
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL ., NO., 2021 1

A scalable distributed dynamical systems approach to learn the strongly
connected components and diameter of networks

Dedicated to Professors Cristina and Amilcar Sernadas

Emily A. Reed∗, Guilherme Ramos∗, Paul Bogdan, Sérgio Pequito

Abstract— Finding strongly connected components (SCCs) and
the diameter of a directed network play a key role in a variety of
machine learning and control theory problems. In this paper, we
provide for the first time a scalable distributed solution for these
two problems by leveraging dynamical consensus-like protocols
to find the SCCs. The proposed solution has a time complexity
of O

(
NDdmax

in-degree

)
, where N is the number of vertices in the

network, D is the (finite) diameter of the network and dmax
in-degree is

the maximum in-degree of the network. Additionally, we prove that
our algorithm terminates in D + 2 iterations, which allows us to
retrieve the finite diameter of the network. We perform exhaustive
simulations that support the outperformance of our algorithm
against the state-of-the-art on several random networks, including
Erdős-Rényi, Barabási-Albert, and Watts-Strogatz networks.

Index Terms— strongly connected components, max-
consensus

I. INTRODUCTION

Strongly connected components (SCCs) and the finite diameter of
directed networks are important in many control theory problems.
Nowadays, networks associated with data are becoming increasingly
larger, which demands scalable and distributed algorithms that enable
an efficient determination of the SCCs and diameter of such networks.

The applications of distributively finding the strongly connected
components include distributively monitoring and regulating power
systems, physiological networks, and swarms of unmanned vehi-
cles. For example, these systems are often represented as structural
systems [1] and are distributively controlled [2]. More specifically,
strongly connected components are important in determining the
structural systems properties (e.g., controllability and observabil-
ity) [1] and play a key role in guaranteeing that distributed control
algorithms function properly [2]. In the wide range of large-scale ap-
plications mentioned above, it is common that only local information
is available at each node, and therefore, distributed algorithms, like
the one proposed hereafter, must be considered.

Computing the finite diameter is important in improving internet
search engines [3], quantifying the multifractal geometry of complex
networks [4], and identifying faults in both the power grid [5] and
multiprocessor systems [6]. More specifically, the finite diameter
of the world wide web determines the maximum number of clicks
between any two web pages [3]. Finding this number in a distributed
fashion is important when there are multiple processors in a computer
that are conducting different searches at the same time. In the case
of identifying faults in systems such as the power grid [5] or mul-

∗ Both authors contributed equally.
E. Reed is with the Ming Hsieh Electrical and Computer Engineering Dept. at
the University of Southern California, USA. G. Ramos is an assistant professor
at the Department of Computer Science Engineering, Instituto Superior Técnico,
Universidade de Lisboa and an integrated researcher at LASIGE, Departamento
de Informática, Faculdade de Ciências, Universidade de Lisboa. P. Bogdan is
a faculty member at the University of Southern California in the Ming Hsieh
Electrical and Computer Engineering Dept. S. Pequito is an associate professor
of automatic control in the Department of Information Technology at Uppsala
University. This work was supported in part by FCT through the LASIGE Research
Unit ref. UIDB/00408/2020 and ref. UIDP/00408/2020, National Science Foun-
dation GRFP DGE-1842487, Career Award CPS/CNS-1453860, CCF-1837131,
MCB-1936775, CNS-1932620, CMMI-1936624, CMMI 1936578, the University of
Southern California Annenberg Fellowship, USC WiSE Top-Off Fellowship, the
DARPA Young Faculty Award and DARPA Director Award N66001-17-1-4044. The
views, opinions, and/or findings contained in this article are those of the authors
and should not be interpreted as representing the official views or policies, either
expressed or implied by the Defense Advanced Research Projects Agency, the
Dept. of Defense or the National Science Foundation.

tiprocessor systems [6], the finite diameter of a system is calculated
in real-time and is compared with the known finite diameter to
determine whether a fault has occurred. In this case, determining
the finite diameter distributively is key in quickly diagnosing where
the fault has occurred in the network. Finally, the finite diameter is
important in quantifying the multifractal geometry of networks [4],
and it becomes necessary to calculate the finite diameter distributively
when the nodes of the network only have access to local information.

Identifying the different SCCs in a directed network (directed
graph – digraph for short) leads to a unique decomposition of the
digraph G = (V, E), where V denotes the nodes and E the set
of directed edges. We may find this decomposition, for instance,
using the classic algorithm by Tarjan [7], which employs a single
pass of depth-first search and whose computational complexity is
O(|V|+ |E|). It is worth mentioning that depending on the network
sparsity, the effective computational complexity is O(|V|2), since
E ⊂ (V × V). Similar to Tarjan’s algorithm, Dijkstra introduced
the path-based algorithm to find strongly connected components and
also runs in linear time (i.e., O(|V| + |E|)) [8]. Finally, Kosaraju’s
algorithm uses two passes of depth-first search but is also upper-
bounded by O(|V|+ |E|) [9].

The following work presents an overview of the centralized algo-
rithms that find the strongly connected components, which all have
computational complexity O(|V|+ |E|) [10]. A possible alternative is
to develop better data structure algorithms that are suitable for paral-
lelization, which can then lead to implementations with computational
complexity equal to O(|V| log (|V|)) [11] – see also [12] for an
overview of different parallelized algorithms for SCC decomposition.

The solutions mentioned above require the knowledge of the
overall structure of the system digraph, which may not be suitable
for large-scale applications in control systems or in machine learning.
Subsequently, we propose for the first time a scalable distributed
algorithm to determine the SCCs that relies solely on control systems
tools, specifically max-consensus-like dynamics. Furthermore, our
algorithm converges in D + 2 iterations and thereby enables us
to determine the finite diameter D of the network. State-of-the-art
methods to determine the finite diameter of a directed network include
the Floyd-Warshall algorithm, which has a computational complexity
of O(|V|3) [13]. The main contributions of the paper are as follows.

Main contributions:

• We provide for the first time a scalable distributed algorithm
to find the strongly connected components and finite diam-
eter of a directed graph with computational time-complexity
O
(
NDdmax

in-degree

)
, and

• we provide ample numerical evidence of the out performance
of our algorithm against the state-of-the-art on several random
networks including Erdős-Rényi, Barabási-Albert, and Watts-
Strogatz.

A. Preliminaries and Terminology

Consider a directed graph (digraph) G = (V, E) where V is the set
of vertices with |V| = N , and E ⊂ V ×V is the set of edges, where
the maximum number of edges is |E| = |V × V| = N2. Given G =
(V, E), the in-degree of a vertex v ∈ V is din-degree(v) = |{(u, u′) :
(u, u′) ∈ E , u′ = v}|, and we denote the maximum in-degree of G
by dmax

in-degree = max
v∈V

din-degree(v). Moreover, given a vertex v ∈ V ,

we define the set of its in-neighbors as N−v = {u : (u, v) ∈ E}.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3209446

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on November 19,2022 at 21:00:01 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL ., NO., 2021

A walk in a digraph is any sequence of edges where the last vertex
in one edge is the beginning of the next edge, except for the beginning
vertex of the first edge and the ending vertex of the last edge. Notice
that a walk does not exclude the repetition of vertices. In contrast, a
path, is a walk where the same vertex is not the beginning or ending
of two nonconsecutive edges in the sequence. The size of the path is
the number of edges that constitute it. If the beginning and ending
vertex of a path is the same, then we obtain a cycle. Additionally,
a sub-digraph Gs = (V ′, E ′) is described as any sub-collection of
vertices V ′ ⊂ V and the edges E ′ ⊂ V ′ × V ′ between them. If a
subgraph has the property that there exists a path between any two
pairs of vertices, then it is a strongly connected (di)graph. Next, we
provide the definition of a strongly connected component.

