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Neural architecture search (NAS) is a promising technique to design efficient and high-performance deep neural
networks (DNNs). As the performance requirements of ML applications grow continuously, the hardware
accelerators start playing a central role in DNN design. This trend makes NAS even more complicated and
time-consuming for most real applications. This paper proposes FLASH, a very fast NAS methodology that
co-optimizes the DNN accuracy and performance on a real hardware platform. As the main theoretical
contribution, we first propose the NN-Degree, an analytical metric to quantify the topological characteristics
of DNNs with skip connections (e.g., DenseNets, ResNets, Wide-ResNets, and MobileNets). The newly proposed
NN-Degree allows us to do training-free NAS within one second and build an accuracy predictor by training as
few as 25 samples out of a vast search space with more than 63 billion configurations. Second, by performing
inference on the target hardware, we fine-tune and validate our analytical models to estimate the latency,
area, and energy consumption of various DNN architectures while executing standard ML datasets. Third,
we construct a hierarchical algorithm based on simplicial homology global optimization (SHGO) to optimize
the model-architecture co-design process, while considering the area, latency, and energy consumption of
the target hardware. We demonstrate that, compared to the state-of-the-art NAS approaches, our proposed
hierarchical SHGO-based algorithm enables more than four orders of magnitude speedup (specifically, the
execution time of the proposed algorithm is about 0.1 seconds). Finally, our experimental evaluations show that
FLASH is easily transferable to different hardware architectures, thus enabling us to do NAS on a Raspberry
Pi-3B processor in less than 3 seconds.
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1 Introduction

During the past decade, deep learning (DL) has led to significant breakthroughs in many areas,
such as image classification and natural language processing [6, 21, 25]. However, the existing large
models and computation complexity limit the deployment of DL on resource-constrained devices
and its large-scale adoption in edge computing. Multiple model compression techniques, such as
network pruning [20], quantization [13], and knowledge distillation [22], have been proposed to
compress and deploy such complex models on resource-constrained devices without sacrificing the
test accuracy. However, these techniques require a significant amount of manual tuning. Hence,
neural architecture search (NAS) has been proposed to automatically design neural architectures
with reduced model sizes [2, 17, 31, 32, 60].

NAS is an optimization problem with specific targets (e.g., high classification accuracy) over a
set of possible candidate architectures. The set of candidate architectures defines the (typically
vast) search space, while the optimizer defines the search algorithm. Recent breakthroughs in NAS
can simplify the tricky (and error-prone) ad-hoc architecture design process [31, 42]. Moreover, the
networks obtained via NAS have higher test accuracy and significantly fewer parameters than the
hand-designed networks [32, 44]. These advantages of NAS have attracted significant attention
from researchers and engineers alike [55]. However, most of the existing NAS approaches do not
explicitly consider the hardware constraints (e.g., latency and energy consumption). Consequently,
the resulting neural networks still cannot be deployed on real devices.

To address this drawback, recent studies propose hardware-aware NAS, which incorporates the
hardware constraints of networks during the search process [27]. Nevertheless, current approaches
are time-consuming since they involve training the candidate network, and a tedious search
process [56]. To accelerate NAS, recent NAS approaches rely on graph neural networks (GNNs) to
estimate the accuracy of a given network [9, 33, 40, 54]. However, training a GNN-based accuracy
predictor is still time-consuming (in the order of tens of minutes [12] to hours [36] on GPU clusters).
Therefore, adapting existing NAS approaches to different hardware architecture is challenging due
to their intensive computation and execution time requirements.

To alleviate the computation cost of current NAS approaches, we propose to analyze the
NAS problem from a network topology perspective. This idea is motivated by observing that
the tediousness and complexity of current NAS approaches stem from the lack of understanding of
what actually contributes to a neural network’s accuracy. Indeed, the innovations on the topology
of neural architecture, especially the introduction of skip connections, have achieved great success
in many applications [21, 25]. This is because, in general, the network topology (or structure)
strongly influences the phenomena taking place over them [39]. For instance, how closely the social
network users are interconnected directly affects how fast the information propagates through
the network [3]. Similarly, a DNN architecture can be seen as a network of connected neurons. As
discussed in [5], the topology of deep networks has a significant impact on how effectively the
gradients can propagate through the network and thus the test performance of neural networks.
These observations motivate us to take an approach from network science to quantify the topological
property of neural networks to accelerate NAS.

From an application perspective, the performance and energy efficiency of DNN accelerators are
other critical metrics besides the test accuracy. In-memory computing (IMC)-based architectures
have recently emerged as a promising technique to construct high-performance and energy-
efficient hardware accelerators for DNNs. IMC-based architectures can store all the weights on-
chip, hence removing the latency occurring from off-chip memory accesses. However, IMC-based
architectures face the challenge of a tremendous increase of on-chip communication volume. While
most of the state-of-the-art neural networks adopt skip connections in order to improve their
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performance [21, 25, 45], the wide usage of skip connections requires large amounts of data transfer
across multiple layers, thus causing a significant communication overhead. Prior work on IMC-
based DNN accelerators proposed bus-based network-on-chip (NoC) [10] or cmesh-based NoC [46]
for communication between multiple layers. However, both bus-based and cmesh-based on-chip
communication significantly increase the area, latency, and energy consumption of hardware;
hence, they do not offer a promising solution for future accelerators.

Starting from these overarching ideas, this paper proposes FLASH - a fast neural architecture
search with hardware optimization — to address the drawbacks of current NAS techniques. FLASH
delivers a neural architecture that is co-optimized with respect to accuracy and hardware performance.
Specifically, by analyzing the topological property of neural architectures from a network science
perspective, we propose a new topology-based metric, namely, the NN-Degree. We show that NN-
Degree could indicate the test performance of a given architectures. This makes our proposed NAS
training-free during the search process and accelerates NAS by orders of magnitude compared to
state-of-the-art approaches. Then, we demonstrate that NN-Degree enables a lightweight accuracy
predictor with only three parameters. Moreover, to improve the on-chip communication efficiency,
we adopt the mesh-NoC for the IMC-based hardware. Based on the communication-optimized
hardware architecture, we measure the hardware performance for a subset of neural networks from
the NAS search space. Then, we construct analytical models for the area, latency, and energy
consumption of a neural network based on our optimized target hardware platform. Unlike
existing neural network-based and black-box style searching algorithms [27], the proposed NAS
methodology enable searching across the entire search space via a mathematically rigorous and time-
efficient optimization algorithm. Consequently, our experimental evaluations show that FLASH
significantly pushes forward the NAS frontier by enabling NAS in less than 0.1 seconds on a 20-core
Intel Xeon CPU. Finally, we demonstrate that FLASH could be readily transferred to other hardware
platforms (e.g., Raspberry Pi) only by fine-tuning the hardware performance models.

Overall, this paper makes the following contributions:

e We propose a new topology-based analytical metric (NN-Degree) to quantify the topological
characteristics of DNNs with skip connections. We demonstrate that the NN-Degree enables
a training-free NAS within seconds. Moreover, we use the NN-Degree metric to build a new
lightweight (three-parameter) accuracy predictor by training as few as 25 samples out of a
vast search space with more than 63 billion configurations. Without any significant loss in
accuracy, our proposed accuracy predictor requires 6.88Xx fewer samples and provides a 65.79X
reduction of the fine-tuning time cost compared to existing GNN/GCN based approaches [54].

e We construct analytical models to estimate the latency, area, and energy consumption of
various DNN architectures. We show that our proposed analytical models are applicable
to multiple hardware architectures and achieve a high accuracy with less than one second
fine-tuning time cost.

e We design a hierarchical simplicial homology global optimization (SHGO)-based algorithm,
to search for the optimal architecture. Our proposed hierarchical SHGO-based algorithm
enables 27729 faster (less than 0.1 seconds) NAS compared to RL-based baseline approach.

e We demonstrate that our methodology enables NAS on a Raspberry Pi 3B with less than
3 seconds computational time. To our best knowledge, this is the first work showing NAS
running directly on edge devices with such low computational requirements.

