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SUGAR: Efficient Subgraph-level Training via
Resource-aware Graph Partitioning

Zihui Xue,Yuedong Yang,and Radu Marculescu, Fellow, IEEE

Abstract—Graph Neural Networks (GNNs) have demonstrated a great potential in a variety of graph-based applications, such as
recommender systems, drug discovery, and object recognition. Nevertheless, resource-efficient GNN learning is a rarely explored topic
despite its many benefits for edge computing and Internet of Things (IoT) applications. To improve this state of affairs, this work proposes
efficient subgraph-level training via resource-aware graph partitioning (SUGAR). SUGAR first partitions the initial graph into a set of
disjoint subgraphs and then performs local training at the subgraph-level. We provide a theoretical analysis and conduct extensive
experiments on five graph benchmarks to verify its efficacy in practice. Our results across five different hardware platforms demonstrate
great runtime speedup and memory reduction of SUGAR on large-scale graphs. We believe SUGAR opens a new research direction
towards developing GNN methods that are resource-efficient, hence suitable for IoT deployment.

Index Terms—Graph Neural Networks, Resource-efficient Learning, Edge Computing
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1 INTRODUCTION

GRAPHS are non-Euclidean data structures that can
model complex relationships among a set of interacting

objects, for instance, social networks, knowledge graphs, or
biological networks. Given the huge success of deep neural
networks for Euclidean data (e.g., images, text and audio),
there is an increasing interest in developing deep learning
approaches for graphs too. Graph Neural Networks (GNNs)
generalize the convolution operation to the non-Euclidean
domain [1]; they demonstrate a great potential for various
graph-based applications, such as node classification [2], link
prediction [3] and recommender systems [4].

The rapid development of smart devices and IoT ap-
plications has spawned a great interest in many edge AI
applications. Training models locally becomes a growing
trend as this can help avoid data transmission to the cloud,
reduce communication latency, and better preserve privacy
[5]. For instance, in a graph-based recommender system, user
data can be quite sensitive and hence it’s better to store it
locally [6]. This brings about the need for resource-efficient
graph learning.

While there is much discussion about locally training
Convolutional Neural Networks (CNNs) [7], efficient on-
device training for GNNs is rarely explored. Different from
CNNs, where popular models such as ResNet [8] are deep
and have a large parameter space, mainstream GNN models
are shallow and more lightweight. However, the major bot-
tleneck of GNN training comes from the nodes dependencies
in the input graph. Consequently, graph convolution suffers
from a high computational cost, as the representation of a
node in the current layer needs to be computed recursively
by the representations of all neighbors in its previous layer.
Moreover, storing the intermediate features for all nodes
requires much memory space, especially when the graph
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size grows. For instance, for the ogbn-products graph in our
experiments (Table 1), full-batch training requires a GPUwith
33GB of memory [9]. Thus scaling GNN training to large-
scale graphs remains a big challenge. The problem is more
severe for a resource-constrained scenario like IoT, where
GNN training is heavily constrained by the computation,
memory, and communication costs.

Various approaches have been proposed to alleviate the
computation and memory burden of GNNs. For instance,
sampling-based approaches aim at reducing the neighbor-
hood size via layer sampling [10], [11], [12], clustering
based sampling [13] and graph sampling [14] techniques;
these prior works approach this problem purely from an
algorithmic angle. A few recent works [15], [16] investigate
the topic of distributed multi-GPU training of GNNs and
achieve good parallel efficiency and memory scalability while
using large GPU clusters.

A common limitation of all these approaches is that they
do not take the real hardware constraints into consideration.
For mobile devices with limited memory budgets, the input
graph can be too large to fit entirely in the main memory.
In addition, the communication overhead among real IoT
devices is significantly larger than when using GPU clusters,
rendering distributed training approaches not readily appli-
cable to such scenarios. This calls for a new approach for
resource-efficient GNN learning, which is precisely the focus of
our paper.

In this work, we propose a novel approach that trains
GNNs efficiently with multiple devices in a resource-limited
scenario. To this end, we (1) design a graph partitioning
method that accounts for resource constraints and graph
topology; (2) train a set of local GNNs at the subgraph-level
for computation, memory and communication savings. Our
contributions are as follows:

• We formulate the problem of training GNNs with
multiple resource-constrained devices. Although our
formulation targets various mobile and edge devices
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(e.g., mobile phones, Raspberry Pi), it is also applicable
to powerful machines equipped with GPUs.

• We propose SUGAR, a GNN training framework that
aims at improving training scalability. We provide com-
plexity analysis, error bound and convergence analysis
of the proposed estimator.

• We show that SUGAR achieves the best runtime and
memory usage (with similar accuracy) when compared
against state-of-the-art GNN approaches on five large-
scale datasets and across multiple hardware platforms,
ranging from edge devices (i.e., Raspberry Pi, Jetson
Nano) to a desktop equipped with powerful GPUs.

• We illustrate the flexibility of SUGAR by integrating it
with both full-batch and mini-batch algorithms such as
GraphSAGE [10] and GraphSAINT [14]. Experimental
results demonstrate that SUGAR can achieve up to
33× runtime speedup on ogbn-arxiv and 3.8× memory
reduction on Reddit. On the ogbn-products graph with
over 2 million nodes and 61 million edges, SUGAR
achieves 1.62× speedup over GraphSAGE and 1.83×
memory reduction over GraphSAINT with a better test
accuracy (⇠0.7%).

The remainder of the paper is organized as follows. In
Section 2, we discuss prior work. In Section 3, we formulate
the problem and describe our proposed training framework
SUGAR. Experimental results are presented in Section 4.
Finally, Section 5 concludes the paper.

2 RELATED WORK

The relevant prior work comes from three directions as
discussed next.

2.1 Graph Neural Networks
Modern GNNs adopt a neighborhood aggregation scheme to
learn representations for individual nodes or the entire graph.
Graph Convolution Network (GCN) [2] is a pioneering work
that generalizes the use of regular convolutions to graphs.
GraphSAGE [10] provides an inductive graph representation
learning framework. To improve the representation ability
of GNNs, Graph Attention Networks (GAT) [17] introduce
self-attention to the graph convolution operation. Apart
from pursuing higher accuracy, a few GNN architecture
improvements [18], [19] have been made towards higher
training efficiency.

2.2 GNN training algorithms
Current GNN training algorithms can be categorized into
full-batch training and mini-batch training.

Full-batch training was first proposed for GCNs [2];
the gradient is calculated based on the global graph and
updated once per epoch. Despite being fast, full-batch
gradient descent is generally infeasible for large-scale graphs
due to excessively large memory requirements and slow
convergence.

Mini-batch training was first proposed in GraphSAGE
[10]; the gradient update is based on a proportion of nodes

in the graph and updated a few times during each training
epoch. Mini-batch training leads to memory efficiency at
the cost of increased computation. Since the neighborhood
aggregation scheme involves recursive calculation of a
node’s neighbors layer by layer, time complexity becomes
exponential with respect to the number of GNN layers; this
is known as the neighborhood expansion problem.

Following the idea of neighbor sampling, FastGCN [11]
further proposes the importance node sampling to reduce
variance. The work of [12] proposes a control variate based
algorithm that allows a smaller neighbor sample size.

A few recent works propose alternative ways to construct
mini-batches instead of layer-wise sampling. For instance,
ClusterGCN [13] first partitions the training graph into
clusters and then randomly groups clusters together as a
batch. GraphSAINT [14] builds mini-batches by sampling
the training graph and ensures a fixed number of nodes in
all layers.

2.3 Graph Sparsification
Recent works have also investigated graph sparsification
(i.e., pruning edges of the training graph) for GNN learning.
In many real-world applications, graphs exhibit complex
topology patterns. Some edges may be erroneous or task-
irrelevant, and thus aggregating this information weakens
the generalizability of GNNs [20]. As shown by [21] and
[22], edges of the input graph may be pruned without loss
of accuracy.