Definition 1. A strongly connected component (SCC) is any maximal
strongly connected subgraph.

Any digraph can be uniquely decomposed into SCCs. A digraph
G′ = (V ′, E ′) is said to span G = (V, E), denoted by G′ = span(G),
if V ′ = V and E ′ ⊆ E . Finally, given a digraph G = (V, E), we
define its finite digraph diameter D.

Definition 2. The finite digraph diameter is the size of the longest
shortest path between any two vertices in V for which such a path
exists.

II. PROBLEM STATEMENT

We propose to address the following two problems.
(P1): Given a digraph G = (V, E), determine the unique de-
composition of m ∈ N SCCs by finding the maximal subgraphs
Gs = (Vs, Es), s = 1, · · · ,m, where each subgraph is a SCC such
that Vs ∩ Vq = ∅ for s 6= q with q = 1, . . . ,m, Vs,Vq ⊂ V , Es ⊂
(E ∩ (Vs × Vs)), and ∪ms=1Gs ≡ (∪ms=1Vs,∪ms=1Es) = span(G).

(P2): Given a digraph G = (V, E), determine the finite digraph
diameter D.

Next, we provide the solution to the above problems in both a
centralized and distributed fashion that enables a scalable approach
to determine all the SCCs and the finite digraph diameter of a given
network. Notice that a digraph has a unique decomposition into m
SCCs, but we do not require a priori knowledge of such number.

III. A SCALABLE DISTRIBUTED DYNAMICAL SYSTEMS
APPROACH TO LEARN THE STRONGLY CONNECTED

COMPONENTS AND DIAMETER OF NETWORKS

To determine a solution to (P1) and (P2), we leverage a
max-consensus-like protocol.

Definition 3. [14] Consider G = (V, E), where each vertex vi ∈
V, i = 1, . . . , N , has an associated state ri[k] ∈ R at any time
k ∈ N. Then, we have the following max-consensus-like update rule

ri[k + 1] = max
vj∈N

−
vi
∪{vi}

rj [k], (1)

for each node vi, where N−vi denotes all of the nodes vj such that
there is an edge (vj , vi) ∈ E . We simply say that consensus is
achieved if there exists an instance of time h such that for all h′ ≥ h,
ri[h
′] = rj [h

′], for all vi, vj ∈ V, i ∈ {1, . . . , N}, j ∈ {1, . . . , N}
and for all initial conditions r[0] = [r1[0]

ᵀ . . . rn[0]
ᵀ]ᵀ. ◦

Definition 3 is similar to the max-consensus update, but in addition
to considering the information from the neighbors, Definition 3 also
considers the information from the node itself. Furthermore, it is
worth emphasizing that from Definition 3 it follows that every node
only needs to be able to receive information from its in-neighbors,
(i.e., the nodes connected to it). Hence, each node only needs
the local information, which is pertinent to distributed algorithms.
Furthermore, we note that each node uses a unique ID, that for
simplicity consists of N consecutive positive integer numbers from 1
to N . A node is able to obtain the information from its in-neighbors,
including the unique IDs of its in-neighbors.

Algorithm 1: Find the SCCs and finite diameter distributively

Input: N−vi , which is the set of in-neighbors of node vi
Output: Each node vi obtains a set S∗i , which contains the nodes

belonging to the same SCC as node vi, and a scalar ki,
which is one more than the number of iterations

Initialization: Set S∗i = ∅, ki = 0; xi[0] = {i}; yi[0] = 1;
zi[0] = ∅; and wi[0] = FALSE;

while wi[ki] == FALSE do
Step 1:

xi[ki + 1] =
⋃

vj∈N
−
vi
∪{vi}

xj [ki]

Step 2:
yi[ki + 1] = |xi[ki + 1]|

Step 3:

zi[ki+1] =

vj : yi[ki + 1] == yj [ki] ∧ vj ∈
⋃

vl∈N
−
vi
∪{vi}

xl[ki]


Step 4:

wi[ki+1] = (yi[ki + 1] == yi[ki])∧(|zi[ki+1]| == |zi[ki]|)

Step 5: ki = ki + 1
end
Step 6: Set S∗i = zi[ki]

Next, we present Algorithm 1, which can be used to find the
solutions to (P1) and (P2).

Algorithm 1 is performed on each node vi and obtains a set S∗i ,
which consists of the nodes that belong to the same SCC as node vi,
and a scalar ki, which is one more than the number of iterations.

Briefly speaking, Algorithm 1 works as follows. For each node vi,
we first find the set of nodes that have a directed path ending in node
vi. Next, we record the size of this set. Finally, we add the nodes
contained in the same SCC as node vi to the set S∗i .

More specifically, Algorithm 1 starts by initializing the local (i.e.,
at node vi) sets and parameters for the algorithm. In particular, we
set S∗i = ∅, ki = 0, xi[0] = {i}, yi[0] = 1, zi[0] = ∅, and
wi[0] = FALSE. At each iteration of the algorithm, Step 1 finds the
set of state ‘ids’ (or, equivalently, nodes’ indices) that form directed
paths that end in node vi. Step 2 records the size of the set of directed
paths to node vi. Step 3 determines the nodes that are contained in the
same SCC as node vi, where ∧ denotes the logical ‘and’ operation.
In Step 4, if the maximum size of the set of directed paths to vi has
been obtained, then an indication to end the algorithm for node vi is
provided. Step 5 tracks the iterations, which is important for finding
the finite digraph diameter. The algorithm terminates when no new
information is received. Lastly, Step 6 sets S∗i , which is the set of
nodes contained in the same SCC as node vi.

The following lemma is key in proving Algorithm 1’s correctness.

Lemma 1. If, for any two nodes vi and vj , we have that yi[ki+1] =
yj [ki] (as in Step 2) and vj ∈

⋃
vl∈N

−
vi
∪{vi}

xl[ki] (as in Step 1),

then vi and vj are in the same SCC.

Proof. Suppose for a contradiction that yi[ki+1] = yj [ki] and vj ∈⋃
vl∈N

−
vi
∪{vi}

xl[ki], but vi and vj are not in the same SCC. This

would mean that there is not a direct path from vi to vj or there is not
one from vj to vi. However, if vj ∈ ∪vl∈N−i ∪{i}

xl[ki], then vj can
reach node vi, so there is a direct path from vj to vi. Furthermore,
if yi[ki + 1] = yj [ki], then there must also be a direct path from vi
to vj or we would have yi[ki + 1] > yj [ki]. Therefore, there is a
direct path from vi to vj and from vj to vi, so vi and vj must be
in the same SCC.

The next lemma is key in giving a stopping criteria for Algorithm 1.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3209446

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on November 19,2022 at 21:00:01 UTC from IEEE Xplore. Restrictions apply.

et al.: 3

Lemma 2. If yi[ki +1] == yi[ki] and |zi[ki +1]| == |zi[ki]|, for
all i = 1, . . . , N (as in Step 4), then all the SCCs have been found.