The rest of the paper is organized as follows. In Section 2, we discuss related work and background
information. In Section 3, we formulate the optimization problem, then describe the new analytical
models and search algorithm. Our experimental results are presented in Section 4. Finally, Section
5 concludes the paper with remarks on our main contributions and future research directions.
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2 Related Work and Background Information

Hardware-aware NAS: Hardware accelerators for DNNs have recently become popular due to
high-performance demand for multiple applications [4, 15, 35]; they can reduce the latency and
energy associated with DNN inference significantly. The hardware performance (e.g., latency,
energy, and area) of accelerators varies with DNN properties (e.g., number of layers, parameters,
etc.); therefore, hardware performance also is a crucial factor to consider during NAS.

Several recent studies consider hardware performance for NAS. Authors in [14] introduce a
growing and pruning strategy that automatically maximize the test accuracy and minimize the
FLOPs of neural architectures during training. A platform-aware NAS targeting mobile devices is
proposed in [50]; the objective is to maximize the model accuracy with an upper bound on latency.
Authors in [56] create a latency-aware loss function to perform differentiable NAS. The latency of
DNNss is estimated through a lookup table which consists of the latency of each operation/layer.
However, both of these studies consider latency as the only metric for hardware performance.
Authors in [37] propose a hardware-aware NAS framework to design convolutional neural networks.
Specifically, by building analytical latency, power, and memory models, they create a hardware-
aware optimization methodology to search for the optimal architecture that meets the hardware
budgets. Authors in [27] consider latency, energy, and area as metrics for hardware performance
while performing NAS. Also, a reinforcement learning (RL)-based controller is adopted to tune the
network architecture and device parameters. The resulting network is retrained to evaluate the
model accuracy. There are two major drawbacks of this approach. First, RL is a slow-converging
process that prohibits fast exploration of the design space. Second, retraining the network further
exacerbates the search time leading to hundreds of GPU hours needed for real applications [60].
Furthermore, most existing hardware-aware NAS approaches explicitly optimize the architectures
for a specific hardware platform [8, 30, 56]. Hence, if we switch to some new hardware, we
need to repeat the entire NAS process, which is very time-consuming under the existing NAS
frameworks [8, 30, 56]. The demand for reducing the overhead of adaptation to new hardware
motivates us to improve the transferability of hardware-aware NAS methodology.

Accuracy Predictor-based NAS: Several approaches perform NAS by estimating the accuracy
of the network [9, 33, 40, 54]. These approaches first train a graph neural network (GNN), or a
graph convolution network (GCN), to estimate the network accuracy while exploring the search
space. During the searching process, the test accuracy of the sample networks is obtained from the
estimator instead of doing regular training. Although by estimating the accuracy, the NAS process is
significantly accelerated, the training cost of the accuracy predictor itself remains a bottleneck. GNN
requires many training samples to achieve high accuracy, thus involving a significant overhead
during training the candidate networks from the search space. Therefore, using accuracy predictors
to do NAS still suffers from excessive computation and time requirements.

Time-efficient NAS: To reduce the time cost of training candidate networks, authors in [42, 49]
introduced the weight sharing mechanism (WS-NAS). Specifically, candidate networks are generated
by randomly sampling part of a large network (supernet). Hence, candidate networks share the
weights of the supernet and update these weights during training. By reusing these trained weights
instead of training from scratch, WS-NAS significantly improves the time efficiency of NAS.
However, the accuracy of these models obtained via WS-NAS is typically far below those obtained
from training from scratch. Several optimization techniques have been proposed to fill the accuracy
gap between the shared weights and stand-alone training [7, 58]. For example, authors in [7]
propose a progressive shrinking algorithm to train the supernet. However, in many cases, the
resulting networks still need some fine-tuning epochs to get the final architecture. To further
accelerate the NAS process, some works propose the differentiable NAS to accelerate the NAS
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process [8, 32]. The differentiable NAS approaches search for the optimal architecture by learning
the optimal architecture parameters during the training process. Hence, differentiable NAS only
needs to train the supernet once, thus reducing the training time significantly. Nevertheless, due to
the significantly large number of parameters of the supernet, differentiable NAS requires a high
volume of GPU memory. In order to further improve the time-efficiency of NAS, several approaches
have been proposed to do training-free NAS [1, 11]. These approaches leverage some training-free
proxy that indicates the test performance of some given architectures; hence, the training time
is eliminated from the entire NAS process. However, these methods usually use gradient-based
information to build the proxy [1, 11]. Therefore, in order to calculate the gradients, GPUs are still
necessary for the backward propagation process. To totally decouple the NAS process from using
GPU platforms, our work proposes a GPU-free proxy to do training-free NAS. We provide more
details in Section 4.3.
Skip connections and Network Science: Currently, both networks obtained by manual design
and NAS have shown that long-range links (i.e., skip connections) are crucial for getting higher
accuracy [21, 25, 32, 45]. Overall, there are two commonly used skip connections in neural networks.
First, we have the DenseNet-type skip connections (DTSC), which concatenate previous layers’
outputs as the input for the next layer [25]. To study the topological properties and enlarge the
search space, we do not use the original DesneNets [25], which contains all-to-all connections.
Instead, we consider a generalized version where we vary the number of skip connections by
randomly selecting only some channels for concatenation, as shown in Fig. 1(a). The other type of
skip connections is the addition-type skip connections (ATSC), which consist of links that bypass
several layers to be directly added to the output of later layers (see Fig. 1(b)) [21].

In network science, a small-world network is defined as a highly clustered network, thus showing
a small distance (typically logarithmic in the number of network nodes) between any two nodes
inside the network [53]. Considering the skip connections in neural networks, we propose to use
the small-world network concept to analyze networks with both short- and long-range (or skip)
links. Indeed, small-world networks can be decomposed into: (i) a lattice network G accounting
for short-range links; (ii) a random network R accounting for long-range links (see Fig. 1(c)). The
co-existence of a rich set of short- and long-range links leads to both a high degree of clustering

(a) DenseNet:type Skip Connections (DTSC)___ ____ (b) Addition-type Skip Connections (ATSC)
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Fig. 1. Modeling a CNN as a network in network science: Each channel is modeled as a node; each
convolution kernel/filter is modeled as a link/connection. (a) lllustration of a single cell with DenseNet-
type skip connections (DTSC). (b) Illustration of a single cell with Addition-type skip connections (ATSC). (c)
Decomposition of a network cell with skip connections into a Lattice Network G and a Random Network R.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:6 G. Li, et al.

Inference/Simulation on Target Hardware Accuracy (e)l Stage 1

; . “: Latency (£) Hardware Accuracy
3 3 | Energy (€) Performance Predictor
< [ f  Areald) | vodels: £, €, A Model: 0

7 O\ et ] I
T ’ Hardware
Accuracy

Performance N
P Estimation
Estimation

LEA 0

Multi-Objective Function:

fl£, €, 4, 6)

Stage 2

Fig. 2. Overview of the proposed approach. Stage 1 (red box): we build hardware performance model (i.e.,
latency L, energy &, and area A) and accuracy predictor by randomly sampling candidate networks from
the search space to evaluate the hardware characteristics (latency £, energy &, and area A) and test
accuracy 0. Stage 2 (blue box): search for the optimal network architecture given the multi-objective function

f(LEAD).

and short average path length (logarithmic with network size). We use the small-world network to
model and analyze the topological property of neural networks in Section 3.

Average Degree: The average degree of a network determines the average number of connections
anode has, i.e., the total number of edges divided by the total number of nodes. The average degree
and degree distribution (i.e., distribution of node degree) are important topological characteristics
that directly affect how information flows through a network [3]. Indeed, the small network theory
reveals that the average degree of a network has a significant impact on network average path
length and clustering behavior [53]. Therefore, we investigate the performance gains due to the
topological properties by using network science.

