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Abstract

This work presents a systematic strategy for selecting an “optimal” predictive computational model among a set of possible
echanistic models of a physical system. To this end, the Occam-Plausibility Algorithm (Farrell-Maupin et al., 2015) is

xtended by introducing a method for the design of model-specific validation experiments to provide data that portray the
eatures of the prediction quantities of interest. Leveraging Bayesian inference and model plausibility, the framework adaptively
alances the trade-off between complexity and validity of the models while taking into account the uncertainty in data, model
arameters, and the choice of the model itself for making reliable computational predictions. An application of this framework
s demonstrated in discrete-continuum multiscale modeling of size-dependent plasticity in polycrystalline materials, involving
islocation dynamics simulations and strain gradient plasticity models.

This study suggests that the effectiveness of validation experiments relies upon the choice of the model; thus, a validation
ata set that adequately informs a predictive computational model may not be effective for validating other models. Additionally,
he multiscale modeling results show that, given the discrete dislocation dynamics data, the optimal strain gradient plasticity

odel for predicting the deformation of a microelectromechanical system is obtained by excluding the isotropic hardening
echanism.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

The last decade has seen an explosion of observational data obtained from measurements, images, and high-
delity simulations of complex physical systems. Concurrently, the advancements in computational science have
rovided remarkable opportunities to harness such a data revolution to push forward prediction capabilities of
echanistic (physics-based) models for making high-consequence decisions. An essential step in the scientific

rediction of physical phenomena beyond observation is assessing the validity of models in the presence of
ncertainties in data, model parameters, and numerical errors, e.g., [1–5]. However, selecting the models for
redicting key Quantities of Interest (QoIs), among the many possible models depicting a physical event, poses
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Nomenclature

Uncertainty Quantification

θ Vector of model parameters
Θ Parameter space
E Mean
V Variance
D Observational data
Dc Calibration data
Dv Validation data
D Data space
I Identity matrix
M Set of parametric models
N Gaussian distribution
S Scenario
Sc Calibration scenario
Sv Validation scenario
Sp Prediction scenario
U Uniform distribution
π Probability density function
πpost Posterior probability density function
πprior Prior probability density function
πlike Likelihood probability density function
πevid Evidence probability density function
ρ Model Plausibility
σ 2

noise Noise variance
ϵ Total error
Y,Y Multivariate/univariate model output
DK L Kullback–Leibler divergence
M A parametric computational model
S Total effect sensitivity index
m Noise multiplier

Discrete Dislocation Dynamics

r Position of a point on the dislocation
δr Position change of a point on the dislocation
Bα Diagonal resistive matrix of a dislocation α

b j Burgers vector of dislocation segment j
E Strain tensor
F Total force acting on a dislocation
nβ Normal of slip plane β

p Dislocation line vector
Fk Global force vector
T Stress tensor
vα Velocity of the dislocation α

vβ

j Velocity of the segment j and plane β

C Fourth order elastic tensor
2
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µ Shear modulus
ν Poisson’s Ratio
Bki Global resistivity matrix
C Dislocation path
D Grain size
H Film thickness
lβj Length of dislocation segment j moving on the slip plane β

Qi Global coordinates of degrees of freedom of segments
V Volume of the simulated crystal

Strain Gradient Plasticity

Ψ Specific free energy per unit volume
∇ Gradient operator
∆ Laplacian operator
∆tn nth time interval
Ṗ Effective non-local flow rate
ℓdis Dissipative length scale
ℓen Energetic length scale
ϵi jk Permutation tensor
η Regularization parameter
ΓD,ΓN Macroscopic boundaries of the domain
ΓF ,ΓH Microscopic boundaries of the domain and grain boundaries
λ, µ Lamé constants
S Third-order microstress tensor conjugate to the gradient of plastic strain tensor
Sdis,Sen Energetic/dissipative components of S
S Second-order equivalent microstress tensor conjugate to the gradient of plastic strain
Q Second-order microstress tensor conjugate to the plastic strain
Qdis, Qen Energetic/dissipative components of Q
Q First-order microstress tensor conjugate to the equivalent plastic strain
Ee Elastic strain tensor
Ep Plastic strain tensor
Ep† Prescribed plastic strain tensor
f Body force
G Burgers tensor
Np Direction of plastic flow
nN Outward unit normal to the Neumann boundary
nF Outward unit normal to the grain boundaries
T Cauchy stress tensor
T0 Deviatoric part of Cauchy stress tensor
t Surface traction vector
u Displacement vector
u† Prescribed displacement vector
x Position of a material point
x, y, z Orthonormal Cartesian coordinates
Ω Bounded Lipschitz domain
E Young’s modulus
h, r Isotropic hardening parameters
3
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p Equivalent plastic strain
t Time
V Vector Hilbert space
v Vector test function
W Scalar Hilbert space
w Scalar test function
Y Yield stress

Miscellaneous

e Uniaxial tensile strain
e f Applied tensile strain
T Uniaxial tensile stress

a major challenge in predictive computational modeling. For example, the building blocks in developing physically
meaningful continuum mechanics models are the fundamental balance of laws of mass, linear and angular
momentum, and energy, which are supplemented by postulating constitutive equations based on physical and
thermodynamical constraints, e.g., [6,7]. While the former components are reliable, the constitutive equations often
incur model inadequacy due to simplifying assumptions on physical realities. Additionally, there can be many
possible choices of constitutive relations for a class of bodies undergoing specific processes, leading to a set of
continuum models with different fidelities, complexities, and computational costs. For other examples of possible
model classes, the reader is referred to [8,9] for molecular dynamics simulations and [10] for agent-based models
of cancer cells evolution. Therefore, reliable computational prediction requires a systematic approach to balancing
the trade-off between model complexity and validity for selecting the “optimal” model for prediction.

The Occam Plausibility Algorithm (OPAL), introduced in Farrell et al. [8], offers an adaptive framework to
odel validation and selection. The name is derived from the principle of Occam’s Razor, which states that among

ompeting theories, the one that relies on the fewest assumptions is the best. Following this principle, OPAL
everages output sensitivities to parameter variances, model validation, and the notation of model plausibility to
etermine the simplest valid model from a collection of possible mechanistic models of a physical process, given a

set of observational data. The algorithm relies on Bayesian inference to quantify uncertainties in data and model and
presents an adaptive bottom-up strategy by the successive increase in model complexity until the validation criteria
are fulfilled. OPAL has been successfully implemented to select and validate coarse-grained models of atomistic
systems of polymeric materials [8] and continuum models of tumor growth and radiotherapy using medical imaging
data [11–13].

Although progress has been made in recent years in methods and algorithms supporting predictive physics-based
modeling, many open problems remain to be addressed. A fundamental aspect of model validation is that a model
may be valid for predicting one particular QoI but invalid for another [1]. Generally, the target prediction is the
quantities not accessible by observational data. Thus the physics-based model must extrapolate the data obtained in
the validation experiments to predict the QoI beyond the data range. The overriding importance of the validation data
in predictive modeling gives rise to a grand challenge in designing model validation tests that produce observational
data representing the target prediction.

This contribution provides a systematic strategy for selecting “optimal predictive models” among the numerous
possible models that deliver a sufficiently accurate computational prediction. We extend OPAL by introducing the
notation of model-specific validation experiments by the realization that a set of validation data that adequately
informs the model parameters essential for the target prediction may not be effective for other models. Based
on global sensitivity analyses of the model parameters in the validation and prediction scenarios, we propose a
method to design validation experiments to provide observational data reflecting, in some sense, the structure of
the prediction QoI. Consequently, the modified algorithm adaptively selects the “optimal model”, which refers to
balancing the trade-off between the model complexity and validity while leveraging the model-specific data for

validation that warrants the “predictive” capacity of the model.

