Ltarg is
embeddable, the quantum evolution can lower the number
of steps needed to produce Ltarg, since the unitary dynam-
ics of a quantum system allow a simultaneous, continuous,
and coherent update of every neuron. This separation in
capabilities illustrates the computational advantages of
quantizing a RNN.

Let us now give an example of a matrix Ltarg that can be
achieved exponentially faster in a qRNN. Consider the task
of realizing a transformation F corresponding to a global
“spin flip”

Fs|s′ =
{

1, if ∀n sn �= s′
n,

0, otherwise.
(9)

The realization of F on N neurons using a classical Markov
process requires several time steps of order O(2N−m),
where m is the number of hidden neurons (for details, see
Sec. III.A in Ref. [52]). In other words, a classical RNN
cannot produce F efficiently when all available neurons
must be flipped. This is a result of Eq. (1) and the fact
that the flipping of neuron n is done by ensuring that there
is another neuron m in the opposite state so that Jnm > 0
dominates hn.

On the other hand, a qRNN can perform F in a sin-
gle step regardless of whether all neurons need to flip.
To see this, one can consider the case of Eq. (5) with
� � hn. In this case, neurons both flip simultaneously
and in a single time step under a unitary U. That is, if
|ψ0〉 = ∑

s

√
p0(s)|s〉, then

|ψf 〉 = U|ψ〉 =
∑

s

√
pf (s)|s〉. (10)

Figure 3 compares the classical and quantum RNNs at real-
izing F. While the realization of the matrix F via Eq. (5)
signals a quantum advantage, we highlight that this advan-
tage is extremely sensitive to the decoherence arising from
spontaneous emission (i.e., spontaneous relaxations from
|1〉 to | − 1〉), a main source of noise in NISQ devices
(see Appendix A). It remains an open problem whether
there exist stochastic processes enabled by Eq. (5) that
are robust to noise and, in the future, we hope to explore
how to shield unitary stochastic processes against noise in
experimentally realizable NISQ devices.

The spin-flip process F is efficiently simulated using
a classical computer. However, F exemplifies the ability
of the qRNN to access stochastic processes that are inac-
cessible to classical RNNs without hidden neurons. This
implies that if a RNN is employed to simulate evolving
p0 to ptf stochastically by passing it through several lin-
ear transformations, there are instances where the qRNN
requires exponentially fewer steps. Stochastic simulation,
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FIG. 3. The comparison of a classical and a quantum RNN to
stochastically evolve a distribution ptf from an initial distribution
p0. Here, we consider p0(s) = ptf (s

′) when sn = −s′
n for all n. In

this case, the RNN needs to produce a stochastic process matrix
Ltarg that flips all the spins through several time steps. The clas-
sical RNN (top) requires O(2N−m) time steps (i.e., applications
of P) while using m hidden neurons. A qRNN (bottom) requires
one time step and no hidden neurons.

of course, has applications in finance, biology, and ecol-
ogy, among other fields. As an example, Ref. [53] has
used this quantum advantage to propose a quantum circuit
algorithm for stochastic process characterization and has
presented applications in finance and correlated random
walks. The above separation illustrates the computational
advantage of quantizing a RNN.

B. qRNNs under spontaneous emission

Having seen how Eq. (5) recovers the discrete-update
rule in Eq. (1), we now show that a qRNN under dissi-
pation naturally evolves under continuous-time dynamics
analogous to Eq. (3). This establishes only mathematical
similarities between the evolution of NISQ devices and
neural circuits, allowing us to use available quantum hard-
ware for cognitive tasks, an idea that we explore further in
Sec. V.

Consider the qRNN in Eq. (5) under spontaneous emis-
sion, where a spin relaxes from |1〉 to | − 1〉 at a rate γ .
To extract the dynamics of continuous variables, we focus
on the dynamics of the expectation values of local Pauli
operators.

The expectation value of an observable A is 〈A〉 =
Tr(Aρ), where ρ is the density matrix describing the sys-
tem. In particular, we focus on the expectations of the
operators σ x

n and σ y
n = i| − 1〉〈1|n − i|1〉〈−1|n. If we start

the qRNN at a state for which 〈σ z
n (0)〉 = −1, then (see

Appendix B)

˙〈
σ

y
n
〉 = −1

τ

〈
σ y

n (t)
〉 − �

2γ

∑

m

Jnm
〈
σ x

n (t)σ
y
m(t)

〉

+�n(t)
〈
σ x

n (t)
〉
, (11)

where we define the neural time scale τ−1 = γ /2 +
�2/4γ , which is different than that in Eq. (3) but bears the

analogous significance of the time scale over which
〈
σ

y
n
〉

decays.
Different from Eq. (3), note that the dynamics of

〈
σ

y
n
〉

are influenced by the value of the spin along the x axis,
a consequence of the nontrivial commutation relation of
spin variables. The commutation relations also make Eq.
(11) quadratic and therefore nonlinear. The quadratic term
in Eq. (11) is analogous to the nonlinear term that gives
RNNs their computational power.

In Appendix B, we also explore the dynamics of
〈
σ x

n

〉
and

show that together with
〈
σ

y
n
〉
, we recover dynamics anal-

ogous to the integrate-and-fire RNN model [54], a more
realistic model of neural networks in the brain than the one
in Eq. (3).

IV. QUANTUM RESERVOIR COMPUTERS USING
RYDBERG ATOMS: AN EXPERIMENTAL

PROPOSAL

The similarities between Eq. (11) and the evolu-
tion of RNNs suggest the ability of qRNNs to emulate
neurological learning. To explore neurological learning in
qRNNs, we propose to fix the architecture of the qRNN
coupling constants Jnm based on optical-tweezer arrays of
Rydberg atoms.

The natural Hamiltonian of a Rydberg array closely
resembles the one in Eq. (5). A Rydberg atom is a sin-
gle valance-electron atom that can be coherently driven
between an atomic ground state |g〉 and a highly excited
state |r〉 with a much larger principal quantum number.
These states can represent our | − 1〉 and |1〉 neuronal
states, respectively. A Rydberg atom in its excited state
exhibits a large electronic dipole moment and, conse-
quently, a collection of Rydberg atoms interacts via a 1/R6

van der Waals potential, where R denotes the physical
distance between the two atoms. For an array of Ryd-
berg atoms where the atoms are at fixed positions, the
Hamiltonian of the system is [35]

HRyd = �
∑

n

n̂n + �

2

∑

n

σ x
n +

∑

nm

V
R6

nm
n̂nn̂m, (12)

where n̂n = |1〉〈1|n, � is the coherent Rabi drive coupling
the | − 1〉 and |1〉 states,� < 0 is a global drive frequency
mismatch to the atomic spacing of the atoms, and V is
the nearest-neighbor interaction strength. Using acousto-
optical deflectors (AODs) and a spatial light modulator
(SLM), one can create spatially dependent light shifts,
resulting in site- and time-dependent detunings �n(t) =
�+ α(t)�n, where α(t) is a time-dependent envelope.
With this in mind, the Hamiltonian in Eq. (12) can be
mapped to a Hamiltonian like that in Eq. (5) with Jnm =
V/R6

nm since n̂n = (σ z
n + 1n)/2. In this paper, for concrete-

ness, we compare our numerics against the experimental
realization of Rydberg arrays in Ref. [35,38], where the
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rates �, �n, and V are all in units of megahertz, while the
time constants are in units of microseconds. In these exper-
iments, an off-resonance intermediate state, |6P3/2, F =
3, MF = −3〉, is used to couple |g〉 = |5S1/2, F = 2, mF =
−2〉 and |r〉 = |70S1/2, mJ = −1/2, mI = −3/2〉 of 87Rb
atoms through a two-photon transition. Thus, photon scat-
tering off the intermediate state is the dominant source of
decoherence. As we show in Appendix D, we can model
this with a modified spontaneous-emission process given
by the jump operator

L+ = √
γ |g〉 (α〈r| + β〈g|) (13)

instead of the typical
√
γ |g〉〈r| jump operator. In the above

equation, γ = 2π/(20 μs) and (α,β) = (0.05, 0.16) for
the realistic settings that we simulate. With the full uni-
tary and dissipative dynamics, we can think of an array of
Rydberg atoms as a quantum analog of a continuous-time
RNN. Figure 4 compares the architecture of a classical
RNN in Fig. 4(a) and a Rydberg RNN in Figs. 4(b) and
4(c).

