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Abstract— We address the problem of learning from demon-
strations when the learner must satisfy safety and/or perfor-
mance requirements expressed as Stochastic Temporal Logic
(StTL) specifications. We extend the maximum causal entropy
inverse reinforcement learning framework to account for StTL
constraints and show how to encode them via a minimal set
of mixed-integer linear constraints. Our method is based on
a cut-and-generate algorithm that iterates between two phases:
in the cut phase, we use cutting hyperplanes to approximate
the feasible region of the non-linear constraint that encodes
atomic predicates and in the generate phase, we propagate these
hyperplanes through the schematics to generate constraints for
arbitrary formulas. Our algorithmic contributions are validated
in different environments and specifications.

I. INTRODUCTION

Learning from Demonstrations (LfD) is an emerging
paradigm to design control policies [1]. In this paradigm,
learning agents acquire new skills not by programming but
by imitating a human expert. LfD (also known as imitation
learning) is a vibrant research area and several classes of
methods have been developed such as behavior cloning [2]
and direct policy learning [3]. Inverse reinforcement learning
(IRL) enables a learning agent to infer the reward function
from the given demonstrations. An important difficulty is that
the optimization problem is under-defined as there may exist
more than one reward function that explain a given set of
demonstrations [4]. To address this issue, several approaches
such as feature expectation matching [5], Bayesian IRL [6]
and the Maximum Causal Entropy (MCE) IRL [7] have been
developed.

In a real-world setting, we often have to learn from
imperfect or sub-optimal demonstrations, which may not be
consistent with desired safety and performance specifica-
tions. To encode such specifications, several formal methods,
such as Computational Tree Logic [8], Linear Temporal
Logic [9], Signal Temporal Logic [10] have been devel-
oped and used for expressing specifications in a variety of
control and learning tasks [11], [12], [13], [14], [15]. In
the realm of stochastic dynamical systems (e.g., Markov
Decision Processes), Probabilistic Computational Tree Logic
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(PCTL) has been used to express safety specifications in
the context of learning from demonstrations [16]. Recently,
Signal Temporal Logic (STL) was extended to three prob-
abilistic variants, Probabilistic STL (PrSTL) [17], Chance
Constrained Temporal Logic (C2TL) [18], Stochastic STL
(StSTL) [19] and Stochastic Temporal Logic [20], [21]. Even
though STL has been used in the context of learning from
demonstrations [22], [12], its probabilistic extensions are yet
to be explored.

In this paper, we address the problem of learning from
demonstrations subject to Stochastic Temporal Logic (StTL)
specifications. Due to its popularity, we choose to extend
the maximum causal entropy inverse reinforcement learning
framework and we propose a problem formulation whereby
the StTL specification is imposed as a constraint in the
optimization problem. We show how to encode the StTL
formula via a minimal set of mixed-integer linear constraints.
We generate these constraints using cutting hyperplanes as
an approximation of the feasible regions of atomic predicates
and then we recursively propagate these hyperplanes through
the formula schematics. The benefits of our approach are
two-fold: first, our encoding produces a minimal set of
integer constraints, and second, by using cutting hyperplanes,
we avoid having to propagate non-linear constraints.

II. PRELIMINARIES

Markov Decision Processes. We consider the framework
of infinite-time, discounted Markov Decision Process (MDP)
M = (S,A,R, δ,Dinit, γ), where S and A denote the (fi-
nite) state and (finite) action space, δ is the transition kernel,
r(s, a) ≡ R is the reward, Dinit is an initial distribution
and γ ∈ R is a discount factor. A stationary control policy
π is a function that assigns a probability distribution over
actions for all states. An MDP M paired with a policy π
induces a Markov Chain Sπt , t = 0, 1, . . . over the same
state space. The performance of a given control policy is
measured via the expected discounted reward defined as
R(π) = E(

∑∞
t=0 γ

tr(st, at)), where the expectation is taken
over trajectories sampled from the Markov chain Sπt induced
by π. An optimal policy π∗ is a policy that maximizes the
return, i.e., π∗ ∈ arg maxπ∈ΠR(π). A finite set of trajec-
tories D = {(si0, ai0), (si1, a

i
1), (si2, a

i
2), . . . }i=1,2,... obtained

by executing π in M are called demonstrations.