4
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The modeling problem considered herein is a class of discrete-to-continuum multiscale models of plastic
eformation in polycrystalline materials. The high-fidelity model is the discrete dislocation dynamics simulation
hat explicitly simulates the microstructural evolutions leading to plastic deformation, e.g., [14]. The multiscale
pproach consists of the hierarchical transition from the discrete simulations to strain gradient plasticity continuum
odels that leverage length parameters to characterize size-dependent plastic responses of microscale materials,

.g., [15,16]. The target prediction in this work is the response of a microelectromechanical (MEMS) pressure sensor
nder plastic deformation in which the observational data from the discrete dislocation simulations is inaccessible.
he main challenge in this class of multiscale modeling is the choice of strain gradient plasticity model that can
eliver acceptable computational prediction, given the uncertain data furnished by the discrete stochastic model.
o address this challenge, different strain gradient plasticity models are constructed by combinations of various
icromechanical mechanisms governing the plastic responses of small-scale materials. The modified OPAL is then

mplemented to select an optimal continuum model for predicting the QoI using the data furnished by the discrete
islocation simulations on the materials subsystems while coping with uncertainty in data due to microstructure
andomness and modeling errors incurred by simplifying assumptions in the theoretical model and numerical
olutions.

Following this introduction, we present an overview of discrete dislocation and continuum strain gradient models
f microscale plasticity of materials systems. Uncertainty quantification methods of the physics-based models and
he modified version of the Occam-Plausibility Algorithm are detailed in Section 3. Section 4 provides an example
f selecting the optimal predictive model with application to the sequential multiscale modeling of polycrystalline
aterials systems. Finally, concluding remarks can be found in Section 5.

. Multiscale model of microscale plasticity

The multiscale modeling of size-dependent plasticity in polycrystalline materials in this work consists of up-
caling discrete dislocation dynamics (high-fidelity) simulations to continuum strain-gradient plasticity (low-fidelity)
odels. This section summarizes the basics of each model.

.1. Discrete dislocation dynamics simulations

In a class of three-dimensional (3D) discrete dislocation dynamics (DDD) simulations, e.g., [17–20], the
ndividual dislocations are represented as spatial curves connected through dislocation nodes, and third-order shape
unctions maintain continuity of dislocation lines at the nodes. The 3D dislocation motion is described by kinetic
quations for the time evolution of generalized coordinates, consisting of position and tangent vectors at segment
odes. The equation of motion of the α-th dislocation is based on a variational principle for Gibbs free energy and

derived from irreversible thermodynamics as [17],∫
C

(F − Bαvα)δr|dp| = 0, (1)

here F is the total force acting on a dislocation from the summation of the Peach–Koehler, self-force, and Osmotic
orces [19], vα is the velocity of the dislocation, Bα is the diagonal resistive matrix (inverse of dislocation mobility),

is the dislocation line vector over the path C , r is the position of a point on the dislocation, and δr describes the
change in position for atoms on the dislocation line. Dividing the dislocation line into segments, the equation of
motion (1) can be written as [19],

Fk =

Nseg∑
i=1

Bki
∂

∂t
(Qi ), (2)

where Qi are global coordinates of degrees of freedom of segments, i.e., the position and tangent at a specific node,
Bki is the global resistivity matrix, Fk is the global force vector, and Nseg is the total number of degrees of freedom,
.e., number of coordinates at two ends of the loop segment multiplied by the number of segments. The coordinates
re updated by solving (2), and the macroscopic plastic strain rate is calculated from the motion of dislocations in
icroscale using [18],

Ėp
=

1
2V

Ns∑
lβj vβ

j (b j ⊗ nβ
+ nβ

⊗ b j ), (3)

j=1

5
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where V is the volume of the simulated crystal, Ns is the total number of dislocation segments, lβj is the length of
islocation segment j moving on the slip plane β, vβ

j is the corresponding velocity of the segment j , b j and nβ are
he Burgers vector of dislocation segment j and the normal of slip plane β, respectively. The stress T and strain E
elation is expressed as,

Ṫ = C(Ė − Ėp), (4)

here C is the elastic tensor including shear modulus µ and Poisson’s ratio ν parameters. Eq. (4) is solved
ncrementally under a constant strain rate assumption. More details on this class of DDD model can be found
n [17–19].

This work leverages the DDD simulations of size-dependent plasticity in polycrystalline Copper thin films
onducted by Zhou and LeSar [20]. The domain consists of nine columnar grains with the grain size D and film
hickness H (see the schematics in Fig. 4). The stochastic mechanism of thermally-activated cross-slip is modeled
sing the Monte Carlo approach to determine the activation of cross-slip. Furthermore, the dislocation transmission
cross grain boundaries is taken into account using a line-tension model that allows for dislocation transfer once the
esolved shear stress of a dislocation exceeds the grain boundary transmission strength. The thin films are subjected
o uniaxial tensile loading with a constant strain rate of 2000 s−1. To characterize the microstructural randomness
n the size-dependent plasticity responses, the DDD simulations are conducted for different initial distributions of
rank–Read sources with random lengths with the initial dislocation densities of approximately 1.0×1013 m−2. In all
imulations, the DDD model parameters are considered as µ= 50 GPa, ν= 0.34, dislocation mobility is 10−4Pa−1s−1,
nd the ratio of the grain boundary transmission strength to the critical stress for activating the Frank–Read source
s 5. For developing the multiscale model, we use the DDD stress–strain results at the center grain for different film
hicknesses H and grain sizes D. Fig. 1 shows the extracted data points (from Figure 8 of Zhou and LeSar [20],
.193) leveraged to inform the continuum model. The computed stress–strain data from the DDD simulations in
his figure clearly show the plastic deformation’s dependency on the domain’s size. The error bars in Fig. 1 indicate
he averaged stress over ten separate simulations with different initial dislocation configurations.

.2. Continuum strain gradient plasticity theory

The strain-gradient plasticity theory of Faghihi and Voyiadjis [16,21–23] is taken into account as the continuum
odel in this work. The original version of this theory is built on earlier works of Gurtin and co-workers,

.g., [24–26] and accounts for fully thermo-mechanical plastic deformation in microscale materials under fast
ransient heating. A summary of the governing equations of a simplified model used in this work, after ignoring
he generalized heat equation and the grain boundary effect, is provided in this section.

Let Ω be a bounded Lipschitz domain in three-dimensional space, x be the position of a material point, and
(x, t) is the displacement of the body from its reference configuration. Under small deformation assumption, the
train is decomposed according to,

E = sym(∇u) = Ee
+ Ep, (5)

here Ee and Ep denote the elastic and plastic strains and plastic incompressibility tr(Ep) = 0 and plastic
rrotationality skw(Ep) = 0 are taken into account. The Burgers tensor [27] represents the strain-gradient effects
ue to the presence of geometrically necessary dislocations (GNDs) and is defined as,

G = ∇ × Ep. (6)

he time-derivative of the Burgers tensor is given by,

Ġ = (∇ ṗ×)Np
+ ṗ(∇ × Np), (7)

here p = ∥Ep
∥ denotes equivalent plastic strain, Np

= Ėp/∥Ėp
∥ is the direction of plastic flow, and (∇ ṗ×) =

irs ṗ,r is a skew-symmetric tensor with εi jk being the permutation symbol.
Following the above kinematics, the principle of virtual power leads to the macro-force balance,
∇ · T + f = 0, in Ω , (8)

6
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Fig. 1. Stress–strain results obtained from 3D stochastic DDD simulations of polycrystalline thin films under uniaxial tension with different
film thicknesses H and grain sizes D of (a) 250 nm, (b) 500 nm, (c) 1000 nm, and (d) 1500 nm. The error bars indicate uncertainty cured

y the ten separate simulations with different initial dislocation configurations.
ource: Reproduced from [20] with permission from Elsevier.

nd the microforce balance,

T0 − Q + ∇ · S = 0, in Ω , (9)

ogether with macroscopic and microscopic boundary conditions,

TnN = t on ΓN , u = u† on ΓD, (10)

SnF = M on ΓF , Ep
= Ep† on ΓH . (11)

In the above relations, T is the Cauchy stress tensor with the deviatoric part T0, f is the body force, t is the surface
raction, and the second-order tensor Q and the third-order tensor S are the microforces power-conjugate to the
lastic strain and its gradient, respectively. Furthermore, u† denotes a prescribed displacement, ΓD and ΓN are
omplementary parts of the boundary of the domain Ω , and nN is the outward unit normal on the corresponding
oundary. The prescribed plastic strain is denoted by Ep†, M is called the micro-traction, and ΓH and ΓF are either
xternal boundaries of the domain or the internal interfaces (grain boundaries) with corresponding unit normal nF .
e assumed the displacement field is continuous across the grain boundary, and dislocations cannot penetrate the

rain boundaries. Refer to [16] for a model of grain-boundary that accounts for the energy storage due to the
islocation pile-up and energy dissipation once the dislocations transfer through the grain boundary as a result of
oth resistance force and change in the interfacial area.
7
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The local dissipation inequality under isothermal conditions is expressed as [15,28],