Proof. At each iteration of the algorithm, the number of elements in
set xi either increases or it remains the same. If from one iteration to
the next, the number of elements in xi stays the same for all nodes
vi, then every node has received all of the information that it possibly
can. Furthermore, each node knows the other nodes that can reach
it as captured by the set xi. Since yi records the size of the set of
nodes that can reach node vi, then if yi remains the same from one
iteration to the next, then it is clear that the number of elements in
xi also remains the same. Furthermore, if yi remains the same from
one iteration to the next, then the network cannot communicate any
new information. Additionally, if the set zi, which is the set of nodes
that are contained in the same SCC as node vi, remains the same
from one iteration to the next, then all SCCs have been found.

In the following theorem, we prove the correctness of Algorithm 1.

Theorem 1. Let S∗i be the set of nodes that results after Algorithm 1
is executed on node vi ∈ V . Then,

⋃
i∈{1,...,N}(S

∗
i , (S

∗
i ×S

∗
i)∩E)

is a solution to P1. ◦

Proof. The algorithm iterates until yi[ki + 1] = yi[ki] and |zi[ki +
1]| = |zi[ki]|, for all i = 1, . . . , N , at which point all of the SCCs
have been found–see Lemma 2. At each iteration, Step 1 forms the
set of nodes that reach node vi and is recorded in set xi. Step 2
finds the cardinality of the set xi. Step 3 finds the set of nodes that
are contained in the same SCC as node vi – see Lemma 1 – and is
recorded in set zi. Step 4 determines whether the maximum set of
nodes that can reach node vi has been found, whether the size of the
set of nodes contained in the same SCC has increased, and it serves
as a stopping criteria for the algorithm. Step 5 tracks the iterations,
and step 6 records the set of nodes that are contained in the same
SCC as node vi in the set S∗i . Finally, the SCCs are formed in the
following subgraphs G∗i = (S∗i , (S

∗
i × S

∗
i) ∩ E) as mentioned in

the statement of Theorem 1. Any duplicate subgraphs of SCCs are
eliminated by taking the union of all the subgraphs

⋃
i∈{1,...,N} G

∗
i .

Hence, we obtain the SCCs of G(V, E).

Next, we show the computational time-complexity for Algorithm 1.

Theorem 2. Algorithm 1 has computational time-complexity
O
(
N2Ddmax

in-degree

)
, where N is the number of vertices, D is the

finite diameter of the network and dmax
in-degree is the maximum in-degree

of the network. ◦

Proof. Algorithm 1 executes for all nodes vi ∈ V, i = 1, . . . , N .
Furthermore, Algorithm 1 contains a single while loop, where the
number of iterations is upper-bounded by the diameter since xi finds
the longest shortest path to node vi. The steps inside the while loop
are steps 1-5. Step 1 is upper-bounded by the size of the network
times the maximum in-degree of the network (i.e., O(Ndmax

in-degree))
since the union has complexity O(N) and we take the union for all
of the in-neighbors. Step 2 is upper-bounded by a constant. Similar
to Step 1, Step 3 is upper-bounded O(Ndmax

in-degree). Finally, steps 4,
5, and 6 are upper-bounded by a constant. Hence, the computational
time-complexity is O

(
N2Ddmax

in-degree

)
, where N is the number of

nodes, D is the finite digraph diameter of the network, and dmax
in-degree

is the maximum in-degree of the network.

The following result demonstrates the scability of Algorithm 1.

Corollary 1. Algorithm 1 can be implemented in a dis-
tributed fashion and is scalable with computational time-complexity
O
(
NDdmax

in-degree

)
. ◦

Proof. This readily follows from Theorem 2 and from noticing that
Steps 1-6 can be performed locally for each node vi, where i =
1, . . . , N . Therefore, the algorithm can be computed in a distributed
fashion, which eliminates an N in the complexity in Theorem 2.

While we have provided the computational complexity of the
algorithm for the worst-case scenario, we observe that intuitively the
maximum in-degree is negatively correlated with the diameter, so (on
average) this may allow for a lower time complexity.

The space-complexity for performing Algorithm 1 on each node vi,
where i ∈ {1, . . . , N}, in a distributed fashion is O(N), where N is
the number of nodes in the network. Next, we give the computational
time-complexity to find the SCCs.
Theorem 3. Finding the sets of nodes that contain the SCCs,⋃
i∈{1,...,N}S

∗
i , requires a computational time-complexity of

O
(
NDdmax

in-degree

)
.

Proof. As shown in Theorem 1, for each node vi, where i =
1, . . . , N , Algorithm 1 finds the set of nodes S∗i that are contained
in the same SCC as node vi, which, according to Corollary 1,
has a computational time-complexity of O

(
NDdmax

in-degree

)
when

executed distributively. To find the sets of nodes that contain the
SCCs, we compute

⋃
i∈{1,...,N}S

∗
i , which requires the addition

of a term N , so O
(
NDdmax

in-degree +N
)

. Thus, it readily leads to

O
(
NDdmax

in-degree

)
.

Next, we provide a table comparing the computational time com-
plexities of several different algorithms that find the SCCs of a given
directed network.

Algorithm to compute SCCs Computational Time Complexity
Tarjan [7] O(N + |E|)

Dijkstra [8] O(N + |E|)
Kosaraju [9] O(N + |E|)
Gabow [15] O(N + |E|)

Our proposed distributed algorithm O(NDdmax
in-degree)

While asymptotically the computational time-complexity of our
distributed algorithm does not outperform the state-of-the-art cen-
tralized algorithms that find the SCCs (since the number of edges |E|
in the graph is bounded by N × dmax

in-degree), our proposed algorithm
can be implemented in a distributed manner, whereas the other
algorithms shown in the table above cannot be. Furthermore, as
we will show in the simulation results, our centralized algorithm
empirically outperforms Kosaraju’s algorithm on several randomly
generated networks. In the next result, we give a solution to (P2).

Theorem 4. By running Algorithm 1 on every node vi ∈ V , with
i ∈ {1, . . . , N}, we get the solution to (P2) to be D = max

vi∈V
ki−3. ◦

Proof. We will show that Algorithm 1 converges after D + 2
iterations, where D is the finite digraph diameter of the input digraph.
From Lemma 1, the algorithm terminates when no new information
is being received by any node from its neighbors (or itself) at a
subsequent time step and all of the SCCs have been found. If we
assume that the digraph has diameter D, this implies that there exists
a pair of nodes u and v such that the size of the shortest path between
u and v is D. First, we will show that no new information is received
in D iterations. Suppose that node v receives all the information of
node u in k < D iterations where the information travels to the
neighbors of each node in exactly one iteration. Then, there must be
another path from u to v with k edges, which contradicts the fact
that the shortest path between u and v has size D.

Now, suppose that no new information is communicated to any
node in the network after k > D iterations. This means that there is
information from node u that only reaches node v after k iterations.
However, since information is sent to the neighbors at each iteration,
then the shortest path between u and v has size k, which contradicts
the fact that the longest shortest finite path has size D.