Stochastic Temporal Logic. We consider preferences
that are encoded via Stochastic Temporal Logic
(StTL) formulas. Formally, StTL formulas are
defined over atomic predicates represented by
chance constraints of the aforementioned form:
ϕ = µ | ¬µ | ϕ ∧ ψ | ϕUIψ, where I is an interval.
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III. STTL-CONSTRAINED MAXIMUM CAUSAL ENTROPY

In this section, we present the agent model for the
StTL-constrained inverse reinforcement learning problem.
Let M \ R be the reduced MDP (i.e., the MDP without
the reward function), ϕ an StTL formula that encodes
safety and/or performance specifications and D a set of
demonstrations. The agent seeks to recover a policy π that
"best" imitates the given demonstrations and satisfies the
specification. One way to quantify the "quality of imita-
tion" is to study the expected value of a reward feature
vector φ : S × A → [0, 1]dφ . For a policy π and a
discount factor γ, the feature expectation vector is defined as
fr(π) = E(

∑∞
t=0 γ

tφ(st, at)). Given a set of demonstrations
D = {(si0, ai0), (si1, a

i
1), (si2, a

i
2), . . . }i=1,2,..., the empirical

counterpart of the feature expectation vector is given by
f̂r(D) = 1

|D|
∑
D,t γ

tφ(sit, a
i
t).

The problem of inferring the reward and/or optimal policy
is ill-posed because each policy can be optimal for many
reward functions. The principle of Maximum Casual Entropy
(MCE) [4], [7] resolves the ambiguity by maximizing the
entropy of the distribution over trajectories subject to a
feature expectation matching constraint, i.e., fr(π) = f̂r(D).
Motivated by the MCE framework, we introduce the follow-
ing problem:

max
π

Hβ(π) = E

[
−
∞∑
t=0

βt log π(at|st)
]

(1a)

fr(π) = f̂r(D), (1b)
(Sπ, 0) |= ϕ, (1c)

where Hβ(π) is the discounted casual entropy, β ∈ (0, 1) is
a discount factor and Sπt denotes the Markov chain induced
by M and π. Constraints that ensure that π(at|st) is a valid
distribution are omitted for simplicity. While the original
MCE framework [23] assumes that the reward is a linear
function wT f(s, a) for some feature vector f(s, a) and
optimizes the weight w, we choose the variant introduced
in [24], where the authors directly optimize the policy. We
choose this variant as it is more convenient for imposing the
StTL specification.

Solving Problem 1 is far from trivial because the StTL
specification (1c) is essentially a logic constraint. In what
follows, we show how to encode the constraint (1c) via a
minimal set of integer constraints and in the next section
how to ensure that these constraints are linear. To this end,
we parametrize the policy via a vector θ ∈ Rdθ , i.e., π(a|s) =
πθ(a|s). Let pt(s) be the state distribution of the Markov
Chain Sπt at time t. We have

pt(s) =
∑
s′,a

pt−1(s′)δ(s|s′, a)πθ(a|s′), (2)

for t = 1, 2, . . . and p0(s) = Dinit. We start by encoding
StTL predicates via a set of linear constraints and then
recursively propagate these constraints through the StTL
schematics to generate constraints for any formula.