T : Ėe + Q : Ėp + S
... ∇Ėp − Ψ̇ ≥ 0, (12)

where Ψ is the specific Helmholtz free energy per unit volume, with the following constitutive relation

Ψ =
1
2

Ee
: CEe

+ h
(

∥Ep
∥ +

1
r

exp(−r∥Ep
∥) −

1
r

)
+

1
2
µℓ2

en∥∇Ep
∥

2. (13)

he first term on the right-hand side of (13) is the elastic component of the free energy where C is the fourth-order
lastic tensor including the Lamé constants, µ and λ (or equivalently, Young’s modulus E and Poisson’s ratio ν).
he second term of the free energy accounts for the interaction among slip systems, i.e., the forest dislocations,
haracterized by ∥Ep

∥ in macroscale and leading to isotropic hardening with two model parameters h and r . We note
that while isotropic hardening is a dissipative phenomenon, it can equivalently be characterized energetically [23,29].
The third term in (13) addresses the short-range interactions between GNDs moving on close slip planes, represented
by plastic strain gradient and leading to kinematic hardening [24,30]. The energetic length scale parameter ℓen in this
relation controls the non-local short-range interaction among GNDs [31,32]. From (13), the energetic counterparts
of the thermodynamical stresses are given by,

T =
∂Ψ

∂Ee
= λ(tr Ee)I + 2µEe,

Qen =
∂Ψ

∂Ep
= h (1 − exp(−r p))

Ep

∥Ep∥
, (14)

Sen =
∂Ψ

∂∇Ep
= µℓ2

en∇Ep.

ollowing the decomposition of the micro-stress additively into energetic and dissipative counterparts,

Q = Qen + Qdis, S = Sen + Sdis, (15)

he reduced dissipation inequality from (12) becomes [33,34]

Φ = Qdis : Ėp
+ Sdis

... ∇Ėp
≥ 0, (16)

here Φ is the energy dissipation potential. The constitutive equations for the dissipative thermodynamical stresses
or the rate-independent plastic deformation are (see [32] for details),

Qdis =
∂Φ

∂Ėp
= Y

Ėp

Ṗ
,

Sdis =
∂Φ

∂∇Ėp
= Yℓ2

dis
∇Ėp

Ṗ
, (17)

here Y is the yield stress, ℓdis is the dissipative length parameter controlling the gradient strengthening, and the
ffective non-local flow rate Ṗ is defined as,

Ṗ =

√
∥Ėp∥2 + ℓ2

dis∥∇Ėp∥2, (18)

hat describes the energy dissipation due to the motion of both SSDs and GNDs [24,35].
Substituting the thermodynamical stresses (14) and (17), the micro-force balance (9), is written as a second-order

artial-differential equation for the plastic strain,

T0 −
[
−µℓ2

en∆Ep]
= h(1 − exp(−r p))

Ep

∥Ep∥
+ Y

Ėp

Ṗ
− Yℓ2

dis∇ ·

[
∇Ėp

Ṗ

]
, (19)

where ∆ is the Laplacian operator. The differential Eqs. (8) and (19), along with the constitutive relation (14)1
constitute the governing equations of the strain gradient plasticity theory.

2.2.1. Classes of strain gradient models
The strain gradient plasticity theory described in the previous section accounts for various micromechanical

mechanisms that arise from the thermodynamical stresses to govern the size-dependent plastic responses of
8
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Table 1
Different model classes derived from the full strain-gradient plasticity, (19) and (8), by various combinations of
the energetic and dissipative micro-stresses and examples of the analogous gradient theories in the literature.

Models Plasticity mechanisms Examples of equivalent plasticity theories

Qen Qdis Sen Sdis

M1 ✓ ✓ Aifantis [38,39]

M2 ✓ ✓
Fleck and Willis [36], Niordson and Tvergaard [40],
Fleck and Hutchinson [41]

M3 ✓ ✓ Classical plasticity with nonlinear hardening

M4 ✓ ✓ ✓ Gurtin and Anand [24,42]

M5 ✓ ✓ ✓ Voyiadjis et al. [43–46]

M6 ✓ ✓ ✓
Fleck and Willis [47], Bardella [48],
Fredriksson and Gudmundson [49]

M7 ✓ ✓ ✓ ✓ Voyiadjis et al. [50,51], Bardella and Niordson [52]

small-scale materials. These mechanisms include elastic deformation (T), forest dislocations leading to isotropic
ardening (Qen), short-range interactions between GNDs leading to kinematic hardening (Sen), movement of mobile
islocations resulting in plastic flow (Qdis), and GNDs induced strengthening Sdis. It is possible, however, to
onstruct a set of plasticity models with different fidelities and complexity by eliminating some of these stresses.
able 1 summarizes different model classes that can be derived by considering different combinations of stresses
micromechanical mechanisms). The models presented in this table are analogous to other gradient theories proposed
n the literature regarding the contributions of various dislocation phenomena. For example, the model M2 only
ccounts for the dissipative nature of dislocations, leading to gradient strengthening in plastic flow. Similarly, in
he theory of Fleck and Willis [36], stress measures conjugate to plastic strain and its gradient are assumed to be
issipative in nature, and attention is paid to ensure that positive plastic work is done. For a comprehensive review
f different strain gradient plasticity models and their scopes of applications, the interested readers are referred
o [37] and the references cited therein.

.2.2. Finite element solution
The computational plasticity model is developed by simplifying the theory presented in the previous section, (8)

nd (19), to a strain-gradient theory represented based on the scalar plasticity variable. To this end, we approximate
7) by truncating the second term Ġ ≈ (∇ ṗ×)Np and assume that the co-directionality hypothesis [53] holds, which
sserts that the directions of plastic flow and deviatoric stress coincide Np

≈ T0/∥T0∥. Following these assumptions,
he strong form of the governing equations consisting of macro-force and micro-force balances become

∇ · T = 0,

T0 = (Q + ∇ · S)Np, (20)

here Q = Qen + Qdis and S = Sen + Sdis and

Qen = h − h exp(−r p) , Qdis = Y
(

ṗ
Ṗ

)
, (21)

Sen = µℓ2
en∇ p , Sdis = Yℓ2

dis

(
∇ ṗ
Ṗ

)
.

Additionally, to facilitate numerical solutions, we substitute (18) with a regularized effective non-local flow rate,
which is smooth everywhere except at the origin,

Ṗ =

√
∥ ṗ∥2 + ℓ2

dis(∇ ṗ · ∇ ṗ) + η2, (22)

here η > 0 is a small value.
9
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To solve the coupled nonlinear system of equations in (20), we make use of continuous Galerkin finite element

ethods and a dual-mixed variational formulation, involving both displacement field u and the equivalent plastic
strain field p as separate unknowns. The Hilbert spaces are defined as,

V = {v ∈ H 1(Ω ) : v = 0 on ΓD},

W = {w ∈ H 1(Ω ) : w = 0 on ΓH },

for the displacement and equivalent plastic strain, respectively. The variational problem, for Dirichlet boundary
conditions, is then defined as: Find (u, p) ∈ V × W , such that∫

Ω

(T : ∇v) dx = 0∫
Ω

((Q − ∥T0∥) w + S · ∇w) dx = 0

⎫⎪⎬⎪⎭ , (23)

for all choices of test functions v ∈ V and w ∈ W . For compatible spatial discretization, we approximate the
displacement field u by the second-order Lagrange polynomial while the equivalent plastic strain p is approximated
by the first-order Lagrange polynomial [15]. Such a discretization alleviates the instability and stress oscillations that
can form in the solution of this class of coupled partial differential equations. The time discretization is achieved
by partitioning the time interval by the increment ∆tn = tn+1 − tn . The incremental problem is then obtained using
a backward Euler approximation in time to solve (23) for the displacement un+1 and equivalent plastic strain pn+1

from the known (un, pn) from the previous step. The plastic strain tensor is then evaluated at each time step, using
Ep

n+1 = Ep
n + ∆tn(pn+1 − pn)Np

n .
Extensive numerical analyses of this class of strain gradient plasticity models and the proof of existence and

uniqueness of solutions are presented in [54–56]. In particular, Reddy et al. [54] showed that the numerical solution
requires hardening (presence of Qen and/or Sen) to guarantee uniqueness in the local stress response. Following these
studies, we leverage a generalized Newton method for solving the incremental nonlinear problem that arises from
(23). The number of required Newton steps increases for smaller length scales, and the convergence rate is mesh-
dependent. To reduce the prohibitive computational costs of the subsequent uncertainty analyses, we implemented an
adaptive time-stepping approach in which the choice of the next time increment depends on the number of Newton
steps required for the preceding time increment. Fig. 2 shows a set of 2D numerical experiments of the model on
the size effect responses of a polycrystalline thin film corresponding to the domain and boundary conditions of
the DDD simulations (Section 2.1). The finite element library FEniCS [57] is employed to implement the solution
algorithm of the strain gradient plasticity models.