Therefore, no new information is being communicated in D
iterations, which is verified in the next iteration, i.e., the D + 1th
iteration. Then, zi is finished updating after D+1 iterations since it is
dependent on all of the information having been received. It is verified
that zi is finished updating at the next iteration, i.e., the D + 2nd
iteration. Hence, the diameter will be two less than the maximum

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3209446

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on November 19,2022 at 21:00:01 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL ., NO., 2021

number of iterations among all nodes. Since Step 5 increments ki
before terminating, then, ki denotes the number of iterations (for vi)
plus one. Conveniently, D = max

vi∈V
ki − 3 since maxvi∈V ki finds

precisely the maximum number of iterations plus one among all nodes
vi, so three is subtracted to obtain the finite digraph diameter D.

We emphasize that computing the finite digraph diameter requires
the number of iterations of Algorithm 1 for each node. Furthermore,
we notice that we can compute the finite digraph diameter and the
digraph diameter. For example, if there is more than one SCCs, then
the digraph diameter is infinite, else the two quantities are equivalent.
Next, we give the computational time-complexity for computing the
finite digraph diameter.

Theorem 5. Computing the finite digraph diameter requires a
computational time-complexity of O

(
NDdmax

in-degree

)
.

Proof. Following from Theorem 4, we obtain the finite digraph
diameter by executing Algorithm 1 on every single node vi ∈ V .
Hence, from Corollary 1, we see that Algorithm 1 has a computational
time-complexity of O

(
NDdmax

in-degree

)
when executed distributively.

To determine the maximum number of iterations among all of the
nodes vi, where i ∈ 1, . . . , N , a final term N is added in the
complexity, so O

(
NDdmax

in-degree +N
)

. Thus, it readily leads to

O
(
NDdmax

in-degree

)
.

We provide a table comparing the computational-time complexity
of the state-of-the-art Floyd-Warshall algorithm to our proposed dis-
tributed algorithm. We notice that our proposed distributed algorithm
performs no worse than the Floyd-Warshall algorithm.

Algorithm to find the finite diameter Computational Time Complexity
Floyd-Warshall [13] O(N3)

Our proposed distributed algorithm O(NDdmax
in-degree)

Finally, we explore the expected computational time-complexity of
Algorithm 1 in some special random networks.

Corollary 2. For an Erdős–Rényi network with N nodes
and m edges, the expected time-complexity of Algorithm 1 is
O
((

log(N)−γ
log(2m/N)

+ 1
2

)
2m
)

, where γ is the Euler-Mascheroni con-
stant.

Proof. The average degree of an Erdős–Rényi network is 2m
N , and the

average path length is log(N)−γ
log(2m/N)

+ 1
2 [16]. Thus, by Corollary 1, the

expected time-complexity is O
((

log(N)−γ
log(2m/N)

+ 1
2

)
2m
)

, where γ is
the Euler-Mascheroni constant.

Corollary 3. For a Barabási-Albert network with N
nodes and m edges added to a new vertex at each
step, the expected time-complexity of Algorithm 1 is
O
(
2mN

(
log(N)−log(m/2)−1−γ
log(log(N))+log(m/2)

+ 3
2

))
.

Proof. Since the average degree is 2m, and the average
path length is log(N)−log(m/2)−1−γ

log(log(N))+log(m/2)
+ 3

2 [16], by
Corollary 1, the average time-complexity reduces to
O
(
2mN

(
log(N)−log(m/2)−1−γ
log(log(N))+log(m/2)

+ 3
2

))
.

Corollary 4. For a Watts-Strogatz network with N nodes, K edges
per vertex, and rewiring probability p, the expected time-complexity
of Algorithm 1 is O

(
N2

2

)
as p→ 0 and O

(
NK log(N)

log(K)

)
as p→ 1.

Proof. The Watts-Strogatz network has an average degree of K,
and the average path length is N

2K as p → 0 and log(N)
log(K)

as
p → 1 [17]. Hence, by Corollary 1, the average time-complexity
of Algorithm 1 for the Watts-Strogatz network is O

(
N2

2

)
as p→ 0

and O
(
NK log(N)

log(K)

)
as p→ 1.

IV. PEDAGOGICAL EXAMPLES

In this section, we present several pedagogical examples to illus-
trate how Algorithm 1 works and demonstrate its computational time-
complexity. In what follows, when referring to each of the SCCs, we
will only mention the indices of the nodes contained in that particular
SCC (i.e., if vi ∈ Vs then with some abuse of notation we refer to
that node as i ∈ Vs) as we are implicitly assuming that their edges
are formed by Es = ((Vs × Vs) ∩ E).
A. Example 1

Fig. 1 shows a network with six nodes that contains the following
strongly connected components: {1, 2}, {3, 4}, and {5, 6}.

1 2 3 4 5 6

Fig. 1: This network has SCCs {5, 6}, {3, 4}, and {1, 2}.

Table I shows the trace of running Algorithm 1 on Example 1 for
each node vi, where P is the set of parameters for the algorithm
and k is the total number of iterations. It shows in column one that
it takes seven iterations (k = 7) to identify the SCCs for Example 1.
Here, the diameter of the network is 5, which is two less than the total
required iterations and is consistent with the results in Theorem 4.

k P v1 v2 v3 v4 v5 v6

0

x[0] {1} {2} {3} {4} {5} {6}
y[0] 1 1 1 1 1 1
z[0] {1} {2} {3} {4} {5} {6}
w[0] False False False False False False

1

x[1] {1,2} {1,2} {2,3,4} {3,4} {4,5,6} {5,6}
y[1] 2 2 3 2 3 2
z[1] {} {} {} {} {} {}
w[1] False False False False False False

2

x[2] {1,2} {1,2} {1,2,3,4} {2,3,4} {3,4,5,6} {4,5,6}
y[2] 2 2 4 3 4 3
z[2] {1,2} {1,2} {} {3} {} {5}
w[2] False False False False False False

3

x[3] {1,2} {1,2} {1,2,3,4} {1,2,3,4} {2,3,4,5,6} {3,4,5,6}
y[3] 2 2 4 4 5 4
z[3] {1,2} {1,2} {3} {3} {} {3,5}
w[3] True True False False False False

4

x[4] {1,2} {1,2} {1,2,3,4} {1,2,3,4} {1,2,3,4,5,6} {2,3,4,5,6}
y[4] 2 2 4 4 6 5
z[4] {1,2} {1,2} {3,4} {3,4} {} {5}
w[4] True True False False False False

5

x[5] {1,2} {1,2} {1,2,3,4} {1,2,3,4} {1,2,3,4,5,6} {1,2,3,4,5,6}
y[5] 2 2 4 4 6 6
z[5] {1,2} {1,2} {3,4} {3,4} {5} {5}
w[5] True True True True False False

6

x[6] {1,2} {1,2} {1,2,3,4} {1,2,3,4} {1,2,3,4,5,6} {1,2,3,4,5,6}
y[6] 2 2 4 4 6 6
z[6] {1,2} {1,2} {3,4} {3,4} {5,6} {5,6}
w[6] True True True True False False

7

x[7] {1,2} {1,2} {1,2,3,4} {1,2,3,4} {1,2,3,4,5,6} {1,2,3,4,5,6}
y[7] 2 2 4 4 6 6
z[7] {1,2} {1,2} {3,4} {3,4} {5,6} {5,6}
w[7] True True True True True True

TABLE I: This table enumerates the values of the parameters (P) at each
iteration (k) of Algorithm 1 for all nodes vi when executed on Example 1.

B. Example 2: Complete Network

Fig. 2 shows a complete network with five nodes, so there is
a single SCC containing all of the nodes (i.e., {1, 2, 3, 4, 5}). In
Table II, we see that three iterations are necessary as this is two
more than the diameter of the network – see Theorem 4.

