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1 Introduction

The question of how black holes process quantum information remains one of the central
unresolved problems in theoretical physics. A famous manifestation of this puzzle is the
AMPS firewall paradox [1]. Unitary quantum evolution and the existence of a smooth hori-
zon are known to be mutually consistent for pre-Page time black holes with von Neumann
entropy below the Bekenstein-Hawking bound. For maximally mixed black hole states,
however, one encounters a conundrum: how can an evaporating post-Page time black hole
decrease its von Neumann entropy, while the Hawking process and smoothness of the hori-
zon require that it keeps generating new entanglement with its immediate surroundings?

The AMPS argument makes a number of implicit assumptions. Notably, it assumes
that a semi-classical black hole space-time, as seen by an infalling observer, can be in a
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maximally mixed state that saturates the BH bound. This premise receives support from
the no hair theorem, which states that the only information accessible from outside the
black hole are its mass, charge and angular momentum. The no hair theorem is a true
statement about the local black hole geometry. However, it does not hold as a global
statement: a global black hole space-time carries a large amount of so-called soft-hair
degrees of freedom associated with the asymptotic BMS symmetry group. As first argued
by Hawking, Perry and Strominger, this soft hair must be viewed as part of the quantum
information carried by the black hole [2–5].

Follow-up work on the HPS proposal mostly centered on its potential implications on
the black hole information paradox and on the question of whether the soft hair could be
responsible for the BH entropy [6–10]. Thus far, however, little attention has been paid
to the implications of soft hair on the firewall paradox. The purpose of this work is to
fill this gap.1 Can we use the arguments of HPS to get around the reasoning of AMPS?
Monogamy of entanglement has different implications if there are soft modes that both the
black hole and Hawking radiation are necessarily entangled with. As we will argue, the
presence of black hole soft hair is indeed sufficient to avoid the conclusion that infalling
observers must experience a firewall.

1.1 Argumentation

We start with an outline of our reasoning for why the HPS proposal invalidates the AMPS
conclusion.

1. Firewall argument and no hair theorem. The firewall argument [1, 13] and the
recent Island prescription [14–17] rely on the physical assumption that the black hole nat-
urally evolves into a maximally mixed state, compatible with its macroscopic quantum
numbers. This premise is a special case of the general physical fact that any non-isolated
quantum system interacting with a large environment ultimately evolves into a thermal
mixed state specified by the macroscopic characteristics of the system. What is special
about black holes, however, is that they appear to have so few macroscopically distinguish-
able classical properties relative to their total number of micro-states.

The number of black hole states with the same macroscopic quantum numbers is given
by the Bekenstein-Hawking entropy. Once the von Neumann entropy of the black hole
saturates the BH bound, it can no longer grow more entangled with its environment. This
leads to an apparent obstruction to continuing the Hawking process in a manner that
preserves the smoothness of the black hole horizon. This is the firewall argument. The
Island proposal aims to evade its conclusion via the postulate that the interior region of the
black hole is contained inside the entanglement wedge of the Hawking radiation [14–17].

Both arguments rely on a coarse grained notion of a black hole that ignores the fine-
grained properties of the global black hole space-time. The original no-hair theorem [18, 19]
only implies uniqueness up to local diffeomorphisms. It is now understood that global
black hole space-times support a large family of soft Goldstone modes in the form of non-
trivial diffeomorphisms that relate the near horizon and the asymptotic regions. These

1The relevance of soft modes to the firewall was also pointed out recently in [11, 12].
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diffeomorphism modes are associated to the presence of an asymptotic symmetry group
(ASG) of the black hole space-time. In asymptotically flat 3+1D black hole space-times,
the ASG is the BMS group [20, 21]; in 2+1D AdS black holes they generate the Virasoro
symmetry group of the dual CFT [22]; in 1+1D near-AdS black hole models, the ASG
simplifies to reparametrizations of the asymptotic time-coordinate [23–26]. The presence
of the asymptotic symmetry group implies that black holes in fact do carry soft hair degrees
of freedom in the form of Goldstone modes associated with the breaking of the asymptotic
symmetries due to the presence of the black hole horizon.

2. Physical properties of soft hair. The soft hair degrees of freedom can carry a
sizable amount of entropy. Since this entropy only exists by virtue of the presence of the
black hole, it should be counted as part of the black hole entropy. Previous studies have
attempted to show that the soft hair is sufficiently abundant to account for all the BH
entropy [8–10]. For our context, however, it will not be essential whether this holds or
not. For our arguments, it is sufficient to assume that the amount of entropy encoded in
the soft hair is large compared to the entropy of the low energy QFT degrees of freedom
contained inside of the black hole.

The key assertions that make our story work, are that the soft hair black hole degrees
of freedom:

1. are a classical and measurable property of the global black hole space-time
2. are invisible to an asymptotic observer or to a local observer at the horizon
3. can be measured by an observer falling in from infinity into the black hole
4. are an exponentially sensitive probe of infalling matter into the black hole
5. carry a large amount of entropy compared to the entropy of the interior low energy QFT
6. are projected onto a low entropy state after repeated measurements by an infalling

observer
7. accumulate more and more entropy during the Hawking evaporation process.

We will examine this list of assertions in more detail in section 2. The first two
statements are a direct consequence of the fact that the soft hair is encoded in the diffeo-
morphism f that relates the near horizon region to the asymptotic Minkowski space-time
I, as indicated in figure 1. Due to its non-local nature, soft hair can only be measured by
an infalling observer that travels from the asymptotic region to the horizon.

Consider a (coherent or incoherent) superposition of two classical global black hole
space-times with identical near horizon geometries but with different soft hair. An observer
falling into this state uses gravitationally dressed observables, that are anchored in the
asymptotic space-time and thereby sensitive to the diffeomorphism f . While the observer
experiences the same local black hole space-time in both parts of the state, her physical
operators Of are different. So we should promote f to a quantum operator f̂ .
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Figure 1. Schematic depiction of three ways of storing the soft hair degrees of freedom. The no
hair coordinate system that uniformizes the black hole geometry is incompatible with the coordinate
system that uniformizes the asymptotic geometry I. If one tries to describe the global space-time
with a single coordinate patch, either the asymptotic geometry (left) or the black hole geometry
(middle) is not uniformized and carries the soft hair. By using two coordinate patches, one can
uniformize both the black hole and the asymptotic region. The soft hair modes are encoded in the
transition function between the two regions.

The soft hair dependence of physical operators manifests itself via the commutator be-
tween a late-time observable Of̂ that measures a Hawking mode and an early-time operator
Ob that creates an infalling mode, cf. [27]. The backreaction due to the infalling particle
affects the soft hair f̂ , which in turn modifies the late observable Of̂ . This is the black
hole butterfly effect [28, 29]. The expectation value of the (commutator)2 of Of̂ and Ob
defines an out of time ordered correlator that during the black hole scrambling period grows
exponentially with time. On the gravity side, the Lyapunov growth follows from the shock-
wave interaction near the horizon [30]; in the microscopic theory, it is the manifestation of
maximal chaotic quantum dynamics. The Lyapunov growth induces a quantum-classical
transition through which soft hair becomes part of the classical space-time.

3. Soft hair labels code subspace. A common characteristic of known systems with
maximal many body quantum chaos, such as the SYK model [23–26, 31–34], is that their
collective dynamics gives rise to an emergent Goldstone mode in the form of a diffeomor-
phism f . In the holographic bulk dual, the diffeomorphism f represents the soft hair degree
of freedom. In the following, we will assume that the four-dimensional black holes with
HPS soft hair can also be given a holographic dual description with similar characteristics.
We will continue to refer to this putative dual quantum system as ‘the holographic CFT’.
It would be interesting to understand how these statements fit into the emerging Celestial
CFT dictionary [35–37].

Expectation values in the holographic CFT involve averaging over the full phase space
of soft hair variables f . Schematically〈

Of̂ . . . Of̂
〉
ψ

=
∫

[df ] ρψ(f)
〈
Of . . . Of

〉
f

(1.1)

with ρψ(f) some probability distribution that depends on the CFT state ψ and
〈
Of̂ . . .Of̂

〉
f

denotes the expectation value in an approximate f̂ eigenstate with given soft hair f . Note
that these approximate eigenstates themselves can still be mixed states with non-zero
entropy.
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We will distinguish two types of quantum states ψ:

• Soft focus states: these are superpositions of states with different soft hair quantum
numbers. Such states do not describe a fixed semi-classical global black hole space-
time, but an incoherent superposition of global black hole space-times. The soft hair
of soft focus states is in an undetermined state and carries a large amount of entropy,
denoted by Ssoft. In the notation of (1.1), we have

Ssoft = −
∫

[df ] ρψ(f) log ρψ(f). (1.2)

• Sharp focus states: these are approximate eigenstates with given soft hair quantum
numbers f that describe a given semi-classical global black hole space-time. Sharp
focus states carry their soft hair in well-determined state, and therefore have sub-
stantially less entropy than the soft focus states. We will call the Hilbert subspace
Hf spanned by all states with the same soft-hair quantum numbers a code subspace.
The microscopic entropy of the code subspace is denoted by Scode.

The thermal CFT state is a soft focus state. It saturates the Bekenstein-Hawking
entropy bound and represents a superposition of many global black hole space-times with
different soft hair quantum numbers. As a maximal entropy state, it also maximizes the
entropy Ssoft carried by the soft modes. Since Ssoft contributes to the total Bekenstein-
Hawking entropy, we may write

SBH = Ssoft + Scode (1.3)

where Scode accounts for the microscopic entropy of the code subspace, defined as the
Hilbert subspace with fixed soft hair. Stated more microscopically, we can decompose the
Hilbert space of the black hole into a direct sum of soft hair eigen sectors: HBH = ⊕

f Hf .
Assuming that the subspaces Hf with given soft hair f are all isomorphic to some fixed
abstract code subspace Hcode with dimension eScode , we can construct all black hole states
via an isometric embedding Hcode ⊗ Hsoft ↪→ HBH, where Hsoft denotes the abstract
Hilbert space of the soft hair modes, spanned by the soft hair eigenstates |f

〉
soft.