StTL Predicates. A predicate µ = P (Sπt 6∈ F ) ≤ ε over Sπt
is satisfied if and only if it holds that∑
s6∈F

pt(s)ds =
∑

s6∈F,s′,a

pt−1(s′)δ(s|s′, a)πθ(a|s′) ≤ ε (3)

for all times t = 1, 2, . . . . We define the following quantity

qc(s
′, a) =

∑
s6∈F

δ(s|s′, a). (4)

By substituting Eq. (4) to Eq. (3), we obtain the following
inequality

cµt (θ) =
∑
s′,a

pt−1(s′)qc(s
′, a)πθ(a|s′)− ε ≤ 0. (5)

where the superscript µ denotes the dependence of the
constraint on the predicate. Each predicate appearing in the
specification ϕ gives rise to such a constraint. We show
how to approximate this constraint of Eq. (5) via cutting
hyperplanes in the next section. For now, we assume that
the predicate µ is encoded via the following set defined by
a set of linear constraints

gµt (θ) =
{
θ ∈ Rdθ : θT dµt,i ≤ 0, i = 1, 2, . . . }, (6)

where dµt,i ∈ Rdθ is to be determined.

Negation. To encode the negation of an atomic predicate
¬µ = Pt(S

π
t 6∈ F ) ≥ ε we use similar reasoning as above

and obtain a set of linear constraints on θ similar to Eq. (6).

Conjunction. Let ϕi, i = 1, 2, . . . ,m be a set of formulas
and consider the formula ϕ =

∧m
i=1 ϕi defined by their

conjunction. Let git(θ), i = 1, 2, . . .m be the sets that encode
the formula ϕi at time t. Since conjunction requires simul-
taneous satisfaction of all predicates, formula ϕ is encoded
by the intersection of the constraints corresponding to each
predicate, i.e., by the following set

g∧t (θ) = {θ ∈ Rdθ : θ ∈
m⋂
i=1

git(θ)}. (7)

Disjunction. Let ϕi, i = 1, 2, . . . ,m be a set of formulas
and consider the formula ϕ =

∨m
i=1 ϕi defined by their

disjunction. Let git(θ), i = 1, 2, . . .m be the sets that en-
code the formula ϕi at time t and bit ∈ {0, 1} be a set of
binary variables. Then, the disjunction operator is encoded
as follows

g∨t (θ) = {θ ∈ Rdθ : θ ∈ bitgit(θ), and
m∑
i=1

bit ≥ 1}. (8)

The second constraint essentially ensures that at least one of
the predicates is satisfied. Note that, in contrast to conjunc-
tion, the disjunction forces to introduce binary variables.

Always and Finally. The temporal operators G[a,b]ϕ and
F

[a,b]ϕ can be expressed as temporal conjunction and dis-
junction, respectively, over all time instances t in the interval
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I = [a, b]. Therefore, they can be encoded by the following
constraints

gGϕt (θ) = {θ ∈ Rdθ : θ ∈
b⋂
t=a

gϕt (θ)}, (9)

gFϕt (θ) = {θ ∈ Rdθ : θ ∈ btgϕt (θ), and
b∑
t=a

bt ≥ 1}, (10)

where gϕt (θ) ≤ 0 is the set that encodes the formula ϕ at
time t and bt ∈ {0, 1}.
Until. Let ϕ,ψ be two StTL formulas. The bounded until can
be expressed in terms of the unbounded until as ϕU[a,b]ψ =
G[0,a]ϕ ∧ F[a,b]ψ ∧ F[a,a]

(
ϕUψ

)
. Therefore, it suffices to

encode the unbounded until. To this end, we introduce the
following set

gzt (θ) = {θ ∈ Rdθ : gϕt (θ) ≤ 0 and gϕUψt+1 (θ) ≤ 0} (11)

and encode the unbounded until as follows

gϕUψt (θ) = {θ ∈ Rdθ : (12)

bψgψt (θ) ≤ 0, bzgzt (θ) ≤ 0, bψ + bz ≥ 1}, (13)

for t = 1, . . . , T−1 and gϕUψT (θ) = {θ ∈ Rdθ : gψT (θ) ≤ 0}.
Our method given in Algorithm 1 leverages Eq. (6-13) to