Two recent works introduce computation efficiency into
the problem. More precisely, SGCN [23] proposes a neural
network that prunes edges of the input graph; they show
that using sparsified graphs as the new input for GNNs
brings computational benefits. UGS [24] presents a graph
lottery ticket type of approach; they sparsify the input graph,
as well as model weights during training to save inference
computation.

3 OUR PROPOSED METHOD

3.1 Problem Formulation
Given a graph G = (V, E), where V is the node set and E

represents the set of edges. Let N = |V| denote the number
of nodes and A 2 R

N⇥N be the adjacency matrix of G. Every
node i is characterized by a F -dimensional feature vector
xi 2 R

F . We use X 2 R
N⇥F to represent the feature matrix

of all nodes in G.
Consider a node-level prediction problem with the fol-

lowing objective:

min
W

L =
1

N

NX

i=1

f(yi, zi)

zi = g(xi;W )

(1)

where f is the objective function (e.g., cross entropy for node
classification), yi and zi denotes the true label and prediction
of node i, respectively. g(·) denotes a graph neural network
parameterized by W that generates node-level predictions.

Suppose there are K devices available for training, and
let Bk

MEM denote the memory budget of device k. Motivated
by the notorious inefficiency that centralized graph learning
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suffers from, we aim at distributing the training process to
improve the training scalability. The key is to assignN nodes
of graph G to K devices, and then do local training on each
device. We formulate it as two subproblems below.

First, we define a graph partitioning strategy P : V !

(V1,V2, · · · ,VK) that divides the node set V into K subsets
such that:

[kVk = V, H(SGk) < B
k
MEM , 8k 2 [K] (2)

where [K] = {1, ...,K}, SGk denotes the subgraph induced
by node set Vi, H is a static function that maps a given
subgraph SGi to the device memory requirements for
training. For maximum generality, here we do not require
Vi \ Vj = ?. In other words, a node i can be assigned to
more than one hardware device, and let Pi denote the set of
hardware devices where node i is assigned to.

Next, we adopt subgraph-level training, i.e., for de-
vice k, we maintain a local GNN model, denoted by
W

hki that takes the subgraph SGk as its input graph. Let
W = 1

K

PK
k=1 W

hki, thus the objective can be reformulated
as:

min
W

L =
1

N

NX

i=1

f(yi, zi)

zi =
1

|Pi|

X

k2Pi

g(xi;W
hki)

(3)

Based on the formulation above, we propose SUGAR,
a distributed training framework that: (1) partitions the
input graph subject to resource constraints; (2) adopts
local subgraph-level training. Figure 1 provides a simple
illustration of SUGAR for a two-device system. We describe
our design choices in detail in the following sections.

3.2 Theoretical Basis
Recall that we define a graph partitioning strategy P that
divides N nodes into K node sets (V1,V2, · · · ,VK). Taking
K subgraphs induced by the node sets into consideration,
a graph partitioning strategy P can be viewed as a way to
produce a sparser adjacency matrix ASG, from the original
matrix A. ASG is a block-diagonal matrix of A, i.e.,

ASG =

2

6666664

AV1 · · · 0 · · · 0
...

. . .
...

0 AVk 0
...

. . .
...

0 · · · 0 · · · AVK

3

7777775
(4)

where AVk denotes the adjacency matrix of subgraph k.
We show below that adopting ASG for training offers the

benefits of high computational efficiency and low memory
requirements. Moreover, we provide the error bound and
convergence analysis of this approximation for a graph
convolutional network (GCN) [2].

Complexity Analysis. The propagation rule for the l-th
layer GCN is:

Z
(l+1) = A

norm
H

(l)
W

(l)
, H

(l+1) = �(Z(l+1)) (5)

where � represents an activation function, A
norm

denotes the normalized version of A, i.e., A
norm =

D̂
�1/2

ÂD̂
1/2

, Â = A + IN , D̂ii =
P

j Âij and IN is an N -
dimensional identity matrix. H(l) and H

(l+1) denotes the
input and output feature matrices in layer l, respectively. Z(l)

is the node feature matrix before the activation function in
layer l and Z

(L) denotes final node predictions (i.e., output
of the GCN). W (l)

2 R
Fl⇥Fl+1 represents the weight matrix

of layer l, where Fl and Fl+1 is the input and output feature
dimension, respectively. Therefore, for the l-th layer GCN, the
training time complexity is O(|E|Fl +NFlFl+1) and memory
complexity is O(NFl+1+FlFl+1). We make two observations
here: (a) Real-world graphs are usually sparse and |E|

N is
generally smaller than feature number Fl+1. Thus, the second
term dominates the time complexity; (b) For large-scale
graphs, the number of nodes N is much greater than the
number of features. Consequently, O(NFl+1) dominates the
memory complexity. It is easy to verify that the number
of nodes N imposes a computation hurdle on training.
Partitioning the input graph into K subgraphs reduces the
number of nodesN toNk = |Vk| for every local model. Since
Nk is about 1/K of N , the proposed approach is expected to
achieve up to K times speedup, and as little as 1/K of the
original memory requirements.

Error Bound Analysis. Let our proposed estimator be
SG. The l-th layer propagation rule of a GCN with the SG
estimator is:

Z
(l+1)
SG = A

norm
SG H

(l)
SGW

(l)
, H

(l+1)
SG = �(Z(l+1)

SG ) (6)

where Z
(l+1)
SG and H

(l+1)
SG denote the node representations

produced by the SG estimator in layer l + 1 before and after
activation, respectively.

Assume that we run graph partitioning for M times
to obtain a sample average of Anorm

SG before training. Let
✏ = kA

norm
SG �A

norm
k1 denote the error in approximating

A
norm with A

norm
SG . For simplicity, we will omit the super-

script norm from now on.
The following lemma states that the error of node

predictions given by the SG estimator is bounded.

Lemma 1. For a multi-layer GCN with fixed weights, assume that:
(1) �(·) is ⇢-Lipschitz and �(0) = 0, (2) input matrices A, X and
model weights {W (l)

}
L
l=1 are all bounded, then there exists C such

that
���Z(l)

SG � Z
(l)
���
1

 C✏, 8l 2 [L] and
���H(l)

SG �H
(l)
���
1



C✏, 8l 2 [L� 1].

The proof of Lemma 1 is provided in Section ??. Lemma
1 motivates us to design a graph partitioning method that
generates small ✏ so that the output of the SG estimator is
close to the exact value. This will be discussed in detail in
the next subsection.

Convergence Analysis. Let Wt denote the model pa-
rameters at training epoch t and W⇤ denote the opti-

mal model weights. rL(W ) = 1
N

PN
i=1

@f(yi,z
(L)
i )

@W and

rLSG(W ) = 1
N

PN
i=1

@f(yi,z
(L)
SG,i)

@W represent the gradients
of the exact GCN and SG estimator with respect to model
weights W , respectively.

Theorem 1 states that with high probability gradient
descent training with the approximated gradients of the SG
estimator (i.e., rLSG(W )) converges to a local minimum.