4. Measurement of soft hair. As we will argue, the infalling observer is able to
measure the soft hair f , and thus naturally uses the sharp focus perspective. This has direct
repercussions for the firewall argument. Depending on whether we adopt a Copenhagen or
many worlds interpretation, the observer will (i) either project the black hole state onto an
approximate soft hair eigenstate or (ii) become entangled with the soft hair. Crucially, since
the soft hair is a property of the exterior geometry, she can do this while she is still outside
the black hole. In both interpretations, the observer is able to evade the firewall obstruction.

In case (i), the projection onto a given soft sector |f〉soft reduces the entropy on the
black hole space-time from SBH to Scode. The projection transforms the post-Page time
black hole into a pre-Page time black hole with a density matrix that is contained within
a single code subspace Hcode, labeled by the measured soft hair f . As we will review in
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Figure 2. Page curve [38, 39] describing the evolution of entanglement entropy of the black hole
with an infalling observer. The Bekenstein bound, SEE ≤ SBH implies there must be a transition
preventing the entanglement entropy from continuing to grow at late times, as would be predicted
by Hawking pair production, SHPP(t). The red segment indicates change in entropy when an
infalling observer measures soft hair while crossing the horizon. After the measurement, the black
hole entropy again follows the upward slope S′HPP(t) prescribed by the Hawking process.

section 5, this allows for the reconstruction of the Hawking partners inside the black hole
via the Petz map [40, 41].

In case (ii), the observer is able to avoid the firewall by the use of a ‘state dependent’
set of observables Of that depend on the soft hair quantum number f . More generally,
her state-independent observables O take the form of a sum over an orthogonal set of soft
hair quantum numbers

O =
∑
f

Of ⊗ |f〉O〈f | (1.4)

where |f〉O denotes the state of the observer moving in the black hole space-time with given
soft hair f . The f quantum numbers of the space-time and the observer are correlated,
since the observer can perform a measurement: the soft hair is classical information that
can be measured and shared.

Both proposed resolutions of the firewall are not new. The new element in our story
is that we propose a concrete physical justification for the code space projection, or code
subspace dependence, via the outside measurement of the classical HPS soft hair degrees
of freedom. It is worth noting that our proposed resolution of the firewall paradox makes
use of an effective quantum teleportation protocol, as indicated in figure 3.

The remainder of this paper is organized as follows. In section 2 we present a more
detailed description of the physical properties 1 through 7 of the black hole soft hair listed
above. Our discussion here will borrow from HPS and follow up work. The main new
ingredients are the characterization of soft hair in terms of a transition functions, and the
demonstration of its Lyapunov behavior. In section 3 we introduce an observer dependent
notion of the firewall, and show that the infalling observer never encounters her own firewall
before reaching the singularity. In section 4, we present the construction of the interior
operators [42], based on technology borrowed from approximate error correction and the
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a=r

e

Measurement:
enables quantum
teleportation of
quantum information
from the radiation to
the black hole interior

Figure 3. Schematic depiction of the firewall argument and its proposed resolution via a quantum
teleportation protocol. Left: quanta e and r escape the black hole thanks to entanglement with
Hawking partners a and b. After the Page time, when the black hole is in a maximally mixed state, a
and b can not escape via the usual Hawking process: when b leaves, it can not be entangled with any
interior mode a. The horizon turns into a firewall. Right: as Hawking quanta propagate through
space-time, they entangle with their environment, they decohere and produce classical information
encoded in the soft hair degrees of freedom. The classical information gets causally dispersed in
the form of ‘code bits’ that specify the code subspace. The Hawking partner b can escape the black
hole via the usual Hawking process, with help from a quantum teleportation protocol enabled by
the code bits.

Petz map [43]. We end with some concluding comments in section 5. In the appendix we
describe the soft hair phase space of the black hole.

2 Measuring black hole soft hair

In this section we examine assertions 1–7 about the physical properties of soft hair that
underlie our proposed resolution of the firewall paradox. The basic physical statement that
will organize our discussion is that the black hole soft hair degrees of freedom are encoded in
the transition function between different coordinate regions of the global black hole space-
time. Specifically, we can divide an eternal black hole space-time into four different regions,
corresponding to past and future null infinity I± and the past and future horizonH±. In the
following, we will combine the past and future horizon into a single near horizon region H.2

2.1 Soft hair as a transition function

In both asymptotic regions and the near horizon region, the soft degrees of freedom manifest
themselves through the presence of an asymptotic symmetry group, the BMS group [20, 21].

2Alternatively, we can consider a collapsing black hole geometry with only a future horizon. Here we
prefer to work with an eternal black hole geometry with fixed boundary conditions at the past horizon. In
either case, only the future horizon will carry soft hair.
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At the linearized level, this symmetry group acts on the space-time metric via infinitesimal
diffeomorphisms, called supertranslations. In both regions, the metric with supertrans-
lation degrees of freedom looks like an infinitesimal variation of the unperturbed black
hole metric

ds2 = (gab + hab)dxadxb, hab = Lfgab (2.1)

with Lfgab the Lie derivative of the background metric gab with respect to a suitable
vector field ζf associated with the supertranslation parameter f . Hence locally, the soft
hair degree of freedom can be transformed away via a diffeomorphism: we can choose local
coordinates so that the asymptotic metric looks like ordinary Minkowski space and the
near horizon region looks like a standard black hole metric with no hair. The soft hair is
then encoded in the transition function between the two regions.

To write the metric in both regions, we will choose light cone coordinates (u, v) =
(t−r∗, t+r∗) with r∗ = r+2M ln |r/2M−1| in the asymptotic region and Kruskal-Szekeres
coordinates (U, V ) in the near horizon region. The asymptotic metric takes the form

ds2
|near I± = −Λdudv + r2γABdz

AdzB, Λ ≡ 1− 2M
r

(2.2)

and reduces to standard Minkowski space for large r. The metric in the near horizon region
takes the standard Kruskal form

ds2
|near H = −F dUdV + r2γABdZ

AdZB, F ≡ 2M
r
e−r/2M (2.3)

with γAB the metric on S2. The metric (2.3) is appropriate for describing the black hole
region as it reduces to the standard Minkowski space metric (up to a factor of e) near the
bifurcate horizon U = V = 0.

In the absence of soft hair, the two coordinate systems are patched together at
some small macroscopic distance outside the black hole, via the coordinate transforma-
tion U/4M = −e−u/4M , V/4M = ev/4M , ZA = zA. The linearized soft hair degrees of
freedom will modify this transition function into a relation of the form

U

4M = −e−u/4M + ζUf ,
V

4M = ev/4M + ζVf , ZA = zA + ζAf (2.4)

where ζUf , ζVf and ζAf denote components of the vector field ζf associated with the in-
finitesimal supertranslation labeled by f . The space-time with the two coordinate regions
is indicated in figure 4. Thanks to the introduction of the transition function, we can
stipulate that the near horizon (U, V ) geometry still takes the standard no hair form (2.3),
while the metric in the (u, v) region carries non-zero supertranslation hair: it satisfies the
boundary condition that at the transition region, it takes the form in equation (2.1) with
gab as in (2.2). We will determine the explicit form of ζf in the next subsection using the
results of HPS.

2.2 Schwarzschild supertranslations

In HPS, the soft hair degrees of freedom of the black hole are identified through the residual
supertranslation invariance of the Schwarzschild metric in the advanced Bondi gauge. The
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Figure 4. The soft hair degrees of freedom are encoded in the transition function f between near
horizon Kruskal coordinates (U, V ) and asymptotic (u, v) coordinates.

standard Schwarzschild metric in the advanced Bondi coordinates reads [4]

ds2 = −Λdv2 + 2dvdr + r2γABdz
AdzB (2.5)

with Λ defined in (2.2). Following [4], we now consider BMS− supertranslations which pre-
serve Bondi gauge and the standard falloffs at large r. The infinitesimal supertranslations
are generated by the vector field ζf of the form

ζ
f

= f ∂v −
1
2D

2f ∂r + 1
r
DAf ∂A. (2.6)

Here the function f only depends on the transverse S2 coordinates zA. The explicit form
of the supertranslated Schwarzschild geometry is

ds2 = −
(

Λ− MD2f

r2

)
dv2 + 2dvdr − dvdzADA(2Λf +D2f)

+
(
r2γAB + 2rDADBf − rγABD2f

)
dzAdzB. (2.7)

This metric is of the form (2.1). Note that the supertranslation shifts the horizon to
r = 2M + 1

2D
2f .

In the terminology of [4], the black hole described by (2.5) is said to have linearized
supertranslation hair. We will make this statement more precise in the next subsection,
where we discuss the combined action of the supertranslation generators on the three
separate regions, the two asymptotic regions I± and the near horizon region H. Indeed, it
is an important property of soft hair that it can only be specified by considering the global
space-time geometry in all three regions.