encode an arbitrary formula by recursively generating a set
of mixed-integer linear constraints on the parameters θ of the
control policy. We effectively use three types of constraints:
intersections of linear constraints (conjunction), unions of
linear constraints (disjunction) and linear binary constraints
that control which of the aforementioned linear constraints
are active when taking their union. Our approach differs
from the encoding presented in [24] because we encode
predicates via linear constraints on the parameters of the
control policy, whereas the later one enforces a constraint on
an introduced binary variable. The benefit of our approach is
that no binary variables are necessary to encode negations,
conjunctions and the globally operator (i.e., conjunction is
encoded as the intersection of constraints). Our approach
requires exactly Nd + (Nu + 3)T binary variables, where
Nd is the number of disjunction operators, and Nu the
number of until operators. This is substantially better than
the O(T |P |) binary variables required by [24], where |P | is
the cardinality of the predicate set. Our algorithm essentially
reduces all operations to Nc conjunctions, Nd disjunctions
and introduces integer variables only for the later ones.

Let gci (θ) and gdjk(θ) be the (linear) constraints recursively
generated by Algorithm 1. The former ones correspond
to conjunctions while the later ones to disjunctions. We
reformulate Problem 1 as follows

max
θ,bjk

min
λ≥0

L(λ;πθ,D) (14a)

θ ∈ gci (θ), i = 1, . . . , nc (14b)

θ ∈
nb⋃
k=1

bjkg
d
jk(θ), j = 1, . . . , nd (14c)

nb∑
k=1

bjk ≥ 1, j = 1, . . . , nd (14d)

Algorithm 1: Recursive Constraint Generation
Inputs: Formula ϕ of maximum horizon T , ordered

set P of predicates in ϕ, set {Cµ}µ∈P of
linear constraints

1 procedure RecConGen(ϕ, {Cµ}µ∈P):
2 switch ϕ do
3 case µt or ¬µt do
4 return Cµ

5 end
6 case

∧m
i=1 ϕi do

7 git(θ)←RecConGen(ϕi, {Cµ}µ∈P)
8 g∧t (θ)← {θ ∈ Rdθ : θ ∈

⋂m
i=1 g

i
t(θ)}

9 return g∧t (θ), t = 1, . . . , T
10 end
11 case

∨m
i=1 ϕi do

12 git(θ)←RecConGen(ϕi, {Cµ}µ∈P)
13 g∨t (θ)← {θ ∈ Rdθ : θ ∈ bitgit(θ),

i = 1, 2, . . . ,m and
∑
i b
i
t ≥ 1}

14 return g∨t (θ), t = 1, . . . , T
15 end
16 case ϕU[a,b]ψ do
17 gϕt (θ)←RecConGen(ϕ, {Cµ}µ∈P)
18 gψt (θ)←RecConGen(ψ, {Cµ}µ∈P)
19 gϕUψt (θ)← Eq. (13)
20 return gϕUψt (θ), t = 1, . . . , T
21 end
22 end

where L(λ;π,D) = Hβ(π) − λT (fr(π) − f̂r(D)) is the
Lagrangian, bjk ∈ {0, 1}. Observe that we use Lagrangian
duality to relax the feature expectation matching constraint
(1b). This form is convenient because the resulting problem
has only mixed-integer linear constraints and can be solved
using standardized solvers. We note that, even though our
framework is not restrictive to finite horizon formulas, we
impose an upper bound of T to the horizon of ϕ. The
number of constraints is proportional to T and, if the horizon
is infinite, we have infinite number of linear constraints,
which requires more sophisticated techniques to solve [25].
The issue is resolved by upper-bounding the time horizon.
Finally, it is also worth noting that for the special case of a
formula ϕ that consists of conjunctions and global operators,
our method does not introduce any binary variables and
Problem 14 has only linear constraints.