3. A framework for model validation and selection

The proposed strategy for selecting an “optimal” predictive computational model relies on the systematic
assessment of uncertainty in data, model parameters, and the model itself. This section overviews the uncertainty
quantification methods, including sensitivity analysis and the Bayesian approaches to parameter inference and model
selection. Leveraging these methods, we then lay down the framework for adaptive selection and validation of
computational models.

3.1. Forward and inverse uncertainty assessment methods

Let M be a set of m parametric and physics-based (mechanistic) models,

M =

{
M1(θ1), M2(θ2), . . . , MP (θ P )

}
, (24)

where each model Mi , i = 1, 2, . . . , P has its own set of parameters θ i ∈ Θi . The models in the set may be
related and share the same parameters. Additionally, we denote observational data by D ∈ D. In the context of the
sequential multiscale modeling in this work, Mi denotes different strain gradient plasticity models in Table 1 and

the data D is furnished by the DDD simulations shown in Fig. 1.

10
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Fig. 2. Numerical experiments of the 2D polycrystalline thin film under uniaxial tensile loading using the strain gradient plasticity model:
a) Geometry and finite element mesh for the domain with the grain size of D = 100 nm and consists of 4914 elements. The external

surfaces and grain boundaries are assumed to be impenetrable to dislocation by imposing p = 0; (b) Contours of equivalent plastic strain
p using the ℓen = 60 nm and ℓdis = 60 nm; (c) Size-dependent stress–strain results due to variation of length parameter ℓdis with ℓen ≈ 0
showing that the dissipative length scale gives rise to the flow stress strengthening. (d) Size-dependent stress–strain results due to variation
of length parameter ℓen with ℓdis ≈ 0 showing increasing energetic length scale leads to more significant kinematic hardening. The other
parameters of the model are: E = 125 GPa, Y = 100 MPa h = 1 MPa, and r = 1.

3.1.1. Global sensitivity analysis
Global sensitivity analysis ranks the importance of model parameters in contributing to the uncertainty of the

model’s outputs [58–61]. We employ variance-based sensitivity analysis [62–64], in which the parameter sensitivity
is calculated by the conditional variance in the model output caused by each parameter. Let YMi ,S be a univariate
output of the model Mi with Ki uncertain parameters θ i and for the scenario S in which the model is posed.
The scenario refers to the features of the problem that can be specified, such as the domain and specific boundary
conditions. Thus the same model can be used in several different scenarios. A variance based sensitivity measure
for each parameter is the total effect index S defined as (see [65,66] for more details),

Sk|Mi ,S = 1 −

Vθ∼k
i

(
Eθk

i
(YMi ,S |θ∼k

i )
)

V(YMi ,S )
, k = 1, . . . , Ki , i = 1, . . . , P. (25)

where θ k
i is the kth input factor, θ∼k

i is the vector of all parameters except θ k
i , and Eθk

i
(·) is the mean and Vθ∼k

i (·) is
he variance taken over all possible values of θ∼k while θk is fixed. A small total effect index Sk|Mi for a parameter
ndicates that fixing that parameter at any value within its uncertainty range will not appreciably impact the model
utput. Given the probability distributions of the uncertain parameters, one can leverage a Monte Carlo (MC)
stimator proposed by Saltelli [59,60,65,67] to compute the total sensitivity index (25). This estimator decreases the
ost of approximating multi-dimensional integrals for each model from N 2

MC to NMC (K +2) model evaluation [59],
here N is the number of MC samples.
MC

11



J. Tan, B. Liang, P.K. Singh et al. Computer Methods in Applied Mechanics and Engineering xxx (xxxx) xxx

a

o
t
i

A

T
n
m

w

T
a
i
1
r
l

3

m
t
M

i
i
o

3.1.2. Bayesian inference
For determining the model parameters from data, we employ Bayesian inference. Bayes’ Theorem [68],

cknowledging that we have additional conditional information that the model Mi (θ i ), set M, and scenario S
are known, is written as

πpost (θ i |D, Mi ,M,S) =
πlike(D|θ i , Mi ,M,S)πprior (θ i |Mi ,M)

πevid (D|Mi ,M,S)
, i = 1, 2, . . . , P (26)

where πpost (θ i |D, Mi ,M,S) is the posterior probability density function (PDF), which defines the Bayesian update
f the prior information about the parameter represented by πprior (θ i |Mi ,M), which generally may not depend on
he scenario S. The term πlike(D|θ , Mi ,M,S) is the likelihood PDF, and πevid (D|Mi ,M,S) is the evidence, which
s the probability of observed data,

πevid (D|Mi ,M,S) =

∫
Θi

πlike(D|θ i , Mi ,M,S) πprior (θ i |Mi ,M) dθ . (27)

useful point estimate is the maximum a posteriori (MAP) of the parameters,

θMAP
i = argmax

θ

πpost (θ i |D, Mi ,M,S). (28)

he statistical discrepancy between the observational data D and corresponding model output YMi ,S , known as the
oise model, determines the form of the likelihood PDF in (26). To infer parameters of the strain gradient plasticity
odels from stress–strain data generated by the DDD simulations, we use the log-likelihood function,

ln (πlike(D|θ i , Mi ,M,S) = −
1
2

ln(2π ) − ln(σnoise) −
1
2

∑ND
j=1(T j

Mi ,S − T j
D,S )2

σ 2
noise

, (29)

here ND is the number of independent and identically distributed (i.i.d.) data points and T j
D and T j

YMi
are the

uniaxial stress values obtained from the DDD and the strain gradient model, respectively. The likelihood (29) is
derived based on a Gaussian noise model in which data noise and modeling error are additive [69] to make up the
total error ϵ ∼ N (0, σ 2

noiseI) with σ 2
noise being the noise variance. A careful characterization of the noise variance

is crucial to accurate Bayesian inference. Underestimating the noise levels will lead to overfitting the model to
measurement and modeling errors, leading to overconfident and biased parameter estimation, while overestimated
σ 2

noise may lead to disregarding information encoded in the data. We further assume that the modeling errors are
proportional to measurements noise, such that

σ 2
noiseI = m(σ j

D)2I, j = 1, 2, . . . , ND (30)

where σ
j

D is the variance of each data point, I is an ND × ND identity matrix, and m is called the noise multiplier.
o balance the trade-off between the prior of the model parameters and data misfit in the likelihood, we view m
s a hyper-parameter to be calculated in the Bayesian inference process. Since the likelihood (29) belongs to the
nverse-gamma family, we chose the prior of the noise multiplier to be an inverse gamma function with the mean of
.0 and the standard deviation of 0.1 [70]. Finally, the numerical solution of Bayesian inference (26) in this work
elies on the Delayed Rejection Adaptive Metropolis (DRAM) algorithm [71] as implemented in the open-source
ibrary DAKOTA [72].