Via the above mentioned coordinate transformation to the (u, v) and (U, V ) coordinate
systems, we can rewrite the supertranslation vector field as follows

ζ
f

= ev/4Mf∂V +
(
e−u/4Mf + γ e−v/4MD2f

)
∂U + 1

r
DAf∂A, γ ≡ 1/F. (2.8)
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Note that while we have changed our coordinate system, this is still using BMS− gauge fix-
ing. This explains the asymmetry between the ingoing and outgoing lightcone coordinates.
Inserting (2.8) into (2.4), we find that the transition function between the near horizon
and asymptotic light cooordinates takes the form

V

4M = ev/4M
(

1 + f

4M

)
(2.9)

U

4M = −e−u/4M
(

1− f

4M −
γ

4M e(u−v)/4MD2f

)
(2.10)

ZA = zA + 1
r
DAf. (2.11)

We can invert these relations as

v = 4M log
(
V

4M

)
− f (2.12)

u = −4M log
(
− U

4M

)
− f − γe(u−v)/4MD2f (2.13)

zA = ZA − 1
r
DAf. (2.14)

The e(u−v)/4M factor in the last term in (2.13) exhibits the exponential redshift effect near
the black hole horizon.3 It enhances the influence of small horizon shifts on future light-like
trajectories. This exponential effect was emphasized in earlier works [27, 30, 44], and more
recently identified as a manifestation of Lyapunov behavior of the underlying microscopic
dynamics. The important observation for our purpose is that the Lyapunov growth enforces
a quantum-classical transition from an early state where part of the soft hair can be in a
quantum superposition to a later state where the initial quantum mechanical soft hair has
become part of the classical space-time. We will return to this quantum-classical transition
later on.

2.3 Asymptotic and horizon symmetries

The soft hair degrees of freedom locally look like gauge redundant coordinate transfor-
mations. What makes them a true physical property of the black hole space-time? HPS
present two arguments. The first is based on the fact that the BMS symmetries of future
and past asymptotic infinity imply the existence of conserved supertranslation charges that
commute with the full gravitational S-matrix [4, 45]〈

out
∣∣Q+S − SQ−

∣∣in〉 = 0. (2.15)

This equation holds locally on every point on the celestial sphere. The reasoning is as
follows. Canonical charges in gauge theory and gravity reduce to boundary terms. If
we pick a Cauchy slice for our space-time this boundary will be near spatial infinity i0.
Choosing a slice that hugs future (past) null infinity in the early u (late v) region, the
charge can be evaluated in terms of gauge field or metric components near I+

− (I−+ ). An
3Note that γ = (2M/r)er/2M approaches a constant γ = e = 2.718 . . . at the horizon.
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antipodal matching condition [46] follows from CPT invariance and thus equates charges on
Cauchy slices that capture incoming and outgoing radiation, respectively. In the vacuum
case — with only massless matter and no black holes — future and past null infinity form
Cauchy slices. Equating the charges for these two slices provides a non-trivial constraint
on low energy scattering. This is because consistency of the constraint equations on each
slice separately, combined with the matching near i0, gives a non-trivial relation between
hard and soft modes. Classically these are called memory effects [47–49]. Within S-matrix
insertions these are soft theorems [50].

In the presence of a black hole, null infinity is no longer a Cauchy slice and we must
include the horizon. The constraint equations still hold. When performing a large gauge
transformation, this coordinate change must be propagated through the bulk and will act
on the horizon. Let S denote the unitary quantum evolution operator associated with the
exterior (u, v) coordinate region indicated in figure 2. It maps initial states

∣∣in〉 defined at
past null infinity I− to final states at future null infinity I+ and the horizon region H. Fol-
lowing HPS, we can now express the conservation of BMS charge via a relation of the form4

S QI−f1 =
(
QI

+
f2 +QHf3

)
S. (2.16)

Here QI−f1
, QI+

f2
and QHf3

denote supertranslation generators acting on the corresponding
regions. Their supertranslation parameters f1, f2 and f3 are linearly related via propaga-
tion of the linearized coordinate change through the bulk. Otherwise, the parameters can
be chosen freely. Equation (2.16) thus amounts to a local relation on the celestial sphere.
We will give a more explicit form of the supertranslation generators in the next subsection.

The conservation relation (2.16) implies that there is a residual gauge invariance, that
acts by simultaneously shifting the soft hair degrees of freedom in the three regions. The
true global gauge invariant notion of the soft hair of the black hole is defined as the gauge
equivalence class of the three local soft hair modes, modulo the overall simultaneous shift.
This gauge invariance allows one to gauge away the local soft hair at any one of the three
regions. A convenient gauge choice is to prescribe that the geometry in the far past takes
the standard form, without any soft hair. The black hole soft hair is then encoded in the
patching function (2.9)–(2.12) that connects the outside (u, v) region to the near horizon
(U, V ) region.

Since f can be some arbitrary function of the angular coordinates zA, the number of soft
hair degrees of freedom scales as the area of the black hole horizon measured in units of the
UV cut-off. So assuming one can place this UV cut-off close the Planck scale, the entropy
encoded in the soft hair could add up to a finite fraction of the Bekenstein-Hawking entropy.

4To write this equation in more explicit form, let |r〉R denote a complete bases of asymptotic radiation
states at I+ and |b〉B a complete bases of black hole states and let

S
∣∣in〉 =

∑
r,b

Arb

∣∣r〉
R

∣∣b〉
B

with Arb some set of amplitudes. The conservation equation (2.16) of supertranslation charge then reads

S QI
+

f1

∣∣in〉 =
∑
r,b

Arb

(
QI

+
f2

∣∣r〉
R
⊗
∣∣b〉

B
+
∣∣r〉

R
⊗QH

+
f3

∣∣b〉
B

)
.
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The key observation of HPS is that the soft hair entropy Ssoft should a) be thought of as
part of the black hole entropy, and b) is associated with non-local but a priori observable
features of the external space-time geometry. Via the above characterization of the HPS
soft hair degrees of freedom, we have given supporting evidence for properties 1,2 and 5 on
our list — that soft hair is inherently non-local and thus locally invisible and can carry a
large amount of entropy — and have seen some hints in support of properties 3, 4 and 6.

2.4 Implanting soft hair

A second physical argument for the existence of black hole soft hair presented by HPS is
that supertranslation hair can be ‘implanted’ by means of sending in a massless matter
shockwave in from I− along some light-like trajectory v = v0, as illustrated in figure 5.
Such a shockwave is described by the following stress tensor [4]

T̂vv =
(
µ+ T̂

4πr2 + T̂ (1)

4πr3

)
δ(v − v0), T̂vA = T̂A

4πr2 δ(v − v0) (2.17)

where T̂ , T̂ (1) and T̂A depend on the transverse coordinates zA only. The ansatz (2.17)
satisfies ∇µTµν = 0 throughout the bulk by means of the following relations between the
subleading and leading-in-r modes:

(D2 + 2)T̂ (1) = −6MT̂ , DAT̂A = T̂ (1) (2.18)

with DA the covariant derivative along the sphere and D2 = DADA.
When inserted into the Einstein equation, this lightlike matter pulse induces a shift in

the transverse components of the metric on the horizon. Parametrizing the general solution
to the conservation equation (2.18) in the suggestive form

T̂ = −1
4D

2(D2 + 2)f̂ , T̂A = 3M
2 DA f̂ , T̂ = 3M

2 D2 f̂ (2.19)

we find that the solution is diffeomorphic to Schwarzschild both before and after the shock-
wave. Assuming the initial black hole geometry has no supertranslation hair, the solution
with the shockwave takes the form

hab = Θ(v − v0)
(
Lf̂ gab + 2µ

r
δvaδ

v
b

)
(2.20)

with hab the deviation of the unperturbed black hole metric (2.5). We thus see that the
shockwave is a domain wall interpolating between two BMS inequivalent Schwarzschild
vacua, whose mass parameters differ by µ. At the quantum level, this describes a coherent
state of soft gravitons. Note that the ` = {0, 1} modes of f̂ are in the kernel of D2(D2 +2).
This is related to the fact that gravity does not produce dipole radiation.

The above solution is a slight generalization of the Dray-’t Hooft shockwave solu-
tion [27, 30]. In [44] and thus equation (1) of [30] the metric for a shockwave moving along
the past horizon is described. At the horizon, equations (2.17)–(2.19) reduce to

T̂vv = 1
16πM2

(
µ− 1

4D
2(D2 − 1)f̂

)
δ(v − v0), T̂vA = 3

32πMDA f̂ δ(v − v0). (2.21)

Note that the (D2 − 1) factor is now negative definite and therefore invertible.
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f+

f−

(u, v, z)

I−

i−

(U, V, Z)

f+

f−

(u, v, z)

I−

i−

(U, V, Z)

Figure 5. Infalling matter shockwaves produce a discontinuity f̂ = f+ − f− in the soft hair
mode encoded in the transition function between the two coordinate regions. For a lightlike matter
pulse (left) the shockwave starts at past null infinity I−, for a massive matter particle (right) the
trajectory starts at past infinity i−.

The presence of these shockwave solutions shows that soft hair degrees are real and
that they can be changed by sending in matter into the black holes. Combined with the
observation that the effect of supertranslation hair on future trajectories exhibits Lyapunov
growth, this establishes property 4, that soft hair is an exponentially sensitive probe of
infalling matter. The Lyapunov behavior manifests itself via out of time ordered correlation
functions, or equivalently, by considering the (commutator)2 of late time and early time
observables. The imprint of the Dray-’t Hooft shockwave dynamics on such commutators
was first considered in [27].