3 Proposed Methodology
3.1 Overview of New NAS Approach

The proposed NAS framework is a two-stage process, as illustrated in Fig. 2: (i) We first quantify
the topological characteristics of neural networks by the newly proposed NN-Degree metric. Then,
we randomly select a few networks and train them to fine-tune the accuracy predictor based on
the network topology. We also build analytical models to estimate the latency, energy, and area of
given neural architectures. (ii) Based on the accuracy predictor and analytical performance models
in the first stage, we use a simplical homology global optimization (SHGO)-based algorithm in a
hierarchical fashion to search for the optimal network architecture.

3.2 Problem Formulation of hardware-aware NAS

The overall target of the hardware-aware NAS approach is to find the network architecture that
gives the highest test accuracy while achieving small area, low latency, and low energy consumption
when deployed on the target hardware. In practice, there are constraints (budgets) on the hardware
performance and test accuracy. For example, battery-based devices have very constrained energy
capacity [52]. Hence, there is an upper bound for the energy consumption of the neural architecture.
To summarize, the NAS problem can be expressed as:

0
AxXLXE (1)
subjectto: 0 >0y, A< Ay, L Ly, E<EN

max fopj =

where Oy, Ay, Ly, and Eyy are the constraints on the test accuracy, area, latency, and energy
consumption, respectively. We summarize the symbols (and their meaning) in this part in Table 1.
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Table 1. Symbols and their corresponding definition/meaning used in our Problem Formulation.

‘ Symbol ‘ Definition ‘

fobj Objective function of NAS

0 Test accuracy of a given network

A Chip area

L Inference latency of a given network

& Inference energy consumption of a given network
Om Constraint of test accuracy for NAS

Apm Constraint of area for NAS

Ly Constraint of inference latency for NAS

Em Constraint of inference energy consumption for NAS

3.3 NN-Degree and Training-free NAS

This section first introduces our idea of modeling a CNN based on network science [53]. To this
end, we define a group of consecutive layers with the same width (i.e., number of output channels,
we) as a cell; then we break the entire network into multiple cells and denote the number of cells
as N;. Similar to MobileNet-v2 [45], we also adopt a width multiplier (w,,) to scale the width of
each cell. Moreover, following most of the mainstream CNN architectures, we assume that each
cell inside a CNN has the same number of layers (d.). Furthermore, as shown in Fig. 1, we consider
each channel of the feature map as a node in a network and consider each convolution filter/kernel
as an undirected link. These notations are summarized in Table 2.

Table 2. Symbols and their corresponding definition/meaning used in our NN-Degree based analytical
accuracy predictor.

Symbol ‘ Definition ‘

g NN-Degree (new metric we propose)

9g NN-Degree of the lattice network (short-range connections)

IR NN-Degree of the random network (long-range or skip connections)

N, Number of cells

We Number of output channels per layer within cell ¢ (i.e., the width of cell )
d; Number of layers within cell c (i.e., the depth of cell c)

SC. Number of skip connections within cell ¢

ap, bg, cy | Learnable parameters for the accuracy predictor

Combining the concept of small-world networks in Section 2 and our modeling of a CNN, we
decompose a network cell with skip connections into a lattice network G and random network R
(see Fig. 1(c)).

Proposed Metrics: Our key objective is two-fold: (i) Quantify which topological characteristics of
DNN architectures affect their performance, and (ii) Exploit such properties to accurately predict
the test accuracy of a given architecture. To this end, we propose a new analytical metric called
NN-Degree, as defined below.

Definition of NN-Degree: Given a DNN with N, cells, d. layers per cell, the width of each cell w,,
and the number of skip connections of each cell SC.., the NN-Degree metric is defined as the sum of the
average degree of each cell:

N
g=> (we+ 5Ce @)
c=1

We X d,
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Intuition: The average degree of a given DNN cell is the sum of the average degrees from lattice
network G and random network R. Given a cell with d, convolutional layers and w, channels
per layer, the number of nodes is w. X d.. Moreover, each convolutional layer has w, X w, filters
(kernels) accounting for the short-range connections; hence, in the lattice network G, there are
we X we X d, connections (total). Using the above analysis, we can express the NN-Degree as follows:

9g=9gg tgr

c

N, Lo A Co
number of connections in G 5 number of connections in R
= E + E
c=1

number of nodes in cell ¢ number of nodes in cell ¢

c=1
Nc Nc . .
B Z We X de X We . Z number of skip connections (3)
o we X d. o We X d,
Ne
SC,
= Z(WC + )
= we X d

Discussion: The first term in Equation 3 (i.e., gg) reflects the the width of the network w,. Many
successful DNN architectures, such as DenseNets [25], Wide-ResNets [59], and MobileNets [45],
have shown that wider networks can achieve a higher test performance. The second term (i.e., gg)
quantifies how densely the nodes are connected through the skip connections. As discussed in [51],
networks with more skip connections have more forward/backward propagation paths, thus have
a better test performance. Based on the above analysis, we claim that a higher NN-Degree value
should indicate networks with higher test performance. We verify this claim empirically in the
experimental section. Next, we propose an accuracy predictor based only on the NN-Degree.

Accuracy Predictor: Given the NN-Degree (g) definition, we build the accuracy predictor by using
a variant of logistic regression. Specifically, the test accuracy 6 of a given architecture is:

0= ! (4)

ag +exp(by X é +cp)

where ag, by, cg are the parameters that are fine-tuned with the accuracy and NN-Degree of sample
networks from the search space. Section 4 shows that by using as few as 25 data samples (NN-Degree
and corresponding accuracy values), we can generate an accurate predictor for a huge search space
covering more than 63 billion configurations within 1 second on a 20-core Intel Xeon CPU.
Training-free NAS: Section 4 shows that NN-Degree can indicate the test accuracy of a given
architecture. Hence, one can use NN-Degree as a proxy of the test accuracy to enable the training-
free NAS. Section 4.3 demonstrates that we can do training-free NAS within 0.11 seconds on a
20-core CPU.

3.4 Overview of In-memory Computing (IMC)-based Hardware

Fig. 3 shows the IMC architecture considered in this work. We note that the proposed FLASH
methodology is not specific to IMC-based hardware. We adopt an IMC architecture since it has
been proven to achieve less memory access latency [23]. Due to the high communication volume
imposed by deeper and denser networks, communication between multiple tiles is crucial for
hardware performance, as shown in [28, 34].

Our architecture consists of multiple tiles connected by network-on-chip (NoC) routers, as shown
in Fig. 3(a). We use a mesh-based NoC due to its superior performance compared to bus-based
architectures. Each tile consists of a fixed number of compute elements (CE), a rectified linear unit
(ReLU), an I/O buffer, and an accumulation unit, as shown in Figure Fig. 3(b).
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Fig. 3. Details of the IMC hardware. (a) The architecture consists of multiple tiles connected via routers; (b)
The structure of a tile. Each tile consists of multiple computing elements (CE), I/O buffer, ReLU unit and
accumulation unit; (c) The structure of each CE. Each CE consists of multiple in-memory processing elements
(imPE), local buffers, switch, multiplexer, analog to digital converter (ADC), shift and add (S&A) circuit.

Within each CE, there exist a fixed number of im-memory processing elements (imPE), a
multiplexer, a switch, an analog-to-digital converter (ADC), a shift and add (S&A) circuit, and a
local buffer [10], as shown in Fig. 3(c). The ADC precision is set to four bits to avoid any accuracy
degradation. There is no digital-to-analog (DAC) converter used in the architecture. A sequential
signaling technique to represent multi-bit inputs is adopted [41]. Each imPE consists of 256x256
IMC crossbars (the memory elements) based on ReRAM (1T1R) technology [10, 28, 34]. This work
incorporates a sequential operation between DNN layers since a pipelined operation may cause
pipeline bubbles during inference [43, 48].

Table 3. Symbols and their corresponding definition used in our analytical area, latency, and energy models.

