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1 Introduction

Celestial conformal field theory (CCFT) aims to provide a holographic dual description of
four-dimensional quantum gravity in asymptotically flat space-time [1–3]. Its dictionary
exploits the fact that the 4D Lorentz group SL(2,C) acts via two-dimensional global
conformal transformations on the celestial sphere S2 and postulates an identification
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between 4D scattering amplitudes and correlation functions of local operators in a putative
2D CFT defined on S2 [4–10]. A key feature of this framework is that it prioritizes infinite
dimensional symmetry enhancements associated to the asymptotic symmetry group in the
bulk. Via the identification between amplitudes and correlation functions, soft theorems
of 4D quantum gravity translate into an infinite set of conformal Ward identities in the
2D dual.

To set notation, let us briefly summarize the celestial holographic mapping. Consider
a massless scattering amplitude A(pi) in four-dimensional asymptotically flat space-time
as a function of the on-shell momenta pi for the external scattering states. A lightlike
momentum vector pµ is parametrized by a direction (z, z̄) on the celestial sphere S2 and a
light-cone momentum ω via

pµ = ±ωqµ, qµ = 1
2 (1 + z̄z, z+ z̄, i(z̄− z), 1− zz̄) . (1.1)

The basis change between the amplitude A(pi)=A(ωi; zi, z̄i) in the momentum eigenbasis
and the amplitude in the boost eigenbasis proceeds via a Mellin transform

A(∆i, zi, z̄i) =
[∏

i

∫ ∞
0
dωi ω

∆i−1
i

]
A(ωi; zi, z̄i) . (1.2)

Because the corresponding external wavefunctions transform covariantly under SL(2,C),
the Mellin amplitudes behave like conformal correlation functions of a local 2D CFT. This
motivates the identification

A(∆i, zi, z̄i) = N
〈
O±∆1

(z1, z̄1) . . .O±∆n
(zn, z̄n)

〉
(1.3)

where N =
∏
k i
∓∆kΓ(∆k) and O±∆(z, z̄) denote local primary operators of a putative

celestial CFT. The ± phase depends on whether the particle is incoming or outgoing.
While CCFT has proven to be an effective framework for codifying the infrared symmetry

properties of 4D scattering amplitudes [1], little is known about its dynamics, nor has it
yet been employed to make dynamical predictions about 4D quantum gravity other than
those that follow from symmetries. The main obstacle towards extracting such dynamical
predictions is that an intrinsic construction of celestial CFT starting from a microscopic
theory of quantum gravity is still lacking. It may thus seem premature to conclude that
CCFT represents a conventional local QFT. Indeed, celestial correlation functions share
some but not all properties of standard 2D CFT correlation functions. However, a first
indication that celestial CCFT has local dynamics is that it has a candidate local stress
energy tensor in the form of the subleading soft graviton mode [11]. We will find that it is
still fruitful to adopt the viewpoint that CCFT exists as true physical quantum system and
then use the holographic dictionary to deduce its dynamical properties.

In AdS holography, gravitational shockwave dynamics in the vicinity of a black hole
horizon is now understood to be a manifestation of chaotic quantum dynamics of the dual
CFT, and vice versa [12–16]. The Lyapunov behavior of the CFT is governed by an emergent
Goldstone mode associated with the breaking of translation invariance due to presence of
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the horizon, or on the CFT side, due to the presence of the thermal CFT plasma. At first
sight, one would not expect celestial CFT to exhibit the same type of chaotic behavior:
flat space-time does not possess intrinsic event horizons that lead to Lyapunov growth.
However, since celestial holography trades manifest space-time translation symmetry for
boost invariance, and boosts are defined relative to a choice of origin in 4D space-time,
the celestial sphere should be thought of as being located at some specified lightcone
time u along null infinity. While boosts act linearly in CCFT, space-time translations are
non-linearly realized: the translation generator along the u direction acts on conformal
primary fields by shifting the conformal dimension from ∆ to ∆ + 1 [17, 18]. This shift in
conformal dimension is a first hint of exponential Lyapunov behavior, and indeed a first hint
that from the CCFT point of view, 4D translation symmetry, rather than being an exact
symmetry with associated conserved currents, should perhaps be thought as an emergent
symmetry arising from underlying strongly coupled quantum dynamics.