2.5 Soft hair phase space

To understand the extent to which soft hair is a classical property of the external space-time
geometry, it is important to map out the phase space structure of soft hair. In particular,
we would like to find the canonical conjugate variable to the soft hair Goldstone mode
f̂(z), or equivalently, the soft part of the supertranslation generator QS(z) localized at a
transverse point z, defined through the commutation relation5

[
QS(z), f̂(z′)

]
= iδ(2)(z−z′). (2.22)

Here the hat notation indicates that f̂ is now promoted to a quantum operator.
As discussed above, we can shift the value of the Goldstone mode f̂(z) by sending in

a matter pulse through the horizon. To capture this potential time dependence, we must
promote f to a function of z and v, the lightcone coordinate along the horizon. Similarly,
we can write the soft charge QS(z) as an integral of a charge current along the horizon

QS(z) =
∫ ∞
−∞
dv q̂S(v, z). (2.23)

5From here on we will use the shorthand z to represent the point with coordinates zA = (z, z̄). Functions
of z need not be holomorphic.
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By definition, the current qS(v, z) is the canonical conjugate variable of f̂(v, z)[
q̂S(v, z), f̂(v′, z′)

]
= iδ(v−v′) δ(2)(z−z′). (2.24)

We would like to find an explicit expression for q̂S(v, z). HPS have already done this work
for us.

The soft part of the horizon charge can be expressed in terms of the linearized metric
perturbation hab. It is sufficient to first focus on the perturbation hAB of the transverse
metric γAB. In the Bondi gauge, hAB is traceless. The analogue of its canonical momentum
dual to hAB is the traceless shear tensor

σAB = 1
2∂vhAB. (2.25)

In [45], it was shown that this mode has a nontrivial Dirac bracket with the supertransla-
tion Goldstone mode at asymptotic infinity. A similar zero mode algebra appears at the
horizon H.

In the horizon region, the metric perturbation hAB is parametrized by the soft hair
mode f̂ via

hAB|H = 2M(2DADB − γABD2)f̂ . (2.26)

Here hAB and f̂ are both viewed as quantum mechanical operators. Using the standard
canonical form of the Einstein action, HPS derive the following commutation relations
between the metric perturbation and the shear tensor at the horizon [4][

σAB(v, z), hCD(v′, z′)
]

= 32πiM2GABCD δ(v−v′) δ(2)(z−z′) (2.27)

with GABCD = γACγBD + γADγBC − γABγCD the DeWitt metric on the space of 2D
metrics γAB.

Now consider the combination

q̂S = 1
16πMDADBσAB. (2.28)

Using (2.27), we derive that[
q̂S(v, z), hAB(v′, z′)

]
= 2iM(2DADB − γABD2) δ(v−v′) δ(2)(z−z′). (2.29)

Comparing with (2.26) confirms that qS(v, z) is the sought after canonical conjugate to
the soft mode f̂(v, z). Moreover, using the expression (2.25) for the shear tensor and the
commutation relations for DA listed in appendix A of [4], we find that qS can be expressed
in terms of the v derivative of the Goldstone mode as

q̂S = 1
16π D

2(D2 + 2) ∂vf̂ . (2.30)

The canonical commutation relation (2.24) then integrates to[
∂vf̂(v, z), f̂(v′, z′)

]
= iδ(v−v′) Ω(z, z′) (2.31)

(D2 + 2)D2Ω(z, z′) = 16π δ(2)(z − z′). (2.32)
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The explicit form of the Green’s function Ω(z, z′) is given in [45]. The commutation rela-
tion (2.31) is identical to the one derived for the asymptotic supertranslation modes at I±.
However, there are still important physical differences between the horizon and asymptotic
soft hair modes.

The non-trivial phase space structure of the soft hair modes puts limits on the extent to
which they correspond to classically measurable properties of space-time. One of the clas-
sical consequences of the soft hair dynamics and commutation relations is the gravitational
memory effect. The memory effect due to asymptotic soft dynamics at I± is encoded in
subtle infrared observables encapsulated by the Weinberg soft theorem for scattering am-
plitudes. The memory effect due to the horizon soft dynamics is more pronounced; it gets
exponentially enhanced via the black hole butterfly effect. The horizon memory mode is
given by the integral of ∂vf̂ over the horizon∫ ∞

−∞
dv ∂vf̂(v, z) = f̂+(z)− f̂−(z) (2.33)

where f̂±(z) denote the value of the soft hair mode at the past and future end-point of H+.
The horizon memory mode is related to the soft contribution to the total supertranslation
generator via

QS(z) = 1
16πD

2(D2 + 2)
(
f̂+(z)− f̂−(z)). (2.34)

Integrating (2.31), we derive that the far future soft hair mode has the following commu-
tator with the far past soft hair mode

[
f̂+(z), f̂−(z′)

]
= iΩ(z, z′). (2.35)

The commutator (2.35) is a quantum gravity effect. Reinstating units, we read off
that the right-hand side contains a factor of the (Planck length)2. So at first sight, it may
look like the commutator has only microscopic consequences that can not be discerned by
macroscopic observers. Note, however, that the soft mode f̂ governs the location of the
event horizon and, as emphasized earlier, any small shift of the horizon has exponentially
growing consequences for light-like future trajectories. The resulting exponentially growing
commutators are captured by the out-of-time ordered correlation functions. This black
hole butterfly effect [28, 29] can lead to the breakdown of classical physics expectations,
or conversely, catalyze the quantum-to-classical transition for other quantities [51, 52]. We
will make this exponential growth more explicit in the next subsections.

2.6 Soft gravitational dressing

Physical operators in a gravitational theory are diffeomorphism invariant combinations
of operators made up from matter fields and gravitational fields. Keeping track only of
the invariance under supertranslations, we need to require that physical operators must
commute with the total supertranslation charge

[
Qf ,Ophys

]
= 0. (2.36)
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Schematically, if we choose a suitable supertranslation eigen basis, we expect that these
physical operators will factorize into a product Ophys = OW of a matter operator times a
suitable gravitational Wilson line observable. We would like to find an explicit description
of these physical observables in our setting.

Supertranslations act both on the gravitational soft Goldstone mode f̂ and on the
matter fields. The matter perturbations (which include gravitons) are localized in space-
time, while the soft modes by definition are far-infrared degrees of freedom that can only
be measured by u or v integrals over all of I± or H. Correspondingly, the supertranslation
charges acting on the in and out states can be split into hard and soft pieces Q± =
Q±S + Q±H . Here Q±S induces inhomogeneous shifts in the geometric data at null infinity
and, as discussed above, classically corresponds to a memory effect observable, while Q±H
is given by an integral of the energy momentum tensor. The horizon charge allows for the
same split QH = QHS +QHH between a soft and a hard contribution.

Let us now work out the hard part of the horizon charge using the equations in section 7
of [4]. Starting from HPS (7.26) and imposing the residual horizon gauge fixing condition
(7.43), one obtains for the total charge at the horizon (here we drop the superscript on QH)

Qf = 1
8π

∫
H+
d2zdv f

[ 1
2MDADBσAB + 32πM2TMvv − 16πMDATMAv

]
. (2.37)

The first term is the soft charge QS and the last two terms combined are the hard charge
QH . The soft term generates a supertranslation on the space-time metric. In particular[

Qf , hAB
]

= 2iM(2DADBf − γABD2f). (2.38)

Hence the commutator with Qf shifts the soft hair mode f̂ by an amount f . The hard part
of the charge implements an active supertranslation diffeomorphism on the matter fields.

To find the explicit form of the physical operators, let us first consider the scattering
states. Physical scattering states (which avoid IR divergences) must satisfy the physical
state condition

(QS +QH)
∣∣phys

〉
= 0. (2.39)

Projecting onto eigenstates of the respective supertranslation charges, these physical states
factorize as ∣∣p, z〉phys =

∣∣p, z〉
H

∣∣p, z〉
S
,

{
QH

∣∣p, z〉
H

= −pf(z)
∣∣p, z〉

H

QS
∣∣p, z〉

S
= pf(z)

∣∣p, z〉
S
.

(2.40)

Defining the corresponding matter and soft gravitational operators via [53]∣∣p, z〉
H

= Op(z)
∣∣0〉

H
,

∣∣p, z〉
S

=Wp(z)
∣∣0〉

S
(2.41)

we can associate to the state |p, z〉phys a physical operator of the factorized form

Ophys(p, z) = Op(z)Wp(z). (2.42)

Recalling that supertranslations act on the soft mode as f̂ → f̂ + f we read off that the
gravitational Wilson line operator appearing in (2.42) takes the form [54]

W(p, z) = e−ipf̂(zk). (2.43)
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Under a large gauge transformation, the Wilson line dressing an operator of momentum p

acquires a phase e−ipf . This is the opposite phase acquired by the light-cone momentum
eigenstate eipv of the supertranslation’s action on the v coordinate.

Via the above reasoning, it is not hard to see that the gravitational dressing of an
infalling matter operator Oin(v, z) simply amounts to replacing the v coordinate by the
operator valued coordinate

v̂ = v − f̂(z). (2.44)

This equation should be compared with the equation (2.12) for the patching function
between the near horizon (U, V ) coordinates and the asymptotic (u, v) coordinates. Con-
cretely, if we adopt the prescription that in the near horizon region, the metric (in the
local absence of infalling or outgoing matter) must be of the standard no hair form with
classical coordinates (U, V ), then the soft hair degree of freedom f̂ gets absorbed into the
definition of the (u, v) light-cone coordinates that parametrize the outside region. Since
the soft mode f̂ is now a quantum mechanical variable, this also turns the (u, v) coordi-
nates into quantum operators. From (2.12)–(2.13) we read off that the quantum version
of the ingoing light-cone coordinate v is given by (2.44), while the quantum version of the
outgoing light-cone coordinate u takes the form

û = u − f̂ − γe(u−v)/4MD2f̂ . (2.45)

The apparent asymmetry between u and v is due to the fact that, following HPS, we work
in the advanced Bondi gauge.

