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Abstract

This work develops a systematic uncertainty quantification framework to assess the reliability of prediction delivered by
physics-based material models in the presence of incomplete measurement data and modeling error. The framework consists of
global sensitivity analysis, Bayesian inference, and forward propagation of uncertainty through the computational model. The
implementation of this framework on a new multiphase model of novel porous silica aerogel materials is demonstrated to predict
the thermomechanical performances of a building envelope insulation component. The uncertainty analyses rely on sampling
methods, including Markov-chain Monte Carlo and a mixed finite element solution of the multiphase model. Notable features
of this work are investigating a new noise model within the Bayesian inversion to prevent biased estimations and characterizing
various sources of uncertainty, such as measurements variabilities, model inadequacy in capturing microstructural randomness,
and modeling errors incurred by the theoretical model and numerical solutions.
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1 Introduction

Commercial and residential buildings are responsible for
nearly 40% of energy consumption and greenhouse gas emis-
sions in the United States, of which approximately 39% are
through the building envelopes such as the floor, roof, and
walls [84]. Novel insulation materials with ultralow thermal
conductivity and sufficient mechanical stability are essential
to reduce building energy consumption. Moreover, substan-
tial heat flow sources through the building envelope are the
thermal bridges at the interface of assemblies such as between
windows and walls and parapet-wall-roof intersections, lead-
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ing to heat flow bypassing the insulation [1]. Thermal
breaks are the insulating components incorporated within
the envelope to interrupt the heat flow path and reduce the
undesired effects of thermal bridges [34,81]. Silica aerogels’
lightweight and ultrahigh insulation properties make them
the most promising high-performance materials for the next-
generation building insulations, e.g., [6,11,27,28,42]. Silica
aerogels consist of a mesoporous internal structure of silicon
dioxide bounded chains with high porosity (around 90%)
and specific surface area that results in their superinsulation
performance [4,23,46,49]. Low mechanical strength, long
processing time, and small-dimension production related to
the supercritical drying fabrication process are the main
impediments preventing the widespread adoption of silica
aerogel in the construction industry. We have recently devel-
oped anew synthesis method that overcomes these challenges
leading to the fabrication of mechanically strong and cost-
effective silica aerogels [3,5,89]. Contrary to supercritical
drying, where the porous aerogel structures are produced
by removing the solvent without collapsing the solid struc-
ture, the new method relies on an in-situ bubble-supported
pore formation. Combined with ambient pressure and tem-
perature drying, this approach reduces aerogel fabrication
energy, time, and equipment cost by approximately 60%.
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Relying on the new synthesis, we have demonstrated additive
manufacturing of aerogel components using direct ink writ-
ing (DIW) [31]. The DIW additive manufacturing of silica
aerogel enables printing non-structural thermal breaks with
customized geometry compatible with the envelope archi-
tecture (see Fig. la). However, to bridge the gap between
laboratory discovery and their deployment in building appli-
cations, there is a well-recognized need for computational
models to predict the new silica aerogel performance during
building operations.

Numerous physics-based computational models, based on
continuum descriptions of the materials, can be constructed
to simulate the thermal and mechanical responses of porous
materials in practical time scale and domain size. A category
of these models is based on homogenization theory, which
assigns effective physical properties to the heterogeneous
material, e.g., [82]. The recent developments of homogeniza-
tion models have enabled accounting for the microstructural
mechanisms, nonlocality, and multiscale responses of a wide
range of materials, e.g., [48,50,59]. Another class of compu-
tational models of porous materials is based on continuum
mixture theory, which provides a general framework for mod-
eling the action and interaction of multiple solid and fluid
phases, e.g., [8,67]. The fundamental idea underlying the
mixture theory of materials is that each phase follows its
own motion, balance laws, internal energy, and entropy while
conforming with the fundamental physical laws of the mix-
ture [17,43,56,61]. Different modeling assumptions result in
a large number of possible models with different fidelity and
complexity for a material undergoing particular physical pro-
cesses. It is imperative to characterize uncertainty in these
models to guide choosing valid models for simulating the
complex material behavior.

While there have been extensive computational studies
of thermal and mechanical properties of porous materials
(including aerogel), e.g., [26,86,90], assessing the credibility
of these models in predicting the material responses beyond
observational data remains a challenging problem. Physics-
based predictive modeling is a notion that has emerged in
recent literature to describe the systematic use of data to
dramatically enhance the power of computational models
to predict the state of physical systems in the absence of
direct observation [54,57]. Predictive computational model-
ing of materials systems entails “training” (i.e., calibrating)
the material model using experimental or simulation data
and quantifying the uncertainty in the predictions delivered
by these models. Sources of uncertainty in computational
modeling of porous materials include limited observational
data (specifically for relatively new materials such as sil-
ica aerogels), microstructural randomness, and inadequacy
of the computational model in depicting complex physical
mechanisms governing the material behavior. This gives rise
to the need for uncertainty quantification (UQ) methods to
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characterize the variabilities in experimental and randomness
in model parameters, as well as propagation of uncertainty
through the model to the prediction of quantities of inter-
ests (Qols) [15,79,80]. Coping with these uncertainties and
assessing the reliability of computational prediction are the
most crucial scientific obstacles in computational modeling
and design of materials systems [60,87].

This contribution presents a general computational frame-
work to systematically quantify uncertainty in physics-based
models using incomplete measurement data and characterize
the reliability in computational prediction of complex physi-
cal systems in the absence of observational data. The frame-
work combines three uncertainty assessment methods: First,
the variance-based global sensitivity analysis characterizes
the effect of parametric uncertainty on the model prediction
and guides the reducing dimension of the uncertain parameter
space. Second, Bayesian inference enables learning the prob-
ability distribution of model parameters from incomplete and
possibly noisy experimental data while accounting for mod-
eling errors. Finally, the solution of the statistical forward
problem assesses the reliability of calibrated physics-based
model prediction. The novel aspects of Bayesian calibra-
tion in this work are implementing a new noise model that
leverages hyperparameters to characterize uncertainty in data
and modeling error along with the construction of infor-
mative priors using sensitivity analysis. This framework is
applied to a multiphase model of novel insulation silica
aerogel materials, and numerical predictions of the ther-
momechanical performances of a building envelope thermal
break are demonstrated. To this end, a new thermodynami-
cally consistent coupled heat transfer and elastic deformation
model of silica aerogels is developed based on the continuum
theory of mixture. The model accounts for solid (aerogel
structure) and fluid (pores) phases and their interactions to
represent the material response. A mixed finite element for-
mulation is used to solve the system of equations governing
the multiphase model. The uncertainty quantification (UQ)
framework is then implemented on the multiphase model
using sampling methods to accurately explore the parameter
posteriors and characterize their interactions, given limited
thermal and mechanical experimental measurements of silica
aerogel materials. Leveraging this UQ framework and cor-
responding computational implementation, various sources
of uncertainty in computational prediction are characterized,
including uncertainty in measurements, the inadequacy of the
model to capture microstructural randomness, and modeling
errors incurred by simplifying assumptions in the theoretical
model and numerical solutions.

The rest of this manuscript is organized as follows.
Section 2 presents a brief derivation of the thermomechan-
ical two-phase model based on the mixture theory. The
UQ approaches, including parameter sensitivity analyses,
Bayesian inference, and forward uncertainty propagation for
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predicting Qols, along with their numerical solutions, are
described in Sect. 3. The experimental data, finite element
solution of the multiphase model, and uncertainty analyses
and model prediction results are presented in Sect. 4. Finally,
the discussion and conclusions are given in Sect. 5.

2 Thermo-mechanical theory of multiphase
mixtures

We propose a theoretical model of silica aerogel’s thermo-
mechanical behavior founded in the continuum theory of
mixtures [8,16,83]. This section summarizes a general theory
governing a continuum mixture of multi-constituents, cou-
pling heat transfer, and elastic deformation and then derives
the two-phase model of porous aerogel materials. The mix-
ture theory assumes that the reference configuration consists
of M constituent species simultaneously occupying the same
physical space. The body undergoes a motion which maps
the reference configuration onto a current configuration, with
the spatial position of material points x at time ¢ defined by

x = Xy (Xq, 1), ey

where, &, is the motion and X, is the material point posi-
tions of the ath constituent (@« = 1,2, ..., M). The volume
fraction of the ath constituent are defined by!

dv,

Po(x. 1) = —

with > gy =1, )

where dV is a differential volume containing the point x, and
dVy is the proportion of volume occupied by constituent «.
In addition, the velocity v, and symmetric part of the velocity
gradient D, of each constituent are defined respectively by

Xy (Xo, 1)

VO{(Xv t) = 8t

1
D, = E(Vva + VD). 3)

Correspondingly, the mixture velocity is,
1

V=" PutaVa, “)
p o

where p, is the mass density of each constituent and p is
the mass density of the mixture [13,67]. Finally, the relation
among Lagrangian and Eulerian time derivatives are

d“p ¢
= Vo, 5
dt ot tVa Ve )

! Throughout this section we use the abbreviated notation Y, =

M
Za:l'

where d“¢/dt is the material time-derivative related to the
motion of each constituent and ¢(x, ¢) is any differentiable
function.