IV. CUT AND GENERATE METHOD

In the previous section, we assumed that the constraint
given by Eq. (5) is encoded via a set of linear constraints and
used this approximation to recursively generate constraints
for ϕ. In this section, we show how to leverage the recur-
sive constraint generation given in Algorithm 1 to generate
linear constraints for any formula. The fundamental idea to
iterate between using cutting hyperplanes to approximate
the feasible region of Eq. (5) and generating constraints
for the entire formula using the obtained hyperplanes. We
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θac1

θ∗

• •

•

θac2

θT (θ∗ − θac2 ) = 0θT (θ∗ − θac1 ) = 0

D1 D2

Fig. 1: Hyperplane approximation for the formula ϕ = µ1 ∨ µ2.
The feasible region of ϕ is D1 ∪ D2 and is approximated
by {θ ∈ R2 : θT (θ∗ − θac1 ) ≤ 0 ∨ θT (θ∗ − θac2 ) ≤ 0}, i.e., the
union of the two hyperplanes. The union is non-convex and a binary
variable is introduced that controls which constraint is active.

call this approach cut-and-generate (Algorithm 2). We start
by initializing the set of constraints C to the empty set
(Line 1) a set Cµ that keeps track of the linear constraints
generated for each predicate µ (Line 2). Then, we solve the
unconstrained Problem 14a (i.e., the Lagrange dual with the
feature expectation matching constraint relaxed) to obtain an
initial solution θ∗ (Line 3). Next, we check if θ∗ satisfies the
specification ϕ. This is achieved by evaluating Eq. (5) at θ∗

for each predicate in ϕ and propagating the resulting truth
values through the StTL schematics.

If θ∗ does not satisfy ϕ a new, more constrained problem is
constructed. To this end, we use θ∗ and a point that belongs
to the feasible space of Eq. (5) in order to construct a cutting
hyperplane as a linear approximation of that feasible space
(see Fig. 1 for an illustration). That hyperplane introduces a
new linear constraint to the problem and eliminates a half-
plane from the search space. Intuitively, that point should be
centered; points close to the boundary eliminate "less" space
and may require more iterations. In the convex optimization
literature, several centering methods have been proposed
[26]. Due to its simplicity, we choose the analytic center,
which is found by solving the following unconstrained
minimization

θact = arg min
θ∈Rdθ

log cµt (θ), (15)

Observe that the analytic center corresponds to the minimiza-
tion of the logarithmic barrier function. To find the minimum,
we first calculate the gradient of Eq. (5):

∇cµt (θ) =
∑
s′,a

qc(s
′, a)

(
pt−1(s′)∇πθ(a|s′) +

πθ(a|s′)∇pt−1(s′)
)
, (16)

where qc(s
′, a) is given by Eq. (4). The gradient of pt(s)

can be found by differentiating Eq. (2) and is given by the
following recursive equation:

∇pt(s) =
∑
s′,a

δ(s|s′, a)
(
pt−1(s′)∇πθ(a|s′) +

πθ(a|s′)∇pt−1(s′)
)
. (17)

Algorithm 2: Cut and Generate Algorithm
Inputs : MDP M\R, demonstrations D,

parameterized policy πθ(a|s), formula ϕ of
maximum horizon T , ordered set P of
atomic predicates in ϕ

Output: Optimal policy πθ∗
1 C ← {}
2 Cµ ← {}, for all predicates µ ∈ P
3 θ∗ ← arg maxθ minλ≥0 L(λ;πθ,D)
4 while θ∗ is not feasible do
5 forall predicates µ in P do
6 θact ← arg min log cµt (θ)
7 gµt (θ)← {θ ∈ Rdθ : θT (θ∗ − θact ) ≤ 0}
8 Cµ ← {θ ∈ Rdθ : θ ∈ gµt (θ) ∧ θ ∈