We note that the training of RNNs can be unsta-
ble, as it often relies on (truncated) back propagation
through time or real-time recurrent learning. One way
to circumvent this problem is by keeping the system
parameters fixed. Instead, we focus on only training the
output filter Wout. This easier training schedule has moti-
vated the introduction of reservoir computers [55] and
their quantum analogs [10,15–25,27]. Thus, in the fol-
lowing numerical experiments, we fix the position of the
atoms in either a one-dimensional (1D) chain or a two-
dimensional (2D) square lattice and train only Wout and
some temporal parameters depending on the task. That
is, in this paper, we implement Rydberg-reservoir com-
puters. Logically, successful performance on the tasks
presented here shows the computational ability of the
qRNN sufficiently. While we include the effect of small
imperfections on the positions of the atoms, we see no
significant effect on the performance of the tasks after
averaging our results over ten realizations of the atom posi-
tions. We leave full optimization of the qRNN for future
work.

Lastly, several features of the many-body dynamics of
arrays of Rydberg atoms are particularly well suited for
emulating biological tasks. In Sec. V A, we show how
Rydberg arrays can be used to implement inhibitory and
excitatory neurons, which are vital in many biological
tasks, such as multitasking [56]. The key idea behind the
encoding of inhibitory neurons is to leverage positive and
negative interactions between Rydberg atoms with differ-
ent principal quantum numbers [45]. Additionally, in Sec.
V D, we show that Rydberg arrays can store long-term
memory by taking advantage of the weak ergodicity-brea-
king dynamics of quantum many-body scars [35,46,47].

(a)

(b)

(c)

FIG. 4. The schematic picture of RNNs with classical and
quantum neurons. (a) The classical RNN. The inputs are local
biases and the interneural connections Jnm are arbitrary. A set of
neurons is used for readout to produce the output yout = Woutr.
(b) A qRNN made from Rydberg atoms that restrict the connec-
tions to Jnm ∼ 1/R6

nm, where Rnm is the physical distance between
atoms n and m. Here, we depict interactions between nearest and
next-nearest neighbors. However, each neuron interacts with all
others in the chain via Jnm ∼ 1/R6

nm. The local expectation val-
ues of a subset of atoms are for readout. (c) Arrays of Rydberg
atoms as qRNNs. Each atom experiences a Rabi drive � and a
local detuning �n encoding the inputs of the RNNs. One of the
main sources of decoherence in Rydberg atoms is spontaneous
emission at a rate γ .

V. LEARNING BIOLOGICAL TASKS VIA
RESERVOIR COMPUTERS

We focus on analyzing the potential of the Rydberg
reservoir to learn biologically plausible tasks. In the tasks
analyzed, we fix the geometry of the atoms depending on
the task at hand. As a proof of principle, we focus on four
simple neurological tasks that indicate good performance
even with a small number of atoms. We show that a Ryd-
berg reservoir can encode inhibitory and excitatory neu-
rons that are vital for successful multitasking. Likewise,
we show that Rydberg reservoirs can learn to decide by
distinguishing properties of stimuli, have a working mem-
ory, and exhibit long-term memory enhanced by quantum
many-body scars. Simulation details of each task can be
found in Appendix D.

A. Multitasking

A hallmark of classical RNNs is their ability to multi-
task. Multitasking consists of simultaneously learning sev-
eral output functions. Dale’s principle defines an inhibitory
neuron, indexed by n, as one with a negative sign in its
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interactions with all other neurons [57]:

Jnm ≤ 0 ∀m. (14)

Two Rydberg atoms with different principal quantum num-
bers nQ and n′

Q and angular momentum quantum num-
bers that are the same can interact with a 1/r6 attrac-
tive potential VnQ,n′

Q
[45]. Using the PYTHON package

PairInteraction [58], we note that if nQ represents the
state |r〉 = |70S1/2, mj = −1/2, mI = −3/2〉, and n′

Q rep-
resents |r′〉 = |73S1/2, mj = −1/2, mI = −3/2〉, then the
interaction VnQ,nQ = V ≈ −VnQ,n′

Q
, where V is the strength

between atoms with principal quantum numbers nQ (see
Appendix D). We can use this fact to encode inhibitory
neurons. We restrict the concentration of n′

Q Rydberg
atoms to be sparse, such that pairs of n′

Q atoms are
placed as far as possible at a distance dmax apart in a 1D
chain arrangement. We choose the field strength V so that
V/d6

max = 10−2 and as a result we can neglect the inter-
actions between pairs of n′

Q atoms but not the interactions
between pairs (nQ)(n′

Q) and (nQ)(nQ). This amounts to say-
ing that if atom n is driven to n′

Q, then for all m, Jnm � 0
as in Eq. (14). By implementing this in on our reservoir,
we can learn XOR, AND, and OR simultaneously for differ-
ent concentrations of inhibitory neurons, as illustrated in
Fig. 5(a).

Figure 5(b) shows the errors of simultaneously learn-
ing XOR, OR, and AND as a function of the system size N
for a different number of inhibitory neurons in the array.
The network is initialized in the state |g〉⊗N and the net-
work receives two binary inputs x, y ∈ {0, 1} (in units of
megahertz) for a time �t (in units of microseconds) with
input noise σin = 0.1. Afterward, the network is interro-
gated to give XOR(x, y), OR(x, y), and AND(x, y). Wout is
trained using the loss in Eq. (4). The errors shown in
Fig. 5(b) are the minimum achieved over a wide range
of choices of interaction time �t ∈ [0, 5] μs. This shows
that in some cases our reservoir can benefit from having
a connectivity matrix Jnm with both positive (excitatory)
and negative (inhibitory) values, analogously to the mam-
malian brain. For small system sizes, it seems that a ratio
of 1:4 inhibitory neurons betters the learning performance,
similar to the results in Ref. [56]. This is supported by the
performance at four and eight neurons in Fig. 5(b). In par-
ticular, N = 8 neurons, two of which are inhibitory, result
in a 40% decrease in the loss. Nonetheless, we observe that
having no inhibitory neurons is best when dealing with
N = 6 and 10 neurons. No inhibitory neurons are ever
the worse choice. Figure 5(c)–5(e) shows the results of
learning XOR, OR, and AND simultaneously using N = 8
and two inhibitory neurons. Note that the network is fully
capable of classification errors well below the input-noise
threshold σin.