1

2 3

4

5

Fig. 2: The complete network contains a single SCC, which is made up
of all of the nodes in the network (i.e., {1, 2, 3, 4, 5}).

C. Example 3: Tree

Fig. 3 shows a tree with nine nodes, so the SCCs are the individual
nodes themselves (i.e., {1}, {2}, . . . , {9}).

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3209446

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on November 19,2022 at 21:00:01 UTC from IEEE Xplore. Restrictions apply.

et al.: 5

k P v1 v2 v3 v4 v5

0

x[0] {1} {2} {3} {4} {5}
y[0] 1 1 1 1 1
z[0] {1} {2} {3} {4} {5}
w[0] False False False False False

1

x[1] {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5}
y[1] 5 5 5 5 5
z[1] {} {} {} {} {}
w[1] False False False False False

2

x[2] {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5}
y[2] 5 5 5 5 5
z[2] {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5}
w[2] False False False False False

3

x[3] {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5}
y[3] 5 5 5 5 5
z[3] {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5}
w[3] True True True True True

TABLE II: This table enumerates the values of the parameters (P) at
each iteration (k) of Algorithm 1 for all nodes vi when executed on the
complete network.

1

2 3

4 5 6 7

8 9

Fig. 3: The SCCs of the tree are the individual nodes themselves (i.e.,
{1}, {2}, . . . , {9}).
k P v1 v2 v3 v4 v5 v6 v7 v8 v9

0

x[0] {1} {2} {3} {4} {5} {6} {7} {8} {9}
y[0] 1 1 1 1 1 1 1 1 1
z[0] {1} {2} {3} {4} {5} {6} {7} {8} {9}
w[0] False False False False False False False False False

1

x[1] {1} {1,2} {1,3} {2,4} {2,5} {2,6} {3,7} {4,8} {4,9}
y[1] 1 2 2 2 2 2 2 2 2
z[1] {1} {} {} {} {} {} {} {} {}
w[1] True False False False False False False False False

2

x[2] {1} {1,2} {1,3} {1,2,4} {1,2,5} {1,2,6} {1,3,7} {2,4,8} {2,4,9}
y[2] 1 2 2 3 3 3 3 3 3
z[2] {1} {2} {3} {} {} {} {} {} {}
w[2] True False False False False False False False False

3

x[3] {1} {1,2} {1,3} {1,2,4} {1,2,5} {1,2,6} {1,3,7} {1,2,4,8} {1,2,4,9}
y[3] 1 2 2 3 3 3 3 4 4
z[3] {1} {2} {3} {4} {5} {6} {7} {} {}
w[3] True True True False False False False False False

4

x[4] {1} {1,2} {1,3} {1,2,4} {1,2,5} {1,2,6} {1,3,7} {1,2,4,8} {1,2,4,9}
y[4] 1 2 2 3 3 3 3 4 4
z[4] {1} {2} {3} {4} {5} {6} {7} {8} {9}
w[4] True True True True True True True False False

5

x[5] {1} {1,2} {1,3} {1,2,4} {1,2,5} {1,2,6} {1,3,7} {1,2,4,8} {1,2,4,9}
y[5] 1 2 2 3 3 3 3 4 4
z[5] {1} {2} {3} {4} {5} {6} {7} {8} {9}
w[5] True True True True True True True True True

TABLE III: This table shows the values of the parameters (P) at each
iteration (k) of Algorithm 1 for all nodes vi, executed on the tree network.

In Table III, we see that five iterations are required to identify the
SCCs of the tree network, which is two more than the diameter of
the network – see Theorem 4.

V. SIMULATION RESULTS

In this section, we compare the performance of our centralized
algorithm with the current state-of-the-art that find the SCCs and
the finite digraph diameter. We start by comparing the run times
of our algorithm against Kosaraju’s algorithm [9] to find all the
SCCs on a series of random networks, including the Erdős–Rényi,
Barabási–Albert, and Watts-Strogatz networks. We compare the run
times of both our algorithm and the Kosaraju algorithm as we vary
the parameters of the networks, including the diameter, the maximum
in-degree, the number of SCCs, and the number of nodes. We
ran all the algorithms using Wolfram Mathematica on a MacBook
Pro with an Apple M1 and 8GB RAM. For each type of random
network (i.e., Erdős-Rényi, Barabási-Albert, and Watts-Strogatz), we
randomly generated 50 networks in the following manner. For five
different sets of nodes, we randomly generated ten different networks,
where the sets of nodes were 100, 200, 300, 400, and 500 nodes.
Furthermore, to generate the random networks, we selected two
different sets of parameters for each type of random network.

A. Erdős-Rényi

××
×
×× ×

××
××

××××
×
×
××
××

×

×

×
×

×
×
×
×

×
×

×

×

×

×××
××××

×
×

× ×

×

×
×

×

×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

1.0 1.5 2.0 2.5 3.0
0.000

0.005

0.010

0.015

0.020

Maximum In-Degree

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Erdős–Rényi

(a)

××××× ×××××
×××××××××
×

×
××
××
×
×××
×

×
×

××

×
××
×

×
×

×
××

×

×
×

×

×

×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

Maximum In-Degree

K
os

ar
aj
u
ru
nt
im
e
(s
ec

s)

Erdős–Rényi

(b)

××
×

×××

××
× ×

××××
×

×
××

××

×

×

×
×

×
×

×
×

×
×

×

×

×

×××
××××

×
×

××

×

×
×

×

×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

2.0 2.5 3.0 3.5 4.0
0.000

0.005

0.010

0.015

0.020

Diameter

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Erdős–Rényi

(c)

×× × ××× ×× × ×
××××× ××× ×

×

×
××

××
×

×××
×

×
×

××

×
××

×

×
×

×
××

×

×
×

×

×

×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

2.0 2.5 3.0 3.5 4.0
0.00

0.05

0.10

0.15

0.20

Diameter

K
os

ar
aj
u
ru
nt
im
e
(s
ec

s)

Erdős–Rényi

(d)

××
×
×××

××
××

××××
×
×
××
××

×

×

×
×
×
×
×
×

×
×

×

×

×

×××
××××

×
×

××

×

×
×

×

×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

100 200 300 400 500
0.000

0.005

0.010

0.015

0.020

Number of SCCs

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Erdős–Rényi

(e)

××××××××××
×××××××××
×

×
××
××
×
×××
×

×
×

××

×
××
×

×
×

×
××

×

×
×

×

×

×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

100 200 300 400 500
0.00

0.05

0.10

0.15

0.20

Number of SCCs

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Erdős–Rényi

(f)
Fig. 4: These figures show the relationship between the network prop-
erties of some randomly generated Erdős-Rényi networks and their run
times for both our proposed algorithm and Kosaraju’s algorithm.

The Erdős-Rényi network requires two parameters, the number of
nodes and the number of edges. For the first set of parameters (Figs. 4
and 5), the number of nodes were chosen to be 100, 200, 300, 400,
500, and the number of edges were chosen to be the number of nodes
raised to the 2/3 power. In the second set of parameters (Figs. 6
and 7), again the number of nodes remained the same, but the number
of edges was fixed to 500 for all the sets of nodes.