‘ Symbol ‘ Definition H Symbol ‘ Definition ‘
N, Number of cells NG Nuir;ber of rows of imPE arrays
! of i™ layer
Learnable parameters for . Number of columns of imPE arrays
a: bo, o accurac di N; ith
y predictor of i*" layer
. . Kernel size
Wm Width multiplier Kxi, Ky; of ith Tayer
i Number of input
d. Number of layers within cell ¢ || N7/, N°F Umber of npu ar,f
P2 output features of i layer
. Size of a single imPE
We Width of cell ¢ (PEy)i, (PEy); of i layer
e Number of skip connections T Number of tiles
¢ within cell ¢ ! of it layer
N f CEs i h til
FLOP. Number of FLOPs of cell ¢ c u.rtrhlber of CEs in each tile
of i layer
The amount of data transferred . .
Comm, through NoC inside cell ¢ P Number of imPEs in each CE
Total number of tiles .
Nr of the chip Ar Area of a tile
Energy consumption
T
Fg Features for energy & of a tile
A A Weight vectors to estimate F F Features to estimate computation
comp> BWNoC | oo mputation and NoC latency Comp> ENoC | and NoC latency
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3.5 Hardware Performance Modeling

This section describes the methodology of modeling hardware performance. We consider three

metrics for hardware performance: area, latency, and energy consumption. We use customized
versions of NeuroSim [10] for circuit simulation (computing fabric) and BookSim [26] for cycle-
accurate NoC simulation (communication fabric). First, we describe the details of the simulator.
Input to the simulator: The inputs to the simulator include the DNN structure, technology node,
and frequency of operation. In this work, we consider a layer-by-layer operation. Specifically, we
simulate each DNN layer and add its performance at the end to obtain the total performance of the
hardware for the DNN.
Simulation of computing fabric: Table 4 shows the parameters considered for the simulation
of computing fabric. At the start of the simulation, the number of in-memory computing tiles is
computed. Then, the area and energy of one tile are computed through analytical models derived
from HSPICE simulation. After that, the area and energy of one tile are multiplied by the total
number of tiles to obtain the total area and energy of the computing fabric. The latency of the
computing fabric is computed as a function of the workload (the DNN being executed). We note
that the original version of NeuroSim considers point-to-point on-chip interconnects, while our
proposed work uses mesh-based NoC. Therefore, we skip the interconnect simulation in NeuroSim.
Simulation of communication fabric: We consider cycle-accurate simulation for the communic-
ation fabric. BookSim is used to perform simulation. First, the number of tiles required for each
layer is obtained from the simulation of computing fabric. In this work, we assume that each tile is
connected to a dedicated router of the NoC. A trace file is generated corresponding to the particular
layer of the DNN. The trace file consists of the information of the source router, destination router,
and timestamp when the packet is generated. The trace file is simulated through BookSim to obtain
the latency to finish all the transactions between two layers. We also obtain the area and energy of
the interconnect through BookSim. Table 4 shows the parameters considered for the interconnect
simulator. More details of the simulator can be found in [29].

For hardware performance modeling, first we obtain the performance of the DNN through
simulation, then the performance numbers are used to construct the performance models.
Analytical Area Model: An in-memory computing-based DNN accelerator consists of two major
components: computation and communication. The computation unit consists of multiple tiles
and peripheral circuits; the communication unit includes an NoC with routers and other network
components (e.g., buffers, links). To estimate the total area, we first compute the number of rows (N])
and number of columns (N;) of imPEs required for the i layer of the DNN following Equation 5
and Equation 6.

. [Kxi x Ky; X Njf]

(PEx)i (5)
o N X Ny
f= (PE,); W ©)

where all the symbols are defined in Table 3. Therefore, total number of imPEs required for the
i layer of the DNN is N[ x Nf. Each tile consists of ¢ CEs, and each CE consists of p number of
imPEs. Accordingly, each tile comprises ¢ X p imPEs. Therefore, the total number of tiles required
for the i layer of the DNN (T}) is:

N X N
=y

cXp
Hence, the total number of tiles (Nr) required for a given DNN is Ny = >, T;.

(7)
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Table 4. Parameters used for simulation of computation and communication fabric.

Circuit NoC
imPE array size 128 X 128 | Bus width 32
Cell levels 2 bit/cell | Routing algorithm X-Y
Flash ADC resolution | 4 bits Number of router ports | 5
Technology used RRAM Topology Mesh
(a)5°° Lelztency brleakdowq by IayeIr (b)30 Elnergy brgakdowq by Iayerl
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Fig. 4. Layerwise hardware performance breakdown of a DNN with 3 cells (N = 3), 16 layers per cell (d. = 16),
and a total of 48 layers. (a) Latency breakdown layer by layer: the computation latency accounts for 37.9% of
the total latency, while communication accounts for 62.1%. (b) Energy consumption breakdown layer by layer:
the computation energy accounts for 96.1% of the total latency, while communication accounts for 3.9%.

As shown in Fig. 3(a), each tile is connected to the NoC routers for the on-chip communication.
We assume that the total number of required routers is equal to the total number of tiles. Hence,
the total chip area is expressed as follows:

A= Acomp + ANoc

= (A%)lte + APeriphery) + (AIngZter + Aothers)
=Ny X Ar + Nr X AR + (APeriphery + Aothers) (8)
= Nr X (AT + AR) + Apest

where A%’Ite is the area accounted for all tiles and A}ngf‘ tor 18 the total area accounted for all routers

in the design. The area of a single tile is denoted by Ar; there are Ny tiles in the design. Therefore
A%’fe = Nr X Ar. The area of the peripheral circuit (Aperiphery) consists of I/O interface, max pool
unit, accumulation unit, and global buffer. The area of a single router is denoted by Ag; the number
of routers is equal to the number of tiles (N7). Therefore A};g; ter = N1 X Ag. The area of other
components in the NoC (Ays;) comprises links and buffers.

Analytical Latency Model: Similar to area, the total latency consists of computation latency and
communication latency, as shown in Fig. 4(a). To construct the analytical model of latency, we
use floating-point operations (FLOPs) of the network to represent the computational workload.
We observe that the FLOPs of a given network are roughly proportional to the total number of
convolution filters (kernels), which is the product of the number of layers and the square of the
number of channels per layer (i.e., width value). In the network search space we consider, the width
is equivalently represented by the width multiplier w,,, and the number of layers is N X d.; hence,
we express the number of FLOPs of a given network approximately as the product of the number
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of layers, and the square of width multiplier:
FLOPs ~ N.d.w?, )

Moreover, communication volume increases significantly due to the skip connections. To quantify
the communication volume due to skip connections, we define Comm, (the communication volume
of a given network cell c) as follows:

Comm, = SC, X Featuremap size of each SC

Combining the above analysis of computation latency and communication latency, we use a linear
model to build our analytical latency model as follows:

L= Lcomp + 'ENOC = Azomchomp + AgocFNOC (10)
where Azomp is a weight vector and Feomp = [Wm, dc, N, N.d.w?2,] is the vector of features with

respect to the computation latency; A%OC is another weight vector and Feopmp = [SCc, Comm,] is
the vector of features corresponding to the NoC latency. We randomly sample some networks from
the search space and measure their latency to fine-tune the values of Azomp and A], .

Analytical Energy Model: We divide the total energy consumption into computation energy and
communication energy, as shown in Fig. 4(b). Specifically, the entire computation process inside

each tile consists of three steps:

e Read the input feature map from the I/O buffer to the CE;
e Perform computations in CE and ReLU unit, then update the results in the accumulator;
e Write the output feature map to the I/O buffer.

Therefore, both the size of feature map and FLOPs contribute to the computation energy of a
single cell. Moreover, the communication energy consumption is primarily determined by the
communication volume, i.e., (Comm,). Hence, we use a linear combination of features to estimate
the energy consumption of each tile E:

& = ALFs (11)

where Ag is a weight vector and Fg = [wp, d;, N, SC;, Comm,, FLOP,, FM,] are the features
corresponding to the energy consumption of each tile. We use the measured energy consumption
values of several sample networks to fine-tune the values of Ag. The total energy consumption (&)
is the product of &7 and number of tiles:

& =ALFgNr (12)

We note that all the features used in both our accuracy predictor and analytical hardware
performance model are only related to the architecture of the network through the basic parameters
{Wm, d¢, N¢, SC. }. Therefore, the analytical hardware models are lightweight. We note that there
exist no other lightweight analytical models for IMC platforms. Besides this, FLASH is general and
can be applied to different hardware platforms. For a given hardware platform, energy, latency,
and area of the DNNs need to be first collected. Then the analytical hardware models need to be
trained using the performance data.