(a) (b)

(c) (d) (e)

FIG. 5. The encoding of inhibitory neurons using Rydberg
atoms and their use for multitasking, which consists of fixing the
parameters of the qRNN and training Wout to produce three con-
flicting outputs. (a) The scheme for encoding inhibitory neurons.
Rydberg atoms with different principal quantum numbers are
used such that the pairs (nQ)(n′

Q) interact attractively while the
pairs (n′

Q)(n
′
Q) and (nQ)(nQ) interact repulsively. The network

receives two binary inputs, x and y. (b) The square error for learn-
ing the functions XOR, OR, and AND on the inputs with different
numbers of inhibitory neurons. Better performance is observed
when one in every four neurons is inhibitory. (c)–(e) Exam-
ples of learned functions using eight neurons and two inhibitory
neurons, which results in performing 40% better than without
inhibitory neurons.

Lastly, while this task shows the success of the Rydberg
reservoirs at approximating Boolean functions of the input,
we note that one may also want to calculate different non-
linear functions of the input. We remark that our Rydberg
reservoir can approximate biologically relevant nonlinear
functions such as rectilinear function (ReLU) and sigmoid.

B. Decision making

One of the great successes of classical RNNs is their
ability to integrate sensory stimuli to choose between two
actions. Here, we present the Rydberg reservoir with a
variant of the dot-motion decision-making task initially
studied in monkeys, in which several inputs are analyzed
to produce a scalar nonlinear function [59]. This function
represents a decision. This task shows the ability of the
Rydberg reservoir to produce nonlinear functions of the
input and perform simple cognitive tasks, a feature of most
reservoirs proposed thus far [60].

In this task, a reservoir is presented with two inputs,�in
1

and �in
2 , and the goal is to train the network to choose
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(a) (b)

FIG. 6. The decision-making task using a Rydberg reservoir.
(a) A schematic of the input stimuli as a pair of time-dependent
detunings on two atoms. The stimuli are turned on for a nor-
mally distributed time �t with standard deviation σin = 0.1. The
network decides on a relaxation time tout to output the decision
sign

(
�in

1 −�in
2

)
. (b) The psychometric response of the decision-

making task, which maps the accuracy toward deciding that �in
1

is the largest as a function of the difference between the inputs.
The simulated response (dotted) is well fitted by a sigmoid
function (solid curve).

which input is the largest. That is,

y targ = sign
(
�in

1 −�in
2

)
. (15)

The stimuli, which in the case of a qRNN are local detun-
ings on a pair of atoms, are turned on for a normally
distributed time �t with variance also σin = 0.1 and mean
〈�t〉 = 0.1 μs [see Fig. 6(a)]. The stimuli are then turned
off and the network chooses a relaxation time tout, after
which it “makes a decision” by approximating Eq. (15).
This is known as the fixed-duration protocol, since the
experimentalist fixes the stimulation period and the sub-
ject, the reservoir in this case, learns to choose a response
time tout.

In the brain, we expect the performance of a decision-
making task to follow a sigmoidal psychometric response
[44,59]. A psychometric response maps out the accuracy
of a decision-making task as a function of stimuli distin-
guishability. As an example of a psychometric response,
the reader could think about paying a routine visit to the
eye doctor and having to discern the letters “b” and “p”
written on the wall. If the letters are large enough, they
become distinguishable; and if the letters are too small, one
often fails to make out the right letter.

Classically, a decision-making task benefits from con-
nectivity between all neurons. Since our connectivity is
limited by physical constraints, a 2D square-lattice struc-
ture is chosen to prevent neurons from being isolated from
the rest. Moreover, a 2D square lattice is experimentally
friendly. We set up a Rydberg reservoir of 3 × 2 atoms
with two input atoms and two different output atoms (for
details, see Appendix D). The reservoir is then trained by
optimizing over tout and Wout such that the output of the
reservoir approximates Eq. (15) while keeping the net-
work parameters Jnm, �, and �in

n fixed. We observe that
tout ≈ 1 μs is regularly obtained, as this is the time scale

over which the information about �in
1,2 propagates through

the network. In our case, c1 = �in
1 −�in

2 is a natural choice
for a measure of stimuli distinguishability. Figure 6(b)
shows the psychometric response of the task, which is
qualitatively similar to those obtained in classical RNNs
[44]. Moreover, we see in Fig. 6(b) that if |c1| ≥ σin such
that it is above the input noise level, our network achieves
success more than 80% of the time. The success of this
task shows the ability of the Rydberg reservoir to emulate
simple cognitive tasks.

C. Parametric working memory

Our next neurological task is that of parametric working
memory. One of the most important cognitive functions,
working memory deals with the ability of the brain to retain
and manipulate information for the later execution of a
task. Here, we train a network to perform a task based on
the decision-making task in Sec. V B but with two tempo-
rally separate stimuli [see Fig. 7(a)]. We use the fixed-time
protocol, in which the separation between stimuli, denoted
by tdelay, is fixed by us. The stimuli are both turned on for
a time �t and after the second input the network is left to
relax for a time tout before two output neurons are used to
approximate Eq. (15). To avoid overfitting, we add Gaus-
sian noise to the times�t, tout and tdelay with zero mean and
standard deviation σin = 0.1. The network optimizes over
Wout. Thus, the network has to retain information about�in

1
for a few “seconds” to then compare against �in

2 and make
a decision.

We set a Rydberg reservoir of 3 × 2 atoms with two
input atoms and two different output atoms (for details, see
Appendix D). Figure 7(b) shows the loss of the network as
a function of the total time for which the inputs are injected
into the network (τ = 2�t + tdelay). We note that the loss
function is high for small τ , since it takes the input neurons
to correlate with the rest of the reservoir. Accordingly, in
Fig. 7(b), we show that growth of the entanglement entropy
of the input qubits accompanies a decrease in the loss func-
tion. For Fig. 7(c), we fix tout = 0.1, a choice that has little
effect on the performance of the reservoir.

In Fig. 7(c), we show the accuracy of the reservoir at
reproducing Eq. (15) as a function of the time for which
the inputs are turned on (�t) and for different choices of
tout. For these plots, tdelay = 0.1 is fixed. We note that the
accuracy is largely invariant to our sampled choices of tout.

Lastly, in Fig. 7(d), we probe the accuracy of the reser-
voir as a function of tdelay. For these experiments, we fix
tout = 0.5 and �t = 0.15. Importantly, we set V = 2π ×
10 MHz and � = 2π × 4.2 MHz such that V > � and
neighboring Rydberg excitations are off resonance, putting
our reservoir into the so-called blockaded regime [61,62].
While one initially might expect the accuracy to decrease
for increasing tdelay, we find that this is not the case and
that, instead, the accuracy oscillates persistently, reaching
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(a) (b)

(c) (d)

FIG. 7. The working memory of a Rydberg quantum reservoir
computer. (a) A schematic of the inputs of the network, where
two atoms are detuned for a time �t but temporally separated by
a time tdelay. Two different output neurons are used for readout
at a time tout after the second input is turned off. (b) The loss of
the working memory task as a function of the total input time
2�t + tdelay (gray). The entanglement entropy between the input
qubits and the rest of the reservoir as a function of 2�t + tdelay
(blue). Here, the mean value of tout is 0.1. The loss stays large for
small input times until the input qubits start to entangle with the
rest of the reservoir. (c) The accuracy as a function of the time for
which the input is turned on (�t) for four different choices of tout
and with fixed tdelay = 0.1. These curves show that the accuracy
is largely independent of tout and�t as long as�t < 0.3. (d) The
accuracy of the working-memory task at �t = 0.15 and tout =
0.5 as a function of tdelay. The blue curve is the performance when
V > � puts the reservoir in the Rydberg-blockaded regime, while
the red curve is the performance when V < � puts the reservoir
in the disordered regime. These plots show that when V > �, the
Rydberg reservoir can hold memory for later manipulation better
than when V < �. The shaded regions indicate error bars.