We conclude that physical operators that create early infalling modes or late outgoing
modes are expressed as follows

Ophys
in (v, z) = Oin(v̂−, z), v̂− = v − f̂− (2.46)
Ophys

out (u, z) = Oout(û+, z), û+ = u − f̂+ − γe(u−v)/4MD2f̂+. (2.47)

2.7 Measuring soft hair

This completes our summary of the properties of the soft hair degrees of freedom. We
have argued that the soft hair is encoded in the classical transition function between the
near horizon no hair coordinate region and the asymptotic Minkowski coordinate region.
Secondly, we have shown that physical observables, through their gravitational dressing,
acquire a direct dependence on the soft hair Goldstone mode f̂ . As seen from combining
equations (2.46) and (2.35), and as we will make more explicit below, this dependence leads
to exponentially growing commutators between late and early observables.

Once encoded in the classical geometry, the soft mode f remains invisible to the
asymptotic observer. Since f(z) is a normalizable mode, its probability distribution ρψ(f)
spreads out over its classical moduli space. Since f(z) is a function that varies across the
horizon, the entropy (1.2) stored in f is proportional to the area of black hole horizon in
units of the UV resolution scale [3]. A key question of interest is whether the soft hair
corresponds to a hidden quantum property of a black hole or a classical property of the
outside black hole space-time that will be automatically measured by an infalling outside
observer. We propose that the second interpretation is the correct one.
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An infalling observer who travels from the asymptotic coordinate patch to the near
horizon coordinate patch will necessarily perform a measurement that projects the soft hair
mode f̂ onto an approximate eigenstate |f〉S with a classical eigenvalue f . Her observables
therefore take the form

O =
∑
f

Of ⊗
∣∣f 〉

O

〈
f
∣∣ (2.48)

with Of = |f〉S〈f |Ophys|f〉S〈f | the physical observable and |f〉O the state of the observer
associated with the classical background labeled by f . Without this projection on the
soft hair eigen sector, the dynamical coordinates that the infalling observer uses to make
localized observations acquire a macroscopic level of quantum uncertainty.

3 Soft hair and the moving firewall

The canonical structure of the soft hair degrees of freedom can be seen as the cause or
manifestation of the gravitational interactions between ingoing and outgoing particles in
the neighborhood of the black hole horizon. This relation can be made more explicit by
considering the commutation relation between the early observable Ophys

in and the late
observable Ophys

out that measure early ingoing and late outgoing particles.
We will first consider this commutator for asymptotic observers. The near horizon

interactions and commutators both grow exponentially in the time difference, indicating
that the horizon is a strongly coupled region relative to the asymptotic observer. We will
thus call the horizon the firewall region of the asymptotic observer. This physical notion
of the firewall is different from that of AMPS. Indeed, we will see that, as opposed to
the putative AMPS firewall, the observer-dependent firewall moves inwards for infalling
observers.

3.1 Soft hair, OTOCs and the firewall

It is by now an accepted truth that signal propagation through an event horizon is a non-
trivial process, and that finding a microscopic description requires careful reasoning to avoid
apparent contradictions between quantum principles and semi-classical expectations. The
AMPS firewall argument relies on quantum information theory and applies to a maximally
entangled black hole [1]. Here we recall an older firewall argument due to ’t Hooft [55] and
Kiem-VV [27] based on gravitational shockwave dynamics.

Gravity naturally comes into play when comparing observations in highly boosted
reference frames [55]. In [27] it was shown that in the context of black hole horizon, the
associated gravitational shockwave interaction leads to exponentially growing commutators
between late and early operators measured by an asymptotic observer. Combined with
the more recent insight that this exponential growth is a manifestation of the underlying
quantum many body quantum chaos [28, 29], this Dutch version of the firewall argument is
well suited for our purpose of explaining the relation between the HPS soft hair dynamics
and the AMPS firewall paradox. The new perspective that we are adding is that the
Lyapunov behavior is directly linked with the soft hair dynamics of the black hole.
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O

I+

i0

I−

Oin(v̂−, z)

Oout(û+, z′)

Figure 6. The commutator between an operator Oin(v̂−, z) creating an early infalling mode
and an operator Oout(û+, z

′) measuring a late outgoing mode exhibits Lyapunov growth due to
exponentially growing collision energy between the modes near the horizon. This commutator is
generated via the coordinate shifts (2.46) and (2.47) and the commutator (2.35) between the late
and early Goldstone modes f̂+ and f̂−.

From the commutation relation (2.35) between the past and future Goldstone modes
f̂− and f̂+ and the expressions (2.46) and (2.47) for the light-cone coordinates v̂− and û+
we deduce that the latter satisfy non-trivial commutation relations of the form[

v̂−(z), û+(z′)
]
' γ e(u−v)/4MΛ(z, z′) (3.1)

where Λ(z, z′) satisfies the Green’s function identity

(D2 + 2)Λ(z, z′) = −16π δ(2)(z−z′). (3.2)

The relation (3.1) holds at intermediate time scales of order the scrambling time. It rep-
resents a consequence of the quantum dynamics of the soft hair. The exponential growing
factor matches the familiar fact that a small shift in an outgoing particle’s trajectory close
to the horizon can have a large effect on its future trajectory. Conversely, if we propagate
an outgoing plane wave e−ipoutû back in time, its frequency will undergo an exponential
blueshift near the horizon, leading to a super-Planckian collision with the incoming modes.
The physical effect of this collision is made visible via out-of-time ordered correlation
functions.

From (3.1) and the expressions (2.46)–(2.47) of the physical operators, we derive that
the expectation value of the (commutator)2 between early and late physical operators
grows as 〈 [

Oin(v̂−, z),Oout(û+, z
′)
]2〉〈

OinOin
〉〈
OoutOout

〉 ' γ2p2
inp

2
oute

(u−v)/2MΛ(z, z′)2 (3.3)

where pin and pout denotes the respective light-cone momenta. This growth continues until,
after the scrambling time, the expectation value (3.3) saturates at a value of order 1〈[

Oin,Oout
]2〉〈

OinOin
〉〈
OoutOout

〉 ∼ 1. (3.4)

– 19 –



J
H
E
P
0
9
(
2
0
2
1
)
0
9
9

In terms of the underlying ergodic microscopic theory, this growth of the (commutator)2

implies that, from the perspective of the asymptotic observer, the quantum information
contained in Oin cannot simply pass through the horizon, but instead gets scrambled and
spread out over the microscopic degrees of freedom [56], and soon after gets emitted in the
form of Hawking radiation detectable by the outside observer [57].

The quantum dynamics mechanism that leads to equation (3.4) is that the identical
operator pairs OinOin and OoutOout in the OTOC part of the numerator cannot find a way
to constructively interfere, due to the random unitary time evolution and the insertion of
the other operator that separates them. This scrambling dynamics is responsible for the
growing commutators, or conversely, in the gravity theory, the scrambling is an outflow
of the large commutators. Indeed, from the outside perspective, the late time OTOCs
are a probe of the full soft hair phase space dynamics and, due to the strongly coupled
gravitational dynamics, they do not have support on some given semi-classical near horizon
geometry. As we will discuss in the next subsection, this changes for OTOCs that describe
the early and late observations of infalling observers who do see a given semi-classical near
horizon geometry.

3.2 Observer dependent firewall

We will now consider this same commutator between early and late operators for infalling
observers following some specified observer trajectory. As we will see, the commutators in
this case also grows with the time difference, and this growth again indicates the presence
of a strongly coupled region relative to the infalling observer. The effective firewall is the
space-time region where the OTOCs as measured by the observer approach the saturation
value (3.4). As before, we can specify the location of the observer dependent firewall as the
region where the soft hair dynamics becomes strongly coupled, relative to the probes used
by the observer. As we will see, this definition of the effective firewall coincides with the
one we would have guessed based on purely kinematic reasoning: it is the region within
which communication with the observer necessarily involves two signals that, measured
relative to each other, have super-Planckian frequencies.

For describing observations of infalling observers, it is appropriate to use the Kruskal
coordinate system (U, V ). In the super-Planckian regime, where the longitudinal relative
momentum between the incoming and outgoing waves becomes large, the waves interact
via a gravitational shift interaction. In this regime we can encapsulate the interaction via
a commutation relation between the two lightcone Kruskal coordinates

[V̂−(z), Û+(z′)] ' Λ(z, z′)
F (U, V ) (3.5)

where compared with (3.1) we replaced γ by 1/F (U, V ), with F (U, V ) = −2gUV for the
Kruskal metric (2.3). Hence equation (3.5) is covariant under redefinition of the longitudi-
nal coordinates (U, V ). The Green’s function Λ(z, z′) captures the transverse dependence
of the shockwave interaction.

Now consider an infalling observer following some arbitrary trajectory specified via

observer trajectory =
{
U = X(V )↔ V = Y (U)

}
(3.6)
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Figure 7. The stretched horizon Si demarcates the region within which communication with the
late observer Oi requires sending super-Planckian signals. As Oi falls into the black hole along the
blue trajectory, the stretched horizon Si recedes. The classical space-time region outside of Si acts
as its own physical measurement apparatus through which observer Oi determines the value of the
soft hair mode f .

with X and Y each other’s inverse: X(Y (U)) = U and Y (X(V )) = V . Two examples of
infalling observer trajectories are indicated in figure 7.