Theorem 1. Assume that: (1) the loss function L(W ) is ⇢-smooth,
(2) the gradients of the loss rL(W ) and rLSG(W ) are bounded
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(a) G
raph  Partitioning (Sec 3.3)

Weighted Graph  
Construction

Weighted Graph 
Partitioning

cut copy

No Inter-Device 
Communication √

(b) Subgraph-level GNN Training (Sec 3.4)

     Out Of  
Memory

Fits in Memory √

Heavy  
Communication

vanilla training

device 1

distributed SGD

device 0

device 1

(Optional) Subgraph  
Expansion

device 0
GNN model 

device 0

device 1
GNN model 

Mem. budget 

Input Graph
2 devices 

××

Fig. 1. While vanilla training is likely to run out of memory when the graph size is large and distributed stochastic gradient descent (SGD) requires
heavy intermediate communication among devices, SUGAR provides a solution that is memory efficient and requires no inter-device communication.
The proposed SUGAR consists of two stages: (a) graph partitioning and (b) subgraph-level GNN training. Graph partitioning involves three steps: (1)
transform the input graph G to a weighted graph Gw; (2) apply METIS to the weighted graph Gw, where edges with large weights are more likely to
be preserved; (3) (optional) expand the node set of the obtained subgraph according to memory budgets.

for any choice of W , (3) the gradient of the objective function
@f(y,z)

@z is ⇢-Lipschitz and bounded, (4) the activation function
�(·) is ⇢-Lipschitz, �(0) = 0 and its gradient is bounded,

then there exists C > 0, s.t., 8M,T , for a sufficiently small �,
if we run graph partitioning for M times and run gradient descent
for R  T epochs (where R is chosen uniformly from [T ], the
model update rule is Wt+1 = Wt � �rLSG(Wt), and step size
� = 1

⇢
p
T
), we have:

P (ERkrL(WR)k
2
F  �) �

1� 2 exp{�2M(
�

2C
�

2⇢[L(W1)� L(W⇤)] + C � �

2C(
p
T � 1)

)2}

With M and T increasing, the right-hand-side of the
inequality becomes larger. This implies that there is a higher
probability for the loss to converge to a local minimum. The
full proof is provided in the Appendix.

3.3 Graph Partitioning

From Lemma 1, we conclude that a graph partitioning
method that yields a smaller |ASG � A| leads to a smaller
error in node predictions. Therefore, we aim at minimizing
the difference between ASG and A. In other words, the objec-
tive of graph partitioning should be to minimize the number
of edges of the incident nodes that belong to different subsets.
As such, this is identical to the goal of various existing
graph partitioning methods, making such approaches good
candidates to use with our framework. We choose METIS
[25] due to its efficiency in handling large-scale graphs.
However, the traditional graph partitioning algorithms are
not intended for modern GNNs and the learning component
of the problem is missing. Consequently, we present a
modified version of METIS that is suited to our problem
and relies on two new ideas discussed next.

a) Weighted Graph Construction. We build a weighted
graph G

w from the input graph G. The weight of an edge euv
is defined based on the degree of its two incident nodes:

weight(euv) = dmax + 1� deg(u)� deg(v)

dmax = max{deg(u) + deg(v), 8euv 2 E}
(7)

Let A
w denote the adjacency matrix of the weighted

graph G
w, where element awij is the edge weight weight(eij);

a
w
ij is 0 if there is no edge connecting nodes i and j.
The key intuition behind our first idea lies in the neigh-

borhood aggregation scheme of GNNs. Consider two nodes
u and v, where u is a hub node connected to many other
nodes, while v has only one neighbor. As GNNs propagate
by aggregating the neighborhood information of nodes,
removing the only edge of node v may possibly lead to
wrong predictions. On the other hand, pruning an edge
of u is more acceptable since there are many neighbors
contributing to its prediction. Consider the graph in Figure
1 as an example. Cutting the edges e1 [ e2 and e3 [ e4 are
both feasible solutions for METIS. However, considering the
fact that nodes connected to e1 and e2 have less topology
information, our proposed method will preserve them and
cut edges e3 [ e4 instead; this can lead to a better learning
performance.

As can be concluded from this small example, edges
connected to small-degree nodes are critical to our problem
and should be preserved. Conversely, edges connected
to high-degree nodes may be intentionally ignored. This
explains our weights definition strategy. Consequently, we
incorporate the above observation into our partitioning
objective and apply METIS to the pre-processed graph G

w.
b) Subgraph Expansion. After obtaining the partitions

with our modified METIS, we propose the second idea, i.e.,
expand the subgraph based on available hardware resources.
Although METIS only provides partitioning results where the
node sets do not overlap, our general formulation in Section
3.1 allows nodes to belong to multiple partitions. This brings
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great flexibility to our approach to adjust the node number
for each device according to its memory budget.

Suppose the available memory of device k is larger than
the actual requirement of training a GNN on subgraph k

(i.e., H(SGk) < B
k
MEM ), then we may choose to expand the

node set Vk by adding the one-hop neighbors of nodes that
do not belong to Vk. As illustrated in Figure 1 (a), we can
expand the node set of the subgraph on device 0 (marked in
light brown) to include node n0 as well. While expanding
the subgraph is likely to yield higher accuracy, training time
and memory requirement will also increase. Therefore, this
is an optional step, only if the hardware resources allow it.

3.4 Subgraph-level Local Training
From the original formulation in Equation 3, if |Pi| > 1, i.e., a
node i is assigned to multiple devices, calculating its loss and
backpropagation can involve heavy communication among
devices. To address this problem, we provide the following
result to decouple the training of K local GNN models from
each other.

Proposition 1. If f(y, z) is convex with respect to z, then the
upper bound of L in Equation 3 is given by:

L 
1

K

KX

k=1

X

i2Vk

1

|Pi|
f(yi, zi)

zi = g(xi,W
hki)

(8)

Proof. By convexity of f , using Jensen’s inequality [26]
gives us:

f(yi,
1

|Pi|

X

k2Pi

g(xi;W
hki) 

1

|Pi|

X

k2Pi

f(yi, g(xi;W
hki))

(9)
By changing the operation order and regrouping the

indices, we further derive:

1

N

NX

i=1

1

|Pi|

X

k2Pi

f(yi, zi) =
1

K

KX

k=1

X

i2Vk

1

|Pi|
f(yi, zi) (10)

Therefore,

L 
1

K

KX

k=1

X

i2Vk

1

|Pi|
f(yi, zi)

zi = g(xi,W
hki)

(11)

Proposition 1 is proved.
Proposition 1 allows us to shift the perspective from

‘node-level’ to ‘device-level’. We adopt the upper bound of L
in Equation 8 as the new training objective. Now, the local
model updates involving node i do not depend on other
models (i.e., {W hki

}k2Pi ) any more. Optimizing the new
objective naturally reduces the upper bound of the original
one and avoids significant communication costs, thus leading
to high training efficiency.

Furthermore, motivated by deployment challenges in real
IoT applications, where communication among devices is
generally not guaranteed, we propose to reduce inter-device
communication down to zero in our framework. In particular,
we maintain K distinct (local) models instead of a single
(global) model by keeping the local model updates within

each device. The objective of our proposed subgraph-level
local GNN training can be summarized as follows:

min
W hki

Lk =
X

i2Vk

1

|Pi|
f(yi, zi), 8k 2 [K]

zi = g(xi,W
hki)

(12)

In training round t, every device performs local updates as:

W
hki
t+1  W

hki
t � �rW hkiLk, 8k 2 [K] (13)

where Lk denotes the training objective of device k and �

is the learning rate (i.e., step size). By decoupling training
dependency among devices, we propose a feasible solution
to train GNNs in resource-limited scenarios, where typical
distributed GNN approaches are not applicable.

3.5 Putting it all together

Algorithm 1 SUGAR
Input: graph G = (V, E); node feature matrix X ; available
device number K; device memory budget {B

k
MEM}

K
k=1;

total training epochs T .
1: Construct Gw from G according to Equation 7
2: Partition G

w into K subgraphs {SGi}
K
1

3: (Optional) Expand SGi if H(SGi) < B
i
MEM

4: for each device k = {1, 2, · · · ,K} in parallel do
5: Initialize GNN model weight W hki

1
6: for epoch t = 1, 2, · · · , T do
7: W

hki
t+1  W

hki
t � �rW hkiLk

8: end for
9: end for

To sum up, the SUGAR algorithm consists of two stages:
(a) graph partitioning (lines 1-3) and (b) subgraph-level
GNN training (lines 4-9). Specifically, the graph partitioning
involves three steps: (1) construct a weighted graph G

w

from G to account for the influence of node degrees in
learning (line 1). (2) Apply METIS to the weighted graph G

w

to obtain partitioning results (line 2). (3) According to the
memory budget, expand the subgraph to cover the one-hop
neighbors for better performance (line 3). Then, we train
K local models in parallel without requiring training-time
communication among devices (lines 4-9). The proposed
subgraph-level training with multiple devices achieves high
training efficiency, low memory requirements and zero
communication costs.