high accuracies as shown in the blue curve in Fig. 7(d).
Interestingly, this behavior disappears when the coupling
V = 2π × 0.1 MHz such that V < �, as shown in the red
curve in Fig. 7(d), although the performance is statistically
significant even for long tdelay, with an accuracy greater
than 50%. We can conclude that, in the blockaded regime,
the reservoir can hold information for longer periods. We
can understand this dependence on V/� as follows. In the
disordered regime, the atoms are mostly uncorrelated and
are allowed to oscillate freely, with the dynamics being
dominated by the drive �. Thus, after a short time, the
inputs coming through a z field are largely irrelevant and
the network is unable to hold the information about the
first input. On the other hand, when V > �, the atoms are
largely correlated, since neighboring excitations of Ryd-
berg atoms are blockaded and the dynamics are slowed
down. These slow dynamics in the system allow for longer
memory times. In Sec. V D, we explore the longer-term

memory in the blockaded regime and show that the long-
term memory in a reservoir can be stabilized due to the
presence of quantum many-body scars.

D. Long-term memory via quantum many-body scars

Finally, we turn to examine the ability of a reservoir to
encode long-term memory. The task consists of encoding
a classical bit m in the initial state of a reservoir |ψm(0)〉
so that after the system is left to evolve under its inher-
ent dynamics for a time T, local measurements of the
state |ψm(T)〉 are used to recover m. However, m can-
not be recovered from local measurements if the dynam-
ics obey the eigenstate-thermalization hypothesis (ETH)
[63]. Instead, local measurements of |ψm(T)〉 obey thermal
statistics described by the energy spectrum of the Hamil-
tonian and carry no information on the initial condition
|ψm(0)〉. Thus, reservoirs that violate the ETH are natu-
rally suited for memory tasks, since they can locally retain
information about their initial state. Indeed, this notion has
begun to be studied in quantum reservoirs [25,27]. Recent
experiments using quench dynamics in arrays of Ryd-
berg atoms have revealed quantum many-body scarring
behavior [35], which can be stabilized [46,47] to delay the
thermalization of the system. Here, we use these results to
enlarge the memory lifetime of a reservoir. The simulation
details are found in Appendix D.

In the case of a kicked ring of Rydberg atoms experienc-
ing nearest-neighbor blockade, the dynamics are captured
in the so-called PXP model [35,47,64,65],

H(t) = HPXP + N̂
∑

k∈Z

θkδ(t − kτ), (16)

HPXP = �

N∑

n=1

Pn−1σ
x
n Pn+1 N̂ =

∑

n

n̂n, (17)

where Pn = |g〉〈g|n projects the atom at the nth site onto the
ground state and we choose periodic boundary conditions
to mitigate edge effects. In Eq. (16), we let θk = π + εk,
where εk is a Gaussian random variable with mean ε and
variance σ 2

in. That is, εk plays the role of added noise in
the reservoir. For this discussion, we let γ = 0, since we
know from experiments that the quantum scarring behavior
is robust to the decoherence of the atom and the choice to
work with the Hamiltonian evolution helps speed up the
acquisition of numerical data.

We denote χτ = exp (−iπ N̂ ) exp (−iτHPXP). It has
been empirically observed that χτ approximately exchanges
the Néel states |AF〉 = |1010 · · · 〉 and |AF ′〉 = |0101 · · · 〉
for τ ≈ 1.51 π�−1 [35]. Note that χτχτ = 1 and so under
no noise, any state |ψ〉 is recovered after a cycle of evolu-
tion of 2τ . However, the noise εk destroys the revival of all
initial states except for |AF〉 and |AF ′〉 (see Appendix C).
This leads to many-body quantum scars stabilized by the
operator exp (−iπ N̂ ) [46,47].
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Given the dynamics in Eq. (16), we propose the follow-
ing scheme for encoding a binary memory m ∈ {0, 1}. We
choose a reference state |ψ〉 and let |ψ0(0)〉 = |ψ〉 and
|ψ1(0)〉 = χτ |ψ〉. Subsequently, the state |ψm(0)〉 is left
to evolve for n cycles of duration 2τ = 2(1.51π), after
which the populations rm(n) = (Pg(2nτ |m), Pr(2nτ |m)) of
the single-atom reduced density matrix are used to retrieve
m. The retrieval is done by training a vector Wout

n on M
instances of rm(n) in order to minimize Eq. (4), where
ytarg = m is the binary vector of memories and yout(n) =
Wout

n r(n) is the output of our network after n cycles.
Figure 8 shows the encoding of the memory scheme. Note
that we expect the memory to be retrievable if the system
avoids thermalization.

To quantify the quality of the memory retrieval R(n), we
use the squared Pearson’s r factor

R(n) = cov2(m, yout(n))
σ 2(m)σ 2(yout(n))

. (18)

Figure 9(a) shows the memory-retrieval error as a function
of the number of cycles for three different choices of ref-
erence state. Figure 9(b) shows the average entanglement
entropy (S̄E) of the leftmost atom in the ring. The satura-
tion of S̄E signals growth in the memory-retrieval error as

FIG. 8. A state encoding a memory m is prepared. The state
evolves under its natural Hamiltonian before being interrogated
via local measurements to retrieve m. If the evolution time is
short, the system is still out of equilibrium and remembers its
initial condition. Thus, m can be retrieved. On the other hand,
after a long time, the system may thermalize and local measure-
ments may fail to provide information about the initial state.
Thus, the memory-retrieval time is upper bounded by the ther-
malization time of the initial state |ψm(0)〉 under the dynamics of
the system. In the example in Sec. V D, the system is a chain of
Rydberg atoms and final measurements are performed on a single
atom, which is then linearly postprocessed to retrieve m. In this
case, a thermal state can be observed by measuring whether the
entanglement entropy of the region obeys a volume law. If the
dynamics can be stabilized against thermalization, the memory
can be retrieved at larger times.

(a)

(b)

FIG. 9. The dependence of memory retrieval on different ref-
erence states. We use a ring of N = 8 Rydberg atoms with
ε = σ = 0.1 and M = 100 and 30 samples for the training and
testing sets, respectively. The memories are sampled from a
balanced Bernoulli distribution. (a) The memory-retrieval error
for three different choices of reference state, |AF〉 = |grgrgrgr〉,
|gg〉 = |gg . . . g〉, and |d2〉 = |grggggrg〉. Due to the scarring
behavior of |AF〉, the memory length is greatly improved. (b)
The entanglement entropy of the leftmost atom, averaged over
the M memory instances (S̄E). The saturation of S̄E signals the
thermalization of the system and thus a decrease in R.

the state “forgets” the initial condition. From other stud-
ies, we see that memory is retrieved at longer times due to
the slow thermalization of the Néel states due to quantum
many-body scars [35,46,47,64,65]. The time-crystalline
nature of the reservoir using |ψ〉 = |AF〉 signals long-time
correlations and thus the reservoir can be used to encode
and predict series with long-time correlations [17].