3.6 Optimal neural architecture search

Based on the above accuracy predictor and analytical hardware performance models, we perform
the second stage of our NAS methodology, i.e., searching for the optimal neural architecture by
considering both test accuracy and hardware performance on the target hardware. To this end, we
use a modified version of the Simplicial Homology Global Optimization (SHGO [18]) algorithm to
search for the optimum architecture. SHGO has mathematically rigorous convergence properties on

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



FLASH: Fast Neural Architecture Search with Hardware Optimization 1:13

Algorithm 1: Our hierarchical SHGO-based search algorithm
Input:
Objective function: fop;;
Global search space:
SPglobal = [Nemin> Nemax] X [Wmm,-n>wmmax] X [demins demax] X [SCemin, SCemaxl;
Search constraints: Scons = {La, Epm, Ams Om}
Coarse-grain search step size: A
Output:
The optimal architecture {w;,, N, d:, SC};
Search Process:
Initialize Candidate Architecture Set (CAS) as empty set;
level 1: Fixed-w,, Search
for wy, in [Wm,,,,..» Wmpae] dO
level 2: Coarse-grain Search
fix wp,, search the optimum NcG , dCG, SC? with large search step A
NCG, ch, SCE;:SHGO(fC,bj, SPgiobal> Scons» search step size=A1 )
level 3: Fine-grain Search
within the neighbourhood of NS, d%, SCY, search the optimum N, %, SCE
Local search space: SPjocq; = {NY + 21,dS + 24, SCS + 21}
NL, dtk, SC£=SHGO(fObj, SPiocals Scons, search step size=1)
Add {wy,, NE, dL, SCLY to CAS
end
Compare the candidate architecture in CAS, find the optimum {w},, N}, d;, SC;}.
Return {w;,, N;,d;,SC;}
end

non-linear objective functions and constraints and can solve derivative-free optimization problems.
Moreover, the convergence of SHGO requires much fewer samples and less time than reinforcement
learning approaches [27]. Hence, we use SHGO for our new hierarchical searching algorithm.

Specifically, as shown in Algorithm 1, to further accelerate the searching process, we propose a
three-level SHGO-based algorithm instead of using the original SHGO algorithm. At the first level,
we enumerate w,, in the search space. Usually, the range of wy,, is much more narrow than the other
architecture parameters; hence without fixing w,,, we cannot use a large search step size for the
second-level coarse-grain search. At the second level, we use SHGO with a large search step size A to
search for a coarse optimum N, d%, SC by fixing the wy,. At the third level (fine-grain search), we
use SHGO with the smallest search step size (i.e., 1) to search for the optimum NZ, dX, SCL values
for a specific w,,, within the neighborhood of the coarse optimum NZ,dS, SCY, and add it to the
candidate set. After completing the three-level search, we compare all neural architectures in the
candidate set and determine the (final) optimal architecture {w;,, N7, d, SC;}. To summarize, given
the number of hyper-parameters M and the number of possible values of each hyper-parameter N,
the complexity of our hierarchical SHGO-based NAS is roughly proportional to MN, i.e., O(MN).

Experimental results in Section 4 show that our proposed hierarchical search accelerates the
overall search process without any decrease in the performance of the obtained neural architecture.
Moreover, our proposed hierarchical SHGO-based algorithm involves much less computational
workload compared to the original (one-level) SHGO-based algorithm and RL-based approaches [27];
this even enables us to do NAS on a real Raspberry Pi-3B processor.

!The detailed discussion of SHGO is beyond the scope of this paper. More details are available in [18]
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4 Experimental Results
4.1 Experimental setup

Dataset: Existing NAS approaches show that the test accuracy of CNNs on CIFAR-10 dataset can
indicate the test accuracy on other datasets, such as ImageNet [16]. Hence, similar to most of
the NAS approaches, we use CIFAR-10 as the primary dataset. Moreover, we also evaluate our
framework on CIFAR-100 and Tiny-ImageNet? to demonstrate the generality of our proposed
metric NN-Degree and accuracy predictor.

Training Hyper-parameters: We train each of the selected neural networks five times with
PyTorch and use the mean test accuracy of these five runs as the final results. All networks are
trained for 200 epochs with the SGD optimizer and a momentum of 0.9. We set the initial learning
rate as 0.1 and use Cosine Annealing algorithm as the learning rate scheduler.

Search Space: DenseNets are more efficient in terms of model size and computation workload
than ResNets while achieving the same test accuracy [25]. Moreover, DenseNets have many more
skip connections; this provides us with more flexibility for exploration compared to networks
with Addition-type skip connections (ResNets, Wide-ResNets, and MobileNets). Hence, in our
experiments, we explore the CNNs with DenseNet-type skip connections.

To enlarge the search space, we generate the generalized version of standard DenseNets by
randomly selecting channels for concatenation. Specifically, for a given cell ¢, we define ¢, as the
maximum skip connections that each layer can have; thus, we use ¢, to control the topological
properties of CNNs. Given the definition of ¢, layer i can receive DenseNet-type skip connections
(DTSC) from a maximum number of . channels from previous layers within the same cell; that is,
we randomly select min{w.(i — 1), t.} channels from layers 0, 1, ..., (i — 2), and concatenate them
at layer i — 1. The concatenated channels then pass through a convolutional layer to generate
the output of layer i (s;). Similar to recent NAS research [32], we select links randomly because
random architectures are often as competitive as the carefully designed ones. If the skip connections
encompass all-to-all connections, this would result in the original DenseNet architecture [25]. An
important advantage of the above setup is that we can control the number of DTSC (using f.) to
cover a vast search space with a large number of candidate DNNs.

Like standard DenseNets, we can generalize this setup to contain multiple (N,) cells of width w,
and depth d.; DTSC are present only within a cell and not across cells. Furthermore, we increase the
width (i.e., the number of output channels per layer) by a factor of 2 and halve the height and width
of the feature map cell by cell, following the standard practice [47]. After several cells (groups) of
convolutions layers, the final feature map is average-pooled and passed through a fully-connected
layer to generate the logits. The width of each cell is controlled using a width multiplier, w, (like
in Wide-ResNets [59]). The base number of channels of each cell is [16,32,64]. For wy,, = 3, cells will
have [48,96,192] channels per layer. To summarize, we control the value {wy,, N, d., t.} to sample
candidate architectures from the entire search space.

Fig. 5 illustrates a sample CNN similar to the candidate architectures in our search space (small
values of w, and d, are used for clarity). This CNN consists of three cells, each containing d. = 4
convolutional layers. The three cells have a width (i.e., the number of channels per layer) of 2, 3,
and 4, respectively. We denote the network width as w. = [2, 3, 4]. Finally, the maximum number of
channels that can supply skip connections is given by ¢, = [2, 5, 6]. That is, the first cell can have a
maximum of two skip connection candidates per layer (i.e., previous channels that can supply skip
connections), the second cell can have a maximum of five skip connections candidates per layer,
and so on. Moreover, as mentioned before, we randomly choose min{w.(i — 1), t.} channels for

2Tiny-ImageNet is a downscaled-version ImageNet dataset with 64x64 resolution and 200 classes [15]. For more details,
please check: http://cs231n.stanford.edu/tiny-imagenet-200.zip
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skip connections at each layer. The inset of Fig. 5 shows for a specific layer, how skip connections
are created by concatenating the feature maps from previous layers.