.1.3. Model plausibility
Rearranging Bayes’ Rule (26), the evidence πevid (D|Mi ,M,S) is realized as a trade-off between how well the

odel Mi fits the data and the amount of information we gain about the model parameters θ i from data [73]. Thus,
he model evidence can be viewed as a new likelihood function of the Bayes’ Theorem over the models in the set

[1]. The corresponding posterior, for each model,

ρi = πpost (Mi |D,M,S) =
πevid (D|Mi ,M,S)πprior (Mi |M)∑m
i=1 πevid (D|Mi ,M,S)πprior (Mi |M)

, i = 1, 2, . . . , P. (31)

s called the posterior model plausibility. The prior model plausibility πprior (Mi |M) captures the modeler’s belief
n the predictive ability of the model Mi before calibration begins. The denominator of (31) normalizes the set
f discrete probability component, such that

∑P
ρ = 1. The model with the largest posterior plausibility is
i=1 i

12
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deemed the most plausible model in the set M. Computing the model evidences and, subsequently, the posterior
plausibilities requires evaluation of possibly high-dimension integral in (27). Following [74], we approximate the
evidence of Mi at the parameters MAP (28),

πevid (D|Mi ,M,S) =
πlike(D|θMAP

i , Mi ,M,S)πprior (θMAP
i |Mi ,M)

πpost (θMAP
i |D, Mi ,M,S)

. (32)

3.2. Calibration, validation, and prediction scenarios

A fundamental aspect of predictive physics-based modeling is the hierarchy of scenarios, each with different
observational data, to inform the model parameters. The calibration, validation, and prediction scenarios and the
sequence in which the model access to data is conceptualized as levels in a “prediction pyramid”, e.g., [2,3,5,75,76].
The calibration scenario Sc resides at the base of the pyramid representing simple component tests designed
to generate calibration data Dc to inform the model parameters. Traveling upwards, the validation scenario Sv

corresponds to a more complex subsystem to test the accuracy of model prediction against validation data Dv .
Several validation scenarios may be taken into account to study the validity of various features of the model. The
prediction scenario Sp is at the peak of the pyramid in which a validated model is used to predict quantities of
interest (QoI), usually in the absence of observational data. As we move up the pyramid, the computational cost of
the model solution usually increases while the amount of available data decreases.

The choice of the validation scenario is particularly crucial in predictive modeling, owing to the reliance of the
unobservable QoIs prediction on the extrapolation of the validation data by the model. The role of the calibration data
is to provide a meaningful prior distribution to infer the model parameters from the validation data. Consequently,
the prediction capacity of the model is determined by how well the validation data portray features of the QoIs in the
prediction scenario. Additionally, for rigorous assessment of model validity, Dv should deliver adequate information
ver the Dc, and thus validation scenario cannot convey a simple perturbation of the calibration experiment. As
escribed in the following section, we use these attributes of Dv to design effective validation scenarios.

.3. The modified OPAL

Building on the Occam Plausibility Algorithm (OPAL) [8], we propose a systematic strategy to adaptively select
he “optimal predictive model” among a set of possible models of a physical event. Here, the “optimal model” is
eferred to as balancing the trade-off between the model complexity and validity, and the “predictive” ability of the
odel is secured by the design of model-specific validation experiments that, in some sense, reflects the structure

f the prediction target (QoI). The modified OPAL is shown in Fig. 3 and involves the following steps:

1. Initialization. Construct a set M of models in (24).
2. Global Sensitivity Analysis. Compute parameter sensitivities of each model Mi (θ i ) in the calibration

scenario Sc, with the model output YMi ,Sc set to the calibration observables corresponding to Dc. Based
on an acceptable tolerance on the sensitivity indices, the insensitive parameters can be assumed as fixed or
deterministic, reducing the space of uncertain parameters in all models.

3. Occam Categories. Partition the models in M based on their complexity (e.g., number of uncertain
parameters) into Occam categories, with the simplest models designated Category 1, and the most complex
model resides in the last category. We, therefore, produce a collection of subsets,

Ml
=

{
M l

1(θ l
1), M l

2(θ l
2), . . . , M l

Ll
(θ l

Ll
)
}
, l = 1, 2 · · · , H, (33)

where l is the category and L l < P .
4. Occam Step and Calibration. Starting with l = 1, calibrate all the models in the subset Ml , using Bayesian

inference (26) for the calibration scenario Sc,

πpost (θ l
i |Dc, M l

i ,Ml ,Sc) =
πlike(Dc|θ

l
i , M l

i ,Ml ,Sc)πprior (θ l
i |M

l
i ,Ml)

πevid (Dc|M l
i ,Ml ,Sc)

,

i = 1, 2, . . . , L . (34)
l

13
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Fig. 3. The modified Occam Plausibility Algorithm: Starting with a set of models, one reduces the uncertain parameter space in each model
y fixing the insensitive parameters. The models are then partitioned into categories based on model complexity measures. Beginning with
he first category l = 1, which consists of the simplest models, Bayesian calibration is done in Sc , and model plausibilities are computed.
inally, model validation is performed on the most plausible model in this category using the designed Sv for this model, which ensures

he validation data adequately informs the model of the target prediction. The model that passes the validation test is deemed the “optimal”
redictive model and is used to predict QoI in the prediction scenario Sp .

5. Plausibility Calculation. Calculate Bayesian posterior plausibilities ρl
i , i = 1, 2, . . . , L l of the models in

Category l. The most plausible model(s) in this category, denoted as M l
I (θ l

I ), is then identified.
6. Experimental Design. Before subjecting the most plausible model M l

I (θ l
I ) in the lth Occam category to

a validation test, identify proper validation scenario(s) for this model. We consider two criteria in the
experimental design process:
(i) The validation data Dv must inform the model parameters essential for the prediction QoI, while the
associated validation experiment is affordable to conduct. We propose a method to fulfill this requirement
by computing the global sensitivity of the model parameters θ l

I in the prediction scenario and for the model
output YMl

I ,Sp
set equal to the QoI. The sensitivity of the parameters for a proposed validation scenario is also

evaluated with model output YMl
I ,Sv

equal to the validation observables corresponding to the validation data
Dv . These sensitivity analyses can be performed using the initial uncertainty range or calibration posteriors
of the model parameters. Suppose the validation sensitivities are in good agreement with those for the
14
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prediction scenario. In that case, the validation experiment is deemed effective and can sufficiently inform
the model parameters for predicting the QoI. Using the Sobol indices (25), the criterion for a compelling Sv

is represented as

Sk|Ml
I ,Sp

− (Sk|Ml
I ,Sv

± T O Ls) ≥ 0, k = 1, 2 · · · , K l
I (35)

where K l
I is the number of model parameters in the vector θ l

I . If the current validation scenario is ineffective,
another Sv should be proposed based on the experimental feasibility and tested according to (35). We
recognize that maximizing the predictive capacity of a model requires model-specific validation experiments,
which may not be effective for other models.
(ii) The validation experiments must reasonably inform the model over the calibration experiments. Here we
use a criterion to ensure that the validation data delivers an acceptable information gain over the calibration
experiments, based on the Kullback–Leibler divergence (DK L (π1 ∥ π2) =

∫
π1 ln(π1/π2)dx) as a distance

measure between the calibration posterior (34) and validation posterior in (37),

DK L
(
πpost (θ l

I |Dv, Dc, M l
I ,Ml ,Sc,Sv)||πpost (θ l

I |Dc, M l
I ,Ml ,Sc)

)
≥ T O Le. (36)

Meeting both criteria (35) and (36) ensures that the model-specific validation experiment delivers adequate
information over the calibration data while it encodes the structure of the (unobservable) QoI in the prediction
scenario.
We remark that the sensitivity analysis results of M l

I (θ l
I ) with YMl

I ,Sp
being the prediction QoI may reveal

that the model(s) need to be recategorized (Step 3). This would necessitate repeating the calibration and
plausibility steps.

7. Validation Step. With the most plausible model M l
I (θ l

I ) and the effective validation scenario Sv identified,
the parameters are again updated via Bayes’ rule, using validation data,

πpost (θ l
I |Dv, Dc, M l

I ,Ml ,Sc,Sv) =
πlike(Dv|θ

l
I , Dc, M l

I ,Ml ,Sc,Sv)πpost (θ l
I |Dc, M l

I ,Ml ,Sc)
πevid (Dv|Dc, M l

I ,Ml ,Sv)
.