The Néel states exhibit long-term memory due to the
scarring behavior of the evolution. This can be understood
by analyzing the average evolution produced by a single
cycle. Up to second order in εk, the state at time 2τn, ρ(n),
evolves to the state at time 2τ(n + 1), ρ(n + 1), where (see
Appendix C)

ρ(n + 1) = ρ(n)− iε[H+, ρ(n)] + σ 2
in

×
(

H+ρ(n)H+ − 1
2
{H+H+, ρ(n)}

)

+ σ 2
in

(
H−ρ(n)H− − 1

2
{H−H−, ρ(n)}

)
.

(19)

Here, H± = N̂ ± χτ N̂χτ are Hermitian operators. We can
rewrite Eq. (19) as ρ(n + 1) = ρ(n)+ Lε,σ (ρ(n)). Since
[H+,χτ ] = 0, the operator H+ has an emergent Z2 sym-
metry, which means that the ground states of H+ are well
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approximated by the states |±〉 = 1√
2

(|AF〉 ± |AF ′〉) [47].
Note that

H+|+〉 ≈ N |+〉, H−|+〉 ≈ 0, (20)

H+|−〉 ≈ N |+〉, H−|−〉 ≈ 0, (21)

where N is the system size. We conclude that if ρ(n) =
|AF〉〈AF|, then ρ(n + 1) ≈ ρ(n) as this state is (approxi-
mately) in the kernel of Lε,σ . Therefore, the Néel states are
suitable memory states.

Equation (19) also tells us that any density matrix in the
kernel of Lε,σ may also serve as a memory state, since it
is a steady state of the evolution. This would allow us to
enlarge the number of memories accessible in a qRNN. In
Appendix C, we show the existence of a large number of
steady states and we present a scheme to prepare a number
of them. It is worth noting, however, that these memories
may have to be distinguished from one another via global
measurements. The questions of how to efficiently prepare
and distinguish these memory states remain, importantly,
both open and key in telling us if a memory quantum
advantage can be claimed in qRNNs. As it stands, the use
of quantum scars signals that Rydberg-inspired RNNs may
present enhanced memory since quantum scars are classi-
cally simulatable due to their low entanglement entropy.
However, it is unclear whether the system can be clas-
sically simulated at late times due to the onset of the
thermalization. These questions are left for future studies.

Quite recently, another proposal to enlarge the number
of memories accessible in a quantum reservoir has been
introduced using the emergent scale-free network dynam-
ics of a melting discrete time crystal in an Ising chain [25].
The proposal in Ref. [25] can be seen as a generalization
of the quantum reservoir presented in Eq. (16) by drop-
ping the constraint of the Rydberg blockade. Our results,
as well as those in Ref. [25], pose the possibility of hav-
ing a RNN with a memory capacity that outpaces that of
classical RNNs such as the Hopfield network [66].

VI. CONCLUSIONS AND OUTLOOK

In this paper, we present a quantum extension of a
classical RNN on binary neurons. This implies a deep
connection between controllable many-body quantum sys-
tems and brain-inspired computational models. Our qRNN
facilitates the ability to employ the analog dynamics of
quantum systems for computation instead of the circuit-
based paradigm. We show how features of the quantum
evolution of our qRNN can be used for quantum learning
tasks and to speed up the simulation of stochastic dynam-
ics. We implement a quantum reservoir using arrays of
Rydberg atoms and show how Rydberg atoms analogously
perform biological tasks even in the presence of a few

atoms. This can be explained via the physics of the system.
For example, we show how the weak ergodicity-breaking
collective dynamics in Rydberg atoms can be employed for
long-term memory.

While this paper takes the first step forward in con-
necting controllable quantum systems and neural networks
from a fundamental perspective, several questions remain
unanswered. First, from the first two quantum features pre-
sented in this paper, studies of how qRNNs can be used for
quantum error correction in circuitlike quantum comput-
ing are warranted. Directly from this work, investigations
into advantageous stochastic processes in qRNNs that are
robust to decoherence are enticing. These advantages will
likely emerge from the collective behavior of quantum
neurons. Therefore, the field will soon require a thor-
ough understanding of the collective dissipative dynamics
of neurons in qRNNs, which would also shed light on
rigorous studies of the computational power of these archi-
tectures. Guided by the fact that neural networks become
universal approximators by interconnecting many neurons,
one may also consider the spatial and control requirements
necessary for universal brain-inspired quantum machine
learning.

Given the vast number of classical computational mod-
els for the brain, there are several immediate research
directions. One of these is the exploration of a system-
atic way to quantize more biologically realistic models of
a neural circuit. A possible starting point for translating
different neural circuits would be to exploit key engineer-
ing and fundamental features of different NISQ platforms.
For example, recent experiments using Rydberg atoms in
photonic cavities may provide us with the ability to cap-
ture neural plasticity on qRNNs by arbitrarily tuning the
interneural interactions [67]. Likewise, superconducting
circuits have lately been used to encode biologically real-
istic single-neuron models [13]. Along these explorations,
it will be imperative to establish a variety of methods to
analyze how quantum neural networks recover the classi-
cal protocols within certain limits, as well as the source
and extent of the quantum advantages that each platform
can offer.

Lastly, while our memory encoding scheme in Sec. V D
offers a possibility to encode a binary memory, whether
a higher number of memories can be encoded efficiently
remains an important open question. In Appendix C, we
offer a proposal based on the steady states of the effec-
tive dissipative evolution in the prethermalization regime
introduced by the noise in the qRNN. This already shows a
theoretical number of memories greater than those attain-
able by the vanilla Hopfield network [66]. However, dis-
tinguishing these memories, or producing Hamiltonians
with the desired memory state in mind, is left for future
research. It is clear, however, that memory in a quantum
reservoir relies on ergodicity-breaking dynamics [25,27].
Hamiltonian engineering techniques, together with more
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general driven Hamiltonians such as those in Ref. [25],
may pave the way toward programmable memories in a
qRNN.
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APPENDIX A: PROBABILITY
TRANSFORMATIONS USING qRNNs

In the case of the RNN presented in Eq. (1), using Ref.
[28] we can derive that P(s|s′) in Eq. (8) is given by

P(s|s′) =
N∏

i=1

1
2

(
1 + sig

[
hi(s′)/σ 2

in − 1
])

,

where g [x] = Erf
[
z/

√
2
]

is the error function due to the
Gaussian noise. Regarding the task in Sec. III A 3 of flip-
ping all neurons at once, one could naively think that this
can be done classically by taking the inputs �n → ∞,
however, since the strength σ 2

in of the noise scales as the
size of the inputs, one obtains P(s|s′) → ∏N

i=1
1
2 (1 + si/2),

which is a completely random update, independent of the
original state.

A transition matrix L obeys Ls′|s ≥ 0 and
∑

s′ Ls′|s = 1.
L is said to be classically embeddable if it can be generated
by a continuous Markov process via

d
dt

P(t) = K(t)P(t), P(0) = 1, P(tf ) = L, (A1)

where K is called a generator matrix, which preserves the
positive nature of P via the constraint Ks|s′ ≥ 0 for s �= s′
and normalization via the constraint

∑
s Ks|s′ = 0. Applied

to our setup, a classically embeddable stochastic process
is one that can transform ptf = Lp0 via a RNN without
employing any hidden neurons (i.e., M = N neurons are
used for readout) and in a single step. In general, determin-
ing whether a matrix L is embeddable is an open question

but any embeddable matrix must necessarily satisfy [68]

∏

s

Ls|s ≥ detL ≥ 0. (A2)

From Eq. (A2), it immediately follows that the global
“spin-flip” matrix F defined in Eq. (9) is not classically
embeddable. That is, det F = 1 and

∏
s Fs|s = 0, violating

Eq. (A2). Note that the impossibility of performing F with-
out hidden neurons is quite general and is not limited to
the stochastic process allowed by Eq. (1). Moreover, the
number of time steps needed to achieve F using m hidden
neurons is of order O(2N−m) (for details, see Sec. III.A in
Ref. [52]).