In practice, we use three cells for the CIFAR-10 dataset, i.e., N. = 3. We constrain the 1 < w,, <3
and 5 < d. < 30. We also constrain t. of each cell: 5 < t;, 2t; < t and 2t < t3 for these three
cells, respectively. In this way, we can balance the number of skip connections across each cell.
Moreover, the maximum number of skip connections that a layer can have is the product of the
width of the cell (w.) and d. — 2 which happens for the last layer in a cell concatenating all of
the output channels except the second last layer. Hence, the upper bound of t., for each cell, is
16w, (de — 2), 32wy, (d: — 2), 64wy, (d. — 2), respectively. Therefore, the size of the overall search
space is:

3 30 16Wp, (dc—2) 32wy, (d.—2)
Z Z Z Z (64w (d. — 2) — 2t, + 1) = 6.39 x 10'°
Wm=1d.=5  t=5 =2t
Hardware Platform: The training of the sample neural architectures from the search space is
conducting on Nvidia GTX-1080Ti GPU. We use Intel Xeon 6230, a 20-core CPU, to simulate the
hardware performance of multiple candidate networks and fine-tune the accuracy predictor and
analytical hardware models. Finally, we use the same 20-core CPU to conduct the NAS process.

4.2 Accuracy Predictor

We first derive the NN-Degree (g) for the neural architecture in our search space. Based on
Equation 2, we substitute SC, with the real number of skip connections in a cell as follows:

N, N, de=1 . (/s
e NN - Yis, min{(i — )we, .}
g—;(wc+m) —;(Wc+ i ) (13)

In Section 3, we argue that the neural architecture with a higher NN-degree value tends to provide
a higher test accuracy. In Fig. 6(a), we plot the test accuracy vs. NN-Degree of 60 randomly sampled
neural networks from the search space for CIFAR-10 dataset; our proposed network-topology
based metric NN-Degree indicates the test accuracy of neural networks. Furthermore, Fig 6(b)

For layer i=3,
*7 #DTSC = min{(i — 1) *w,t.} =5

Note: Not all connections are shown in
the figure. If a channel is selected, it
contributes long-range links to all
output channels of the current layer.

P N
S,

For layer i=2, \,
#DTSC = min{(i — 1) *w,, t.} =3

d.=4 .m‘ Fully-connected
- V.,/“\Vv, ’\Vv,’ Output
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Fig. 5. An example of candidate neural architectures from our search space. (The values of wc ,t., and d. are
only for illustration and they do not represent the real search space). Not all skip connections are shown in
the figure, for simplicity. The upper inset shows the contribution from all skip and short-range links to layer
i = 2: The feature maps for the randomly selected channels are concatenated as the input of the current layer
i = 2 (similar to DenseNets [25]). At each layer in a given cell, the maximum number of channels contributing
to skip connections is controlled by t..
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Table 5. Our NN-Degree based accuracy predictor for neural architecture search vs. existing predictors
implemented by graph-based neural networks. We calculate the improvement ratio for each of the metric by

considering the best among all existing approaches in this table. (-’ denotes that the corresponding results
are not reported or not applicable.)

Accuracy Estimation Search Space (SS) Size # Training Samples Training Time (s)
Technique Ratio (X) RMSE (%) Ratio (x)
Val % of FLASH SS | Val Val
alue © &€ | wrt FLASH &€ wrt FLASH

GNN+MLP [40] 42x10° [6.6x107%% [3.8x10° | 15250 - - -
GNN [33] 42x10° [6.6x107%% [3.0x10° | 11862 0.05 - -
GCN [9] 1.6x 10" [25x107° % [1.0x10% |40 >1.8 - -
GCN [54] 4.2x10° [6.6x107% % 1.7 % 10% | 6.88 1.4 25 66
FLASH (NN'Deg.ree " | 6.4x 10" | 100% 25x10" | 1 0.152 038 |1
Logistic Regression)

and Fig 6(c) also show the test accuracy vs. NN-Degree of 20 networks on CIFAR-100 dataset and
27 networks on Tiny-ImageNet randomly sampled from the search space. Clearly, our proposed
metric NN-Degree predicts the test accuracy of neural networks on these two datasets as well.
Indeed, the results prove that our claim in Section 3 is empirically correct, i.e., networks with higher
NN-Degree values have a better test accuracy.

Next, we use our proposed NN-Degree to build the analytical accuracy predictor. We train as few
as 25 sample architectures randomly sampled from the entire search space and record their test
accuracy and NN-Degree on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets. Then, we fine-tune
our NN-Degree based accuracy predictor described by Equation 7. As shown in Fig. 7(a), Fig 7(b),
and Fig 7(c), our accuracy predictor achieves very high performance while using surprisingly few
samples with only three parameters on all these datasets.

(a)wTest Accuracy vs. NN-Degree on CIFAR-10  (b) 51Test Accuracy vs. NN-Degree on CIFAR-100 (c)’ggs( Accuracy vs. NN-Degree on Tiny-ImageNet
¥

*
*
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Fig. 6. We randomly select multiple networks from the search space then train and test their accuracy
on CIFAR-10, CIFAR-100, Tiny-ImageNet datasets. (a) Real test accuracy vs. NN-Degree: networks with
higher NN-Degree values have a higher test accuracy on the CIFAR-10 dataset. (b) Real test accuracy vs.
NN-Degree: networks with higher NN-Degree values have a higher test accuracy on the CIFAR-100 dataset.
(c) Real test accuracy vs. NN-Degree: networks with higher NN-Degree values have a higher test accuracy on
the Tiny-ImageNet dataset.
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Fig. 7. (a) Predictions of our NN-Degree based accuracy predictor vs. real test accuracy on CIFAR-10 dataset.
(b) Predictions of our NN-Degree based accuracy predictor vs. real test accuracy on CIFAR-100 dataset. (c)
Predictions of our NN-Degree based accuracy predictor vs. real test accuracy on Tiny-lmageNet dataset.
The red dotted lines in these figures show a very good correlation between the predicted and measured values.
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Fig. 8. Overview of the proposed training-free NAS approach. Stage 1 (red box): we build hardware (HW)
performance models by randomly sampling candidate networks from the search space to evaluate the
hardware characteristics (latency L, energy &, and area A). Stage 2 (blue box): we search for the optimal
network architecture with the hardware performance constraints (i.e., Ly, Ep, and Apy); we randomly
choose some architectures and use the HW performance models to estimate their hardware performance.
Then, we select the neural architecture D* with the highest NN-Degree which meets the HW performance
constraints. Finally, we train the obtained architecture D* to get the optimal neural architecture.

We also compare our NN-Degree-based accuracy predictor with the current state-of-the-art
approaches. As shown in Table 5, most of the existing approaches use Graph-based neural networks
to make predictions [9, 33, 40, 54]. However, Graph-based neural networks require much more
training data, and they are much more complicated in terms of computation and model structure
compared to classical methods like logistic regression. Due to the significant reduction in the model
complexity, our predictor requires 6.88x fewer training samples, although a much larger search
space (1.5 10° larger than the existing work) is covered. Moreover, our NN-Degree based predictor
has only three parameters to be updated; hence it consumes 66X less fine-tuning time than the
existing approaches. Finally, besides such low model complexity and fast training process, our
predictor achieves a very small RMSE (0.152%) as well.

During the search of our NAS methodology, we use the accuracy predictor to directly predict
the accuracy of sample architectures as opposed to performing the time-consuming training. The
high precision and low complexity of our proposed accuracy predictor also enable us to adopt
very fast optimization methods during the search stage. Furthermore, because our proposed metric
NN-Degree can predict the test performance of a given architecture, we can use NN-Degree as
the proxy of the test accuracy to do NAS without the time-consuming training process. This
training-free property allows us to quickly compare the accuracy of given architectures and thus
accelerate the entire NAS.

4.3 NN-Degree based Training-free NAS

To conduct the training-free NAS, we reformulate the problem described by Equation 1 as follows:
max 6, subjectto: A< Ay, L Ly, E<EY (14)
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Table 6. Our NN-Degree based training-free NAS (FLASH) and several representative time-efficient NAS on
CIFAR-10 Dataset. We select the optimal architectures with the highest NN-Degree values among 20,000
randomly sampled architectures on a 20-core CPU.