2.1 The balance laws for mixture

The thermo-mechanical mixture theory follows the balance
laws for mass, momentum, energy, and the inequality for
entropy. These basic laws are the essential building blocks on
which to develop a physics-based material model. Accord-
ing to the mixture theory, each constituent must satisfy its
individual balance laws.

Balance of mass:

a aYoa
% 1V - (pubuva) = Sa. ©)

Balance of linear momentum:

d%vy,
pa‘ba? =V Ty + pgPabe + mg. (N

Balance of angular momentum:
_ T
M, =T, — T'. @®)

Balance of energy (first law of thermodynamics):

d%e
Ioa(pad_ta:Ta:Da_v'qa‘i‘pad)ara + ey 9

In the above relations, Ty, is the partial Cauchy stress tensor,
b, is the body force per unit mass, My, is the intrinsic moment
of momentum, ¢, is the partial heat flux, and r,, is the exter-
nal heat supply, associated to the «th constituent. Since we
do not account for the electromagnetic effects, we restrict
our attention to nonpolar materials My, = 0, in which the
partial stress tensors are symmetric. Additionally, the inter-
actions among constituents are characterized by Sy, m,, and
ey that are the mass, momentum, and energy supplied to the
constituent « by other constituents.
The balance laws for the mixture are defined by

aa—fw-(pv):o, (10)
PAV _ G T 4 pb, (11)
dt

pfl—j:T:D—V~q+pr, (12)

where p, T, b, ¢, r, and q are the mass density, the stress, the
body force per unit mass, the internal energy per unit mass,
heat supply, and the heat flux for the mixture. The sum of the
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constituent balance laws over all constituents is compatible
with the above equations if [8,13]

1
T=3 (To — putaPu ®Pa), b= p > Papaba,
o o
1
q :Z (‘M_ Tgpa + PaPataPa + E,Oa%lla(pa : Pa)) )
o

1
r= ;Zpaqbara, (13)

where p, = v, — Vv is the diffusion velocity of each con-
stituent and the relation below holds for the mixture,

> PutbaPa = 0. (14)

Additionally, for any mixture, the mass, momentum, and
energy supplied to the ath constituent must satisfy the fol-
lowing conditions [56],

DS =) (SuPa = ma)
o o

1
:Z[ea+ma-va+Sa(8a+§V(x-Va>] :O

(15)
2.2 Two-phase model of silica aerogel

To simulate the thermo-mechanical behavior of silica aero-
gel, we consider a binary mixture (M = 2) consisting of solid
o = s and fluid (gas) @ = f phases. Assuming that the solid
constituent of aerogel is incompressible (p; = constant), the
mass balance (6) for the solid phase is simplified to

s
ot

+ ¢V v, = 0. (16)

Substitution of the above relation into the fluid mass balance
leads to the equation of state, c.f. [64],

¢fv.vf+(1—¢f)v-v3=—‘z—;%. (17)

Additionally, assuming no average shear viscosity in the fluid

phase of aerogel, the stress in fluid and solid phases are
obtained as, c.f. [67],

T, = —¢,pl (18)
T, = —¢;pL + T§, 19)

where p is the intrinsic Cauchy fluid pressure and T} is the
effective solid stress.
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Furthermore, defining the specific heat capacity at con-
stant volume as ¢, = 0¢&4/06, and replacing the material
derivative in (9) with a partial derivative according to (5), we
obtain [25]

00,
PaPaCa ? + (Vo - VOy)

=Ty : Dy — V- Qq + poPa¥a +€o, a=s, . (20)

The conservation laws of (6)—(9) are not sufficient to fully
characterize material behavior. Suitable constitutive equa-
tions are needed to describe the physical phenomena in silica
aerogel undergoing thermal and mechanical processes. Fur-
thermore, the entropy production inequality (the second law
of thermodynamics) imposes constraints on constitutive rela-
tions. Here, we postulate the necessary constitutive equations
and refer the readers to [8,13,25,67] for the complete ther-
modynamical derivation of the mixture theory. Assuming
a linear isotropic elastic for the solid constituent results in
effective solid stress as

T, = 2uE, + Atr(Ey)L, @21)

where E; = %(Vus + VuST) is the solid strain and com-
puted from the the solid deformation vector u; and A and p
are the Lamé constants that can be converted to the Young’s
modulus E and Poisson’s ratio v. We note that the linear
elasticity assumption is a starting point in characterizing the
mechanical behavior of novel silica aerogel. More exper-
imental studies are needed to understand the underlying
mechanisms of deformation in nano-porous and thin solid
walls in these porous materials to guide developing more
accurate micromechanical-based models. Neglecting the
dilatational and temperature contributions, momentum inter-
action is assumed to be related to the relative movement of
phases [13,64],

ms=—mf=)/(Vs—Vf), (22)

where y is the drag coefficient. Since the silica aerogel phases
are non-reacting, we neglect the species mass source term,
Ss = Sy = 0. Also, a constitutive relation for the fluid
density is taken into account such that,

opf
—_— = , 23
of op cops (23)

where the parameter cg is known as the constrained specific
storage coefficient, related to the bulk modulus and volume
fractions of phases [51,62]. Additionally, the solid and fluid
partial heat fluxes are assumed to follow the Fourier law,

qs = —Psks Vs, (24)
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qr = —prkpVby, (25)

where «; and « y are the solid and fluid thermal conductiv-
ities, respectively. In porous silica aerogels, local thermal
equilibrium may not be achieved due to small pore size
and non-isothermal flows, leading to a significant differ-
ence between solid and fluid temperatures, see, e.g., [36,86].
Within the mixture theory, the heat exchanges between the
constituents are addressed by the internal energy supplies e, .
For the binary mixture, we consider the below constitutive
relations [25],

s = —ef = —h(6s — 0f). (26)

where i > 0, in general, depends on the thermal properties
and velocity fields to account for convective heat transfer.

After defining the required constitutive relations, we
derive the governing equations of the silica aerogel thermo-
mechanical model. Taking into account (18) and the momen-
tum supplied to the fluid phase (22), the linear momentum
equation for fluid reduces, after neglecting the body force
and inertia, to Darcy’s law given by

g=¢s(vy —vy) =—kVp, 27)

where g is the fluid flux and k = d)} /v denotes the perme-
ability. Additionally, the linear momentum equation for the
aerogel’s solid constituent can be re-written using the elas-
ticity assumption for the effective solid stress in (21) as

V.T, —¢Vp+y(¥s —vs) =0. (28)

Using the Darcy’s law (27) and the fluid density constitutive
relation (23), the relation (17) reduces to

3
Ca—i)+V-vs—V~(kVp):0, (29)

where C is the fluid compressibility parameter. Further-
more, substituting the constitutive relations and neglecting
the external heat source, the governing equations of solid
and fluid heat transfer are given by

ot
=T, : Dy + V- (¢sks VOs) — h(05 — Of),
89f
,qubef ? + vy VQf
=—¢rp(ttDy) + V- (pcsVOs) +h(0; —0f). (30)

06,
PsPscs | — + Vs - Vb

In summary, the governing equations of the thermo-
mechanical mixture theory consist of (28), (29), and (30).
Solving the system of partial differential equations for the

fluid pressure, solid displacement, fluid temperature, and
solid temperature characterize the coupled elastic deforma-
tion and heat transfer of silica aerogel materials.

3 Uncertainty analysis methods

Predictive computational models of physical systems with
quantified uncertainty consist of two processes. The first is
the statistical forward process, in which uncertainty in the
parameters is propagated to the quantity of interests (Qols),
i.e., the targets of prediction. The second is the statistical
inverse problem, by which the probability densities of the
model inputs are learned from the observation data. This
section is concerned with the methods employed for the
treatment of uncertainty in the thermomechanical multiphase
model of silica aerogel materials described in Sect. 2. The
UQ techniques discussed here include global sensitivity anal-
ysis, Bayesian statistical inference, and forward uncertainty
propagation.