4 EXPERIMENTS

4.1 Experimental Setup
We evaluate SUGAR on five node classification datasets [9],
[27], selected from very diverse applications: (1) categorizing
types of images based on the descriptions and common
properties of online images (Flickr); (2) predicting commu-
nities of online posts based on user comments (Reddit); (3)
predicting the subject areas of arxiv papers based on its
title and abstract (ogbn-arxiv); (4) predicting the presence of
protein functions based on biological associations between
proteins (ogbn-proteins); (5) predicting the category of a

Page 6 of 14Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



MANUSCRIPT FOR IEEE TRANSACTIONS ON COMPUTERS 6

TABLE 1
Dataset Statistics. K and M denote 1,000 and 1,000,000, respectively.

‘AvgDeg.’ represents the average node degree. ‘ACC’ denotes accuracy.

Dataset Flickr Reddit ogbn-
arxiv

ogbn-
proteins

ogbn-
products

#Nodes 89.3K 233K 169K 133K 2,449K
#Edges 0.90M 11.6M 1.17M 39.6M 61.9M
AvgDeg. 10 50 13.77 597 50.5
#Tasks 1 1 1 112 1
#Classes 7 41 40 2 47

Metric ACC ACC ACC ROC-
AUC ACC

product in an Amazon product co-purchasing network (ogbn-
products). Note that the task of ogbn-proteins is multi-label
classification, while other tasks are multi-class classification.
Dataset statistics are summarized in Table 1.

We include the following GNN architectures and SOTA
GNN training algorithms for comparison:

• GCN [2]: Full-batch Graph Convolutional Networks.

• GraphSAGE [10]: An inductive representation learning
framework that efficiently generates node embeddings
for previously unseen data. Mini-batch GraphSAGE are
denoted by GraphSAGE-mb.

• GAT [17]: Graph Attention Networks, a GNN architec-
ture that leverages masked self-attention layers.

• SIGN [18]: Scalable Inception Graph Neural Networks,
an architecture using graph convolution filters of differ-
ent size for efficient computation.

• ClusterGCN [13]: A mini-batch training technique that
partitions the graphs into a fixed number of subgraphs
and draws mini-batches from them.

• GraphSAINT [14]: A mini-batch training technique
that constructs mini-batches by graph sampling. The
random node, random edge, and random walk based
samplers are denoted by GraphSAINT-N, GraphSAINT-
E, GraphSAINT-RW, respectively.

SUGAR is implemented with PyTorch [28] and DGL
[29]. For all the baseline methods, we use the parameters
reported in their github pages or the original paper. We
report accuracy results averaged over 5 runs for ogbn-proteins
and 10 runs for the other datasets.

For completeness, we run our experiments across mul-
tiple hardware platforms. We select five different devices
with various computing and memory capabilities, namely,
(1) Raspberry Pi 3B, (2) NVIDIA Jetson Nano, (3) Android
phone with Snapdragon 845 processor, (4) laptop with Intel
i5-8279U CPU, and (5) desktop with AMD Threadripper
3970X CPU and two NVIDIA RTX 3090 GPUs.

TABLE 2
Runtime, memory & accuracy results on ogbn-arxiv. ‘Avg. Time’ is the
training time per epoch averaged over 100 epochs and ‘Max Mem’

denotes peak allocated memory on GPU.

Avg.
Time
[ms]

SUGAR
Speedup

Max
Mem
[GB]

Test
Acc.
[%]

GCN 26.9 1.68⇥ 1.60 72.37 ± 0.10
GAT 207.8 12.99⇥ 5.41 72.95 ± 0.14
GraphSAGE 534.7 33.42⇥ 0.95 71.98 ± 0.17
SIGN 291.6 18.23⇥ 0.94 71.79 ± 0.08
SUGAR 16.0 0.92 72.22 ± 0.14

TABLE 3
Runtime, memory & accuracy results on Reddit.

Avg.
Time
[ms]

SUGAR
Speedup

Max
Mem
[GB]

Test
Acc.
[%]

GraphSAGE 110.6 1.87⇥ 5.70 96.39 ± 0.03
GraphSAGE-mb 316.5 5.36⇥ 2.33 95.08 ± 0.05
ClusterGCN 414.4 7.01⇥ 1.83 96.34 ± 0.01
GraphSAINT-N 341.8 5.78⇥ 1.29 96.17 ± 0.06
GraphSAINT-E 299.8 5.07⇥ 1.22 96.15 ± 0.06
GraphSAINT-RW 467.5 7.91⇥ 1.23 96.23 ± 0.06
SIGN 352.8 5.97⇥ 2.17 96.12 ± 0.05
SUGAR 59.1 1.51 96.01 ± 0.03

4.2 Results

4.2.1 Evaluations on GPUs

First, we provide evaluation of SUGAR on a two-GPU
system. Table 2 and Table 3 report the average training time
per epoch, maximum GPU memory usage and accuracy
on ogbn-arxiv and Reddit. We base SUGAR on full-batch
GCN and GraphSAGE for these two datasets, respectively.
As shown in these tables, when compared with full-batch
methods (i.e., GCN and GAT for ogbn-arxiv; GraphSAGE
for Reddit), SUGAR is much more memory efficient, as it
reduces the peak memory by 1.7⇥ for ogbn-arxiv and 3.8⇥
for Reddit data. When compared against mini-batch methods
(i.e., mini-batch GraphSAGE, ClusterGCN, GraphSAINT and
SIGN), the runtime of SUGAR is significantly smaller. This
demonstrates the great benefits of our proposed subgraph-
level training. Indeed, by restricting the neighborhood search
size, SUGAR effectively alleviates the neighborhood expan-
sion problem. In addition, it achieves very competitive test
accuracies.

We combine SUGAR with popular mini-batch training
methods and evaluate them on Flickr and ogbn-products
dataset. Table 4 presents results of SUGAR incorporated
with GraphSAINT for three sampler modes (i.e., node, edge,
and random walk based samplers) on Flickr data. Note that
the accuracy we obtain (about 50%) is consistent with results
in [14]. SUGAR achieves more than 2⇥ runtime speedup
and requires less memory than GraphSAINT. Test accuracy
loss is within 1% in all cases.

For the largest ogbn-products dataset, we implement
SUGAR together with three competitive GNN baselines,
namely GraphSAGE, ClusterGCN and GraphSAINT. The
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TABLE 4
Runtime, memory & accuracy results on Flickr.

Avg. Time
[ms]

Max Mem
[GB]

Test Acc.
[%]

GraphSAINT-N 97.0 0.41 50.64 ± 0.28
SUGAR 49.9 0.31 50.11 ± 0.12
Improvement 1.94⇥ 1.32⇥

GraphSAINT-E 71.1 0.53 50.91 ± 0.12
SUGAR 32.6 0.41 49.96 ± 0.12
Improvement 2.18⇥ 1.29⇥

GraphSAINT-RW 108.9 0.65 51.03 ± 0.20
SUGAR 37.3 0.49 50.15 ± 0.24
Improvement 2.92⇥ 1.33⇥

TABLE 5
Runtime, memory & accuracy results on ogbn-products.