‘ Method ‘ Search Method ‘ #Params ‘ Search Cost ‘ Training needed ‘ Test error (%)
ENAS[42] RL+weight sharing | 4.6M 12 GPU hours | Yes 2.89
SNAS[57] gradient-based 2.8M 36 GPU hours | Yes 2.85
DARTS-v1[32] gradient-based 3.3M 1.5 GPU hours | Yes 3.0
DARTS-v2[32] gradient-based 3.3M 4 GPU hours | Yes 2.76
ProxylessNAS[8] | gradient-based 5.7M NA Yes 2.08
Zero-Cost[1] Proxy-based NA NA Yes 5.78
TE-NAS[11] Proxy-based 3.8M 1.2 GPU hours | No 2.63
FLASH NN-Degree based | 3.8M 0.11 seconds | No 3.13

To maximize the values of 8, we can search for the network with maximal NN-Degree values, which
eliminate the training time of candidate architectures. In Fig. 8, we show how we can use the
NN-Degree to do training-free NAS. During the first stage, we profile a few networks on the target
hardware and fine-tune our hardware performance models. During the second stage, we randomly
sample candidate architectures and select those which meet the hardware performance constraints.
We use the fine-tuned analytical models to estimate the hardware performance instead of doing
real inference, which improves the time efficiency of the entire NAS. After that, we select the
optimal architecture with the highest NN-Degree values which meets the hardware performance
constraints. We note that the NAS process itself is training-free (hence lightweight), as only the
final solution D* needs to be trained.

To evaluate the performance of our training-free NAS framework, we randomly sample 20,000
candidate architectures from the search space and select the one with the highest NN-Degree
values as the obtained/optimal architecture. Specifically, it takes only 0.11 seconds to evaluate these
20,000 samples’ NN-Degree on a 20-core CPU to get the optimal architecture (no GPU needed). As
shown in Table 6, the optimal architecture among these 20,000 samples achieves a comparable test
performance with the representative time-efficient NAS approaches but with much less time cost
and computation capacity requirement.

4.4 Analytical hardware performance models

Our experiments show that using 180 samples offers a good balance between the analytical
models’ accuracy and the number of fine-tuning samples. Hence, we randomly select 180 neural
architectures from the search space to build our analytical hardware performance models. Next,
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Fig. 9. Performance of our analytical hardware models on ImageNet classification networks: (a) Predicted
values by our analytical area model vs. measured area. (b) Predicted values by our analytical latency model vs.
measured latency. (c) Predicted values by our analytical energy model vs. measured energy consumption. The
red lines demonstrate that our proposed models generalize well for networks evaluated on ImageNet-scale
datasets.
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Table 7. Summary of the performance of our proposed analytical models for Area, Latency, and Energy.

‘ Model ‘ #Features ‘ Mean Error (%) | Max Error (%) | Fine-tuning Time (s) ‘
Area 2 0.1 0.2 0.49

Latency | 9 3.0 20.8 0.52

Energy | 16 3.7 244 0.56

Table 8. Estimation error with different ML models for ImageNet with IMC as target hardware platform.

Random Forest | Analytical Models

SVM (Max. Depth = 16) (Proposed)
Latency Est. Error (%) | 58.98 | 8.23 6.7
Energy Est. Error (%) | 78.49 | 11.01 3.5
Area Est. Error (%) 36.99 | 13.37 1.7

we perform the inference of these selected 180 networks on our simulator [29] to obtain their
area, latency, and energy consumption. After obtaining the hardware performance of 180 sample
networks, we fine-tune the parameters of our proposed analytical area, latency, and energy models
discussed in Section 3. To evaluate the performance of these fine-tuned models, we randomly select
another 540 sample architectures from the search space then conduct inference and obtain their
hardware performance.

Table 7 summarizes the performance of our analytical models. The mean estimation error is

always less than 4%. Fig. 9 shows the estimated hardware performance obtained by our analytical
model for the ImageNet dataset. We observe that the estimation coincides with the measured values
from simulation. Our analytical models enable us to obtain very accurate predictions of hardware
performance with the time cost of less than 1 second on a 20-core CPU. The high performance and
low computation workload enable us to directly adopt these analytical models to accelerate our
searching stage instead of conducting real inference.
Comparison with other machine learning models: Table 8 compares the estimation error for
SVM, random forest with a maximum tree depth of 16 and the proposed analytical hardware models
for ImageNet dataset. A maximum tree depth of 16 is chosen for random forest since it provides
the best accuracy among random forest models. We observe that our proposed analytical hardware
models achieve the smallest error among all three modeling techniques. SVM performs poorly
since it tries to classify the data with a hyper-plane, and no such plane may exist given the complex
relationship between the features and performance of the hardware platform.
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Fig. 10. Performance comparison between our mesh-NoC and cmesh-NoC [46] on CIFAR-10 classification
networks for 16 different networks: (a) Our mesh-NoC needs much less area than the cmesh-NoC; (b) Our
mesh-NoC has almost the same latency as the cmesh-NoC; (c) Our mesh-NoC consumes much less energy
consumption than the cmesh-NoC.
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Fig. 11. Performance comparison between our mesh-NoC and cmesh-NoC [46] on ImageNet classification
networks for 15 different networks: (a) Our mesh-NoC needs much less area than the cmesh-NoC; (b) Our
mesh-NoC has almost the same latency as the cmesh-NoC; (c) Our mesh-NoC consumes much less energy
consumption than the cmesh-NoC.

4.5 On-chip communication optimization

As shown in Fig. 10 and Fig. 11, we compare the NoC performance (area, energy, and latency) of
our FLASH with respect to the cmesh-NoC [46] for 16 randomly selected networks from the search
space for CIFAR-10 dataset and ImageNet dataset, respectively. We observe that the mesh-NoC
occupies on average only 37% area and consumes only 41% energy with respect to the cmesh-NoC.
Since the cmesh-NoC uses extra links and repeaters to connect diagonal routers, the area and
energy with the cmesh-NoC are significantly higher than the mesh-NoC. Additional links and
routers in the cmesh-NoC result in lower hop counts than the mesh-NoC. However, the lower hop
count reduces the latency at low congestion. As the congestion in the NoC increases, the latency
of the cmesh-NoC becomes higher than the mesh-NoC due to increased utilization of additional
links. This phenomenon is also demonstrated in [19]. Therefore, the communication latency with
the cmesh-NoC is higher than the mesh-NoC for most of the DNNs. The communication latency
with the mesh-NoC is on average within 3% different from the communication latency with the
cmesh-NoC. Moreover, we observe that the average utilization of the queues in the mesh-NoC
varies between 20%-40% for the ImageNet dataset. Furthermore, the maximum utilization of the
queues ranges from 60% to 80%. Therefore, the mesh-NoC is heavily congested. Thus, our proposed
communication optimization strategy outperforms the state-of-the-art approaches.

4.6 Hierarchical SHGO-based neural architecture search

After we fine-tune the NN-Degree based accuracy predictor and analytical hardware performance

models, we use our proposed hierarchical SHGO-based searching algorithm to do the neural
architecture search.
Baseline approach: Reinforcement Learning (RL) is widely used in NAS [24, 27, 61]; hence we
have implemented a RL-based NAS framework as a baseline. For the baseline, we consider the
objective function in Equation 1. Specifically, we incorporate a deep-Q network approach for the
baseline-RL [38]. We construct four different controllers for the number of cell (N;), cell depth (d.),
width multiplier (w,,,) and number of long skip connections (SC.). The training hyper-parameters for
the baseline-RL are shown in Table 9. The baseline-RL approach estimates the optimal parameters
(N, d¢, Wi, SC;). We tune the baseline-RL approach to obtain the best possible results. We also
implement a one-level SHGO algorithm (i.e., original SHGO) as another baseline to show the
efficiency of our hierarchical algorithm.