Similar definitions of embeddability exist in the quan-
tum setting. A stochastic process L is said to be quantum
embeddable if there exists a Markovian quantum channel
E such that

Ls′|s = 〈s′|E(|s〉〈s|)|s′〉. (A3)

A Markovian quantum channel E is a channel arising from
the time evolution under a master equation and thus E may
include unitary and dissipative terms. Moreover, permuta-
tions such as F in Eq. (9) are quantum embeddable, since
all permutations are unitary operators.

We highlight that realizing F is extremely sensitive
to the decoherence arising from spontaneous emission, a
main source of noise in NISQ devices. If γ is the decay rate
at which spin |1〉 relaxes to | − 1〉, one can show that the
unitary evolution leads to the stochastic process Fγ , where
detFγ = e−O(2N ). Note that whether Fγ violates Eq. (A2)
becomes rapidly inconclusive with increasing system size.

APPENDIX B: CONTINUOUS-TIME DYNAMICS
FOR A qRNN

One successful neural-circuit model is the integrate-
and-fire RNN (IF RNN). In an IF RNN, each of the N
neurons is influenced by presynaptic firing rates and pro-
duces a postsynaptic firing rate as an output. Each neuron
is endowed with a firing rate sn(t), where n denotes the nth

neuron. The presynaptic firing rates arriving at the nth neu-
ron are integrated to produce a presynaptic current In(t). In
turn, the neuron produces a firing rate sn influenced by its
current and the firings of other neurons. Additionally, each
neuron can receive a temporal input stimulus �in

n (t) that
affects both the currents and the firing rates. In general, the
firing rates and currents are described by nonlinear coupled
differential equations of the form

İn = −τ−1
I In + Gn(s(t), I(t), Jnm,�in(t)), (B1)

ṡn = −τ−1
s sn + Fn(s(t), I(t), Jnm,�in(t)), (B2)
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where the τI ,r are relaxation time constants for the currents
and firing rates, respectively. The vector s(t) is defined as
s(t) = (s1(t), . . . , sN (t)), with I(t) and �in(t) defined anal-
ogously. The functions G and F ensure that the dynamics
are nonlinear, which gives RNNs their vast computational
complexity. The specific forms of G and F depend on the
application and relation between the currents and the firing
rates one is trying to capture by the model.

The qRNN in Sec. III B follows the Heisenberg-
Langevine equations of motion

Ȧ = i[H , A] +
∑

n

(γ
2
σ+

n + f †
n

)
[A, σ−

n ] +
∑

n

[A, σ+
n ]

(γ
2
σ−

n + fn
)

, (B3)

for any operator A. In Eq. (B3), σ+
n = |1〉〈−1|n, σ+

n =
(σ+

n )
†, and fn is a Langevin noise operator with Gaussian

statistics 〈fn(t)〉 = 0 and
〈
fn(t)f

†
m (t′)

〉
∝ δmnδ(t − t′). In the

above equation, [A, B] ≡ AB − BC denotes the commuta-
tor between matrices A and B.

To extract the statistics of the system, one may choose
to look at the dynamics of the expectation values of
two different local observables. For example, the equa-
tions of motion for expectations of the local Pauli oper-
ators σ x

n = | − 1〉〈1|n + |1〉〈−1|n and σ y
n = i| − 1〉〈1|n −

i|1〉〈−1|n are given by

˙〈
σ x

n

〉 = −γ
2

〈
σ x

n

〉 + i
〈[

H(t), σ x
n

]〉
, (B4)

˙〈
σ

y
n
〉 = −γ

2
〈
σ y

n

〉 + i
〈[

H(t), σ y
n

]〉
, (B5)

with H(t) specified by Eq. (5). The expectation values are
calculated in the quantum mechanical sense such that for
an operator A, 〈A〉 = Tr(Aρ) and terms linear in fn cancel
out. Note that the commutators in Eqs. (B4) and (B5) play
the role of the functions G and F in Eqs. (B1) and (B2).

For σ z
n , Eq. (B3) gives

σ̇ z
n = −γ /2σ z

n − �

2
σ y

n + γ1/2 − 2f †
n σ

−
n . (B6)

This can be integrated out to give

σ z
n (t)− σ z

n (0) =
∫ t

0
dt′e−γ /2(t−t′)

(
−�

2
σ y

n (t
′)− 2f †

n (t
′)σ−

n (t
′)+ γ /21

)
.

(B7)

We choose to start the network at
〈
σ z

n

〉 = −1, for all n.
We substitute this back into Eq. (B5) and we take the

expectation values to eliminate terms linear in fn. We
obtain

˙〈
σ

y
n
〉 = −γ

2
〈
σ y

n

〉 + �

2

N∑

m=1

Jnm

∫ t

0
dt′e−γ (t−t′) 〈σ x

n (t)σ
y
m(t

′)
〉

+�n(t)
〈
σ x

n

〉 − �2

4

∫ t

0

〈
σ y

n (t
′)
〉
e−γ (t−t′)dt′. (B8)

Similar equations can be found for
〈
σ x

n

〉
. Equation (B8)

tells us that
〈
σ

y
n
〉

depends on past statistics and thus that
our network has a memory time bounded by 1/γ . Let J
denote the matrix Jnm. For γ t � 1, we can extend the lower
bound of integration to −∞. Using the approximation∫ t
−∞ e−γ (t−t′)f (t′)dt′ ≈ −γ−1f (t), we obtain

˙〈
σ x

n

〉 = −γ
2

〈
σ x

n

〉 −�in
n

〈
σ y

n

〉 − �

2γ

∑

m

Jnm
〈
σ y

n σ
y
m

〉
, (B9)

˙〈
σ

y
n
〉 = −

(
γ

2
+ �2

4γ

)〈
σ y

n

〉 +�in
n

〈
σ x

n

〉 − �

2γ

∑

m

Jnm
〈
σ x

nσ
y
m

〉
,

(B10)

thus leading to Eq. (11). In Eqs. (B10) and (B9), the time
dependence is implied.

Let us now define sn(t) ≡ 〈
σ

y
n (t)

〉
and In(t) ≡ 〈

σ x
n (t)

〉
so

that s(t) = (s1(t), . . . , sN (t)) and I(t) = (I1(t), . . . , IN (t)).
We see that Eqs. (B10) and (B9) match Eqs. (B1) and (B2),
where

Gn = −�nsn − �

2γ

∑

m

Jnm 〈InIm〉 , τ−1
I = γ

2
, (B11)

Fn = �nIn − �

2γ

∑

m

Jnm 〈Insm〉 , τ−1
s = γ

2
+ �2

4γ
.

(B12)

Equations (B9) and (B10) allow us to naturally interpret〈
σ

y
n
〉

as the firing rate of the nth neuron and
〈
σ x

n

〉
as the

current. That is, the rate of the presynaptic neuron
〈
σ

y
k

〉

amounts to a current in the postsynaptic neuron
〈
σ x

n

〉
that

drives its rate
〈
σ

y
n
〉
.