Avg. Time
[ms]

Max Mem
[GB]

Test Acc.
[%]

GraphSAGE-mb 2.42 7.29 79.25 ± 0.22
SUGAR 1.49 4.43 79.97 ± 0.23
Improvement 1.62⇥ 1.65⇥
ClusterGCN 2.90 6.59 78.51 ± 0.33
SUGAR 1.97 3.36 79.34 ± 0.41
Improvement 1.47⇥ 1.96⇥
GraphSAINT-E 0.30 7.16 79.54 ± 0.27
SUGAR 0.28 3.92 80.20 ± 0.23
Improvement 1.07⇥ 1.83⇥

TABLE 6
Runtime, memory & accuracy results on ogbn-proteins.

Avg.
Time
[sec]

Max
Mem
[GB]

Valid
Acc.
[%]

Test
Acc.
[%]

GAT 6.20 10.77 92.08 ± 0.08 87.20 ± 0.17
SUGAR 4.09 6.22 92.51 ± 0.08 86.41 ± 0.18
Improvement 1.52⇥ 1.73⇥

results are summarized in Table 5. SUGAR provides a
better solution that leads to runtime speedup, memory
reduction and even a slightly increased test accuracy for all
three methods. We hypothesize that the graph partitioning
eliminates some task-irrelevant edges in the original graph,
and thus leads to better generalization of GNNs.

Table 6 provides results on the dense ogbn-proteins graph.
When it comes to training GNNs on dense graphs, memory
poses a significant challenge due to the neighborhood
expansion problem. The results show that GAT suffers from
considerable memory usage. In contrast, SUGAR effectively
alleviates the issue with 1.52⇥ runtime speedup and 1.73⇥
memory reduction.

4.2.2 Evaluations on mobile and edge devices
Following the GPU setting, we proceed to evaluate SUGAR
on mobile and edge devices with CPUs.

Training Time. Table 7 presents the average training time
per epoch of SUGAR compared with baselines on the Flickr

and ogbn-arxiv datasets. Due to the relative small size of
these two datasets, we are able to train GNNs on all five
hardware devices, ranging from a Raspberry Pi 3B, to a
desktop equipped with high-performance CPUs. We also list
the runtime on GPUs in the last column for easy comparison.

From Table 7, we can see that SUGAR demonstrates
consistent speedup across all platforms, achieving over 2⇥
and 1.5⇥ speedup on the Flickr and ogbn-arxiv datasets,
respectively. In addition, training a GCN on the Raspberry
Pi 3B fails due to running out of memory, while SUGAR
demonstrates good memory scalability and hence it can be
used with such a device with a limited memory budget (i.e.,
1GB in this case). This also holds true for the Reddit dataset:
SUGAR provides a feasible solution for local training on the
Jetson Nano (time per epoch is 50.27s), while other baselines
can not work due to large memory requirements.

Thus, for the other three datasets, we compare the
runtime on Desktop-CPU and report our results in Table
8. We also observe consistent speedup across all datasets:
SUGAR nearly halves the training time in all three cases.

Memory Usage. We compare the memory usage of
SUGAR against GNN baselines on a CPU setting. Figure 2
illustrates the resident set size (RSS) memory usage during
training on the four datasets: ogbn-arxiv, Reddit, ogbn-proteins
and ogbn-products. Note that we train a full-batch version of
GCN and the batch size of GAT is larger compared with
GraphSAGE and GraphSAINT. This accounts for higher
fluctuation in the corresponding figure. It is evident that our
proposed SUGAR achieves substantial memory reductions
compared with baseline GNNs. We emphasize that memory
plays a critical role in GNN training. In the context of devices
with limited resources, the situation is more severe since
the graph dataset is already big and loading the full dataset
may not be possible. By adopting subgraph-level training,
SUGAR effectively alleviates the problem.

Finally, we present a case study of SUGAR on NVIDIA
Jetson Nano in Table 9 to demonstrate the applicability of
SUGAR to edge devices. Jetson Nano is a popular, cheap
and readily available platform (we adopt the model with
quad Cortex-A57 CPU and 4GB LPDDR memory) and thus
considered as a good fit for our problem scenario. Apart from
training time, we measure the peak RSS memory usage for
the training process and calculate energy consumption. As
shown in Table 9, SUGAR achieves low latency, consumes
less memory and is more energy efficient when compared
with baseline GNN algorithms. Therefore, it provides an
ideal choice to train GNNs on devices with limited memory
and battery capacity.

4.3 Scalability Analysis
4.3.1 Number of partitions
So far we have demonstrated the great performance of
SUGAR with two available devices. A natural follow-up
question is, how does SUGAR perform on more devices, i.e.,
device number K > 2. Below we provide a scalability analysis
of SUGAR based on the number of partitions (i.e., device
number K).

We vary the number of available devices K from 2 to
8 and evaluate SUGAR on the ogbn-arxiv, Reddit and ogbn-
products datasets. The evaluation is conducted on Desktop-
GPU. Runtime speedup, peak GPU memory reduction,
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TABLE 7
Average training time per epoch [sec] of SUGAR compared with GraphSAINT and GCN on Flickr and ogbn-arxiv data. We record the training time
on five platforms with CPU models listed. OOM denotes Out Of Memory. We note that training a GCN on Raspberry Pi 3B is infeasible since it

exceeds memory, while SUGAR still works.

Dataset RPi 3B Jetson Phone Laptop Desktop-CPU Desktop-GPU
Cortex-A53 Cortex-A57 SDM-845 i5-8279U Zen2 3970X RTX3090

Flickr
GraphSAINT-N 104.1 16.86 7.67 2.86 1.48 0.097
SUGAR 48.2 7.61 3.54 1.21 0.67 0.050
Speedup 2.16⇥ 2.22⇥ 2.17⇥ 2.36⇥ 2.24⇥ 1.94⇥

ogbn-arxiv
GCN OOM 28.10 21.96 13.80 5.16 0.027
SUGAR 501.59 18.39 13.33 6.51 2.71 0.016
Speedup - 1.53⇥ 1.65⇥ 2.12⇥ 1.91⇥ 1.69⇥

Fig. 2. Memory variation during training GNNs on Desktop-CPU for ogbn-arxiv, Reddit, ogbn-proteins and ogbn-products. For SUGAR, we plot the
memory variation of the device that consumes most memory.

Fig. 3. Scalability analysis on the number of partitions (i.e., the number of available devices K) for SUGAR. K = 1 refers to the baseline GNN (i.e.,
GCN for ogbn-arxiv ; GraphSAGE for Reddit ; GraphSAINT for ogbn-products). We report the smallest training time speedup and peak GPU memory
reduction among K devices (i.e., the worst-case scenario) of SUGAR over the baseline.

validation and test accuracy are presented in Figure 3. With
increasing K , we observe a decreased training time and peak
memory usage for each local device.

As we can see, while distributing the GNN model to
more devices yields computation efficiency, test accuracy
drops a bit. For instance, in the case of 8 devices, the biggest
decrease happens in the ogbn-products dataset: test accuracy
is 76.69% while the baseline accuracy is 79.54%. In the

meantime, SUGAR leads to 5.13⇥ speedup, as well as 4.24⇥
memory reduction compared with the baseline. Generally
speaking, there exists a tradeoff between training scalability
and performance. The underlying reason is that the increase
of partition number K leads to more inter-device edges,
which corresponds to a larger error in estimating with ASG

with A.

We further evaluated SUGAR in a 128-device setting.
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(a) graph data on CPU (b) graph data on GPU

Fig. 4. The training time and peak GPU memory with varying batch sizes of GraphSAGE and SUGAR for the ogbn-products data. We investigate two
settings: (a) graph data loaded on GPU for faster execution (b) graph data loaded on CPU for memory savings.

TABLE 8
Runtime comparison against baseline methods on three large datasets.
Average training time per epoch [sec] is reported. Baseline refers to
GraphSAGE for Reddit and ogbn-products. GAT is the baseline for

ogbn-proteins.

