
Fun and Engaging Pre-CS1 Programming Languages
Daniel D. Garcia (Moderator)

UC Berkeley
Berkeley, CA, USA

ddgarcia@cs.berkeley.edu

Michael P. Rogers
University of Wisconsin Oshkosh

Oshkosh, WI, USA
mprogers@mac.com

Andreas Stefik
University of Nevada, Las Vegas

Las Vegas, NV, USA
stefika@gmail.com

ABSTRACT
The CSforALL movement to bring computational thinking to K-12
has been a boon for practitioners and language developers. This
panel features three educators passionate about a particular lan-
guage that has been successful with K-12 audiences. Each will
demonstrate their language, describe what makes it unique, and
share some of the fun and engaging projects students have created.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion;

KEYWORDS
Outreach, K-12 CS Education, CS0, Pre-CS1, Languages

1 SUMMARY
The growth in interest in computer science education for K-12 and
CS0 learners has been a boon for language developers, who have
designed engaging and interactive languages and programming
environments. The purpose of this panel is to provide a venue for
experts in three languages to give demonstrations of their systems
and share their benefits with the community, in hopes of inspiring
a new generation. The intended audience is any educator working
with K-12 or CS0 students. This is relevant to the SIGCSE commu-
nity, since so many attendees are part of the CSforALL movement.

2 PANEL STRUCTURE
The panel will begin with the moderator briefly sharing the origin
behind the idea for the panel, its format, and an introduction of the
panelists, then each of themwill have 10-15 minutes to demonstrate
their language. Questions can begin to be answered in the chat
as soon as a panelist finishes speaking, since they will be free
to respond. The audience will have thirty minutes at the end for
audio/video questions and discussion, which might be aimed at a
specific presenter (e.g., “earlier you said X, can you clarify what
you meant?”), or might be addressed to all presenters (e.g., “can you
all show how your language can do Y?”). To keep things orderly,
attendees will raise their virtual hand to ask questions, and the
moderator will choose them, one-by-one, from the question queue.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2021, March 17-20, 2020, Toronto, Ontario, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.1145/1122445.1122456

Figure 1: The browser-based Snap! programming environ-
ment, and the “Vee” project we use to introduce recursion.

3 DAN GARCIA, SNAP!
Snap! is a visual, drag-and-drop, browser-based programming lan-
guage. It is an extended reimplementation of Scratch (a project
of the Lifelong Kindergarten Group at the MIT Media Lab) that
allows you to Build Your Own Blocks. Like Scratch, you can au-
thor procedures (called Commands) without return values. Unlike
Scratch, you can author functions (called Reporters) that do have
return values. It also features first class lists, first class procedures,
and continuations. These added capabilities make it suitable for a
serious introduction to computer science for high school or college
students. In fact, we’ve had over 800 teachers in our worldwide
professional development programs!

In our Beauty and Joy of Computing (BJC) AP CS Principles
high school and CS0 university classes, we use Snap! for many
reasons[1, 2]. Since it is based on the design of Scratch, students
can create rich, object-based, multimedia projects easily. Projects
are stored on the cloud and can be shared with any smart device,
so creating a mobile app is as simple as pointing a smart phone
to the URL of a shared project. It also allows us to teach powerful
computer science ideas, like recursion and functions-as-data. We
emphasize a functional-style approach, and students eventually find
our built-in utilities map, keep, and combine to be second nature.

The excitement for many students comes at the end of the course
when they work in teams and are free to choose any final project
they want. Many use this opportunity to explore some of the ad-
vanced features of Snap!. These are:

• The JavaScript function block to author raw JavaScript
and use some of its powerful built-in libraries.

• The url block to talk to Internet APIs.
• Hardware devices (e.g., the LEAP motion controller, Finch
and Hummingbird robots, Sphero, Lego NXT, and Arduino).

• Built-in libraries (e.g., streams, infinite precision integers,
animation, parallelization, and media computation).

Panel: Fun and Engaging Pre-CS1 Programming Languages SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

760

https://doi.org/10.1145/1122445.1122456

SIGCSE 2021, March 17-20, 2020, Toronto, Ontario, Canada D. D. Garcia et al.

Figure 2: One of the first exercises in the Swift playground
“Learn To Code 1”.