Equations (B9) and (B10) comprise a system of cou-
pled quadratic differential equations, where the quadratic
terms arise from the nontrivial commutation relation of the
Pauli operators [σαn , σβm ] = iδαβεαβγ σ

γ
n , where εαβγ is the

Levi-Civita symbol. These quadratic terms in Eqs. (B9)
and (B10) make a qRNN a powerful computational sys-
tem in a similar way to how the functions G and F make a
RNN a powerful computational system.
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FIG. 10. Fidelities with the initial state after evolving for n =
100 cycles of noisy kicked dynamics. The fidelity is defined
as F ≡ |〈ψ |ψ(2nτ)〉|2, where |ψ〉 is the initial state. Here, we
use L = 8 Rydberg atoms and define |AF〉 = |grgrgr〉, |gg〉 =
|gggggggg〉, and |d2〉 = |grggggrg〉. The Néel state |AF〉 is
robust to the noise in the drive, since this state is invariant to
decoherence up to second order in εi.

APPENDIX C: MEMORY AND QUANTUM
MANY-BODY SCARS

As described in the main text and discussed more thor-
oughly in Ref. [47], the scarring behavior of the kicked
PXP model is robust to fixed imperfections in the drive.
The robustness persists even for random noise. Figure 10
exemplifies the overlap with the initial condition for a
noisy kicked PXP model for different values of ε and σin,
which is a natural extension of the model in Ref. [47].
The Néel state |AF〉 exhibits robust revivals invariant of
σ 2

in. This fact can be explained with the effective theory
presented below.

To understand the robustness of the quantum scarring
behavior in the Rydberg reservoir, it is instructive to seek
an effective description of the evolution of the system.
Recall that a cycle is defined as two imperfect applica-
tions of χτ . The Hamiltonian in Eq. (16) produces the
single-cycle unitary

Uτ (ε1, ε2) = e−iε2N̂χτe−iε1N̂χτ = e−iε2N̂ e−iε1χτ N̂χτ , (C1)

where we use the fact that χτ is both Hermitian and unitary.
Using the Baker-Campbell-Hausdorf formula to second
order in εi, we can rewrite Eq. (C1) as

Uτ (ε1, ε2) ≈ e−i(ε2N̂+ε1χτ N̂χτ ). (C2)

A state ρ(n) evolves to ρ(n + 1) = Uτ (ε1, ε2)ρ(n)U
†
τ (ε1, ε2)

after a cycle. Expanding this to second order in εk and
using the fact that 〈εk〉 = ε and 〈εkεl〉 = σ 2

inδkl, we obtain
the average evolution of the state

ρ(n + 1)− ρ(n)

= −iε[H+, ρ(n)] + σ 2
in

(
N̂ρ(n)N̂ − 1

2
{N̂ 2, ρ(n)}

)

+ σ 2
in

(
χτ N̂χτρ(n)χτ N̂χτ − 1

2
{χτ N̂ 2χτ , ρ(n)}

)
.

(C3)

Here, {A, B} = AB + BA denote commutators and anti-
commutators, respectively. We define H+ = N̂ + χτ N̂χτ .
For times T � 2τ , we can take Eq. (C3) to be a Lind-
bladian evolution, since the noise satisfies the Markovian
properties. We can rewrite Eq. (C3) as

ρ̇ = Lε,σ (ρ), (C4)

Lε,σ (·) = −i
ε

2τ
[H+, ·] + σ 2

in

2τ
D+(·)+ σ 2

in

2τ
D−(·), (C5)

D±(·) = H±H± + 1
2
{H±H±, ·}, (C6)

where H− = N̂ − χτ N̂χτ . For τ = 1.51π , the Néel states
are approximately simultaneous eigenstates of χτ N̂χτ and
N̂ with eigenvalues N for a system of size N . Thus, they
are simultaneous eigenstates of H± and so

Lε,σ (|AF〉〈AF|) ≈ 0, Lε,σ (|AF ′〉〈AF ′|) ≈ 0. (C7)

Therefore, the Néel states are steady states. It is worth not-
ing that Lε,σ captures the prethermal evolution. Ultimately,
higher-order effects in εk take over and lead to the thermal-
ization of the Néel states, similar to the results in Ref. [47]
and as seen in Fig. 9. Nonetheless, the thermalization of
the Néel states is delayed relative to other states due to Eq.
(C7).

Moreover, any density matrix ρSS in the kernel of Lε,σ
can be used as a memory state. Expressing Lε,σ as a super-
operator on density matrices, we can look at its spectrum,
which is in general complex. Figure 11 shows the num-
ber of zero eigenvalues of Lε,σ for different system sizes
N . The number of zeros scales larger than linearly on N .
Therefore, a quantum reservoir evolving under Lε,σ may
have a larger number of memory states than a classical
RNN. To prepare these states, we propose to initialize the
reservoir on different string configurations |s〉 satisfying
the Rydberg-blockade constraint. For example, one can
have s = rgg..g, while s = rrg . . . g is not allowed. The
system is left to evolve for some time TSS to reach a steady
state ρSS(s), which can then be used as memory. Different
initial strings can lead to different steady states, as exempli-
fied in Fig. 12. Figure 12 shows the fidelity between ρSS(s)
and ρSS(s′) defined by the trace norm

F(ρSS(s), ρSS(s′)) =
(

Tr
√√

ρSS(s)ρSS(s′)
√
ρSS(s′)

)2

.

(C8)

The red arrows in Fig. 12 indicate the different memory
states obtained by this scheme. It is worth noting that this
scheme offers us an empirical number of memories N e

m
that scales at most as φN , where φ ≈ 1.62 is the golden
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FIG. 11. The number of zero eigenvalues of the superoper-
ator Lε,σ as a function of the system size. Lε,σ describes the
effective dynamics of a Rydberg reservoir composed of kicked
Rydberg atoms. The number of zeros surpasses the linear number
of memories available in the Hopfield network.

ratio, since that is the number of basis states respecting the
Rydberg blockade. We see that N e

m > N in all instances,
a bound that is unattainable by classical RNNs such as
the Hopfield network [66]. However, this scheme relies on
an efficient way to recognize the different memory states
through measurements, a question that we leave for future
investigations.

APPENDIX D: EXPERIMENTAL VALUES, AND
NUMERICAL SIMULATIONS

In this appendix, we outline the details of the experi-
mental values used for the numerical simulation of Sec.
V. First, for the simulation of Rydberg atoms we use
the experimental values in Ref. [38] for concreteness (see

FIG. 12. Empirical memory states ρSS(s) obtained from evolv-
ing the initial states |s〉, which are basis states of the Rydberg-
blockaded Hilbert space. N e

m denotes the number of memories
found using this procedure. The different plots show the fideli-
ties F(ρSS(s), ρSS(s′)) between different steady states. The red
squares delimit the basis states with different numbers of Ryd-
berg excitations, starting with the zero-excitation sector on the
top-left square and ending with N/2 excitations sector on the
bottom-right square. The red arrows denote initial configura-
tions for each of the N e

m memories found empirically. While
this procedure produces a number of memory states smaller than
the number of zeros of Lε,σ , N e

m > N , a bound unattainable by
common classical RNNs.