Reddit ogbn-
products

ogbn-
proteins

Baseline 2.02 170.75 269.70
SUGAR 0.88 77.05 142.7
Speedup 2.30⇥ 2.22⇥ 1.89⇥

The results show that the test accuracy drop compared with
baseline GNNs is small, i.e., within 5% when scaling up to
128 devices (e.g., accuracy decreases from 72.37% to 67.80%
for ogbn-arxiv, from 96.39% to 92.32% for Reddit, from 50.64%
to 46.31% for Flickr). At the same time, we note that the
memory savings are great (e.g., peak memory usage per
device is reduced from 1.60GB to 0.02GB for ogbn-arxiv). This
shows that SUGAR can work with very small computation
and memory requirements at the cost of slightly downgraded
performance. Thus, SUGAR provides a feasible solution in
extremely resource-limited scenarios while general GNN
training methods are not applicable.

4.3.2 Batch Size
Finally, we study the influence of batch sizes on computa-
tional efficiency and memory scalability on SUGAR when
compared with mini-batch training algorithms.

For mini-batch training algorithms, when the limited
memory of device renders GNN training infeasible, a natural
idea is reduce the batch size for memory savings. Here, we
analyze the influence of SUGAR and the act of reducing
batch sizes on computational efficiency, as well as memory
scalability. We conduct experiments on the largest ogbn-
products graph with GraphSAGE as the baseline. Two settings
are considered: (a) graph data loaded on CPU, longer training
time and smaller memory consumption is expected; (b) graph
data loaded on GPU, the model runs faster, yet requires more
GPUmemory. Figure 4 provides runtime and memory results
with varying batch sizes.

We list two observations below: First, SUGAR mainly
improves runtime in setting (a) and achieves greater memory
reduction in setting (b). This is related to the mechanism of
SUGAR: each local model adopts one subgraph for training
instead of the original graph. Thus, data loading time is

TABLE 9
Evaluations of SUGAR on NVIDIA Jetson Nano for Flickr and

ogbn-arxiv. ‘Avg. Time’ and ‘Max Mem’ denotes training time per epoch
and peak resident set size (RSS) memory. We measure the time,

memory and energy for training 10 epochs. SUGAR improves average
training time, memory usage and energy consumption per device over

baseline GNNs (i.e., GraphSAINT and GCN).

Dataset Avg. Time
[sec]

Max Mem
[GB]

Energy
[kJ]

Flickr GraphSAINT-N 22.62 1.05 1.13
SUGAR 10.50 0.89 0.52
Improvement 2.15⇥ 1.18⇥ 2.17⇥

ogbn- GCN 28.10 2.24 1.27
arxiv SUGAR 18.39 1.46 0.81

Improvement 1.53⇥ 1.53⇥ 1.57⇥

reduced in setting (a) and putting a subgraph on GPU is
more memory efficient in setting (b).

Secondly, SUGAR demonstrates to be a better technique
in reducing memory usage than tuning the batch size. While
it is generally known that there exists a tradeoff between
computation and memory requirements as reducing batch
size increases training time, SUGAR is able to improve on
both accounts.

5 CONCLUSION

We have proposed SUGAR, an efficient GNN training
method that improves training scalability with multiple
devices. SUGAR can reduce computation, memory and
communication costs during training through two key contri-
butions: (1) a novel graph partitioning strategy with memory
budgets and graph topology taken into consideration; (2)
subgraph-level local GNN training. We provided a thorough
theoretical analysis of SUGAR and conducted extensive
experiments to evaluate SUGAR. Experiments results across
multiple hardware platforms demonstrate high training
efficiency and memory scalability of SUGAR.

More importantly, SUGAR demonstrates the potential
of deploying modern GNN algorithm on resource-limited
devices, which opens up discussion in developing resource-
efficient GNN approaches that are suitable for IoT deploy-
ment.
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[17] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
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APPENDIX
THEORETICAL ANALYSIS OF SUGAR
In this appendix, we provide details of the following theoret-
ical results used in Section 3:

(1) Lemma 1: For a multi-layer GCN with fixed weights,
the error of the activations of the SG estimator are bounded.

(2) Lemma 2: For a multi-layer GCN with fixed weights,
the error of the gradients of the SG estimator are bounded.

(3) Theorem 1: With high probability gradient descent
training with the approximated gradients by the SG estimator
can converge to a local minimum.

The proof builds on [12], but with different assumptions.
More precisely, while [12] assume that model weights change
slowly during training, our theoretical analysis is based on
the difference in the adjacency matrices produced by graph
partitioning.

.1 Notations
Let [L] = {1, ..., L}. The infinity norm of a matrix is defined
as kAk1 = maxi,j |Ai,j |. By Proposition B in [12], we know
that:
1) kABk1  col(A)kAk1kBk1
2) kA �Bk1  kAk1kBk1
3) kA+Bk1  kAk1 + kBk1

where col(A) represents the number of columns of matrix
A and � is the element-wise product. We define ⌘ to be the
maximum number of columns we can possibly encounter in
the proof. We review some notations defined in the main text.
Our proposed estimator is denoted by SG. The propagation
rule of a l-th layer GCN with the exact estimator is given by:

Z
(l+1) = A

norm
H

(l)
W

(l)
, H

(l+1) = �(Z(l+1)) (14)

Similarly, the propagation rule of a l-th layer GCN with the
SG estimator is given by:

Z
(l+1)
SG = A

norm
SG H

(l)
SGW

(l)
, H

(l+1)
SG = �(Z(l+1)

SG ) (15)

where � represents an activation function, Anorm denotes the
normalized version of A, i.e., Anorm = D̂

�1/2
ÂD̂

1/2
, Â =

A+ IN , D̂ii =
P

j Âij and IN is an N -dimensional identity
matrix.H(l) and H

(l)
SG denote node representations in the

l-th layer produced by the exact GCN and SG estimator,
respectively. W (l) represents the weight matrix in layer
l. Note that while we write Equation 15 in a compact
matrix form, in real implementation, the training process
is distributed across K devices.

Recall that ASG is a block-diagonal matrix produced by
the graph partitioning module that serves as an approx-
imation of A. Before training, we run graph partitioning
for M times to obtain a sample average, i.e., Anorm

SG =
1
M

PM
m=1 A

norm
SG,m. Let ✏ = kA

norm
SG �A

norm
k1 denote the

error in approximating A
norm with A

norm
SG . For simplicity,

we will omit the superscript norm from now on.
The model parameters at training epoch t are denoted by

Wt. For W at a given time point (i.e., fixed model weights),
we omit the subscript in the proof. Let W⇤ denote the

optimal model weights. rL(W ) = 1
N

PN
i=1

@f(yi,z
(L)
i )

@W and

rLSG(W ) = 1
N

PN
i=1

@f(yi,z
(L)
SG,i)

@W represent the gradients
of the exact GCN and SG estimator with respect to model

weights W , respectively. f(·, ·) is the objective function (e.g.,
cross entropy for node classification tasks).

.2 Activations of Multi-layer GCN

.2.1 Single-layer GCN
Proposition 2 states that for a single-layer GCN, (1) the
outputs are bounded if the inputs are bounded, (2) if the
difference between the input of the SG estimator and the
exact GCN is small, then the output of the SG estimator is
close to the output of the exact GCN.

Proposition 2. For a one-layer GCN, if the activation function
�(·) is ⇢-Lipschitz and �(0) = 0, for any input matrices A, ASG,
X , XSG and any weight matrix W that satisfy:
1) All the matrices are bounded by �: kAk1  �, kASGk1 

�, kXk1  �, kXSGk1  � and kWk1  �,
2) The differences between inputs are bounded:

kXSG �Xk1  ↵✏, where ✏ = kASG �Ak1.
Then, there exist B and C that depend on ⇢, ⌘ and �, s.t.,
1) The outputs are bounded: kHk1  B and kHSGk1  B,
2) The differences between outputs of the SG estimator and the

exact estimator are bounded: kZSG � Zk1  C(1 + ↵)✏
and kHSG �Hk1  C(1 + ↵)✏.