(37)

We emphasize that the designed validation experiments in the preceding step ensure that the accuracy with
which the model agrees with validation observational data Dv corresponds to the accuracy with which the
QoI is predicted in Sp. Thus, to deem the model valid, a distance measure between the model output and
data is compared to a given accuracy tolerance T O Lv ,

DK L

(
π (Dv) ∥ π (YMl

I ,Sv
)
)

≤ T O Lv, (38)

where π (Dv) is the PDF of the validation observational data and π (YMl
I ,Sv

) is the model-generated density
obtained using the validation-updated parameters.

8. Iteration and possible refinements. If the model M l
I passes the validation test (38), it is the optimal

predictive model and one can employ it with validated parameters πpost (θ l
I |Dv, Dc, M l

I ,Ml ,Sc,Sv) to predict
the QoI in the prediction scenario Sp. Otherwise, we move on to the next Occam category and repeat Steps
4 through 7 until a valid model is determined. If no models in M are valid, the model set must be enlarged
or additional calibration data acquired.

Concerning the modified OPAL, several remarks are in order:

Remark 1. The presented strategy assumes that while performing global sensitivity analyses have a lower
computational cost than the Bayesian inference, calculating parameter sensitivities in the validation and prediction
scenarios is computationally intensive and hopelessly impossible for all the models in M. To mitigate the associated
computational costs, the global sensitivity analysis is suggested to be performed initially in the Sc for all models
(Step 2). Subsequently, in the design of the validation experiment (Step 6), sensitivity analyses in Sv and Sp are
performed on the most plausible model in each category. In applications in which conducting parameter sensitivity of
the models is feasible in the prediction scenario, the experimental design step can be performed prior to categorizing
the models.
15
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Remark 2. The model plausibilities in Step 5 are computed using calibration data, presuming that the calculation
of plausibilities in the validation scenario and for a large number of models is rarely feasible due to computational
cost. In some cases, however, it is conceivable that validation data could be used for selecting the optimal model.

Remark 3. Although the modified OPAL provides an adaptive strategy for selecting an optimal predictive model,
its implementation relies on several (subjective) decisions that the modeler must make for a specific problem. These
include the tolerance T O Ls to judge which parameters are essential to be included in the Bayesian calibration (Step

), acceptable agreement with parameter sensitivity in the prediction scenario to deem a validation experiment as
ffective (Step 6), and, most importantly, the tolerance T O Lv to judge the model validity (Step 7). Additionally,

there are several measures of model complexity, in the sense of Occam’s razor, to delineate Occam categories.
We have chosen to use the number of uncertain parameters recommended by the sensitivity analysis in Step 2. In
general, the decision on the model complexities depends on many other factors and the available resources and
ultimately is subjective to the modeler.

4. Numerical results

This section demonstrates the implementation of the modified OPAL to select the optimal predictive continuum
plasticity model (Section 2.2) given the observational data furnished by the DDD simulations (Section 2.1) to predict
the response of a more complex material system in the absence of observational data.

4.1. Model classes, scenarios, and observables

Different model classes in the set M derived from the full strain-gradient plasticity, (8) and (19), including
various combinations of the energetic and dissipative micro-stresses, and are shown in Table 1. Fig. 4 shows
the calibration, validation, and prediction scenarios taken into account in this study for developing predictive
discrete-to-continuum multiscale models.

The prediction scenario Sp is a microelectromechanical (MEMS) capacitive pressure sensor schematically
represented at the top of Fig. 4. This microscale device creates a capacitor in which the deformation of the thin
film changes the capacitance and provides measurements of the applied load to the sensor. Here, we consider the
metallic part of the sensor to be polycrystalline with an average grain size of 450 nm. The target prediction (QoI)
is taken as the vertical displacement of the film’s midpoint under the applied traction. We note that the DDD model
described in Section 2.1 can only simulate idealized geometries and grain morphologies; thus, observational data
from high-fidelity simulations is not available in the prediction scenario.

The calibration scenario Sc is the 9-grain domain under uniaxial tension, and the calibration data Dc is the DDD
stress–strain results (see Fig. 1) for different grain sizes D = 250 nm, 500 nm, 1000 nm, and 1500 nm and the
film thicknesses of H = 250 nm, 500 nm. The validation data Dv is furnished by the DDD simulations of a more
complex subsystem (with the higher cost of acquiring data) consisting of the film thicknesses of H = 1000 nm,
1500 nm, and grain sizes D = 250 nm, 1000 nm. We note that the 2D continuum plasticity model does not capture
the effect of the film thicknesses on the stress–strain model output; thus, different thicknesses in the 3D DDD
simulations are viewed as data uncertainty in the Bayesian inference to account for such modeling error.

We take strain energy as the observable that represents size-dependent stress–strain responses in data and model.
The sum of the strain energies computed by the strain gradient plasticity model Mi and over the grain sizes in the
calibration (S = Sc) and validation (S = Sv) scenarios is,

YMi ,S =

∫ e f

0
|TMi ,S | de. (39)

Similarly, the strain energy obtained from DDD simulations in each scenario, summed over the corresponding grain
sizes and thicknesses, is

dD,S =

∫ e f

0
|TD,S | de. (40)

In (39) and (40), T denotes the uniaxial stress, e is the uniaxial strain, and e f is the amount of the applied tensile
strain in each scenario.
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Fig. 4. Illustrations of scenarios considered in the predictive multiscale model of polycrystalline materials: The bottom row shows the
alibration scenario Sc , consisting of 9-grain domains in the 3D discrete dislocation simulation with the grain sizes D = 250, 500, 1000,

and 1500 nm and film thicknesses H = 250 nm, 500 nm (right) and the 2D continuum strain gradient plasticity model with similar grain
izes D. The middle row shows the domain of the validation scenario Sv with H = 1000 nm, 1500 nm and D = 250 nm, 1000 nm used in

DDD simulations (right) and the corresponding continuum model (left). The prediction scenario Sp at the top is a MEMS pressure sensor
with an average grain size of 450 nm, and the unobservable target prediction (QoI) is the vertical displacement of the film under the applied
traction t.

4.2. Selection of predictive continuum model via modified OPAL

4.2.1. Sensitivity analysis and Occam categories
Here we perform the sensitivity analysis (Step 2) on the full strain gradient plasticity model M7 in Table 1, since

M1 to M6 are sub-models sharing the same parameters. Table 2 shows the model parameters and their initial range
of uncertainty used for the sensitivity analysis. Due lack of initial knowledge about the continuum plasticity model
parameters, i.e., complete ignorance, uniform distribution is assumed for all the parameters.

Fig. 5(a) presents the results of total sensitivity indices of the parameters Sk|M7,Sc using the MC estimator
described in Section 3.1.1. The model output YM7,Sc is set to the strain energy measure (39), which reflects the
observable stress–strain responses in the calibration scenario. The convergence studies in Fig. 5(b) are the results
of five realizations for different numbers of Latin Hypercube samples (LHS) and show that NMC = 3000 samples
provide sufficient accuracy for estimating the sensitivity indices. Viewing the important parameters to be those with
17
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Table 2
Model parameters of the strain gradient plasticity models and their probability
distributions considered for the sensitivity analysis and priors of the Bayesian model
calibration.

Parameter Physical meaning Probability distributions

ℓdis Dissipative length scale U (100, 600) nm
ℓen Energetic length scale U (0.00, 300) nm
Y Yield strength U (70, 250) MPa
h Isotropic hardening parameter U (0.75, 1 × 10−5) GPa
r Isotropic hardening exponent U (0.2, 450)
E Elastic modulus U (145, 170) GPa
ν Poisson’s ratio U (0.29, 0.39)

Fig. 5. Variance-based global sensitivity analysis of the full gradient plasticity model for the model output YM7,Sc being the strain energy
measure in (39): (a) The total effect sensitivity indices Sk|M7,Sc ; (b) Convergence study of the MC estimator for five realizations and the
different number of Latin Hypercube samples.

Table 3
Occam categories of the possible strain gradient plasticity models (Table 1). The model complexity measure is
taken as the number of uncertain parameters, and M7 is the full plasticity model described in Section 2.2. The
plausibility and log-evidence values of each model refer, respectively, to ρi and πevid (Dc|Mi ,Ml ,Sc), computed
in Step 5 of the modified OPAL. The validation metric denotes the distance between the strain energy observables
obtained from the validation data and the most plausible model in each category DK L

(
π (dD,Sv ) ∥ π (YMi ,Sv )

)
in Step 7 of the modified OPAL to judge the validity of the model according to (38).