4 MICHAEL P. ROGERS, SWIFT
PLAYGROUNDS

Swift is a relatively new programming language, sprung upon an
unsuspecting developer community during Apple’s World Wide
Developer Conference in 2014, as a replacement for the venerable
Objective-C [3]. Swift is a modern, safe, syntactically-pleasing-to-
the-eye language that lives up to its name, outperforming Objective-
C in most benchmarks. One highly-lauded aspect of Swift is its abil-
ity to run in a REPL, known in Apple’s IDE, Xcode, as a playground,
allowing developers to quickly try out ideas without having to go
through a lengthy compilation process.

Although designed for professional developers, Swift’s elegant
design makes it eminently suitable for beginning coders, including
those in secondary education. Rather than burden novices with
Xcode, however, Apple created an app that runs on iPads and Mac-
intosh computers, Swift Playgrounds, and bundled it with three
“Learn To Code” playgrounds that borrow some ideation from “Hour
of Code”, but are Swift-based. These tutorials disguise a rigorous,
extensive course in Swift programming as a game, in which users
have to instruct adorable animated characters Byte, Blu and others,
how to perform assorted tasks.

Swift Playgrounds is backed by an impressive amount of instruc-
tional material that teachers in secondary education will appreciate,
and mappings to the CSTA-K12 standards that will help make the
argument for using Swift Playgrounds in the classroom.

5 ANDREAS STEFIK, QUORUM
The Quorum programming language originally started in 2009 as
a language that was designed for the blind or visually impaired
[4]. The approach, at first, was to carefully adjust syntax and se-
mantics to both be simpler to a younger audience and to be output
through screen reading devices. These initial designs were based
on a considerable amount of human factors evidence. Since that
time, Quorum has continued to gain popularity (especially among
high school students), and remains the language of choice in the
disabilities community.

Overall, Quorum is what is called an “evidence-oriented” pro-
gramming language, which means that when decisions are made
on how the language should change over time, they are based on

Figure 3: An image of a visual, but fully accessible, scene ed-
itor in the Quorum Studio programming environment.

empirical data, not just the personal opinions of the development
team. Generally, these decisions are based on either randomized
controlled trials with human-subjects, field data from other scholars
in the field, or other approaches. As an example of another evidence-
based approach to development besides traditional methods, priori-
ties for API development are voted on annually by our community.
This helps give users a “buy-in” for what the development team
is working on. This has helped lead to the user community for
Quorum growing over time from around 5 students in 2010 to more
than 103,000 people writing programs online annually today, and
more using the offline environments.

Additionally, as Quorum has developed, it has garnered a rich
set of built-in libraries. This includes connections to many other
domains, 2D and 3D graphics routines, and libraries for user inter-
face creation, networking for service architectures, digital signal
processing, LEGO robotics, and physics-based animation. Notably,
Quorum Studio, the development environment for the language,
uses a specialized graphics technology for creating fully visual and
fully accessible game scenes, even if a user is blind. Quorum works
online in a browser at quorumlanguage.com, can be used offline in
Quorum Studio, and can compile programs to Android, JavaScript
or Java Bytecode.

REFERENCES
[1] BJC. 2020. The Beauty and Joy of Computing. http://bjc.berkeley.edu/. (2020).

Cited 2020 August 27.
[2] Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of

computing. ACM Inroads 6, 4 (2015), 71–79.
[3] Michael P. Rogers and William M. Siever. 2015. A Swift Introduction to Swift

App Development (Abstract Only). In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education (SIGCSE ’15). ACM, New York, NY,
USA, 706–706. https://doi.org/10.1145/2676723.2678281

[4] Andreas Stefik and Richard Ladner. 2017. The Quorum Programming Language
(Abstract Only). In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’17). ACM, New York, NY, USA, 641–641.
https://doi.org/10.1145/3017680.3022377

Panel: Fun and Engaging Pre-CS1 Programming Languages SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

761

http://bjc.berkeley.edu/
https://doi.org/10.1145/2676723.2678281
https://doi.org/10.1145/3017680.3022377

	Abstract
	1 Summary
	2 Panel Structure
	3 Dan Garcia, Snap!
	4 Michael P. Rogers, Swift Playgrounds
	5 Andreas Stefik, Quorum
	References