3.1 Variance-based global sensitivity analyses

The global sensitivity analyses of a model enable assess-
ing the effect of model parameter uncertainty on the model
outputs [70-73,76]. We leverage a variance-based global sen-
sitivity analysis (VSA) method (i.e., Sobol method) [76-78]
to characterize the relative confidence in the silica aero-
gel model’s predictive potential. The VSA quantifies how
the conditional variance caused by a parameter describes
the variance in the model output. This method has many
convenient features for complex physical models, including
independence in evaluating the sensitivity and the ability to
handle numerous model parameters all at once. We briefly
describe the VSA method in this section.

Let Q be a univariate model output or the Qol and K the
number of uncertain parameters, 8 = {6;} ,f: |» in the model.
The variance of the Q can be decomposed such that,

V(Q) =Vp_, (Eg. (Q10~k)) + Eg_, (Vo (Q10~4)).  (31)

where, 6~ is a vector including all input uncertain param-
eters except 6. In this relation, Vy_, (Eg, (Q|0~4)) is the
reduction in variance of Q when all parameters except 6; are
kept constant and Eg_, (Vg, (Q|0~4)) is the residual variance
of O when 6; is kept constant. The total effect sensitivity
index [37,74] is then defined as

_ 17 (V9k (Q|0~k))
V(Q)

-1 V()Nk (EGk(QWNk))
V(Q)

. (32)

The total effect index estimates the effect of the input 6 to the
variation of the model output. Thus, considering a constant
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value for a parameter with a small total effect index in the
range of uncertainty will not significantly impact the model
output. To this end, parameter sensitivity can determine the
most influential parameters of a model and guide reducing
the parameter space for inference.

3.1.1 Numerical estimator of total effect sensitivity index

Saltelli [37,69,70,72] suggested an efficient Monte-Carlo
estimator to evaluate the total sensitivity index S. The estima-
tor consists of constructing two N x K matrices, A and B, by
drawing N random samples from each uncertain parameter
probability distribution. The matrices Ag(), k=1,2,... K
are then built from all columns of A, excluding the kth, that
comes from B. The vectors y 4 and yi& include the model

outputs in each row of A and A%{). The total-effect index for
Oy is approximated by [70]:

N
~ L ® )
oy 2 (ra); = 04p),) - (33)
j=
The Monte-Carlo estimator of Sy in (33) reduces the cost
of evaluating the multi-dimensional integrals from N? to
N (K + 2) model evaluations [70].

3.2 Bayesian learning from uncertain data

An essential process in predictive computational modeling is
using a learning algorithm to train the model by use of obser-
vational data. Predictive modeling of physical systems poses
an additional challenge due to the presence of uncertainty
arising from incompleteness and noise in the data and model-
ing error, which translates to uncertainty in model prediction.
We employ a Bayesian learning approach to the statistical
inference problem, as it offers a self-consistent framework
for predictive physics-based modeling that enables char-
acterizing uncertainty in data, model parameters, and the
model itself [14,38,39,48,75]. This section summarizes the
Bayesian approach for learning the physics-based model
from uncertainty data as described in [18,22,54,55,65,66].

Let 6 be a vector of model parameters belonging to a
parameter space ® and D be the training data belonging to
a space of observational data D. In the Bayesian setting, the
model parameters and training data are both random vari-
ables characterized by probability density functions (PDFs),
7(#) and 7 (D). Training the computational model consists
of learning the model parameters from data. Then, following
a statistical inference method, the trained model parameters
are obtained through the Bayes’ theorem [41]

Tllike (D|0)7Tprior )

npost(ou)): Tonia(D)
evi

; (34)
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where 705 (0] D) is the posterior PDF, which defines the
Bayesian update of the prior information represented by
Tprior(8), miixe(D|0) is the likelihood PDF, and m,y;q (D)
is the evidence, which is the probability of observed data,

Tevid (D) =/7T[ike(D|0)7Tprior(0)d0~ (35)

The prior PDF in Bayesian calibration (34) represents our
initial knowledge of the model parameters. Based on avail-
able features of the model parameter (i.e., bounds, mean, and
variance), the maximum entropy principle can be used to cre-
ate the prior [40,45]. If only parameter bounds are available,
i.e., total ignorance, uniform distribution should be used as
the parameter prior [41].

The statistical discrepancy between the model output d ()
and the observational data D, known as noise model, defines
the form of the likelihood, 7jix. (D|€) in (34). Let p. be a
probability distribution for the total error € = 5 + &(0) =
D — d(0) due to modeling errors, & (), as well as data noise
n. Here, in the spirit of Kennedy and O’Hagan [47], an addi-
tive noise model is assumed to simultaneously account for
both data noise and modeling errors. In particular, the model-
ing errors stem from the inadequacy of the theoretical model
developed in Sect. 2 in capturing complex physical processes,
as well as the error incurred by numerical solution approx-
imations such as discretization errors and two-dimensional
(2D) assumption for the inherently three-dimensional (3D)
physical phenomena. We consider the total error to be a Gaus-
sian random variable with a mean of zero, € ~ A (0, l";oll. o)
where T, 18 the noise covariance matrix. Thus, the prob-
ability density function of the likelihood is,

Tike(D10) = pe(D — d(8)). (36)

Assume that Np independent and identically distributed
(i.i.d.) data DY) have been sampled from the probability
distribution DY) ~ p(D), and d; (@) is the corresponding
model output. The likelihood function is then represented
by,

In (77ike (D16))
1 Np N\T .
==Y (d@ —-bYV) r,L. (d®)— DV
L3 w0 0) i (a0 )

N[ND

+ 72 @) + 5 In el 37
where N, is the number of data points and ||d(6) — D)2
is known as data mistfit. The noise covariance matrix I';;,;5¢
describes both data noise » and error in modeling assump-
tions &(@). The ultimate success of Bayesian inference in
predictive modeling depends upon how well the noise covari-
ance is characterized. Overestimated noise levels may lead
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to discarding useful information contained in the observa-
tional data. On the other hand, underestimating the noise will
result in overfitting the model to measurement and model
errors, leading to overconfident and highly biased estimates.
To avoid biasing the Bayesian inference, we parametrize
the noise model and infer the resultant unknown hyper-
parameter. We assume that modeling errors are proportional
to measurements errors. That is,

Thoise =m(0))’L, i=1,..., N, (38)
where (0;)? is the variance of each observational data, and the
unknown multiplier m characterizes the modeling error. We
view the noise multiplier m as a hyper-parameter to be cal-
culated in the Bayesian inference process. A careful choice
of a mathematically compatible prior for the noise multiplier
m is crucial to inference success. We thus chose the inverse
gamma function with the mean of 1.0 and the standard devi-
ation of 0.1 [12].

3.3 Computational solution of Bayesian inference

The Bayesian learning of physics-based models requires
computing the posterior PDFs of the parameters 7 04, (6] D)
as the solution of the statistical inference problem accord-
ing to (34). Markov Chain Monte Carlo (MCMC) sampling
methods are typically used to draw samples from the param-
eter posteriors given the prior PDFs, and the form of the
likelihood function [29,68]. The MCMC solution of the
Bayesian inference for the forward models governed by non-
linear systems of partial differential equations (such as the
mixture thermo-mechanical model described in Sect. 2) is
computationally expensive due to the large number of model
evaluations required to explore the posterior distribution.
Common MCMC method is the Metropolis-Hastings (MH)
algorithm [35,52], in which an initial parameter value 6O
is specified and at the /th iteration, a candidate 8* is cho-
sen from a proposal distribution ¢ (0% ). Often, ¢ (80
follows a Gaussian distribution with a mean ) and a fixed
covariance. At the (I + 1) step in the chain, the candidate
sample 0 is accepted, 8¢+ = @*, with the probability of
min{1, a(0*, 01)}, otherwise it is rejected, 8T = '. The
acceptance ratio « is computed as (see [45] for more details)

T post (0%)q (0D 10%)

a@*,00) = )
T post 0)q (8%10D)

(39)

There are several drawbacks associated with the MH sam-
pler. Many samples will be rejected if the proposal variance
is chosen too high leading to poor sampling, and the pro-
posal distribution might not adequately represent the local
shape of the target posterior distribution. The small proposal
variance will result in higher acceptance, while the higher

likelihood regions in the posterior are explored and miss the
tails. In this project, we make use of delayed rejection adap-
tive metropolis (DRAM) algorithm as implemented in [12] to
solve the Bayesian inference. DRAM improves the MH sam-
pler by testing a few backup samples with smaller proposal
variance before rejecting the candidate sample (i.e., Delay
Rejection scheme). Additionally, the proposal covariance is
adapted to match the posterior covariance in DRAM sampler
(i.e., Adaptive Metropolis scheme).