Suppose the observer sends an early signal along a light-like trajectory at constant
V by acting with a operator Oin and receives a late signal coming back along a light-
like trajectory at constant U , measured by the operator Oout. Assuming both operators
have some approximate frequency ωin and ωout, as seen by the observer, the coordinate
dependence of the two operators is of the form

Oin(V̂ , z) ∼ e−iωinτ̂−(V,z), Oout(Û , z′) ∼ e−iωoutτ̂+(U,z′). (3.7)

Here τ̂−(V, z) and τ̂+(U, z′) are the gravitationally dressed proper time coordinates of the
observer at the early and late time instances. Hence τ̂− and τ̂+ are both operator valued
and their mutual commutator will be responsible for the late time growth of the commutator
between physical operators. Using the form (3.6) of the observer trajectory, we have that

dτ−
dV

=
√
F (X(V ),V )X ′(V ), dτ+

dU
=
√
F (U,Y (U))Y ′(U). (3.8)

Using the commutator (3.5) between the late and early Kruskal coordinates Û(z′) and
V̂ (z), we thus find that the expectation value of the (commutator)2 between the physical
operators is proportional to〈[

Oin(V̂ , z),Oout(Û , z′)
]2〉〈

OinOin
〉〈
OoutOout

〉 ' ω2
inω

2
out Ξ(U, V ) Λ(z, z′)2 (3.9)

with
Ξ(U, V ) ≡ F (X(V ),V )F (U, Y (U))

F (U, V )2 X ′(V )Y ′(U). (3.10)
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Geometrically, this function Ξ(U, V ) equals the square of the product of the two blueshift
factors between the frequency of the emitted (early) or received (late) signals and the
frequency of the signals as they collide at the point (U, V ). The combined factor
ω2

inω
2
out Ξ(U, V ) thus represents the square of the (center of mass energy)2 of the colli-

sion, as measured in Planck units.
The typical wave length of a physical Hawking mode, at the moment that it can be seen

by an observer, is set by the sizeM of the black hole. If we assume that both frequencies ωin
and ωout are of order 1/M , the collision energy becomes super-Planckian in the region where

Ξ(U, V ) &M4. (3.11)

This inequality defines the observer dependent firewall region bounded by the observer
dependent stretched horizon. Indeed, it is easy to see that for an observer that stays out-
side, (3.11) coincides with the immediate neighborhood of the event horizon of the black
hole, as indicated by the blue speckled region in figure 6. As explained above, from the
outside perspective, this firewall region is where the fast ergodic dynamics takes place, that
prevents the infalling mode from truly becoming unobservable from the outside.

In figure 7, we have indicated the observer dependent firewall region associated with two
infalling trajectories, each bounded by their stretched horizon. We see that the stretched
horizon at early times extends to just outside the black hole horizon, but then recedes into
the black hole interior. Outside the stretched horizon is ordinary semi-classical space-time.
Not surprisingly, the infalling observer does not encounter her own firewall at the moment
that she crosses the horizon. In geometric terms, the region inside which communication
with the observer requires large blueshifts always remains at a distance, until she reaches the
singularity. In soft hair language, the infalling observer uses late time operators with only
weak dependence on the late time soft mode f̂+, and therefore with small commutators
with f̂− and with the infalling mode. From the microscopic quantum perspective, her
late time operator Oout does not get completely scrambled relative to the early infalling
operator Oin, and vice versa. Defining such a late time operator requires undoing part of
the fast scrambling time evolution. This is possible by means of a suitable approximate
quantum error correction protocol and by restricting the Hilbert space to the subsector
with given semi-classical near horizon geometry, i.e. to a code subspace with given value of
the soft hair. The code subspace restriction is not some unusual modification of the rules
of quantum mechanics, but enforced by the measurement of the classical space-time region
outside of the observer dependent stretched horizon.

4 Construction of interior operator

In this section we describe how the measurement of the soft hair quantum number f enables
the reconstruction of the Hawking partners of the late black hole radiation in the post-
Page time regime. The physical mechanism is as follows: the outside measurement of f
projects the maximally mixed state of the black hole onto a lower entropy state contained
within a code subspace Hf with given soft hair. We assume that the entropy of the code
subspace Scode = log dimHf is smaller than the Bekenstein-Hawking entropy minus the
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entropy Sqft = log dimHqft of the interior effective QFT. When the black hole state is no
longer maximally mixed, it is possible to construct the interior modes with the help of an
approximate quantum error correction protocol, that uses a recovery operator Rf acting
on the black hole Hilbert subspace Hf . The reconstruction can be performed with finite
accuracy error = eScode+Sqft−SBH � 1.

4.1 Initial state with entangled soft hair

Let HB denote the total black hole Hilbert space at some given time t. As we have argued,
the total black hole Hilbert space decomposes into a direct sum of sectors Hf with given
soft hair quantum numbers

HB =
⊕
f

Hf . (4.1)

We will call the Hilbert spaces Hf the code subspace labeled by the soft hair eigenvalue f .
For simplicity, we assume the eigen sectors Hf are all isomorphic to some given abstract
code Hilbert space HC spanned by a set of basis states |i〉C , where i = 1, . . . , dC with
dC = dimHC the dimension of the code subspace.

We now also introduce an abstract Hilbert space HS spanned by the soft hair eigen-
states |f〉S with f = 1, . . . , dS where dS = dimHS . We can then define an embedding
tensor T : HC ⊗ HS ↪→ HB. On the basis vectors |f〉S with given soft hair quantum
number, this tensor map defines an injective embedding Tf of the abstract code space HC
into a physical code subspace Hf inside the black hole Hilbert space

T
∣∣φ〉

C

∣∣f〉
S

= Tf

∣∣φ〉
C
∈ Hf ⊂ HB. (4.2)

For later use, we also introduce the Hermitian conjugate T †f of the tensor Tf as the inverse
mapping from Hf into HC ⊗HS , defined via the relation

T †f Tf

∣∣φ〉
C

=
∣∣φ〉

C

∣∣f〉
S
. (4.3)

The linear map T †f vanishes on the orthoplement of Hf . In other words, Πf = TfT †f is a
projection operator onto the code subspace Hf .

To describe the Hilbert state of a post-Page time black hole with soft hair, we start
from a maximally entangled state of HC⊗HS with the Hilbert space HR of early radiation
and the Hilbert space HO of an external observer. By construction, we define the soft
hair Hilbert space HS and the Hilbert space HO of the observer such that each forms the
purification of the other. In other words, we only consider the soft hair quantum numbers
in our discussion that have been measured by the outside observer. All other quantum
degrees of freedom of the black hole are included in the code Hilbert space and assumed to
be entangled with the early radiation. Using the diagrammatic notation of [58], we write

∣∣Ψ0
〉

= 1√
dCdS

∑
i,f

∣∣i〉
C

∣∣f〉
S

∣∣f〉
O

∣∣i〉
R

= RC OS . (4.4)

Next, we use the tensor T to map this auxiliary entangled state into a maximally
entangled state of the black hole with the early radiation and the observer. The result will
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a bIsland
B

RHawking
pair

early
radiation

*
Figure 8. A late time slice through an evaporating black hole space-time. The blue region
represents the early Hawking radiation R and the green region is described by some dual strongly
coupled CFT, labeled B. For a black hole past its Page time, B is maximally entangled with R.
Modes inside the gray ‘Island region’ have in their past collided with outgoing modes inside R. A
late Hawking pair a and b is contained inside the entanglement wedge of CFT. The interior mode a
is decoupled from the early radiation R; its reconstruction via CFT operators involves a projection
on a code subspace with given soft hair.

be our initial state |Ψ(0)〉 to which we will then apply the Hawking time evolution and
holographic reconstruction. In diagrammatic notation

∣∣Ψ(0)
〉

= T
∣∣Ψ0

〉
=

R

C

O

S

B

T (4.5)

or in an equation ∣∣Ψ(0)
〉

= 1√
dCdS

∑
i,f

Tf

∣∣i〉
C
⊗ |f

〉
O

∣∣i〉
R
. (4.6)

This is our initial state of the post-Page time black hole with its soft hair entangled with
the observer O.

4.2 Time evolved state with entangled soft hair

Next we apply the time evolution Uτ over some finite time interval τ of order the black
hole scrambling time τs 'M logM . During this time, the black hole emits some additional
Hawking radiation. Let Hb denote the Hilbert space of the late radiation, and let U =
Uτ ◦T denote the combined operation of embedding HC ⊗HS into HB and then applying
unitary time evolution ∣∣Ψ(τ)

〉
= U

∣∣Ψ0
〉

= Uτ

∣∣Ψ(0)
〉
. (4.7)

We can diagrammatically represent the entangled state of the time evolved black hole as
in figure 9. The situation depicted in figure 8 needs to be compared with that of the
standard firewall discussion. The new ingredient relative to AMPS is that we have divided
the black hole Hilbert space into different soft hair sectors that are entangled with the
outside observer O.
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C

R

S

Ob B

U

O = measuring apparatus of observer
S = soft hair modes entangled with O
C = code subspace with given soft hair
R = early radiation entangled with C
b = late Hawking radiation modes
B = black hole after Hawking emission

Figure 9. Maximally entangled state of a post-Page time black hole after a period of Hawking
evaporation. If U is scrambling and dS � db, the state of the late and early radiation looks like
a factorized product state ρb ⊗ ρR. The reconstruction of the black hole interior must involve the
Hilbert space of the observer.

Plugging (4.6) into (4.7) and expanding into basis states |n〉b of the late radiation, we
can write |Ψ(τ)〉 as ∣∣Ψ(τ)

〉
=
∑
i,f,n

1√
dCdS

CnTf
∣∣i〉

C
⊗
∣∣n〉

b

∣∣i〉
R

∣∣f〉
O
. (4.8)

The Cn are called Kraus operators. In the following, they are assumed to be random
ergodic operators, subject only to the macroscopic conservation laws and the unitarity
relation ∑

n

Cn
†Cn = 1B. (4.9)

The idea of including the Hilbert space of an infalling observer to resolve the firewall
obstruction is not new. Our discussion below closely parallels that in recent work [58]
of Yoshida, with the main physical difference that [58] incorporates the Hilbert space of
the observer as part of the interior black hole dynamics, while in our set up the observer
Hilbert space is a separate sector outside the black hole. Our soft hair Hilbert space plays
the same formal role as the observer Hilbert space of [58].