Occam Models Parameters Plausibility Log-evidence Validation
categories metric

l = 1
M1 E, Y, ℓen ≈0.02% −183.7 –
M2 E, Y, ℓdis ≈99.98% −175.0 0.1304

l = 2
M3 E, Y, h, r ≈0.00% −211.7 –
M4 E, Y, ℓen, ℓdis ≈100.00% −174.4 0.0661

l = 3
M5 E, Y, ℓen, h, r ≈0.02% −193.8 –
M6 E, Y, ℓdis, h, r ≈99.98% −185.2 0.0759

l = 4 M7 E, Y, ℓen, ℓdis, h, r – −184.6 0.0702

the sensitivity index of Sk > 0.08, Poisson’s ratio is taken as the insensitive parameter, and it is fixed at ν = 0.34
in all sub-models and during the subsequent calibration, validation, and prediction processes.

Guided by the global sensitivity analysis results, the strain gradient plasticity models (Table 1) are classified
into four Occam categories shown in Table 3, taking the number of uncertain parameters as the model complexity
measure.
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Fig. 6. Design of validation experiment for the model M2: Total effect sensitivity indices of the model parameters Sk|M2,S , for k = 1, 2, 3,
re compared in the prediction scenario S = Sp for the QoI and the proposed validation scenarios S = S I

v ,S I I
v ,S I I I

v for the strain energy
easure (39). Based on the validation experimental design criterion (35), S I I

v is an effective validation experiments that adequately informs
M2 of the prediction QoI.

.2.2. Occam steps and selecting optimal predictive plasticity model
Next, we evaluate the models in each Occam category following OPAL. The calibration priors of the parameters

re presented in Table 2. The Bayesian analyses are conducted using the DRAM algorithm using ten chains with
engths of 2500. Each chain was initialized from different parameter values within the priors’ range to explore
he parameter space better, and the initial 10% of the chains is considered a burn-in period. We note that the
alibration posteriors of the model parameters might have complex features, and approximating these PDFs by
nown (e.g., Gaussian) distributions to be used as the validation priors may introduce significant errors in the
odel validation processes. To address this issue, the validation prior is represented by histogram distributions for

he solution of the Bayesian validation (37). In this method, the samples of the calibration posterior are treated as
data set, and the distribution of the samples is represented by a number of bins of non-zero width and height,

ndicating the probability that the uncertain parameter may lie in that bin. Care is given to determine the appropriate
umber of bins based on the number of available samples to accurately capture features of the parameter distribution.

ccam category 1. Bayesian calibration (34) and computation of the plausibilities of the models in the subset
1

= {M1, M2} in the calibration scenario Sc indicates M2 to be the most plausible model in the first category,
ue to the higher plausibility shown in Table 3. To ensure the validation data adequately informs M2 of the prediction
oI, we perform the design of the model-specific validation experiment. As the experimental design variable, we

onsider the total uniaxial strain e f applied to the domain Sv in Fig. 4. Accordingly, we propose the following
alidation scenarios:

• S I
v : total applied strain e f = 0.2%

• S I I
v : total applied strain e f = 0.4%

• S I I I
v : total applied strain e f = 1.0%

he global sensitivity analyses of model M2 are performed in the above three scenarios with the model output set
o validation observable YM2,S(·)

v
in (39). Additionally, the parameter sensitivities are computed in the prediction

cenario Sp for the model output set equal to the QoI (vertical displacement of the thin film in pressure sensor of
ig. 4). The estimated Sobol indices in the four cases are compared in Fig. 6. Setting the acceptance tolerance in

he experimental design objective (35) as T O Ls = 0.05, only the sensitivity of parameters in S I I
v is in the range or

igher than the ones in Sp. Thus, S I I
v is deemed to be an effective scenario for model validation as the validation

ata furnished by this scenario DI I
v would adequately inform the important parameters of M2 for the prediction

oI.
Using the stress–strain data DI I

v , generated by the DDD simulations in the identified validation scenario S I I
v

or M2, we update the model parameters θ2 = [E, Y, ℓdis] according to (37) to obtain the validation posterior.
he kernel density estimation (KDE) of the calibration priors, calibration posteriors, validation posteriors, and the
orresponding noise multiplier distributions are shown in Fig. 7. Computing the distance between the calibration
nd validation posteriors implies that the validation experiment S I I

v reasonably informs the model M2 over the
alibration data,( I I 1 I I 1 )
DK L πpost (θ2|Dv , Dc, M2,M ,Sc,Sv )||πpost (θ2|Dc, M2,M ,Sc) = 110.77 ≥ T O Le = 100. (41)
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Fig. 7. Bayesian calibration and validation of the model M2: Marginal distribution of the calibration prior πprior (θ2|M2,M1) (blue),
alibration posterior πpost (θ2|Dc, M2,M1,Sc) (red) and validation posterior πpost (θ2|DI I

v , Dc, M2,M1,Sc,S I I
v ) (yellow) probability

ensities of the parameters and the corresponding noise multiplier m. In both calibration and validation processes, the inverse-Gamma
rior (purple) is considered for the hyper-parameter m.

However, subjecting M2 to the validation test by computing the distance (38) between the average strain energies
f the validation data and the one evaluated by the model using the validation posteriors of the parameters in S I I

v

see Table 3) shows that this model is not valid,

DK L

(
π (dD,S I I

v
) ∥ π (YM2,S I I

v
)
)

= 0.1304 ≮ T O Lv = 0.1. (42)

ccam category 2. We now move to the calibration and plausibility steps of the second category M2
= {M3, M4},

hat renders M4 with parameters θ4 = [E, Y, ℓen, ℓdis] to be the most plausible model. The following validation
cenarios are then proposed for this model,

• S I I
v : total applied strain e f = 0.4%

• S I V
v : total applied strain e f = 0.5%

• SV
v : total applied strain e f = 0.7%

Comparing the parameter sensitivities in the proposed validation scenarios to Sp in Fig. 8, indicates that S I I
v ,

the scenario that was effective for M2, does not adequately inform important parameters (ℓen and ℓdis) of M4 for
redicting the QoI. The validation experimental design process of (35), results in selecting S I V

v as the effective
cenario for M4. The results of Bayesian calibration and validation of the model parameters are presented in Figs. 9
nd 10 compares the stress–strain data to the calibrated and validated model outputs. Additionally, the information
ain of M4 from the validation data DI V

v compared to the calibration data Dc is within the acceptable range,

DK L
(
πpost (θ4|DI V

v , Dc, M4,M2,Sc,S I V
v )||πpost (θ4|Dc, M4,M2,Sc)

)
= 190.70 ≥ T O Le = 100. (43)

The resulting distributions of the validation observable (strain energy measures in (39) and (40)) shown in Fig. 11
ndicate that the validated model M4 is closer to its designed validation data compared to M2. Despite the similar

odel evidences of M2 and M4 with respect to the calibration data (see Table 3), the model M4 with the validation
osterior of the parameters πpost (θ4|DI V

v , Dc, M4,M1,Sc,S I V
v ) is a valid model as it passes the validation test,

DK L

(
π (dD,S I V

v
) ∥ π (YM4,S I V

v
)
)

= 0.0661 ≤ T O Lv = 0.1. (44)

hus, according to the definitions in Section 3.3 and given the DDD simulations, the model M4 is deemed the
ptimal predictive strain gradient plasticity model among the possible models in Table 1. This suggests that isotropic
20
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Fig. 8. Design of validation experiment for the model M4. Total effect sensitivity indices of the model parameters Sk|M4,S , k = 1, . . . , 4
are compared in the prediction scenario S = Sp for the QoI and the proposed validation scenarios S = S I I

v ,S I V
v ,SV

v for the strain energy
easure (39). Based on the validation experimental design criterion (35), S I V

v is an effective validation experiments that adequately informs
M4 of the prediction QoI.