3.4 Solution of the statistical forward problem

Once the model parameters are learned from observational
data through Bayesian inference, one can assess the relia-
bility of the computational model in predicting the Qols.
The parameter posteriors characterize the uncertainty (lack
of knowledge or error) in the model and data. To assess the
probability distribution of the Qols, such uncertainties in the
parameters must be propagated through the model solution.
The process requires the solution of the statistical forward
problem, using Monte Carlo (MC) method. Starting from
an initial point 89, the sequence a random walk generates a
random number. A good choice of the initial point is the Max-
imum A Posteriori estimate that is a point estimate defined as

0MAP — argmin Tpost (0| D), (40)
0

and can be estimated using samples of posterior distributions
obtained using an MCMC algorithm. The MC sampler con-
tinues by generating the next random number by choosing
a trial #* drawn from a uniform distribution with the mean,
centered at the value of the current state and the range of
fixed maximum step size. We accept the trial if it is towards
a higher probability region and conditionally reject it if the
trial is toward a lower probability region. Like the MCMC
algorithm, the step size must be cautiously chosen since a
small step size leads to very slow convergence as most of the
trial steps will be accepted. On the other hand, if the step size
is too large, the random walker might not visit the posterior
distribution’s critical peaks.

We conclude this section by specifying the metric we use
in Sect. 4 to compare the data and posterior model prediction
obtained from the MC sampler. Let IT? (Q)) and 1" (d)) be
the Qol’s cumulative distribution functions derived from the
model, 09, and the data, QP respectively. The measure to
access how well the model is representing the data is,

5 ImP @) - n4e)| dg
- E(QP)

(41)

where the denominator is the mean of the Q7 obtained from
sampler estimation.

@ Springer



Computational Mechanics

4 Results
4.1 Experimental data of silica aerogel

The standard aerogel fabrication is the supercritical drying
process, where the highly porous materials are produced by
removing the solvent without collapsing the solid structure.
Supercritical drying suffers from substantial energy con-
sumption, long processing time, high-cost equipment, and
small-dimension production [85,88]. We have recently devel-
oped a new synthesis method for silica aerogel that relies on
an in-situ bubble-supported pore formation. In this approach,
the silica aerogel is prepared using a mixture of tetraethyl
orthosilicate (TEOS), cetrimonium bromide (CTAB), urea
(foaming agent), acetic acid, and distilled water. The porous
structure is formed by the thermal decomposition of urea
to CO,, and NHj3 bubbles. Combined with ambient pres-
sure and temperature drying, this synthesis method reduces
the cost of aerogel production by 60% [89]. We have also
demonstrated the additive manufacturing of silica aerogel
into the customized parts using a direct ink writing (DIW)
method. The printable aerogel ink with embedded gaseous
bubbles is facilitated by modifying the rheological proper-
ties of the silica aerogel. In particular, the cellulose-based
viscosity modifier is used to achieve the highly viscous and

shear-thinning non-Newtonian aerogel ink enabling the 3D
printing (see Fig. 1) [31].

Figure 2 shows the experimental characterization of ther-
mal and mechanical properties of silica aerogel [31,89],
employed in this work for the Bayesian calibration of the
multiphase model described in Sect. 2. Following the ASTM
C518 standard, the thermal measurements of the silica aero-
gel in Fig. 2a consists of subjecting aerogel samples with the
dimension of 1x1x0.6 cm to a temperature Ohor = 29.5°C
at the top boundary and the heat flux at the bottom bound-
ary is measured using a heat flux sensor (see Fig. 3) The heat
flux measurements in Fig. 2a corresponds to the silica aerogel
samples with different pore sizes. A 3D printed sample with
a dimension of 10x10x 10 mm was utilized in a uniaxial
compression test to characterize the stress—strain relation-
ship depicted in Fig. 2b. Error bars are added to represent the
data uncertainty in material characterization (experimental
noise). Note that the heat flux data in Fig. 2a were obtained
from a single sample for each porosity level. Thus, no infor-
mation regarding measurement variability is available for the
inversion. Nevertheless, in Sect. 4.3.2, we use these measure-
ments to characterize microstructural uncertainty due to pore
size variabilities that cannot be captured by the multiphase
model.

Fig.1 Silicaaerogel fabricated by in-situ pore formation and ambient pressure and temperature drying: a The optical image of a one-pot synthesized
sample and an additive manufactured part using DIW. b Scanning electron microscopy images of the aerogel with different porosities [31,89]
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4.2 Computational models of silica aerogel

We simulate the thermal and mechanical behavior of silica
aerogel using the two-dimensional (2D) multiphase models
of silica aerogel derived in Sect. 2. The domains and bound-
ary conditions corresponding to the heat transfer thermal and
mechanical experimental measurements are shown in Fig. 3.
The governing equations and the corresponding boundary
conditions of the two-phase heat transfer model are

06 . T
)Osqbscsg =V - (¢sk5VOs) — h(0s — Gf) m Q2

pfcpfcfaaif =V - (¢skrVOp) +h®; —0) in QF
0y =07 =0poy on T]

—sksVOs = hair (05 = Oco1a) on T

—@ K VO = hairOf —Oeota) on T}

—psks VO = —pri;VOr =0 on T

Compared to (30), the mechanically coupled terms are
ignored in (42) since there is no mechanical stress in
the experimental thermal measurements. Additionally, it is
assumed that the velocities of the solid and fluid phases are
negligible (v ~ 0 and vy ~ 0), since pores form small
unconnected structures (see microstructure images in [89]).
The boundary conditions in (42), replicates the thermal mea-
surements in which the 6y, is imposed to the top boundary,
convective heat transfer with coefficient 4,;, and temperature
0,014 is considered at the bottom boundary, and zero heat flux
is applied to the side boundaries. The observable heat flux
g of the mixture, corresponding to the flux measurements in
the experiments, is computed using the third relation in (13).

ehot

Fr P iu
L34 G Le ry oM 1Y

4] Iy

Vo

oy oy
(a) (b)

Fig.3 Domains and boundary conditions for modeling the thermal and
mechanical experimental measurements of silica aerogel. a Thermal
model in which 8, is imposed at the top surface of the specimen and the
heat flux is measured in the bottom surface. b Mechanical model corre-
sponding to the uniaxial compression test with the permeable boundary
for the fluid phase

The governing equations and the corresponding boundary
conditions of the two-phase deformation model of aerogel
are

ap 0 M

C—+ —(V- V-g=0 in Q
8t+8t( u)+V-g in
g=—kVp in QM
V- -Ty(u) =0 in QM
u, =Uug; on FtM ’ (43)
u =0 on Y
p=0 on i

g=0 on TM

where a three-field formulation, similar to the poroelastic
model, e.g., [32,63], is used with state variables given by
the fluid pressure p, fluid flux g, and solid displacement u.
For modeling the compression test, quasi-static conditions
are assumed, and deformation & at a constant strain rate is
applied incrementally to the top boundary. The fluid pressure
is assumed to be zero in all boundaries, representing the fully
permeable surfaces of the silica aerogel samples.

4.2.1 Finite element solutions

We make use of continuous Galerkin finite element methods
to solve the coupled system of equations of the heat transfer
(42) and deformation (43) models. The heat transfer model
involves the solid temperature 0, and fluid temperature 0
as the unknown state variables. To define the relevant finite
element spaces, we consider the Hilbert spaces

Z={zeH'(Q):z=7% on I}, (44)
Z20={ze H'(Q):z=0 on T}. (45)

The variational formulation for the heat transfer model, is
defined then as:
Find (05, 0¢) € Z x Z, such that

‘/;27_ ps‘p,\‘cse‘{l‘HZs dx + ,/;ZT At ¢.YKX(VG£I+1 - Vzy) dx
- /QT At @ =67z dx
+ ./I-‘T At ¢Shair(9§1+l — Ocold)zs ds = /QT Ps¢scsggzs dx
6n+1 d A V0”+1 v d
o7 prorer Fozpdx A+ T tdrir( R zy) dx

+/QT Ath@fF =67z p dx

+ /I:‘T At ¢fhflir(9;lf+l — Ocold)zs ds = _/QT pf¢fcf9;chf dx
(46)
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for all choices of test functions zy, z 7 € Z9 where At is the
time increments and n indicates the time step. We employ
a dual-mixed finite element method to discretize the two-
field formulation in 46, where 65 and 0y are approximated
by the first-order Lagrange polynomial. The system of non-
linear equations arising in (46) is solved using a Newton-type
numerical algorithm.