The introduction of the observer Hilbert space has important consequences for the
reconstruction of the Hawking partners of b. In the AMPS set up, the late radiation b is
argued to be completely entangled with the early radiation R. This is no longer the case
in our situation. In [58], Yoshida proves the following

Decoupling theorem (Yoshida). If the unitary operator U is scrambling and the dimen-
sion of the soft hair Hilbert space is much larger than the dimension of the late radiation
Hilbert space: dS � db, then the late radiation b and early radiation R are decoupled (not
entangled). The combined density matrix of late and early radiation factorizes into an
approximate tensor product ρRb ' ρR ⊗ ρb with error of order d2

b/d
2
S.

The immediate implication of this decoupling theorem is that, unlike in the AMPS
scenario, it is not possible to purify the late Hawking radiation by means of the early
radiation. Indeed, theorem 1 in [58] continues:

Furthermore, for any operator Ob on the late radiation b, a partner operator Õb can be
constructed on HB and HO without using any degrees of freedom from the early radiation R.
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This conclusion is in accord with normal physical expectations. As we will make
explicit below, the only role of the Hilbert space of the observer is to first identify soft hair
sector of the black hole. This happens automatically via the gravitational dressing of the
effective QFT observables, in combination with the fact that the observer herself is also
entangled with the same soft hair degrees of freedom. This is a standard, though usually
implicit, step in constructing quantum observables: any standard quantum observable only
makes physical sense within some given classical environment.

4.3 Density matrix of black hole and observer

Before describing the recovery map and interior operators, let us write the explicit form
of the density matrix of the black hole and the observer, obtained by tracing out the early
and late radiation. It decomposes as a sum over soft hair sectors

ρBO(τ) = trHR⊗Hb

(
|Ψ(τ)〉〈Ψ(τ)|

)
=
∑
f

σBf ⊗ |f〉O〈f |. (4.10)

Here σBf denotes the density matrix of the black hole with given soft hair quantum number
f . It can be expressed in terms of the Kraus operators as

σBf = 1
dC

∑
n

CnΠfC †n (4.11)

with Πf = TfT †f the projection onto the code subspace Hf . The density matrix σBf acts
as a projection operator onto the time evolved embedding of code subspace Hf with fixed
soft hair f . Indeed, an equivalent characterization of σBf is as the density matrix obtained
through the application of a quantum noise channel to the normalized unit density matrix
on the abstract code subspace HC

σBf = Nf (σC) = trHb

(
U
(
σC ⊗ |f〉S〈f |

)
U †

)
, σC ≡

1
dC

1C . (4.12)

Here Nf denotes the noise channel specified by the Hawking evolution process U = U τ ◦T
applied to the initial mixed state in HC⊗HS with given initial soft hair quantum number f .

4.4 The recovery map

We now describe the recovery map that enables the construction of the Hawking partners
of b by means of an operator acting only on HB and HO. The procedure is a slight
improvement of the one presented in [42] and makes use of an approximate quantum error
correction protocol similar to that used in the Petz map [41, 43].

As illustrated in figure 10, the recovery map R attempts to reverse the unitary op-
erator U in (4.7). However, it can not do so exactly, because it does not have access to
the b Hilbert space. To overcome this obstacle we introduce ancillary mirror degrees of
freedom a, that temporarily stand in for the physical Hawking partners of the late radia-
tion b. The recovery map R acts on the black hole and the ancillary Hilbert space Ha and
simultaneously accomplishes three interrelated tasks: it i) recovers the quantum informa-
tion contained in the code Hilbert space, ii) performs an entanglement swap between the
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C

R

S

O

fb a

B

C

|TFD〉

U

Rf

Figure 10. The recovery operator R acts on the tensor product of the black hole Hilbert space
B and the observer Hilbert space O. The final state after the recovery operation consists of the
tensor product of the initial state |Ψ〉C and the thermofield double state of the late radiation b and
ancilla a.

Hawking partners of b to the ancillary space Ha, iii) enables the construction of interior
operators Oa = Õb that act on the Hawking partners of b.

The recovery map R is designed to approximately recover the initial state and in
the process put the late radiation b and ancillary degrees of freedom a into a thermofield
double state. As we will show below, the sequential action of the time evolution U and
the recovery operation R yields6

RU |Ψ0〉 ' |Ψ0〉 |TFD〉ab. (4.13)

The ' sign indicates that the recovery has a small error of order

dCdb
dB

= eScode+Sb−SB � 1. (4.14)

The key observation that enables the recovery operation is that the matrix elements of
the Kraus operators Cn can be treated as random matrices. This property implies that the
Cn look invertible when restricted to act within a code subspace. In a holographic setting
like ours, the code subspace is defined to contain the Hilbert space of the low energy QFT
in some given semi-classical background geometry. In our case, the classical geometry and
the corresponding code subspace are both labeled by the soft hair quantum number f .

To define a state independent operator R, we allow it to act both on the black hole
Hilbert space and the Hilbert space of the observer. The state of the observer is assumed
to be maximally entangled soft hair degrees of freedom. So HO is spanned by states |f〉O,
that are uniquely paired with the black hole state with a given soft hair quantum number
f . Correspondingly, we expand R as a sum of recovery operators Rf acting within a fixed
soft hair sector via

R =
∑
f

Rf ⊗
∣∣f〉

O

〈
f
∣∣. (4.15)

6Here implicitly extended R and U to operators R⊗ 1b and U ⊗ 1a acting on HB ⊗Hb ⊗Ha.
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As we did for the time evolution operator U , we decompose the recovery map Rf in terms
of Kraus operators

Rf

∣∣Φ〉
B

=
∑
n

Rf,n

∣∣Φ〉
B
⊗
∣∣f〉

S

∣∣n〉
a
. (4.16)

The operators Rf,n are designed to reverse the action of the Kraus operators Cn. Inspired
by the form of the Petz map [43], we choose the individual recovery operators as follows [41]

Rf,n = 1√
dC

T †f C †n σ
−1/2
Bf (4.17)

with T †f and σBf given in (4.3) and (4.11). By construction, this operator satisfies the
following exact identity

Rf (σBf ) ≡ trHa

(
Rf σBfR†f

)
= σC ⊗

∣∣f〉
S

〈
f
∣∣. (4.18)

In words, the reverse noise channel Rf , defined by applying the recovery operator Rf

and then tracing over the ancillary Hilbert space Ha, applied to the black hole density
matrix σBf at time t = τ reproduces the initial density matrix σC on the code subspace.
Equation (4.18) directly follows from the definition (4.17) and the unitarity relation for the
Kraus operators. For our purpose, the important property of the recovery operator R is
that when applied to any final state |Ψ(τ)

〉
it satisfies the approximate identity (4.13).

The proof of (4.13) exploits the fact that the Kraus operators are random matrices
subject to the unitarity relation (4.9). Basic statistical reasoning then shows that they
satisfy the following approximate identities

C †mσkBfCn '
1
dkC

pk+1
n δmn 1B (4.19)

with pn the Boltzmann weights. This set of identities hold with finite accuracy (4.14) and
follow straightforwardly from the explicit form (4.11) of σBf and by repeated application
of the special k = 0 identity

C †mCn ' pnδmn 1B. (4.20)

Using the special case of (4.19) for k = −1/2 gives

Rf,nCmTf

∣∣φ〉
C
' √pn δnm

∣∣φ〉
C

∣∣f〉
S
. (4.21)

From this, we easily verify that

RU
∣∣Ψ0

〉
= 1√

dCdS

∑
n,m,i,f

Rf,nCmTf

∣∣i〉
C
⊗
∣∣f〉

O

∣∣i〉
R

∣∣n〉
a

∣∣m〉
b

' 1√
dCdS

∑
i,f

∣∣i〉
C

∣∣f〉
S

∣∣f〉
O

∣∣i〉
R
⊗
∑
n

√
pn
∣∣n〉

a

∣∣n〉
b
'
∣∣Ψ0

〉
⊗
∣∣TFD

〉
ab
. (4.22)

– 28 –



J
H
E
P
0
9
(
2
0
2
1
)
0
9
9

4.5 Interior operators

We now briefly review the construction of the interior operators Õa that create or annihi-
late the Hawking partners of the late radiation modes b. These operators act on the tensor
product of the black hole Hilbert space HB and the observer Hilbert space HO. Geomet-
rically, they live inside the interior region just behind the black hole horizon still within
the CFT region of the black hole interior, as indicated in figure 7. The key idea is to use
the property (4.13) of the recovery map to define operators Õa such that the time evolved
state |Ψ(τ)〉 looks like the local TFD vacuum state |TFD〉ab in terms of the interior a and
exterior b modes. The following definition of the mirror operator is a small modification
of the reconstruction based on approximate error correction developed in [42] during the
early days of the firewall debate.

The recovery operator R can be used to associate to any operator Oa acting on the
ancillary Hilbert space Ha a mirror operator acting on HB ⊗HO via

Õa = R†Oa R =
∑
f

Õa,f ⊗
∣∣f 〉

O

〈
f
∣∣ (4.23)

Õa,f = R†f Oa Rf =
∑
n,m

a

〈
m
∣∣Oa∣∣n〉a R†f,mRf,n. (4.24)

The properties of the mirror operators are analyzed in some more detail in [42]. In particu-
lar, using the result (4.13), we immediately read off that the expectations values of interior
and exterior QFT operators reproduce those of the local Unruh vacuum state〈

Ψ(τ)
∣∣ Õ(1)

a O
(2)
b

∣∣Ψ(τ)
〉

= ab

〈
TFD| O(1)

a O
(2)
b

∣∣TFD
〉
ab
. (4.25)

Moreover, using the random matrix properties of the Kraus operators Cn, it can be shown
that the mirror operators Õa satisfy the identical operator algebra as the corresponding
low energy field theory operators Oa, up to corrections of order (4.14). Hence as long as
the code space remains small enough, this resolves the firewall paradox.