××××××××××
×××××××××
×

×
××
××
×
×××
×

×
×

××

×
××
×

×
×

×
××

×

×
×

×

×

×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20

Our algorithm runtime (secs)

K
os

ar
aj
u
ru
nt
im
e
(s
ec

s)

Erdős–Rényi

Fig. 5: This figure compares the run times of both our proposed algorithm
and Kosaraju’s algorithm for several randomly generated Erdős-Rényi
networks. We see that our algorithm performs better on networks with a
higher number of nodes.

In Fig. 4, we see the comparison between different properties of
the network, including the maximum in-degree, diameter, and total
number of SCCs, with the run times of both our algorithm and
Kosaaraju’s algorithm. In this first set of parameters, the number
of SCCs plays a much larger role in determining the run-time of the
algorithm. In Fig. 5, we see the comparison between the run times of
both our algorithm and Kosaraju’s algorithm on different randomly
generated Erdős-Rényi networks using the first set of parameters. Our
algorithm outperforms Kosaraju’s.

The results from the second set of parameters for Erdős-Rényi
networks are shown in Figs. 6 and 7. In these networks, the diameter
and maximum in-degree are much larger, so they increase the runtime
of our algorithm. Fig. 7 shows that the runtime of our algorithm only
outpeforms the Kosaraju algorithm when there are more nodes in the
network.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3209446

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on November 19,2022 at 21:00:01 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL ., NO., 2021

×× ×× ××× × ××

× × ×××
×
× ×××

×

×
×

×

×

××

×

××

×

×

×

×

×

×
×

×

× ×

×××
××

××
×

×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

5 6 7 8 9 10 11 12
0.0

0.2

0.4

0.6

0.8

1.0

Maximum In-Degree

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Erdős–Rényi

(a)

×× ×× ××× × ××

× × ××××× ×××

××
×

×
×

×× ××
××

×

×

×

× ×
×

×

×
×

×

×

×

×
× ×× ××

×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Maximum In-Degree

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Erdős–Rényi

(b)

××××××××××

××× ××
×

××××

×

×
×

×

×

× ×

×

× ×

×

×

×

×

×

×
×

×

××

× ××
××

× ×
×

×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

Diameter

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Erdős–Rényi

(c)

××××××××××

××× ×× ×××
××

× ×
×

×
×

× × ××
××

×

×

×

××
×

×

×
×

×

×

×

×
× × ×× ×

×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Diameter

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Erdős–Rényi

(d)

××××××××××

×××××
×
××××

×

×
×

×

×

××

×

××

×

×

×

×

×

×
×

×

××

×××
××

×××
×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Number of SCCs

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Erdős–Rényi

(e)

××××××××××

××××××××
××

××
×

×
×

××× ×
× ×

×

×

×

× ×
×

×

×
×

×

×

×

×
×××××

×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of SCCs

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Erdős–Rényi

(f)
Fig. 6: These figures show the relationship between the network prop-
erties of some randomly generated Erdős-Rényi networks and their run
times for both our proposed algorithm and Kosaraju’s algorithm.

××××××××××
××××× ××××

×

× × ×
×

×

× × ××
××

×
×

×

××
×

×

××

×

×
×

××
××× ×

×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Our algorithm runtime (secs)

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Erdős–Rényi

Fig. 7: This figure compares the run times of both our proposed algorithm
and Kosaraju’s algorithm for several randomly generated Erdős-Rényi
networks. We see that our algorithm performs better on networks with a
higher number of nodes.

B. Barabási-Albert

The Barabási-Albert networks require two parameters, including
the number of nodes and the number of edges added to a new vertex
at each step.

For the first set of parameters (Figs. 8 and 9), the numbers of
nodes were fixed to 100, 200, 300, 400, 500, and the numbers of
edges added at each step were chosen to be the numbers of nodes
divided by 5. In the second set of parameters (Figs. 10 and 11), again
the number of nodes remained the same, but the number of edges
added at each step was fixed to 50 for all the sets of nodes.

In Fig. 8, we see that the maximum in-degree plays a larger role
in determining the run-time of the algorithm. In Fig. 9, we see the
comparison between the run times of our algorithm and Kosaraju’s
algorithm on different randomly generated Barabási-Albert networks.
Our algorithm performs better for networks with more nodes.

The results from the second set of parameters for Barabási–Albert
networks are shown in Figs. 10 and 11. The results from the two sets
of parameters do not present much difference. Again, our algorithm
performs better on networks with a higher number of nodes.

C. Watts-Strogatz

Finally, the Watts-Strogatz networks require the following two
parameters, the number of nodes and the rewiring probability.

The first set of parameters included the nodes 100, 200, 300, 400,
and 500 with a rewiring probability of 0.8, and the results are shown
in Figs. 12 and 13. For the second set of parameters, the set of nodes

××××××××××

×× ××××××××

×× ×××××× ××

×
×
××××××
×

×

×
×

×

×

×

×
×

×

×
×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

Maximum In-Degree

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Barabási–Albert

(a)

×××××××××× ×× ××××××××

×× ×××××× ××

×××××××× ××

×

×

××

×

××
×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

50 100 150
0

1

2

3

4

5

6

7

Maximum In-Degree

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Barabási–Albert

(b)

××××××××××

××××××××××

××××××××××

×
×
××××××
×
×

×
×

×

×

×

×
×

×

×
×100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Diameter

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Barabási–Albert

(c)

××××××××××××××××××××

××××××××××

××××××××××

×

×

××

×

××
×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Diameter

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

(d)

××××××××××

××××××××××

××××××××××

×
×
××××××
×
×

×
×

×

×

×

×
×

×

×
×100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Number of SCCs
O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Barabási–Albert

(e)

××××××××××××××××××××

××××××××××

××××××××××

×

×

××

×

××
×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

7

Number of SCCs

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Barabási–Albert

(f)
Fig. 8: These figures show the relationship between the network proper-
ties of some randomly generated Barabási-Albert networks and their run
times for both our proposed algorithm and Kosaraju’s algorithm.

××××××××××××××××××××

××××××××××

××××××××××

×

×

××

×

××
×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 1 2 3 4 5 6 7

0

2

4

6

Our algorithm runtime (secs)

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Barabási–Albert

Fig. 9: This figure compares the run times of both our proposed algorithm
and Kosaraju’s algorithm for several randomly generated Barabási-Albert
networks. We see that our algorithm performs better on networks with a
higher number of nodes.

remained the same, but the rewiring probability was reduced to 0.2
with the results shown in Figs. 14 and 15.

In Fig. 12, we see that the diameter dominates the complexity.
In Fig. 13, we see the comparison between the run times of ours
and Kosaraju’s algorithm on the randomly generated Watts-Strogatz
networks. Our algorithm underperforms compared to Kosaraju’s.

The results from the second set of parameters for the Watts-
Strogatz networks are shown in Figs. 14 and 15. The results from
the two sets of parameters do not present much difference. It is clear
that Kosaraju’s algorithm outperforms our algorithm. We believe that
the reason Kosaraju’s algorithm outperforms ours has to do with the
number of edges in the network.

D. Determining the Diameter of a Network

From the results of Theorem 4, our algorithm can determine the
finite digraph diameter of the network. Here, we illustrate the rela-
tionship between the number of iterations required before terminating
our algorithm compared with the finite digraph diameter plus two.

Fig. 16 shows the results from running our algorithm on the random
networks using the second set of parameters. We see that the number
of required iterations is identical to the network diameter plus two.