With respect to the finite element discretization of the
deformation model, we consider the following function
spaces,

W, =W) = {p e L*(Q),

Wy =W, ={ge H(div:Q):g-n=0 on T},
W,={ue H(Q):u=1u on I},

Wl={ue H'(Q2):u=0 on I'}. (47)

where H(div; Q) = {f : f € L>(Q) and V - f € L*(Q)).
This choice guarantees the well-posedness of the variational
form of the three-field deformation model. Using the back-
ward Euler time discretization, the variational problem of the
system of equations in 43, is defined as:

Find (p, g, u;) € W, x W, x W,, such that

/QM (Cp"+1 + V. uf“) wp dx
—i—/ AtV -g" hw, dx
oM
= / (Cp" +V -u)w), dx,
oM

At ’
_/S;MTgYH_ 'u)ng

+/ Atp"IV - w, dx = 0,
QM

(48)

/ T, (™) : Vw, dx =0
oM

for all choices of test functions w), € Wg, w, € Wg, and
w, € WS . Following the numerical solution of the poroelas-
tic model in [24], we employ a mixed finite element method to
discretize the three-field formulation in (48). The fluid pres-
sure p is approximated by piecewise constant functions, the
flux g is approximated in the lowest-order Raviart—-Thomas
space, and the solid displacement u; is approximated by
the second-order Lagrange polynomial. Such a discretiza-
tion allows for conserving mass discretely and alleviating
the instability and pressure oscillations that can form in the
solution of this class of coupled partial differential equations,
e.g., [33,63].

The 2D finite element solution of the heat transfer and
deformation models of aerogel is implemented in an open-
source computing platform, FEniCS [2], and verified using
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multiple benchmark problems, including Terzaghi’s consol-
idation problem. The numerical simulation results of the
heat transfer model in terms of the time evolution of solid
and fluid temperature through the domain are shown in
Fig. 4. For this simulation, a silica aerogel with 90% porosity
(¢ = 0.9, ¢, = 0.1) and thickness of 0.6cm is considered.
The 6, = 302.5K is imposed at the top boundary, the
convection to the room temperature Beord = 297.5K is con-
sidered at the bottom boundary, and the model parameters
are assumed as kg = 0.5W/(mK), ky = 0.08 W/(mK),
h = 60,000W/(m?>K), hy;y = 10W/(m?K). Figure 4
shows that, despite the higher conductivity of solid compared
to the fluid phase (ks > « ), the fluid temperature diffuses
faster in the domain compared to the solid temperature due
to the higher fluid volume fraction (porosity) of the silica
aerogel. Figure 5 shows the numerical solution of the mul-
tiphase deformation model in (43). Similar to the uniaxial
compression tests in Sect. 4.1, a silica aerogel sample with
porosity of 90% is subjected to incremental displacements
with a constant strain rate of 1.36 x 1073(1 /s) and measure-
ments are taken at time increments of A¢ = 3.3 s. The model
parameters are C = 8.5 x 10_9(1/Pa), k=1.0x 10_13m2,
E = 0.7 x 1O6Pa, v = 0.3. The solid phase stress—strain
relationship and the fluid pressure response at the center of
the sample are shown in Fig. 5a, and snapshots of displace-
ment and pressure at time 7 = 100 s are presented in Fig. 5b,
c. Due to the relatively low permeability of the silica aerogel,
the fluid pressure does not fully dissipate during the deforma-
tion process, leading to the nonlinear stress—strain response.

We note that performing the uncertainty analyses in
Sect. 4.3 using the 3D finite element model is prohibitive due
to high computational costs. We thus resort to the 2D solution
of the multiphase model and leverage the noise model (38)
to account for the uncertainty due to the numerical approxi-
mation as another source of modeling error (see Sect. 4.3.2).
However, to estimate the error incurred by the 2D assump-
tion, we conducted 3D analyses of the results presented in
Figs. 4 and 5 with the same parameter values and discretiza-
tion resolution. Comparing the 2D and 3D results indicates
that the primary source of error is the computed pore pressure,
while the errors in other outputs are negligible. In particu-
lar, the 2D model under-predicted the pressure dissipation
compared to the 3D model. The average errors in solid stress
and fluid pressure are 0.7% and 23%, respectively, while the
errors in 2D and 3D simulations of solid and fluid tempera-
tures are below 0.0017%.

4.3 Uncertainty analyses of the thermomechanical
multiphase model

To characterize the uncertainty in the prediction of the aerogel
multiphase model, we implement a general UQ framework
leveraging the methods described in Sect. 3. Figure 6 shows
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Fig. 4 Numerical experiments of the thermal response of silica aerogel using the two-phase heat transfer computational model (42). a Solid
temperature 6 and fluid temperature 0, profiles through the sample thickness at the times r = 0.1 s and = 5.0 s, b, ¢ snapshots of the solid and

fluid temperatures at time = 1.5 s
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Fig.5 Numerical simulation of the mechanical response of silica aerogel using the two-phase deformation computational model (43). a Variation
of the solid phase stress Ts component along y-axis and the fluid pressure p with the applied strain, b, ¢ snapshots of the displacement and fluid

pressure at time ¢ = 100 s

the flowchart of this framework that systematically character-
ize the uncertainty and assess the reliability of computational
predictions delivered by physics-based models. Starting from
a set of uncertain model parameters, global sensitivity anal-
ysis is conducted to rank the model parameters based on
their contributions to the variability of the model outputs.
The sensitivity analysis guides dimension reduction of the
parameter space used for calibration, such that unimportant
parameters are assumed to be constant or deterministic. The
Bayesian inference is then conducted to learn the parameters
from measurements, i.e., updating the parameters priors to
the posterior probability distributions. The calibrated model
with uncertain parameters enables predicting possibly more
complex physical systems for which observational data are
not available. To this end, using the parameter posteriors, the
statistical forward problem is solved to propagate the uncer-
tainty from the model parameters to the computed quantity
of interest (Qol). The rest of this section describes the imple-
mentation of this framework for predictive computational

modeling of silica aerogel’s thermal and mechanical perfor-
mances.

4.3.1 Parameter sensitivity analysis

The sensitivity scenarios of the multiphase heat transfer and
deformation models are the domain and boundary conditions,
which are chosen according to the experimental measure-
ments described in Sect. 4.2. Two model outputs are chosen
in the parameter sensitivity analysis: for the heat transfer
model, QT is the mixture heat flux through the bottom sur-
face in as depicted in Fig. 3a; for the deformation model,
OM is the total strain energy over the applied deformation.
Specifically,

(49)
(50)

o’ =141,
QM

(T : E)dx,
QM
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Fig. 6 Flowchart of the framework implemented in this work for predictive computational modeling with quantified uncertainty. It includes the
sensitivity analysis for model parameter ranking, Bayesian calibration for determining the probability distribution of parameters from measurement
data and a statistical forward solver for computational prediction while assessing the level of confidence in the predicted Qol

where E is total strain corresponding to the applied u in
Fig. 3b. Note that both model outputs are the quantities that
will be used for Bayesian calibration. Thus, the parameter
sensitivity will possibly provide information to aid the cali-
bration process.

For visual assessment of parameter sensitivity, we use
scatter-plots [72], which are plots of the model output versus
random samples drawn from the uncertain input parame-
ters. The parameters with a significant sensitivity on the
model output present a distinctive pattern in the scatter-plot.
The scatter-plots of the heat transfer model are shown in
Fig. 7a—c, and those of the deformation model are shown
in Fig. 7d—g, both for the silica aerogel with a porosity of
90% (¢ = 0.9). The thermal model output 07 is com-
puted using 200,000 uniform samples via Latin Hypercube
sampling. For the mechanical model, 240,000 samples are
used to accommodate a larger number of model parameters.
It is seen from the scatter-plots that the solid and fluid con-
ductivities, «y and « ¢, are both critical contributors to the
variance of thermal model output for the silica aerogel, as
they are exhibiting patterns of the clouds in the scatter-plots
(Fig. 7a—c). The scatter-plots of the deformation model in
Fig. 7d—g indicate that all four parameters contribute to the
output uncertainty. Interestingly, the permeability k and the
fluid compressibility C show unique patterns of the clouds in
the scatter-plots suggesting a very strong sensitivity over spe-
cific ranges of these parameters, i.e., —35 < log(k) < —22
and —18 < log(C) < —10, while the model output is insen-
sitive to the variations of C and k outside those ranges. As
it is discussed in Sect. 4.3.2, we leverage this information to
construct informative priors for Bayesian inference.