The above reconstruction of interior operators relies on the fact that the black hole
evaporation process is described by a random unitary dynamics on the full black hole
Hilbert space, including the soft sector. So even if the system starts in a small enough
code subspace, over time the system will evolve into a mixed state with maximal entropy
saturating the BH bound. The interior effective QFT then breaks down. As anticipated
in [42], this breakdown is a consequence of an overzealous attempt to capture a close-to-
maximally entangled state of the total black hole system in terms of a single semi-classical
reality. Instead, the maximally mixed state represents an incoherent sum of different semi-
classical states that can be distinguished by an appropriate outside measurement.

5 Conclusion

We have studied the soft hair degrees of freedom associated to the global black hole space-
time and connected it to the discussion of the AMPS firewall paradox. Following HPS, we
used the structure of the asymptotic BMS symmetry algebra as a guide for extracting the
dynamics and phase space structure of soft hair modes at the horizon.
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We then saw that the soft hair phase space plays multiple roles. It labels the classi-
cal background on which an observer can make measurements, dynamically influences the
external geometry by capturing shifts in the horizon due to the back-reaction of infalling
matter, and contributes to the entropy of the black hole. While it has been proposed
that tracing over these soft modes (which include superrotations [8] and gauge transforma-
tions [3]) may be enough to produce the full black hole entropy, for our purposes, we only
need its dimension to be large enough to include the effective QFT degrees of freedom. A
key part of our story is that the infalling observer, rather than tracing over soft modes,
performs a measurement of the soft degrees of freedom.

The fact that the soft hair modes are a classical manifestation of the black hole en-
tropy and that their dynamics exhibits Lyapunov behavior are related. There is a close
connection between Lyapunov behavior and decoherence [51, 52]. In quantum systems
that exhibit classical chaos, the von Neumann entropy tends to grow linearly in time at a
rate proportional to the Lyapunov exponent. This growth is caused by the breakdown of
Liouville’s theorem in the quantum setting: the phase space probability distribution ex-
pands in one direction, while the shrinking width in the dual direction quickly reaches an
equilibrium due to quantum diffusion. The linear entropy growth indicates that the system
decoheres: the interaction with the environment produces an incoherent superposition of
approximate eigenstates of the Lyapunov mode. In our case, this growing mode is the soft
hair Goldstone field f(z).

Soft hair modes are part of the semi-classical space-time experienced by an infalling ob-
server. While an observer has the freedom to gauge fix her coordinate system, by falling into
the black hole her observations are sensitive to the non-trivial gauge-invariant observables
that arise in the presence of a black hole horizon. Our proposal is that the semi-classical
background space-time experienced by an observer acts as a measurement apparatus for
the soft modes. We used the dynamical properties of the soft hair to identify the semi-
classical location of the observer dependent firewall and found that the infalling observer
does not encounter this firewall before reaching the singularity. Rather, the firewall recedes
into the interior as the observer falls in, revealing a classical space-time accessible to low
energy observations.

Finally, we argued that the soft hair degrees of freedom form a quantum resource to
disentangle early and late Hawking radiation and thereby avoid the firewall paradox. The
soft hair’s entanglement with the state of an infalling observer is what allows us to define
operators that reconstruct the Hawking partners associated to late Hawking radiation and
preserve the entanglement structure necessary for the infalling observer to experience a
smooth horizon.

Acknowledgments

We thank Ahmed Almheiri, Laura Donnay, Steve Giddings, Daniel Harlow, Yasunori No-
mura, Geoff Penington, Andrea Puhm, and Erik Verlinde for valuable discussions and
comments. The research of SP is supported by a fellowship at the Princeton Center for
Theoretical Science. The research of HV is supported by NSF grant number PHY-1914860.

– 30 –



J
H
E
P
0
9
(
2
0
2
1
)
0
9
9

f̂I
+
−

f̂I
−

+

f̂I
−
−

f̂H−

f̂H+ f̂I
+

+

(a)

f̂I
+
−

f̂I
−

+

f̂I
−
−

f̂I
+

+

(b)

Figure 11. Soft boundary modes associated with the null components of our in and out Cauchy
slices for the gravitational collapse geometry (left) and for flat Minkowski space (right).

A Soft hair phase space redux

In this appendix we will examine the phase space of the boundary modes associated with
the horizon and null infinity in more detail. Our specific aim is to show that the presence
of the black hole horizon indeed leads to additional soft hair degrees of freedom relative to
asymptotically flat Minkowski space. Since the existence of black hole soft hair (or more
accurately, the relevance of asymptotic BMS symmetries for the quantum properties of
black holes) was in fact disputed in follow up work to HPS [6, 7], it is worth spelling out
how they arise in our geometric set up.

The soft boundary data for the two situations are indicated in figure 11. Here we chose
to represent the black hole space-time as a gravitational collapse geometry with a future
horizon and no past horizon; and instead of using a transition function, we now use a single
coordinate patch and represent the soft modes in terms of the shifted location of the black
hole horizon. The boundary modes for past null infinity I− and the future horizon H are
identified with the respective supertranslation modes in the advanced Bondi gauge. The
boundary modes at future null infinity I+ are defined as the supertranslation modes in the
retarded Bondi gauge. Along all three null boundaries, the far future and far past values
of the soft modes f± are functions of the transverse coordinates zA only and satisfy the
commutation relations[

f̂I
−

+ (z), f̂I−− (z′)
]

=
[
f̂I

+
+ (z), f̂I+

− (z′)
]

=
[
f̂H+ (z), f̂H− (z′)

]
= iΩ(z, z′) (A.1)

with other commutators vanishing. Here Ω(z, z′) denotes the Green’s function of the op-
erator D2(D2 + 2). Before imposing any constraint relations, the soft modes of the col-
lapsing geometry span a six-dimensional phase space for every transverse point z, while for
Minkowski space the soft phase space at z is four dimensional.

Charge conservation imposes a linear relation among the supertranslation generators
acting on the corresponding regions of the form QI

−
f1

= QHf2
+ QI

+
f3

, or written out as an
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integral over z ∫
d2z

(
f1(z)QI−(z)− f2(z)QI+(z)− f3(z)QH(z)

)
= 0. (A.2)

Here the supertranslation parameters f1, f2 and f3 are linearly related via propagation
through the bulk. Within S-matrix insertions, this is equation (2.16). The respective
supertranslation currents split into a sum over a soft and a hard contribution as

QI
− = 1

16πD
2(D2 + 2)(f̂I−+ − f̂I

−
− ) +QI

−
H

QI
+ = 1

16πD
2(D2 + 2)(f̂I+

− − f̂I
+

+ ) +QI
+
H (A.3)

QH = 1
16πD

2(D2 + 2)(f̂H− − f̂H+ ) +QHH .

Equation (A.3) can be plugged into the charge conservation condition (A.2). It follows,
from the commutation relations (A.1) that the combination of charges in (A.2) generate a
gauge symmetry under simultaneous shifts

f̂I
−
± → f̂I

−
± + f1, f̂I

+
± → f̂I

+
± + f2, f̂H± → f̂H± + f3. (A.4)

Because (A.2) is a first class constraint, it eliminates two degrees of freedom per z: the sum
of memory modes appearing in (A.2) once (A.3) is plugged in, and the conjugate Goldstone
mode involving a simultanous shift in the zero modes (A.4).

At the full non-linear level, the relation between supertranslation parameters f1, f2
and f3 depends on the bulk matter flux encoded in the hard charges. At the linearized
level, the propagation only depends on the classical background geometry. In either case,
there is only one independent gauge function. Dividing out the symmetry, this leaves a
four dimensional phase space at every transverse location in the case of figure 11a, or a
two dimension phase space in the case of no horizon figure 11b.

In the pure Minkowski setting without a black hole there are no horizon modes. In
using advanced and retarded Bondi gauge for I− and I+, respectively, the supertranslation
charge conservation condition (A.2) simplifies to the special case with f3 = 0 and f1 = f2.
We can rearrange our soft sector phase space via

f̂I
+

+ − f̂I
+
− + f̂I

−
+ − f̂I

−
− , f̂I

+
+ + f̂I

+
− + f̂I

−
+ + f̂I

−
−

f̂I
+

+ + f̂I
+
− − f̂I

−
+ − f̂I

−
− , f̂I

+
+ − f̂I

+
− − f̂I

−
+ + f̂I

−
− .

(A.5)

The first and second rows are mutually commuting, while the first entry of the first row is
the combination of soft modes appearing in (A.2). This first row is eliminated by gauge
fixing the Goldstone mode.

We will now see that the second row is also eliminated. CPT invariance motivates the
identification between the late supertranslation mode on I− and the early supertranslation
mode on I+

f̂I
+
− = f̂I

−
+ ⇔

CPT invariance condition at
spatial infinity in Minkowski space .

(A.6)
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The difference between the entries in the first column of (A.5) is proportional to fI+
− − f̂I

−
+ .

The soft phase space is thus eliminated in Minkowski space after imposing gauge invariance
and the CPT relation.

A similar analysis can be performed in the presence of a horizon. The six dimensional
phase space of figure 11a gets reduced to four dimensions after gauge fixing. In the case
of the gravitational collapse geometry, there is not a good justification for imposing CPT
invariance in this direct way. However, if one argues that a matching condition near
spatial infinity should not be insensitive to the interior, and proceeds to impose (A.6), one
is left with a non-trivial two dimensional soft phase space. In the presence of the black
hole horizon, there are two soft hair modes that are not determined by the hard charges.
According to the HPS proposal, these soft modes store the soft part Ssoft of the hidden
entropy of the black hole. Semi-classically, we may equate Ssoft with the phase space volume
of the soft hair phase space, measured in Planck units.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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