FIG. 13. A schematic of the Rydberg atoms as used in Ref.
[38]. The ground state |g〉 = |5S1/2〉 and the Rydberg state
|r〉 = |50S1/2〉 are coupled via a two-photon transition. An off-
resonance 420-nm laser (�420 = 2π × 160 MHz, δ = 2π ×
1 GHz) couples |g〉 to the intermediate |6P3/2〉 state and a 1013-
nm laser (�1013 = 2π × 50 MHz) couples the intermediate state
and |r〉, creating an effective drive between |g〉 and |r〉 at rate
� = �420�1013/δ = 2π × 4.2 MHz. Four spontaneous-emission
processes are at play: emission to nearby Rydberg atoms due to
black-body radiation at a rate γBBR = 2π/(250 μs); photon scat-
tering out of the intermediate state into the ground state at rate
γ420 = 2π/(20 μs) and into the Rydberg state at rate γ1013 =
2π/(150 μs); and spontaneous emission from |r〉 to |g〉 at rate
γSE = 2π/(375 μs). Since γBBR + γSE + γ1013 = 2π/(75 μs) is
smaller than γ420, the leading source of decoherence for short
periods of time (< 10 μs) is due to the γ420 decay.

Fig. 13). In this experimental platform, a two-photon
transition couples |g〉 = |5S1/2〉 and |r〉 = |50S1/2〉 via an
off-resonance state |6P3/2〉. For this setup, and for short
periods of simulation (< 10 μs), the dominant source of
decoherence is photon-scattering processes out of the inter-
mediate state. Using the fact that the intermediate state is
off resonance, we can adiabatically eliminate it to produce
an effective decay operator (see Sec. IV.B in Ref. [69])

σ−
eff =

√
γ420

2δ
|g〉 (�420〈g| +�1013〈r|) , (D1)

which is an effective spontaneous emission from |r〉 to |g〉
accompanied by decoherence on the ground state.

We choose � = 4.2 MHz. Additionally, a pair of |r〉
atoms interact with a strength C6 = 862.9 GHz (μm)6.
We use the PairInteraction PYTHON package from Ref.
[58] to determine that a pair of |r〉 = |70S1/2〉 and |r′〉 =
|73S1/2〉 has a similar interaction strength of Crr′

6 =
−836.6 GHz (μm)6 ≈ −C6. We use this interaction to
model the inhibitory and excitatory neurons in Sec. V A
(VnQ,nQ = V, VnQ,n′

Q
= −V). We denote V = C6/a6

0, where
a0 is tuned to give us different nearest-neighbor interaction
strengths.

Next, we explain and report the numerical parameters
chosen for each of the biological tasks.
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1. Multitasking

Our scheme to encode inhibitory and excitatory neurons
relies on approximating Eq. (13). To do so, one needs the
“inhibitory neurons” to be far away from each other such
that they do not interact positively. For this reason, this task
uses a 1D open chain of atoms separated by a distance a0,
with the inhibitory neurons being at opposite ends of the
chain and in the bulk, with maximum spacing from each
other. The input neurons are chosen to be the two at one
end of the chain, while the output neuron is chosen to be
at the opposite end of the chain. This choice is made to
ensure that the input neurons interact with the whole chain
before readout.

The inputs are uniformly sampled from {0, 2π} MHz
with added Gaussian noise σin = 0.1 and all �t sampled
from a Gaussian with average 〈�t〉 ∈ [0, 5] (μs) and stan-
dard deviation σin. For each size of network and number
of inhibitory neurons, we choose a0 such that the separa-
tion between inhibitory neurons dmax results in V/d2

max =
10−2. For example, for the case of four neurons and two
inhibitory neurons on either end, note that one needs
V/36 = 10−2, which amounts to choosing V = 7.2 MHz.
Note that this value of V is of the order of magnitude of
� = 4.2 MHz and so the reservoir, in this case, is well into
the nonclassical regime.

The learned parameters in the output linear map Wout,
which in this case is a matrix in R

3+1×1, with the last row
representing a bias term. Note that the dimension of the
map is so because only one neuron is measured but three
functions have to be fitted.

2. Decision making

In classical RNNs, tasks such as decision making and
working memory require connectivity between all neurons.
Since our connectivity is limited by physical constraints,
an open 2D square-lattice structure is chosen to prevent
neurons from being isolated from the rest. Moreover, a 2D
square lattice is experimentally friendly. In our case, we
use an open 2 × 3 lattice with the two input neurons being
at the top-left corner of the chain and two output neurons
being at the bottom-right corner. Again, this architecture
is chosen so that the input neurons have to interact with
the rest of the system before readout. We use V = 2π ×
10 MHz for our simulations and choose �t = 2π/V as the
time for which the inputs are turned on, as that is the time
scale over which the input atoms entangle with the rest of
the chain.

The inputs are uniformly sampled from {0,π/2,π , 3π/2,
2π} (MHz) with added Gaussian noise σin = 0.1. In this
task, the time for which the stimuli are turned on, �t, is
fixed to a mean of 〈�t〉 = 0.1 μs and with added Gaussian
noise σin = 0.1. In this task, we optimize over the linear
output map Wout. In this case, Wout is a matrix in R

1+1,2.
The first dimension of 1 + 1 denotes that one function

is fitted and a bias is added. The second dimension of 2
denotes that two neurons are measured. Additionally, we
train the output time tout after the stimuli are turned off and
before the network is probed to come up with an input that
is satisfied via Eq. (15). To do the optimization, we make
use of the Nelder-Mead algorithm [70].

In order to compute the psychometric response plotted
in Fig. 6(b), we measure the expectation values on the
two output neurons and produce the vector r(�in

1 ,�in
2 ) =

(〈σ y
out1〉, 〈σ y

out2〉, 1), which depends on the inputs �in
1,2,

as well as the temporal parameters (�t, tout). We then
compute yout(�in

1,2) = Woutr(�in
1,2) and (Wout, tout) are opti-

mized such that yout(�in
1,2) ≈ y targ in 15. The optimization

is done by generating about 40 000 different values of �in
1,2

of different levels of contrast |�in
1 −�in

2 | ranging from 0 to
1 MHz. Once the optimization is done, we look at the loss
toward �in

2 , which is obtained as the error in classifying
�in

2 as greater than�in
1 when, indeed,�in

2 > �in
1 . The error

is quantified using the mean-square loss in Eq. (4).

3. Working memory

The setup of this task is identical to the decision-making
task except that the two inputs are separated by a delay
time tdelay. The values of the interaction strength V used
for Fig. 7 are V = 2π × 10 MHz and V = 2π × 0.1 MHz,
corresponding to V/� > 1 and V/� < 1, respectively, the
former of which sets us in the Rydberg-blockaded regime
while the latter does not. In this task, the times�t and tdelay
are fixed up to an added Gaussian with noise σin = 0.1. In
this task, we optimize over the linear output map Wout. In
this case, Wout is a matrix in R

1+1,2. The first dimension of
1 + 1 denotes that one function is fitted and a bias is added.
The second dimension of 2 denotes that two neurons are
measured.

4. Long-term memory

Although quantum scars are known to exist in other
geometries and dimensions [71], for this task we use a 1D
chain of Rydberg atoms, since for this case quantum many-
body scars have been experimentally observed [35,46].
Furthermore, our chain has periodic boundary conditions
to avoid edge effects. Since we know that scars are robust
to decoherence, we set γ420 = 0 so that we can evolve
our states for longer periods. The number of cycles n in
Fig. 9 corresponds to n evolutions under the PXP Hamil-
tonian for a time 2τ = 1.51 × π�−1. In this case, we take
V � � and renormalized � = 1. The noisy field in Eq.
(16) is sampled according to εk ∼ N (μ = 0.1, σ = 0.1).
The input m is sampled as a fair random coin. Lastly, after
each number of cycles n, the only trained parameter is
Wout

n ∈ R
1+1×1, since only one atom is probed to calculate

an answer as to the input m.
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