A quantitative method for ranking of the model param-
eters is the VSA described in Sect. 3.1. The range of the
parameters used for the variance-based sensitivity analyses
are shown in the fourth column of Table 1. N = 10,000 sam-
ples are drawn for the parameter distributions using Latin
Hypercube sampling to compute the total-effect sensitivity
indices Sy, using the estimator (33). The indices are com-
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puted for different porosities to understand the effect of the
fluid volume fraction ¢y on parameters’ importance. Since
this Monte Carlo estimator is stochastic, five independent cal-
culations are performed for each porosity to obtain means and
standard deviations for the indices, and the results are shown
in Fig. 8. The parameter sensitivity of the heat transfer model
in Fig. 8a shows that by increasing the aerogel porosity, the
contribution of the solid phase conductivity «; to the variance
of the heat flux QT decreases, while the sensitivity indices of
the fluid conductivity « y increases. Therefore, the parameter
i ¢ is the most important parameter in forward uncertainty
propagation through the heat transfer model for the silica
aerogels with ¢ r = 0.84 —0.94, corresponding to the exper-
imental measurements in Fig. 2a. As expected, the monotonic
increase of sensitivity index of ks and the monotonic decrease
of sensitivity index of k s with aerogel porosity indicates that
the volume fraction of each phase determines their contri-
bution to the heat transfer simulations. Furthermore, when
both phases are equally present in the binary mixture (50%
porosity), the interstitial coefficient % is highest, providing
the most substantial heat exchange between the constituents.
The total-effect sensitivity indices of the deformation model
in Fig. 8b indicate that the permeability k is the most influ-
ential parameter on the model outputs’ variance. Moreover,
the sensitivity indices of the fluid mass balance parameters,
compressibility C and permeability k, increase as the aero-
gel porosity ¢ ¢ increases. The solid phase Young’s modulus
of aerogel E becomes less influential in higher porosity due
to higher fluid pressure development. The variation of the
total-effect sensitivity indices with the aerogel porosity is
controlled by the fluid pressure development and dissipation
in the domain. As the aerogel porosity increases, the fluid
pressure p increases, resulting in higher fluid strain energy
than the solid phase strain energy in the silica aerogels with
¢r > 0.8.

Given the low computational costs of performing the
global sensitivity analyses, compared to Bayesian inference,
the VSA results can be used for model reduction, i.e., reduc-
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Fig.7 Scatter-plots of the two-phase heat transfer and deformation model parameters with the thermal and mechanical model outputs. The results
of silica aerogel with a—¢ 90% of porosity (¢ = 0.9) for the heat transfer model, d—g 10% of porosity (¢ = 0.1) for the deformation model

Table 1 The model parameters are the two-phase heat transfer and deformation models of silica aerogel

Parameter Physical meaning Unit Uncertainty range Prior PDF

Ks Solid conductivity W/(mK) [0.1, 1.4] U(.1,1.4)

Ky Fluid conductivity W/(mK) [0.02,0.14] 1(0.02,0.14)

h Interstitial coefficient w/ (m2K) [1.0, 100000.0] U(1.0, 100000.0)
m? Thermal noise multiplier - - r-1102, 103)

E Elastic modulus Pa [1000.0, 20000.0] U4(1000.0, 20000.0)
v Poisson’s ratio - [0.25, 0.4] Fixed at 0.3

log(k) Log-permeability coefficient log(mz) [—54.54, —14.54] N(—=34.54,10.0)
log(C) Log-compressibility of fluid log(1/Pa) [—34.72, —0.672] N(=20.72,7.0)
mM Mechanical noise multiplier - - r-1(102, 103)

Uncertainty Range is the initial range of the parameters taken into account for the variance-based global sensitivity analyses. Probability distribution
functions (PDF) of parameters is the priors of the Bayesian training, where /(- -) indicates the uniform probability distribution, A/(-, -) indicates
the Gaussian probability distribution, and T'~!(-, -) indicates the inverse gamma probability distribution
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ing the space of the uncertain parameters. In particular, the
parameters with sufficiently low sensitivity indices can be
taken as deterministic or fixed values, lowering the com-
putational cost of solving the statistical inverse problem.
According to the results presented in Fig. 8, we consider
a fixed value of the Poisson’s ratio v = 0.3 for the defor-
mation model calibration and predictions, as this parameter
does not have a substantial effect on the mechanical model
output.

4.3.2 Bayesian inference

Guided by the parameter sensitivity analyses, we conduct
Bayesian inference to learn the parameters of the two-phase
models from the experimental measurements of silica aecrogel
presented in Sect. 4.1. The prior distributions of the parame-
ters are tabulated in the last column of Table 1. Due to the lack
of prior information about the multiphase thermal model for
the new silica aerogel material, we consider non-informative
priors for the heat transfer model parameters. However, we
leverage the unique patterns observed in the scatter-plots of
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Fig. 7d, e to construct prior distributions of the deformation
model parameters, fluid permeability k, and compressibility
C. In particular, we imposed higher probabilities of these
parameters within the range they exhibit strong sensitivity to
the model output via assigning Gaussian prior distributions
to log(C) and log(k).

The DRAM algorithm, implemented in the parallel object-
oriented statistical library DAKOTA [12], is then employed to
solve the Bayesian inference (34) on the finite element model.
To reduce the high computational burden of the inherently
sequential MCMC algorithms, we made use of a parallel
workload, wherein each chain is run on a computing pro-
cessor, while each forward model solution is performed in
parallel and on multiple processors. In particular, 40 chains
are used for calibrating each (heat transfer and deformation)
model with chain lengths of 16,000. Each chain was ini-
tialized from different parameter values sampled from their
corresponding priors. The initial 10% samples of each chain
are discarded (burn-in period) to ensure the chain has reached
a state sufficiently close to the stationary distribution.

Autocorrelation

“10° 10! 102 10° 10

Fig.9 Diagnostics plots of the 40 Markov chains with the length of 16,000 for the Bayesian calibration of the parameter E. The first 10% of points
in these plots, exhibiting significant auto-correlation, are excluded from the final posteriors as they represent the initial burn-in period. a Trace plot
of the chains indicating good mixing properties of the samples. b auto-correlation function (ACF) for the samples, where the Lag indicates the
number of steps between samples. Trace and ACF plots of the other parameters exhibit similar behavior to those observed in these plots
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Fig.10 The multiphase heat transfer parameter posteriors were obtained from the Bayesian inference. The training data sets consist of the measured
heat flux for the aerogel samples with different porosities. The 1D plots represent the kernel density estimations (KDEs) of the marginal posterior
distributions and the joint bivariate posteriors distributions are the 2D KDE plots. The dash-dotted lines are the priors defined in Table 1, and the

dashed lines are the MAP estimates in Table 2

Figure 9 shows example diagnostics plots of the Markov
chains for inferring the parameter E. The trace plot of the
40 chains in Fig. 9a shows that chains starting from different
values mix well after 100 steps. The autocorrelation function
(ACF) of the MCMC sequence in Fig. 9b shows a rapid decay
indicating that samples at a relatively small lag from each
other can be considered as independent.