Fig. 9. Bayesian calibration and validation of the model M4: Marginal distribution of the calibration prior πprior (θ4|M4,M2) (blue),
alibration posterior πpost (θ4|Dc, M4,M2,Sc) (red) and validation posterior πpost (θ4|DI V

v , Dc, M4,M2,Sc,S I I
v ) (yellow) probability

densities of the parameters and the corresponding noise multiplier (hyper-parameter) m. In both calibration and validation processes, the
inverse-Gamma prior (purple) is considered for the hyper-parameter m.

ardening governed by the microstress Qen (with parameters h and r ) is not an essential mechanism contributing
o the plastic deformation in the current problem and can be eliminated from the full model M7. To examine the
erformance of the more complex models M5, M6, and M7, we continue OPAL in categories 3 and 4. The results
resented in Table 1 indicate that although both M6 and M7 are valid models according to the criterion (38), they
o not provide better prediction over the optimal predictive model M4, as judged by their higher validation metric
alues. Thus, the predictive abilities of more powerful models that have, for example, more free parameters depend
n the priors and how well the observational data inform those parameters.

.2.3. Impact of noise model on the Bayesian analyses
To achieve unbiased Bayesian calibration and validation while avoiding overfitting the model to measurement

nd model errors, we introduced the hyper-parameter (noise multiplier) m in (30) for characterizing the noise model.
he posteriors of m computed in Bayesian analyses of models M2 and M4 are shown in Figs. 7 and 9. In both
ases, the calibration posteriors of noise multipliers have a peak of around 0.85, indicating that a smaller total error
21
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Fig. 10. Comparison of the model M4 prediction with the stress–strain data furnished by the DDD simulations with different grain sizes: (a)
the calibration data Dc and the model prediction using the calibration posterior of the parameters πpost (θ4|Dc, M4,M2,Sc), (b) the model
specific validation data DI V

v and the model prediction using the validation posterior of the parameters πpost (θ4|DI V
v , Dc, M4,M2,Sc,S I V

v ).
The error bars in observational data indicate uncertainty in 3D DDD simulations due to different initial dislocation configurations and film
thicknesses.

Fig. 11. Distributions of the validation observables (YMi ,S in (39)) yielded by the most plausible model in each category and the corresponding
measure (dD,S in (40)) furnished by DDD simulations in the model specific validation scenarios: (a) Model M2 using the validation
posteriors πpost (θ2|DI I

v , Dc, M2,M1,Sc,S I I
v ) with the corresponding validation data DI I

v , (b) Model M4 using the validation posteriors
πpost (θ4|DI V

v , Dc, M4,M2,Sc,S I V
v ) with the corresponding validation data DI V

v . The M4 is deemed valid and thus optimal predictive strain
gradient plasticity model.

than the average data variance is needed for robust Bayesian inference. The resulting higher contribution of data
misfit to the parameter inference than the priors is due to assigning noninformative (uniform) priors to θ2 and θ4

in the Bayesian calibration process. However, due to leveraging calibration posteriors as the prior of the Bayesian
validation process (37), the validation posteriors of m nearly have the means of 1.0 and the standard deviations of
0.1, similar to its prior. The noise multiplier close to one implies that, in the validation processes, the average data
variance over all the data points is adequate to balance the trade-off between data misfit in the likelihood function
and the parameter priors.

4.3. Computational prediction using the optimal model

The optimal predictive strain gradient plasticity model M4 with the validation posterior of the parameters
π (θ |DI V , D , M ,M2,S ,S I V ) obtained from the DDD simulations, is then used to predict the response of
post 4 v c 4 c v
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Fig. 12. Computational prediction of the polycrystalline MEMS pressure sensor using the optimal predictive strain gradient plasticity model
M4 and the MAP values of the validation posterior of the model parameters: E = 156.44 GPa, Y = 122.7 MPa, ℓen = 60.1 nm, ℓdis =
307.6 nm. (a) equivalent plastic strain p = ∥Ep

∥, (b, c) components of the plastic strain tensor Ep , along xx and xy, (d) the magnitude of
the Cauchy stress tensor T, (e) vertical displacement u y .

Fig. 13. Computational prediction of the QoI in Sp , using the optimal predictive plasticity model M4 and validated posteriors of the
parameters.

the pressure sensor (Sp in Fig. 4). The applied traction of t =(0.0, 2.185) MPa/µm along (x, y) axes is taken into
account over the middle 10 µm of the top surface, and zero displacement u = 0 and zero vertical displacement
u y = 0 boundary conditions are applied to the bottom and side surfaces, respectively. Additionally, micro-hard
boundary conditions with p = 0 are imposed on all the external surfaces, describing the pile-up of dislocations
achieved by the surface passivation of the MEMS device. Fig. 12 shows stress, displacement, and plastic strain
contours computed using the MAP values of the model parameters, estimated from the solution of the validation
posterior. The significant accumulated plastic strain in the grains located in the middle of the domain and close
to the supports is due to the strain developments during the thin film bending, leading to higher compressive and
tensile E p

xx in those regions.
To characterize the reliability of the strain gradient plasticity model in predicting the QoI, we propagate the

parametric uncertainty through the model solution in the prediction scenario S . Due to the high computational
p
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cost of using all samples for the Bayesian solution obtained via the DRAM algorithm, we leverage a MC method
to randomly and uniformly draw sets of samples from the validation posterior distribution of parameters to solve
the statistical forward problem. We note that this MC method is valid only if the sampled parameters from the
distribution are i.i.d, as the validation posterior of the model parameters here. Using 1000 samples from the
parameters validation posterior, model M4 is solved to obtain the corresponding values of the vertical displacement
n the middle of the thin film (QoI). The probability distribution of the QoI, π (Q) is shown in Fig. 13, denoting

the following mean and 95% credible interval estimations of the computational prediction,

E(Q) = 0.0701 µm, CI(Q) = [0.0685, 0.0719] µm. (45)

5. Conclusions

This work provides improvement and refinement of steps in the OPAL for selecting an optimal predictive model
among a set of possible physics-based models with different fidelities and complexities. The main contribution of
this study is to address the non-trivial task of designing model-specific validation experiments to provide validation
data that reflect features of the prediction QoI. The application of the modified framework in selecting the strain
gradient plasticity models, given the discrete dislocation dynamics data, is provided to predict the response of
a polycrystal MEMS pressure sensor beyond observational data. The results indicate that while both energetic
and dissipative gradient-dependent micro-stresses are needed to predict the deformation of the microscale material
system, eliminating the isotropic hardening term delivers a sufficiently accurate computational prediction of the
vertical displacement (QoI). Additionally, the more complex models that have more parameters do not deliver better
computational predictions over the optimal model.

We remark that the model selection strategy presented in this work should not be mistaken by the view that“the
complexity of the predictive model should be consistent with the amount of available data”. This idea suggests
that when data is insufficient, we should use a simpler model even though that model is known to be incapable of
representing the accurate physics of the problem. Attempting to match the models’ fidelity to the amount of data is
one of the leading causes of overconfident predictions. However, the OPAL framework relies on Bayesian inference
in which the model choice is a matter of prior belief on parameters and the model itself and does not depend on
the amount of data. Even though acquiring large-scale data from a physical system might be conceivable, data is
always incomplete and contaminated with uncertainty. The philosophy in constructing the set of possible models
M, suggested by the classical works of Box and Tiao [77] and MacKay [78], is to incorporate (i) the models
we genuinely believe in; and (ii) every imaginable sub-models. Moreover, the steps of OPAL can be enriched by
the methods to account for unidentifiable and correlated parameters of the models. However, the main goal of the
current framework is to ensure sufficient predictive ability of the selected model through testing the model validity
given effective validation data. Finally, as indicated in the body of the manuscript, the presented model selection
strategy relies on several assumptions applicable to a wide range of modeling problems across science, engineering,
and medicine. However, the implementation of OPAL to a specific problem depends on several factors, including
the computational feasibility of each step, the measure of model complexity, and validation tolerance that ultimately
are subjective decisions of the modeler.

In summary, this study shows that the predictive abilities of computational models depend on their parameter
priors and how well the observational data inform those parameters. Thus, balancing the model complexity
and carefully planned validation data are essential features for reliable computational predictions of complex
physical phenomena. The framework demonstrated in this work attempts to address these challenging issues, while
possibilities for its enhancement exist and are the subject of future work.
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