Finally, we compared the runtime of our algorithm with the Floyd-
Warshall algorithm [13] on the Erdős-Rényi, Barabási-Albert, and
Watts-Strogatz networks. We randomly generated ten different Erdős-
Rényi networks, using 25 nodes and 50 edges. For the Barabási-
Albert network, we used 25 nodes and 3 edges added to each new

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3209446

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on November 19,2022 at 21:00:01 UTC from IEEE Xplore. Restrictions apply.

et al.: 7

×× ××××××××

××××× ×××× ×

× ××× ××××××

×× ×× ×××
×

××

×
×

×

×

×
×

×

×

×

×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

Maximum In-Degree

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Barabási–Albert

(a)

×× ××××××××

××××× ×××× ×

× ××× ××××××

×× ×× ××××××

×

×
×
×

×

× ×

×

××
100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

60 80 100 120 140
0.0

0.5

1.0

1.5

2.0

Maximum In-Degree

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Barabási–Albert

(b)

××××××××××

××××××××××

××××××××××

×××××××
×
××

×
×
×

×

×
×

×

×

×

×100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

2.0 2.2 2.4 2.6 2.8 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Diameter

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Barabási–Albert

(c)

××××××××××

××××××××××

××××××××××

×××××××
×
××

×
×
×

×

×
×

×

×

×

×100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

2.0 2.2 2.4 2.6 2.8 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Diameter

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Barabási–Albert

(d)

××××××××××

××××××××××

××××××××××

×××××××
×
××

×
×
×

×

×
×

×

×

×

×100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Number of SCCs

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Barabási–Albert

(e)

××××××××××

××××××××××

××××××××××

××××××××××

×

×
×

×

×

××

×

××
100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Number of SCCs

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Barabási–Albert

(f)
Fig. 10: These figures show the relationship between the network
properties of some randomly generated Barabási-Albert networks and
their run times for both our proposed algorithm and Kosaraju’s algorithm.

××××××××××

××××××××××

××××××××××

×××××××× ××

×

×
×

×

×

××

×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Our algorithm runtime (secs)

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Barabási–Albert

Fig. 11: This figure compares the run times of both our proposed
algorithm and Kosaraju’s algorithm for different randomly generated
Barabási-Albert networks.

vertex at each time step to generate ten different networks. Finally,
we generated ten different Watts-Strogatz networks using 25 nodes
and a rewiring probability of 0.2. In Fig. 17, we see that our algorithm
outperforms the Floyd-Warshall algorithm for all networks.

E. Discussion

The proposed distributed algorithm to compute the SCCs in a
digraph can achieve a lower time complexity than the Kosaraju
algorithm in instances when there is a large number of edges that
exceed the number of nodes times the finite diameter times the
maximum in-degree. In other instances, the Kosaraju algorithm will
have a better time complexity. For example, in the worst-case, a
network can have its maximum in-degree and finite diameter equal to
the number of nodes in the network, which would mean that the time
complexity of our distributed algorithm would be O(N3). However,
the time complexity of the Kosaraju algorithm in the worst case is
O(N2) since the number of edges could be on the order of N2.
Therefore, we conclude that our distributed algorithm may or may
not outperform Kosaraju’s depending on the network’s topology.

In the case of the centralized algorithm, we provide evidence
through exhaustive simulations that suggests that our algorithm out-
performs the state-of-the-art Kosaraju algorithm on certain network
topologies. However, we remark that this may not always be the
case. For instance, when considering the same worst-case network,
where the maximum in-degree and finite diameter are equal to the
number of vertices in the network, our proposed centralized algorithm
will have a time complexity of O(N4), which is worse than the time

××× ×× ××× ××

××××××× ×××

×

××
× ××
××
×
×

××
×
×

× ×

××
×

× ×

××

×

×

×
×

×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

5.0 5.5 6.0 6.5 7.0
0.0

0.5

1.0

1.5

2.0

2.5

Maximum In-Degree

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(a)

××× ×× ××× ××
××
××××× ×××

××××
×

×××××

×× ×

×
× ×

×

×
××

×

×

×
×

× ×

×

×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

5.0 5.5 6.0 6.5 7.0
0.0

0.5

1.0

1.5

Maximum In-Degree

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(b)

×× × ×× ××× ××

× ×
××× ×××××

×

××
×× ×

× ×
×

×

××
×

×
××

××
×

××

× ×

×

×

×
×

×

× ×
100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

Diameter

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(c)

×× × ×× ××× ××
× ×
××× ×××××

××× ×
×

×× × ××

×××

×
××

×

×
× ×

×

×

×
×

××

×

×

× ×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

15 20 25 30
0.0

0.5

1.0

1.5

Diameter

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(d)

××× ×× ×××× ×

××
×× ××

××××

×

××
×× ×

××
×
×

××
×

×
××

××
×

× ×

××

×

×

×
×

×

× ×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

2.5

Number of SCCs

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(e)

××× ×× ×××× ×
××

×× ××××××

× ×× ×
×

×××××

×××

×
××

×

×
× ×

×

×

×
×

× ×

×

×

× ×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 50 100 150 200
0.0

0.5

1.0

1.5

Number of SCCs

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(f)
Fig. 12: These figures show the relationship between the network
properties of some randomly generated Watts-Strogatz networks and their
run times for both our proposed algorithm and Kosaraju’s algorithm.

××××××××××
× ×××××××××

××× ××××× ××

× ××
× ××

×
×

× ×
×

×
×

×
××

×

×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

Our algorithm runtime (secs)

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Watts-Strogatz

Fig. 13: This figure compares the run times of both our proposed
algorithm and Kosaraju’s algorithm for several randomly generated Watts-
Strogatz networks.

complexity of the Kosaraju algorithm (i.e., O(N2) in the worst-case).
When contrasting our proposed distributed algorithm to compute

the diameter of a digraph to the state-of-the-art Floyd-Warshall
algorithm, we notice that in the worst-case our algorithm’s time
complexity is no worse than the time complexity of the Floyd-
Warshall algorithm, (i.e., O(N3)). The time complexity for our
centralized algorithm is O(N4) in the worst case, which is worse
than the Floyd-Warshall algorithm in the worst-case; however, our
simulations suggest that our centralized algorithm can outperform
the Floyd-Warshall algorithm in some instances.

It is important to remark that the results presented here focused on
the time-complexity to enable a direct comparison with the algorithms
in the literature. Nonetheless, the nature of distributed algorithms
requires the assessment of the communication-complexity. Depending
on the protocol being used to exchange information (e.g., IDs),
it could further increase the complexity by O(N log(k)), where
k is the number of bits needed to transmit the N th ID. Further
investigation should consider the design of suitable communication
protocols within their specific applications to improve the overall
performance of a new class of distributed algorithms, for which the
foundation is laid out in this paper.