The kernel density estimations (KDEs) of the heat trans-
fer parameter posteriors are shown in Fig. 10, including
the physical parameters (ky, k r, h) and the noise multiplier
hyper-parameter m” in (38). The training data D consists
of the heat flux measurements of the silica aerogel sample
shown in Fig. 2a for different values of aerogel porosity.
The model output d(#) in the likelihood function (37) is the
corresponding heat flux of the mixture computed from the
two-phase heat transfer model (42). We note that measure-
ments are from aerogel samples with different pore sizes
without accounting for the experimental variability of dif-
ferent samples. Since the two-phase heat transfer model
does not capture the effect of aerogel pore size on the ther-
mal behavior, the measurements of different pore sizes are
accounted for as the microstructure uncertainty in data for the
Bayesian inference. Figure 10 shows both marginal distribu-
tions, corresponding to a single parameter and joint bivariate
distributions of two parameters. The posterior variances indi-
cate the level of confidence on the calibrated parameters in

the presence of data noise and modeling error. In addition, the
MAP point estimates, gMAP , according to (40), are shown
in these plots that corresponds to deterministic calibration in
which a single value for each parameter is identified. Con-
trariwise, characterizing uncertainty through the posterior
probability distributions of parameters enables assessing the
reliability of prediction delivered by the calibrated model (see
Sect. 4.3.3). Some of the parameters’ MAP points are differ-
ent from the maximum of the marginal distributions since the
two-point estimates are identical only when the posteriors are
normal distributions. The posterior plots indicate that xy is
learned better from the data leading to the smaller posterior
variance of this parameter. On the contrary, the interstitial
coefficient & is not well informed by the data as judged by
its wide posterior distribution. The joint bivariate distribu-
tions of «; and « s indicate a strong correlation among them.
Additionally, the posterior distribution of the noise multi-
plier m” has the MAP value of 0.96 according to Table 2.
The close to one value of the noise multiplier indicates that,
in this case, the average data variance over all the data points
is sufficient to balance the trade-off between data misfit in
the likelihood function and the parameter priors. We empha-
size that the thermal data variance o;,i = 1,2,...,11 in
(38) arises from the marginalization of the pore size effect
ignored by the model, and thus it is the principal contributor
to the model inadequacy.
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Table2 The maximum a Heat transfer model

Deformation model Deformation model

posteriori (MAP) estimates of

the two-phase heat transfer and Parameter MAP Parameter MAP Parameter MAP
deformation model parameters
were obtained from the Ky 0.477 E 11985.0 E 11960.1
Bayesian inference Ky 0.085 log k —35.68 logk —36.14
h 81059.0 logC -20.79 logC —20.72
m’ 0.96 mM 0.75 mi 0.95
mb! 0.82
mb! 0.95

The first two columns show the inference results considering one noise multiplier for each model, m” and
m™ . The third column is the calibration results of the deformation model with three noise multipliers, where
mll'/’ mé” and mé"’ are assigned to the data subsets in the strain ranges of [0-3%], [3—-11%], and [11- 12.9%],
consisting 14, 46, 12 data points respectively

log(k)

7.28

-48.72

-74.54 5.46 -48.72 7.2

Fig. 11

8 0.1 2 0 2

Kernel Density Estimate

----------------- Maximum A Posteriori

The multiphase mechanical parameter posteriors were obtained from the Bayesian inference. The training data sets consist of the measured

stress—strain, the 3D printed aerogel sample. The 1D plots represent the kernel density estimations (KDEs) of the marginal posterior distributions,
and the joint bivariate posteriors distributions are the 2D KDE plots. The dash-dotted lines indicate the prior distributions defined in Table 1, and

the dashed lines are the MAP estimates presented in Table 2

Figure 11 presents the Bayesian inference results of the
deformation model (43), using the experimental data of
Fig. 2b. This figure indicates that while the solid phase’s
elastic modulus is well-informed, the posterior parameters
C and k are shifted toward larger values compared to the
priors with wide posterior variances. One can thus conclude
that a set of stress—strain measurements does not provide
sufficient information for training the two-phase deforma-
tion model of silica aerogel. Additionally, the MAP estimate
of the mechanical noise multiplier is 0.75 (Table 2), show-
ing that for the current model, data, and choices of priors, a
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smaller total error than the average data variance is needed
to balance between the contribution of data misfit and prior
in the Bayesian inference.

Using the calibrated models with quantified uncertainty
characterized by the posterior PDF of the parameters
(Figs. 10, 11), we can solve the statistical forward prob-
lem (Sect. 3.4). Figure 12 compares the heat flux-porosity
and stress—strain results computed from the trained models
with the corresponding measurement data. In this figure, the
red shaded area shows the posterior prediction of the model,
indicating the level of confidence in the model prediction,
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Fig.12 Comparison of the calibrated models under uncertainty and the experimental data of silica aerogel: a heat transfer model with an average
error of €/ = 0.021 £ 0.732, b deformation model with an average error of € = 0.541 4 0.524. The means and standard deviations for the
experimental data are shown in blue, and the red area is the posterior prediction of the model (Color figure online)

and the data means and standard deviations are shown in
blue. The average error in the thermal model, according to
the measure (41), is el = 0.021 & 0.732, while the error in
the deformation model is € = 0.541 4 0.524. The smaller
uncertainty in model output compared to the data noise level
indicates that the two-phase thermomechanical model of sil-
ica aerogel results in variance reduction. The high error in
the deformation model is associated with the simplifying
assumptions in the constitutive relations and insufficient data
to adequately inform the model parameters. The propaga-
tion of these uncertainties to the computational predictions
of a physical system, in the absence of observational data, is
investigated in Sect. 4.3.3.

We conclude this section by investigating the impact of
the noise model on the Bayesian inference. As indicated in
Sect. 3.2, the likelihood function in Bayesian inversion is con-
structed based upon the uncertainty representation assump-
tions. The choice of noise model presented in (38) designates
a single hyper-parameter multiplier over the entire data set.
More accurate learning of the physics-based model from mul-
tiple sources of uncertain data may require assigning multiple
noise multipliers to different subsets of data. Nevertheless,
increasing the number of multipliers significantly increases
the computational costs of Bayesian inversion due to com-
puting the additional posteriors of the hyper-parameters. To
understand the effect of multiple noise multipliers, the silica
aerogel stress—strain measurement data are divided to three
subsets for the strain ranges of [0-3.0%], [3.0-11.0%], and
[11.0-12.9%], consisting of 14, 46, and 12 data points respec-
tively. The Bayesian inference of the mechanical model is
then conducted using the same priors as in Table 1, while
taking into account one noise multiplier for each subset of
data. Figure 13 shows the posterior distributions of the physi-
cal parameter E and the three hyper-parameters compared to
the one multiplier inference (Fig. 11). Table 2 shows the MAP
values of the parameter posteriors of the inference using the

three multipliers. For this case, the average error in the pos-
terior prediction of the mechanical model compared to the
stress data is €3Tm = 0.550 =+ 0.489. The posterior distribu-
tions of the physical parameters and the error between the
data and calibrated model are very close for the two choices
of noise models, i.e., one and three multipliers. Figure 13b
shows that despite the different variance levels among the
three data subsets, the posteriors of mjl"l and mé” are both
centered around one (with the MAP estimates of 0.95). On
the other hand, the MAP value of posterior of the multiplier
mg” , for the subset with the most data point, is computed as
0.82. Similar to the one multiplier case, the smaller than one
value of mé” indicates that for robust Bayesian inference,
the contribution of data misfit should be higher than the prior
for the second subset of data. Comparing the calibrated noise
multipliers in Fig. 13b shows the number of data points influ-
ences the trade-off between the misfit and uniform prior in
the Bayesian inference.

4.3.3 Computational prediction under uncertainty

One of the main challenges in building envelope insulation
is the energy losses due to thermal bridges at the external
elements. Thermal bridging occurs at the interface of enve-
lope components such as wall-roof intersections and beam
and pipe penetration to the envelope, leading to heat flow
bypassing insulation. Thermal breaks are insulating compo-
nents incorporated within the building envelope to interrupt
the heat flow path and mitigate the effect of thermal bridges,
e.g., [30]. Figure 14 shows the horizontal section of a wall and
a square concrete column, adopted from [9], vulnerable to
thermal bridge due to the materials discontinuity. The column
significantly affects the thermal performances of the building
envelope since the high conductivity of concrete induces a
preferred path for the heat. A silica aerogel superinsulation
thermal break with 90% porosity is designed to separate the
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Fig. 13 Comparison of the Bayesian inference results using three noise multipliers and the ones obtained from one noise multiplier (in Fig. 11).
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Fig. 14 The scenario for the computational prediction. The envelope and column system and the aerogel thermal break alleviate the heat exchange

between the exterior and the column

inner column from the building envelope outer boundary to
minimize the thermal transmittance.