Proof. We know that kZk1 = kAXWk1 

⌘
2
kAk1kXk1kWk1  ⌘

2
�
3. By Lipschitz continuity of

�(·), k�(Z)� �(0)k1  ⇢⌘
2
�
3 and we have k�(Z)k1 

⇢⌘
2
�
3. Thus kHk1  D, where B = max{⌘2�3

, ⇢⌘
2
�
3
}.

Similarly, kHSGk1  B.
We proceed to show that the differences between outputs

are bounded below:
kZSG � Zk1

= kASGXSGW �AXWk1
 ⌘kWk1kASGXSG �AXk1
 ⌘�(kASG(XSG �X)k1 + kX(ASG �A)k1)

 ⌘�(⌘�↵✏+ ⌘�✏)

= (1 + ↵)⌘2�2
✏

(16)

By Lipschitz continuity of �(·), we have kHSG �Htk1 

⇢(1+↵)⌘2�2
✏. Choose C = max{(1+↵)⌘2�2

, ⇢(1+↵)⌘2�2
},

and the proof is complete.

.2.2 Multi-layer GCN
The following lemma relates the approximation error in
activations (i.e.,

���H(l)
SG �H

(l)
���
1
) with the approximation

error in input adjacency matrices (i.e., ✏ = kASG �Ak1).

Lemma 1. For a multi-layer GCN with fixed model weights, given
a (fixed) graph dataset, assume that:
1) �(·) is ⇢-Lipschitz and �(0) = 0,
2) The inputs are bounded by �: kAk1  �, kASGk1  �,

kXk1  �,
3) The model weights in each layer are bounded by �:���W (l)

���
1

 �, 8l 2 [L].
Then, there exist B and C that depend on ⇢, ⌘ and �, s.t.,

1)
���H(l)

���
1

 B,

���H(l)
SG

���
1

 B, 8l 2 [L� 1],

2)
���Z(l)

SG � Z
(l)
���
1

 C✏, 8l 2 [L] and
���H(l)

SG �H
(l)
���
1



C✏, 8l 2 [L� 1].
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Proof. Applying Proposition 2 to each layer of the GCN
proves that H(l) and H

(l)
SG are bounded for each layer l.

For the first layer of GCN, by Proposition 2 and input
conditions, we know that there exists C(1) that satisfies:

���Z(1)
SG � Z

(1)
���
1

 C
(1)

✏,

���H(1)
SG �H

(1)
���
1

 C
(1)

✏

Note that for the first layer, the node feature matrix of the SG
estimator and exact GCN are identical, i.e., XSG = X ; this
yields ↵ = 0 in Equation 16.

Let Ĉ
(1) = C

(1). Next, we apply Proposition 2 to
the second layer of GCN: there exists C

(2) that satisfies:���Z(2)
SG � Z

(2)
���
1

 C
(2)(1 + Ĉ

(1))✏,
���H(2)

SG �H
(2)

���
1



C
(2)(1 + Ĉ

(1))✏.
Let Ĉ(2) = C

(2)(1 + Ĉ
(1)). By applying Proposition 2 to

the subsequent layer of GCN repetitively, we have Ĉ(l+1) =
C

(l+1)(1+ Ĉ
(l)), 8l 2 [L� 1]. We choose C = maxl Ĉ(l) and

complete the proof.

.3 Gradients of Multi-layer GCN

Lemma 2 below provides a bound for the difference between
gradients of the loss by the SG estimator and the exact GCN
(i.e., krLSG(W )�rL(W )k1). Intuitively, the gradient dif-
ference is small if the approximation error in input adjacency
matrices (i.e., ✏) is small.

Lemma 2. For a multi-layer GCN with fixed model weights, given
a (fixed) graph dataset, assume that:

1) @f(y,z)
@z is ⇢-Lipschitz and

���@f(y,z)
@z

���
1

 �,
2) �(·) is ⇢-Lipschitz, �(0) = 0 and k�0(·)k1  �,
3) kAk1  �, kASGk1  �, kXk1  �,

���W (l)
���
1



�, 8l 2 [L].
Then, there exists C that depends on ⇢, ⌘ and �, s.t.,

krLSG(W )�rL(W )k1  C✏.

Proof. We begin by proving the following statements:
If the above assumptions hold, then there exist C and D that

depends on ⇢, ⌘ and �, s.t.,
1) The gradients with respect to the activations of each layer of

the SG estimator are close to be unbiased:
�����

@f

@Z
(l)
SG

�
@f

@Z(l)

�����
1

 C✏, 8l 2 [L] (17)

2) The gradients above are bounded:
�����

@f

@Z
(l)
SG

�����
1

 D�,

����
@f

@Z(l)

����
1

 D�, 8l 2 [L] (18)

We prove these statements by induction. First we show
that Equations 17 and 18 hold true for the final layer of GCN
(i.e., l = L). By Assumption 1 and Lemma 1, we know that
there exists Ĉ that satisfies:

�����
@f

@Z
(L)
SG

�
@f

@Z(L)

�����
1

 ⇢

���Z(L)
SG � Z

(L)
���
1

 ⇢Ĉ✏ (19)

Let C
(L) = ⇢Ĉ and D

(L) = 1. Next, suppose the
statements hold for layer l + 1, i.e., there exist C(l+1) and
D

(l+1) that satisfy:

�����
@f

@Z
(l+1)
SG

�
@f

@Z(l+1)

�����
1

 C
(l+1)

✏,

�����
@f

@Z
(l+1)
SG

�����
1

 D
(l+1)

�,

����
@f

@Z(l+1)

����
1

 D
(l+1)

�

(20)

We derive the gradients of the objective function with respect
to activations in layer l by chain rule:

����
@f

@Z(l)

����
1

=

�����
0(Z(l)) �

@f

@H(l)

����
1

=

�����
0(Z(l)) �AT @f

@Z(l+1)
W

(l)T
����
1

 ⌘
2
����0(Z(l))

���
1
kAk1

����
@f

@Z(l+1)

����
1

���W (l)
���
1

 ⌘
2
�
4
D

(l+1)

(21)
Thus, we know that

��� @f
@Z(l)

���
1

 D
(l)
�. Similarly,

����
@f

@Z(l)
SG

����
1

 D
(l)
�, where D(l) = ⌘

2
�
3
D

(l+1).