g(θ), ∀g(θ) ∈ Cµ}
9 end

10 C ← C∪ RecConGen(ϕ, {Cµ}µ∈P)
11 Θ← {θ ∈ Rdθ : g(θ), ∀g(θ) ∈ C}
12 θ∗ ← arg maxθ∈Θ minλ≥0 L(λ;πθ,D)
13 end

Even though Eq. (15) is not convex for practical policy
parameterizations (e.g., neural networks), we leverage the
gradient given by Eq. (16) to find a local minimum via
standard gradient methods. Also, note that we need to find
the analytic center only once for each predicate (i.e., we
can pre-solve Eq. (15) for speed). Following that, we use
the vector θ∗ − θact to construct a cutting hyperplane and
introduce this constraint to the problem (Lines 6-8, the "cut"
step). Then, we use RECCONGEN algorithm to recursively
generate constraints for the entire formula (Line 10, the "gen-
erate" step) and add those to the problem (Line 11). Observe
that the constraints that define the set Θ (Line 11) contain
integer variables, which are created by the RECCONGEN
algorithm. Finally, we solve the newly constructed problem
(Line 12) and iterate. The main benefit of our approach
is that we approximate the feasible region of predicates
(Eq. (5)) via linear constraints and then propagate these
linear constraints through the formula. This allows us to
approximate the feasible region of the problem via mixed-
integer linear constraints. Note that if we used directly the
non-linear constraint given by Eq. (5) that would result
in mixed-integer non-linear constraints, which is far more
difficult to solve.

V. EXPERIMENTAL EVALUATION

Single-Goal GridWorld (SGGW). Consider an agent
moving in an N×N GridWorld enviroment. The agent starts
deterministically from the bottom-left corner (s = (0, 0)) and
receives a reward equal to 1 at the terminal state (upper-right
corner, s = (N−1, N−1)). When the agent takes an action,
it transits to the correct next state with probability 1− pslip
and with probability pslip it "slips", i.e., it arrives at one of
the remaining 3 states with equal probability. We assume that
there exists a "hole" state and an "attractor" state, denoted
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Fig. 2: Recovered optimal stochastic policies for L1-L4. The agent starts from (0, 0) and receives a reward equal to 1 when it reaches
(4, 4). The color-map of each triangle in the corresponding rectangle denotes the probability of taking the underlying action.

with H and A, respectively. We consider the following StTL
specifications:

ϕ1 = G[0,T ]

(
P (d(st, H) ≤ c1) ≤ ε1

)
(18)

ϕ2 = F[0,T ]

(
P (d(st, A) ≤ c2) ≥ 1− ε2

)
(19)

where d(·, ·) denotes the distance function on the grid. The
hole is placed on the upper-left corner (H = (0, N − 1))
and the attractor on the bottom-right (A = (N − 1, 0)). We
choose a softmax policy and the remaining parameters are
as follows: N = 5, T = 10, ε1 = ε2 = 0.1, c1 = 1, c2 = 0.
We consider 4 different learner models: a) an unconstrained
learner (L1). This is essentially the standart MCE inverse
reinforcement learning framework (i.e., Problem 1 without
the StTL constraint) and acts as a baseline, b) a learner
constrained by ϕ1 (L2): This learner must always stay away
from the hole state with the given probability threshold, c) a
learner constrained by ϕ2 (L3): This learner must eventually
get sufficiently close to the attractor state and d) a learner
constrained by ϕ1 ∧ ϕ2 (L4): This learner is constrained by
the conjunction of ϕ1 and ϕ2, i.e., it must stay away from
the hole and approach the attractor. The results are shown
in Fig. 2. Observe that L2 tends to "push" the agent away
from the upper-left corner; L3 tends to "attract" the agent to
the bottom-right corner; and L4 combines both.
Multi-Goal GridWorld (MGGW). This enviroment is
similar to the previous one, albeit the transitions are deter-
ministic, there exist obstacles and multiple goal states. We
consider the following formulas:

1) Obstacle avoidance: ϕ3 = G[0,T ]

(
P (d(st,obs) ≤

c3) ≤ ε3
)
, where d(st,obs) is the distance of the

agent from the closest obstacle.
2) Multi-Goal reach: The agent is required to reach either

one of goal states, i.e., ϕ4 = F[0,T ]

(
P (d(st,g1) =

c4) ≥ 1− ε4
)
∨ F[0,T ]

(
P (d(st,g2) = c5) ≥ 1− ε5

)
.