VI. CONCLUSIONS

We provided for the first time a scalable distributed algorithm
to find the strongly connected components and finite diameter of
a directed network. The proposed solution has a time-complexity
O
(
NDdmax

in-degree

)
, where N is the number of vertices, D is the finite

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3209446

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on November 19,2022 at 21:00:01 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL ., NO., 2021

××× ×× ××× ××

××××××× ×××

×

××
× ××
××
×
×

××
×
×

× ×

××
×

× ×

××

×

×

×
×

×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

5.0 5.5 6.0 6.5 7.0
0.0

0.5

1.0

1.5

2.0

2.5

Maximum In-Degree

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(a)

××× ×× ××× ××
××
××××× ×××

××××
×

×××××

×× ×

×
× ×

×

×
××

×

×

×
×

× ×

×

×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

5.0 5.5 6.0 6.5 7.0
0.0

0.5

1.0

1.5

Maximum In-Degree

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(b)

××× ××× × ×××
××××
×

×
× × ×

×
×

× ×
×

×

×
×

×

×
×

××

×

×
×

×
×

×

×
×

×
×

×

×

×

×
×

×

×

×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

20 25 30 35 40 45
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Diameter

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(c)

××× ××× × ×××
×××

× ××× × × ×

×× ××
×

× ×
×

×
×

×
× ××

×
× ×

×
×

×
×

×
×

×

×

××

×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

20 25 30 35 40 45
0.0

0.5

1.0

1.5

Diameter

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(d)

× ××× ××× ×× ×
××××

×
×

×× ×
×

×

× ×
×

×

×
×

×

×
×

××

×

×
×

×
×

×

×
×

×
×

×

×

×

×
×

×

×

×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Number of SCCs

O
ur

al
go

rit
hm

ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(e)

× ××× ××× ×× ×
×××

××× ×× ××

×× ××
×

××
×

×
×

×
×× ×

×
× ×

×
×

×
×

×
×

×

×

××

×

× ×

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 50 100 150 200 250
0.0

0.5

1.0

1.5

Number of SCCs

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Watts-Strogatz

(f)
Fig. 14: These figures show the relationship between the network
properties of some randomly generated Watts-Strogatz networks and their
run times for both our proposed algorithm and Kosaraju’s algorithm.

××××××××××
××× × ××××× ×

× ×× ×× × × ×× ×

×× ××
×

××
×

× × ×

××
×

×

××
×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Our algorithm runtime (secs)

K
os
ar
aj
u
ru
nt
im
e
(s
ec
s)

Watts-Strogatz

Fig. 15: This figure compares the run times of both our proposed
algorithm and Kosaraju’s algorithm for several randomly generated Watts-
Strogatz networks.

××××××××××

××
×

××
×

××××

×

×
×

×
×

×
×

×

×
××

××

×

×

×

×

×

×

×

×

×

×

××

×

×

×

××

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 10 20 30 40

0

10

20

30

40

Iterations

D
+
2

Erdős–Rényi

(a)

××××××××××

××
100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 1 2 3 4 5

0

1

2

3

4

5

Iterations

D
+
2

Barabási–Albert

(b)

x

xx
x

x

x
x

x

xx

x

xxx
x

x
x

x
x

xx
x

xx

xx
x

xx
x xx

xxx
x

x
x

x

x
x

x

x

xx
xx

x xx

100 nodes

200 nodes

300 nodes

400 nodes

500 nodes

0 10 20 30 40 50

0

10

20

30

40

50

Iterations

D
+
2

Watts-Strogatz

(c)
Fig. 16: This figure shows the relationship between the number of
iterations needed before terminating our algorithm and the diameter plus
two of several randomly generated networks.

diameter and dmax
in-degree is the maximum in-degree of the network.

We demonstrated the performance of our centralized algorithm on
several random networks. We compared the runtime of our centralized
algorithm against Kosaraju’s algorithm and found that our centralized
algorithm outperformed Kosaraju’s for certain network topologies.
Additionally, we provided exhaustive simulations that support that our

××
×××
××
×××

×
×

×
×

××
×××
×

××××
×
×××× ×

Erdős–Rényi

Barabási–Albert

Watts-Strogatz

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Our algorithm runtime (secs)

F
lo
yd

-
W
ar
sh
al
lr
un
tim
e
(s
ec
s)

Runtimes for Computing Finite Digraph Diameter

Fig. 17: This figure compares the runtimes of computing the finite
digraph diameter when using our algorithm against the Floyd-Warshall
algorithm on several randomly generated networks, including Erdős-
Rényi, Barabási-Albert, and Watts-Strogatz.

centralized algorithm outperformed Floyd-Warshall’s in computing
the finite digraph diameter on every tested random network.

In our future work, we seek to understand how the time complexity
may be improved for different types of densely directed networks.
Furthermore, we plan to examine how to find the SCCs and diameter
while taking privacy into consideration such that the ID of the nodes
can be hidden in the process of sharing information. Finally, our
future work will focus on developing possible asynchronous protocols
capable of determining the strongly connected components and finite
diameter of a digraph.

REFERENCES

[1] G. Ramos, A. P. Aguiar, and S. Pequito, “An overview of structural
systems theory,” Automatica, vol. 140, p. 110229, 2022.

[2] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Robotic Net-
works: A Mathematical Approach to Motion Coordination Algorithms.
Princeton University Press, 2009, vol. 27.

[3] R. Albert, H. Jeong, and A.-L. Barabási, “Diameter of the world-wide
web,” Nature, vol. 401, no. 6749, pp. 130–131, 1999.

[4] Y. Xue and P. Bogdan, “Reliable multi-fractal characterization of
weighted complex networks: algorithms and implications,” Scientific
Reports, vol. 7, no. 1, pp. 1–22, 2017.

[5] L. Zongxiang, M. Zhongwei, and Z. Shuangxi, “Cascading failure
analysis of bulk power system using small-world network model,” in
Proceedings of the International Conference on Probabilistic Methods
Applied to Power Systems. IEEE, 2004, pp. 635–640.

[6] J. G. Kuhl and S. M. Reddy, “Distributed fault-tolerance for large
multiprocessor systems,” in Proceedings of the 7th Annual Symposium
on Computer Architecture, 1980, pp. 23–30.

[7] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972.

[8] E. W. Dijkstra, A Discipline of Programming. Prentice Hall Englewood
Cliffs, 1976, vol. 613924118.

[9] M. Sharir, “A strong-connectivity algorithm and its applications in data
flow analysis,” Computers & Mathematics with Applications, vol. 7,
no. 1, pp. 67–72, 1981.

[10] D. F. Hsu, X. Lan, G. Miller, and D. Baird, “A comparative study of
algorithm for computing strongly connected components,” in 2017 IEEE
15th International Conference on Dependable, Autonomic, and Secure
Computing. IEEE, 2017, pp. 431–437.

[11] L. K. Fleischer, B. Hendrickson, and A. Pinar, “On identifying strongly
connected components in parallel,” in International Parallel and Dis-
tributed Processing Symposium. Springer, 2000, pp. 505–511.

[12] J. Barnat, J. Chaloupka, and J. Van De Pol, “Distributed algorithms for
strongly connected component decomposition,” Journal of Logic and
Computation, vol. 21, no. 1, pp. 23–44, 2011.

[13] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the
ACM, vol. 5, no. 6, p. 345, Jun. 1962.

[14] J. Cortés, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44, no. 3, pp. 726–737, 2008.

[15] H. N. Gabow, “Path-based depth-first search for strong and biconnected
components; CU-CS-890-99,” CS Technical Reports. 837., 1999.

[16] A. Fronczak, P. Fronczak, and J. A. Hołyst, “Average path length in
random networks,” Physics Review E, vol. 70, p. 056110, Nov 2004.

[17] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3209446

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on November 19,2022 at 21:00:01 UTC from IEEE Xplore. Restrictions apply.