We proceed to derive the error of the gradients by the SG
estimator in layer l:

�����
@f

@Z
(l)
SG

�
@f

@Z(l)

�����
1

 ⌘

���W (l)
���
1
k�

0(Z(l)
SG) �A

T
SG

@f

@Z
(l+1)
SG

� �
0(Z(l)) �AT @f

@Z(l+1)
k1

 ⌘�

�����(�
0(Z(l)

SG)� �
0(Z(l))) �AT

SG
@f

@Z
(l+1)
SG

�����
1| {z }

(⇤)

+ ⌘�

������
0(Z(l)) �AT

SG(
@f

@Z
(l+1)
SG

�
@f

@Z(l+1)
)

�����
1| {z }

(⇤⇤)

+ ⌘�

�����
0(Z(l)) � (AT

SG �A
T )

@f

@Z(l+1)

����
1| {z }

(⇤⇤⇤)

(22)

By Assumption 2 and Lemma 1, we know that there exists
Ĉ such that

����0(Z(l)
SG)� �

0(Z(l))
���
1

 ⇢Ĉ✏. From Equation
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20, we have:

(*) in Eq. (22)

 ⌘
2
�

����0(Z(l)
SG)� �

0(Z(l))
���
1
kASGk1

�����
@f

@Z
(l+1)
SG

�����
1

 ⌘
2
� · ⇢Ĉ✏ · � ·D

(l+1)
�

= (⌘2�3
⇢ĈD

(l+1))✏

(**) in Eq. (22)

 ⌘
2
�

����0(Z(l))
���
1
kASGk1

�����
@f

@Z
(l+1)
SG

�
@f

@Z(l+1)

�����
1

 ⌘
2
� · � · � · C

(l+1)
✏

= (⌘2�3
C

(l+1))✏

(***) in Eq. (22)

 ⌘
2
�

����0(Z(l))
���
1

���AT
SG �A

T
���
1

����
@f

@Z(l+1)

����
1

 ⌘
2
� · � · ✏ ·D

(l+1)
�

= (⌘2�3
D

(l+1))✏

(23)

Therefore,
����

@f

@Z(l)
SG

�
@f

@Z(l)

����
1

 C
(l)
✏, where C

(l) =

⌘
2
�
3[(⇢Ĉ + 1)D(l+1) + C

(l+1)]. By induction, Equations 17
and 18 hold true.

Next, we show below that there exists C that depends on
⇢, ⌘ and �, s.t.,

�����
@f

@W
(l)
SG

�
@f

@W (l)

�����
1

 C✏, 8l 2 [L] (24)

By backpropagation rule we derive that @f
@W (l) =

(AH
(l))T @f

@Z(l) . By Lemma 1, we know that H(l)
SG is bounded

by some B̂ and
���H(l)

SG �H
(l)
���
1

 C̃✏ hold for some C̃.

From the previous proof, we know that there exists Ĉ and
D̂, s.t., Equations 17 and 18 hold; thus, we have:

�����
@f

@W
(l)
SG

�
@f

@W (l)

�����
1



�����(ASGH
(l)
SG)

T @f

@Z
(l+1)
SG

� (AH
(l))T

@f

@Z(l+1)

�����
1



�����(ASGH
(l)
SG)

T (
@f

@Z
(l+1)
SG

�
@f

@Z(l+1)
)

�����
1

+

����((ASGH
(l)
SG)

T
� (AH

(l))T )
@f

@Z(l+1)

����
1

 ⌘
2
� · B̂ · Ĉ✏+ ⌘

���ASGH
(l)
SG �AH

(l)
���
1
D̂�

 ⌘
2
�B̂Ĉ✏+ ⌘�D̂

���ASG(H
(l)
SG �H

(l))
���
1

+ ⌘�D̂

���(ASG �A)H(l)
���
1

 ⌘
2
�B̂Ĉ✏+ ⌘�D̂ · ⌘� · C̃✏+ ⌘�D̂ · ⌘✏ · B̂

= ⌘
2
�(B̂Ĉ + �C̃D̂ + B̂D̂)✏

(25)

Therefore, Equation 24 holds, where C = ⌘
2
�(B̂Ĉ + �C̃D̂ +

B̂D̂).
Finally, we have: krLSG(W )�rL(W )k1  C✏, and

the proof is complete.

.4 Convergence Analysis

Theorem 1. Assume that:

1) The loss function L(W ) is ⇢-smooth, i.e., |L(W2)�L(W1)�
hL(W1),W2 � W1i| 

⇢
2kW2 �W1k

2
F , 8W1,W2, where

hA,Bi = tr(AT
B) denotes the inner product of matrix A

and B,
2) The gradients of the loss rL(W ) and rLSG(W ) are

bounded by G for any choice of W ,
3) The gradient of the objective function @f(y,z)

@z is ⇢-Lipschitz
and bounded,

4) The activation function �(·) is ⇢-Lipschitz, �(0) = 0 and
�
0(·) is bounded.

Then there exists C > 0, s.t., 8M,T , for a sufficiently small
�, if we run graph partitioning for M times and run gradient
descent for R  T epochs (where R is chosen uniformly from [T ],
the model update rule is Wt+1 = Wt � �rLSG(Wt), step size
� = 1

⇢
p
T
), we have:

P (ERkrL(WR)k
2
F  �)

� 1� 2 exp{�2M(
�

2C
�

2⇢[L(W1)� L(W⇤)] + C � �

2C(
p
T � 1)

)2}

Proof. Let �t = rLSG(Wt) � rL(Wt) denote the dif-
ferences between gradients at epoch t. By ⇢-smoothness of
L(W ) we know that:

L(Wt+1)

 L(Wt) + hrL(Wt),Wt+1 �Wti+
⇢

2
�
2
krLSG(Wt)k

2
F

= L(Wt)� �hrL(Wt),rLSG(Wt)i+
⇢

2
�
2
krLSG(Wt)k

2
F

= L(Wt)� �hrL(Wt), �ti � �krL(Wt)k
2
F

+
⇢

2
�
2[k�tk

2
F + krL(Wt)k

2
F + 2h�t,rL(Wt)i]

= L(Wt)� (� � ⇢�
2)hrL(Wt), �ti

� (� �
⇢

2
�
2)krL(Wt)k

2
F +

⇢

2
�
2
k�tk

2
F

(26)
By Lemma 2, we know that at a given time point t, there

exists Ĉ s.t., �t is bounded by Ĉ✏. Therefore,

|hrL(Wt), �ti|  ⌘krL(Wt)k1k�tk1  ⌘GĈ✏

k�tk
2
F  krLSG(Wt)k

2
1 + krL(Wt)k

2
1  2G2

(27)

Let C = max{⌘GĈ, 2G2
}. Equation 26 can be further

derived as:

L(Wt+1)  L(Wt) + (� � ⇢�
2)C✏

� (� �
⇢

2
�
2)krL(Wt)k

2
F +

⇢

2
C�

2 (28)

By summing up the above inequalities from t = 1 to T

and rearranging the terms, we have:

(� �
⇢

2
�
2)

X

t

krL(Wt)k
2
F  L(W1)� L(W⇤)

+ CT (� � ⇢�
2)✏+

⇢

2
CT�

2

(29)
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Dividing both sides of Equation 29 by T (� �
⇢
2�

2) and
choosing � = 1

⇢
p
T

gives us:

ERkrL(WR)k
2
F

 2
L(W1)� L(W⇤) + CT (� � ⇢�

2)✏+ ⇢
2CT�

2

T�(2� ⇢�)


2[L(W1)� L(W⇤)]

T�
+ 2C(1� ⇢�)✏+ ⇢C�


2⇢[L(W1)� L(W⇤)]

p
T

+ 2C(1�
1

p
T
)✏+

C
p
T


2⇢[L(W1)� L(W⇤)] + C

p
T

+ 2C(1�
1

p
T
)✏

(30)

Recall that ✏ denotes the infinity norm of the error in
approximating A through M runs, i.e., ✏ = kASG �Ak1.
Applying Hoeffding’s inequality [30] to the largest element
of the matrix |ASG �A| (which are bounded by the intervals
[0, 1]), we have:

P (✏ � �)  2 exp(�2M�
2), 8� � 0 (31)

Combining the two inequalities above, we have:

P (ERkrL(WR)k
2
F � �)

 P (
2⇢[L(W1)� L(W⇤)] + C

p
T

+ 2C(1�
1

p
T
)✏ � �)

 2 exp{�2M(
�

2C
�

2⇢[L(W1)� L(W⇤)] + C � �

2C(
p
T � 1)

)2}

(32)
Therefore, for a sufficiently small �, we have the following
inequality for P (ERkrL(WR)k

2
F  �):

P (ERkrL(WR)k
2
F  �)

� 1� 2 exp{�2M(
�

2C
�

2⇢[L(W1)� L(W⇤)] + C � �

2C(
p
T � 1)

)2}

(33)
Theorem 1 is proved.
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