The imposed specification is ϕ3 ∧ ϕ4. To generate expert
trajectories, we find the optimal policy using value iteration
and then run it in the enviroment. The parameters are as
follows: N = 8, T = 16, c3 = 1, c4 = c5 = 0, ε3 = ε4 =
ε5 = 0.05. The results are shown in Fig. 3.
Robustness. To quantify the degree of satisfaction of each
of the aforementioned formulas over the policies learned by
L1-L4, we use the metric of StTL robustness. For a more
formal treatment of StTL robustness, the reader may consult
[21]. Informally, high positive robustness indicates "better"

Fig. 3: The multi-goal gridworld enviroment along with the policy
recovered under specification ϕ3 ∧ ϕ4.

satisfaction, negative robustness denotes that the formula
is not satisfied and robustness value equal to zero denotes
marginal satisfaction. For the multi-goal gridworld case, we
consider 4 different learners, similarly to the SGGW. The
results are shown in Tables I and II. Observe that each
formula attains the higher robustness over the policy which
is trained for that formula, i.e., ϕ1 attains higher robustness
for learner L1, which is trained under ϕ1. Notice that
the cross terms (e.g., ϕ1 under L3) attain slightly positive
robustness values. This is explainable due to the nature of the
specifications and the enviroment. For instance, if the agent
avoids the hole, then it is more inclined to be closer to the
attractor. Finally, observe that L1 attains negative robustness
for all formulas, which indicates that the standard MCE does
not suffice to satisfy the specifications.

Scalability and Time Complexity. To demonstrate the
applicability of our method in problems with larger state
spaces, we perform a scalability analysis. In more detail, we
define the metric overhead as the run-time of Algorithm 2
subtracted by the run-time of the MCE algorithm (line 12).
The reason for defining that metric is that our method
essentially builds on top of the MCE algorithm, which we
use as a black box and have no influence over its run-
time. Therefore, this metric essentially captures the number
of successive refinements in the hyperplane approximation.
We compute the overhead for both SGGW and MGGW for
different grid sizes. In the MGGW case, the size of the
obstacle increases with the size of the grid. We consider
formulas ϕ1 ∧ ϕ2 and ϕ3 ∧ ϕ4, respectively, and the time
horizon is set to 2N , where N is the size of the grid. The
result shown in Fig. 4 indicates a linear dependence of the
time overhead on the size of the grid for both enviroments,
which is tolerable overhead given the problem complexity.
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TABLE I: Single-Goal GridWorld

L1 (MCE) L2 L3 L4

ϕ1 −0.44 1.98 0.10 0.15
ϕ2 −0.25 0.07 1.44 0.28
ϕ1 ∧ ϕ2 −0.23 0.12 0.25 1.07

TABLE II: Multi-Goal GridWorld

L1 (MCE) L2 L3 L4

ϕ3 −0.14 1.24 0.18 0.25
ϕ4 −0.35 0.15 1.58 0.13
ϕ3 ∧ ϕ4 −0.25 0.17 0.24 1.21

Robustness of the underlying StTL formulas with respect to policies learned by learners L1-L4. Higher robustness is better and negative
implies that the formula is not satisfied.
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Fig. 4: Empirical complexity estimation

VI. SUMMARY

We address the problem of learning from demonstrations
when the agent must satisfy a set of specifications expressed
as Stochastic Temporal Logic (StTL) formulas. Building on
the maximum causal entropy inverse reinforcement learning
framework, our method uses cutting hyperplanes to approx-
imate the feasible region of StTL predicates and propagates
these hyperplanes through the StTL schematics to generate
constraints for arbitrary formulas. This results in a set of
mixed-integer linear constraints that encode the satisfaction
of the specification. We validated the practical usability of
our approach in different enviroments and specifications.
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