We compare the baseline-RL approach with our proposed SHGO-based optimization approach.
As shown in Table 10, when there is no constraint in terms of accuracy and hardware performance,
our hierarchical SHGO-based algorithm brings negligible overhead compared to the one-level
SHGO algorithm. Moreover, our hierarchical SHGO-based algorithm needs much fewer samples
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Table 9. Parameters chosen for the baseline-RL approach.

Metric ‘ Value H Metric ‘ Value
Number of layers 3 Learning rate 0.001
Number of neurons in each layer | 20 Activation softmax
Optimizer ADAM || Loss MSE
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Fig. 12. (a) Predictions of our analytical latency models vs. measured values for RPi-3B. (b) Predictions of
our analytical energy consumption models vs. measured values for RPi-3B. The red dotted lines in these two
figures show a high correlation between predicted and measured values.

(144.93x%) during the search process than RL-based methods. Our proposed search algorithm is as
fast as 0.07 seconds and 27929 faster than the RL-based methods, while achieving the same quality
of the solution! As for the searching with specific constraints, the training of RL-based methods
cannot even converge after training with 10000 samples. Furthermore, our hierarchical SHGO-
based algorithm obtains a better-quality model with 7.03% fewer samples and 14.7X less search
time compared to the one-level SHGO algorithm. The results show that our proposed hierarchical
strategy further improves the efficiency of the original SHGO algorithm.

4.7 Case study: Raspberry Pi and Odroid MC1

As discussed in previous sections, each component and stages of FLASH are very efficient in
terms of both computation and time costs. To further demonstrate the efficiency of our FLASH
methodology, we implement FLASH on two typical edge devices, namely, the Raspberry Pi-3
Model-B (RPi-3B) and Odroid MC1 (MC1).

Table 10. Comparison between RL-based search, one-level SHGO-based search, and our proposed hierarchical
SHGO-based search. No constraint means that we don’t set any bounds for the accuracy, area, latency, and
energy consumption of the networks; we compare FLASH with RL when there are no constraints. For searching
with constraints, we set the minimal accuracy being 95.8% (6 > 0y = 95.8%) as an example; we compare
FLASH with one-level SHGO because RL does not converge. The quality of the model is calculated by the
objective function in Equation 1 (higher is better).

Constraints | Method Search cost | Search Quality of obtained | Converge?
involved? (#Samples) | Time (s) model (Eq. 1)
RL 10000 1955 20984 Yes
No one-level SHGO 23 0.03 20984 Yes
hierarchical SHGO (FLASH) | 69 0.07 20984 Yes
Improvement 144.93% 27929% 1x -
RL >10000 - - No
one-level SHGO 1195 3.82 10550 Yes
Yes. 0 > Oy - .
hierarchical SHGO (FLASH) | 170 0.26 11969 Yes
Improvement 7.03%x 14.7x 1.13%x -
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Fig. 13. (a) Predictions of our analytical latency models vs. measured values for MC1. (b) Predictions of our
analytical energy consumption models vs. measured values for MC1. The red dotted lines in these two figures
show a very good correlation between the predicted and measured values.

Setup: RPi-3B has an Arm Cortex-A53 quad-core processor with a nominal frequency of 1.2GHz
and 1GB of RAM. Furthermore, we use the Odroid Smart Power 2 to measure voltage, current, and
power. We use TensorFlow-Lite (TF-Lite) as the run-time framework on RPi-3B. To achieve this,
we first define the architecture of the models by TensorFlow (TF). Then we convert the TF model
into the TF-Lite format and generate the binary file deployed on the RPi-3B.

Odroid MC1 is powered by Exynos 5422, a heterogeneous system-on-a-chip (MPSoC). This SoC
consists of two clusters of ARM cores and a small GPU core. Besides the hardware platform itself,
we use the same setup as for the RPi-3B.

Accuracy predictor and analytical hardware performance models: We adopt the same accuracy
predictor used in Section 4.6. We only consider latency and energy consumption as the hardware
performance metrics because the chip area is fixed. Hence, the objective function of searching on
RPi-3B and MC1 is:

Accuracy

fovj = (15)

Latency X Energy

To fine-tune the analytical latency and energy models, we randomly select 180 sample networks
from the search space. Then we convert them into the TF-Lite format and record their latency
and energy consumption on the RPi-3B. Based on the recorded data, we update the parameters
of the analytical latency and energy models. Fig. 12 and 13 show that our analytical hardware
performance models almost coincide with the real performance of both the RPi-3B and MC1.
Search Process on RPi-3B and MC1: We do not show the results of RL-based methods because
the training of RL models requires intensive computation resources; thus, they cannot be deployed
on RPi-3B and MC1. As shown in Table 11, for searching without any constraint, our hierarchical
SHGO-based algorithm has only a minimal overhead compared with the basic (one-level) SHGO
algorithm. Moreover, our hierarchical SHGO-based algorithm is faster than the one-level SHGO
algorithm on MC1.

Table 11. Comparison between one-level and hierarchical SHGO-based search on RPi-3B and Odroid MC1.
For searching with constraints, we set the minimal accuracy being 96% (6 > 01 = 96%) as an example. The
quality of the model is calculated by Equation 15 (higher is better).

Constraints Search Cost Search time Model Quality
. Method (# Samples) (s) (Equation 15)
involved? - - :
RPi-3B [ MC1 [RPi-3B [ MC1 [ RPi-3B | MCI
No one-level SHGO 112 113 1.68 0.71 4.74 4.13
hierarchical SHGO (FLASH) | 180 135 2.21 0.45 4.74 4.13
one-level SHGO 1309 1272 45.98 9.65 0.35 0.38
Yes, 6 > O | hierarchical SHGO (FLASH) | 261 414 2.33 1.32 0.48 0.57
Improvement 5.01x | 3.07 X | 19.73 X | 20.5 X | 1.37 X | 1.51X
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For searching with constraints, the hierarchical SHGO-based algorithm obtains a better-quality
model with 5.01x fewer samples and 19.73x less search time on the RPi-3B; we achieve similar
improvements on MC1 as well. These results prove the effectiveness of our hierarchical strategy
again. Overall, the total searching time on RPi-3B and MC1 are as short as 2.33 seconds and 1.32
seconds, respectively on such resource-constrained edge devices. To our best knowledge, this is the
first time when a neural architecture search is reported on edge devices.

5 Conclusions and Future Work

This paper presented a very fast methodology, called FLASH, to improve the time efficiency of NAS.
To this end, we have proposed a new topology-based metric, namely the NN-Degree. Using the
NN-Degree, we have proposed an analytical accuracy predictor by training as few as 25 samples out
of a vast search space with more than 63 billion configurations. Our proposed accuracy predictor
achieves the same performance with 6.88x fewer samples and 65.79% reduction in fine-tuning time
cost compared to state-of-the-art approaches. We have also optimized the on-chip communication
by designing a mesh-NoC for communication across multiple layers; based on the optimized
hardware, we have built new analytical models to predict area, latency, and energy consumption.

Combining the accuracy predictor and the analytical hardware performance models, we have
developed a hierarchical simplicial homology global optimization (SHGO)-based algorithm to
optimize the co-design process while considering both test accuracy and the area, latency, and
energy figures of the target hardware. Finally, we have demonstrated that our newly proposed
hierarchical SHGO-based algorithm enables 27729x faster (less than 0.1 seconds) NAS compared to
the state-of-the-art RL-based approaches. We have also shown that FLASH can be readily transferred
to other hardware platforms by doing NAS on a Raspberry Pi-3B and Odroid MC1 in less than
3 seconds. To our best knowledge, our work is the first to report NAS performed directly and
efficiently on edge devices.

We note that there is no fundamental limitation to apply FLASH to other machine learning
tasks. However, no IMC-based architectures are widely adopted yet for other machine learning
tasks like speech recognition or object segmentation. Therefore,the current work focuses on DNN
inference and leaves the extension to other machine learning tasks as future work. Finally, we plan
to incorporate more types of networks such as ResNet and MobileNet-v2 as part of our future work.
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