This section investigates the ability of the calibrated
multiphase model with uncertain parameters developed in
Sect. 4.3.2 to predict thermal and mechanical responses of the
aerogel thermal break in Fig. 14. To characterize the thermal
insulation of the component, the steady-state heat transfer
model (42) is taken into account together with convective
boundary conditions with the ambient temperature 256K (the
lowest temperature at Buffalo, NY in 2020) imposed at the
exterior boundary and Oap = 298K at the interface of the
insulation component with the column (surface A-B in the
Fig. 14). The resiliency of the thermal break during the con-
struction is investigated by the two-phase deformation model
(43). A vertical displacement it 4 g = 0.01 m is applied at the
A-B surface of the thermal break over 100 s and at a constant
strain rate while the zero displacements are imposed at the
bottom. The fluid pressure is assumed to be zero in all the
component’s boundaries, representing the fully permeable
boundary of the aerogel thermal break. Figure 15 shows the
results of the thermomechanical model prediction using the
MAP values of the parameters presented in Table 2.
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Since MAP values are point estimates equivalent to deter-
ministic model calibration, the results in Fig. 15 do not
provide any information regarding the level of confidence
in the computational prediction. To assess the reliability of
the thermomechanical model prediction, we propagate the
parametric uncertainty through the model by solving the sta-
tistical forward problem in Sect. 3.4. The target Qols for the
computational prediction of thermal break is the heat flux
of the mixture at the A-B boundary in Fig. 14 (represent-
ing how well the component mitigates the undesired thermal
bridge) and the strain energy of the solid phase (indicating
the resistance of the aerogel to material damage, i.e., solid
wall breakage),

T
Qpredict = |fZAB|7

Q%’edict = /Q(Ts 1 Ey) dx. (51)

Figure 16 shows the probability distributions of the thermal
and mechanical Qols of the thermal break operating in the
building envelope, i.e., the prediction scenario obtained from
solving the statistical forward problem using 14,000 samples
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Fig. 16 Probability distributions of the computational predictions of the thermal break in Fig. 14: a thermal Qol as the heat flux of the mixture at
the A-B boundary with the mean 5.97 W/m? and variance 0.17, b mechanical Qol as the strain energy of the solid phase in (51) with the mean 8.59

J and variance 1.34

of the parameter distributions. The computational predic-
tion indicates that the heat flux at the A-B boundary is 5.97
W /m?, while the associated parametric uncertainty results
in a variance of 0.17. Similarly, the strain energy of the sil-
ica aerogel is predicted with the mean 8.59 J and variance of
1.34.Itis seen from these results that while the thermal model
prediction is reliable, the quantified uncertainty due to model-
ing assumption and incomplete and noisy data (Sect. 4.3.2)
results in significant uncertainty in the deformation model
prediction.

5 Discussion and conclusions

This work presents a general UQ framework for develop-
ing physics-based predictive models of complex materials
systems with application to a new multiphase thermome-
chanical model of porous silica aerogel. Notable features
of this work are the implementation of a new noise model
that characterizes uncertainty in data and modeling error
in the Bayesian inference step. Determining the posterior
distributions of the resulting hyperparameters balances the
contribution of data misfit in the likelihood function and
the parameter priors, resulting in a robust inference process.
The uncertainty analyses are conducted using sampling algo-
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rithms, including MCMC for Bayesian inference, in which
each sample requires the solution of the mixed finite ele-
ment formulation of the multiphase model. To overcome the
computational challenge of the UQ framework and ensure
efficient use of computing resources, a fully parallelized
workload is implemented using open-source libraries for
the finite element and the sampling algorithms. Leverag-
ing the UQ framework, various sources of uncertainty in
computational prediction of material behavior are addressed,
including: (i) data uncertainty due to measurements taken
from different material specimens, (ii) microstructural uncer-
tainty due to inadequacy of the model to capture the effect
of pore sizes on the material behavior, (iii) modeling errors
incurred by assumptions in the theoretical model (e.g., linear
elasticity of the solid phase) and simplifying assumptions in
the numerical solution (e.g., considering the 2D model of the
inherently 3D physical phenomena).

The variance-based global sensitivity analyses of the two-
phase model of the silica aerogels with high porosity (around
90%) indicate that the thermal conductivity of the fluid phase
and permeability are the most influential model parameters
on the two-phase thermomechanical model outputs for the
silica aerogels with high porosity (around 90%). The results
of the Bayesian inference using experimental data suggests
that the less computationally intensive calibration methods
based on the Gaussian assumptions are inadequate for some
of the model parameters, leading to inaccurate and unreliable
predictions in this class of multiphase models. The Bayesian
model calibration results also show that despite the signifi-
cant data uncertainty, due to the microstructural (pore size)
variabilities, the two-phase heat transfer model can capture
the measurements with approximately 2% of error, lead-
ing to a reliable prediction of thermal performance of the
building envelope thermal break. However, the deformation
model is inadequate to accurately simulate the stress—strain
measurements of the silica aerogel, primarily due to the lin-
ear isotropic elasticity assumption for the solid phase. The
propagation of uncertainty to the thermal break simulation
indicates that although the average value of the predicted
solid strain energy might be below the damage initiation cri-
teria (i.e., solid wall breakage), there is significant uncertainty
in the mechanical model prediction. Thus, based on the cur-
rent model and measurements the mechanical resiliency of
the aerogel insulation component may be unreliable for build-
ing applications.

There are a few UQ studies of the multiphase behavior
of materials in the literature. For example, Niskanen et al.
[53] studied the acoustic response of water-saturated ceramic
porous materials. The authors conducted Bayesian calibra-
tion of a one-dimensional poroelasticity model [7], posed
as first-order ordinary differential equations, and using syn-
thetic measurements. In comparison, we conducted Bayesian
inference using the 2D finite element solution of the two-
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phase deformation model and experimental measurements.
Despite more computationally intensive analyses, our results
depict a more realistic representation of materials’ response
and associated uncertainty. In the context of the model-
ing error assessment within Bayesian inference, Kennedy
and O’Hagan [47] presented a general strategy based on
assuming errors to be additive to the true physical process.
Their work motivated various approaches in characterizing
the modeling error, including the Bayesian approximation
error (BAE) [44], which provides a systematic way to
characterize modeling errors based on the availability of a
high-fidelity model. As another example, Oliver et al. [58]
proposed a framework to embed inadequacy representations
in the model components for which we have low confidence
(e.g., constitutive relations) while respecting high confidence
components (e.g., conservation and balance laws). Such
inadequacy representation is formulated from the existing
knowledge regarding the system and is calibrated and vali-
dated using data. Additionally, following [47], Zhang et al.
[91] considered emulating the physics-based model output
and the associated modeling errors with Gaussian processes.
Utilizing such surrogate models speeds up the Bayesian solu-
tions to obtain the parameter posteriors. In comparison, our
method addresses modeling errors by calibrating noise hyper-
parameters while solving the Bayesian inference problem.
While the approaches presented by [44,58] will lead to a
more accurate assessment of modeling error in a particu-
lar problem, our approach is nonintrusive and applicable
to a broad range of physical systems. This is because our
general approach neither requires a validated high-fidelity
model as in BAE nor the problem-dependent inadequacy rep-
resentations as in [58]. Additionally, although the sampling
algorithm to compute the parameter posteriors using the finite
element solution of the model is computationally expensive
compared to [91], our method ensures preserving the phys-
ical laws governing the material model (see Sect. 2). Pure
data-driven surrogate models such as Gaussian processes dis-
regards the predictive power of the physics-based models.
Despite the comprehensive uncertainty analyses of the
two-phase thermomechanical model silica aerogel in this
work, several areas can be addressed in future studies. Addi-
tional experimental studies are required to characterize the
underlying mechanisms of the newly fabricated silica aero-
gel and guide enhancing the multiphase mixture model. For
instance, the stress—strain measurements, including load-
ing and unloading, indentation experiments, e.g., [10,19] ,
and microstructure imaging before and after compression
testing can provide more insights on the micro-mechanical
responses and the effect of fluid pressure on the silica aero-
gel deformation. Additionally, a higher fidelity simulation
of the hierarchical porous structure and pore size on the sil-
ica aerogel properties may be achieved by gradient-enhanced
nonlocal models, such as those in [20,21]. This class of mod-
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els possesses length and time scales parameters to account for
the microstructural interactions on the macroscopic behavior
of the aerogel. Moreover, various computational models with
different fidelity and complexity can be constructed to sim-
ulate aerogel behavior. Given sufficient experimental data,
implementation of the Bayesian model validation frame-
work, based on the Occam-Plausibility Algorithm [22,54],
enables adaptive selection of the optimal model for predicting
the silica aerogel responses. Finally, the reliable prediction of
3D printed aerogel components, e.g., thermal breaks, must
cope with the spatial uncertainty due to the layer-by-layer
bonding in additive manufacturing.

In summary, this study shows that making a reliable com-
putational prediction of complex materials systems beyond
observation requires taking advantage of physics-based mod-
els and accurate characterization of uncertainties in mod-
eling and measurements with the aid of high-performance
computing.
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