Here we set out to study CCFT following the same logic used to exhibit chaotic
dynamics in AdS. We will proceed via a combination of three methods. First, we will
identify the relevant dynamics of the conformally soft sector of the 4D gravity theory, as
determined by the spontaneous symmetry breaking of the asymptotic symmetry group.
Specifically, we will focus on the backreaction associated to the superrotation Goldstone
modes. We will see that, even without a full understanding of the holographic dictionary,
we can make concrete statements about the holographic dictionary associated to the soft
dynamics, and that this scope is naturally adapted to detect signals of chaotic phenomena.1

Second, taking a more geometrical perspective, we will argue that the CCFT Hilbert
space defined through radial quantization should be identified with the Hilbert space of
a Rindler observer following a constantly accelerating trajectory that reaches asymptotic
infinity at the pole of the celestial sphere. Standard radial quantization involves a mapping
to the celestial cylinder via the exponential coordinate transformation

z = e−τ+iφ, z̄ = e−τ−iφ. (1.4)

The φ and τ evolution are indicated in figure 1. Our proposal is that the CCFT dynamics in
the τ direction in fact takes place at finite temperature T and, moreover, displays quantum
chaos with a Lyapunov exponent that saturates the chaos bound.

The conclusion that CCFT has finite temperature naturally follows by requiring that
celestial amplitudes arise from analytic continuation to (2,2) signature. This motivates
the interpretation of the CCFT Hilbert states as describing the quantum state of the
Rindler horizon. The observations of a Rindler observer are restricted to a wedge of space-
time outside the horizon and as a consequence, she experiences her environment as in a
mixed quantum state with finite temperature. Moreover, to this observer, the shockwave
interaction due to an incoming particle crossing the horizon will induce Lyapunov type
behavior, similar to what happens for black hole horizons. Extrapolating lessons learned
from AdS/CFT, one is led to conclude that the Rindler horizon represents a strongly

1As explored in [19], the phase space of Goldstone modes for asymptotic symmetries captures backreaction
effects due to matter in the vicinity of the event horizon. While supertranslations correspond to the leading
soft graviton theorem [20], the subleading soft graviton theorem plays a more intrinsic role in CCFT [21–23].
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φ
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φ

τ

Figure 1. The cylinder coordinates τ and φ defined through (1.4) map the celestial sphere onto
the celestial cylinder. We will argue that the CCFT dynamics in the τ direction exhibits maximal
quantum chaos.

i0

i+

i−

I+

I−

R

A

B

Figure 2. Radial time evolution on the celestial sphere maps to time evolution of Rindler observer
in space-time. A particle experiences a Shapiro time delay when crossing a shockwave. From
the perspective of a fiducial Rindler observer, this time delay may have drastic effect that grows
exponentially in time.

coupled physical quantum system with maximal chaos. Via our working assumption that
celestial holography represents a true duality between two physical systems, this implies
that the CCFT should also exhibit maximal chaos. Finally, combining these insights with
well-established general properties of correlation functions and conformal blocks in 2D CFT,
we will study the out-of-time-ordered correlation functions (OTOCs) in CCFT and argue
that they indeed display signatures of maximally chaotic dynamics.

This paper is organized as follows. We review the celestial dictionary and the emergence
of celestial Virasoro symmetry in section 2. We then study the celestial backreaction
in section 3 and relate the associated Goldstone mode dynamics with properties of the
CCFT. In particular, we will make a concrete proposal for the central charge of the Virasoro
symmetry of CCFT. We then proceed to study the bulk interpretation of radial quantization
in section 4 and show how to change between signatures in both the bulk and boundary.
Finally, with all these ingredients in place, we then study CCFT on the celestial torus in
section 5 and demonstrate the chaotic behavior of OTOCs in section 6.
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2 Celestial dictionary and symmetries

To set the stage, we start with a brief review of some basic elements of celestial CFT
including the bulk-to-boundary mapping from local operators in 4D space-time to local
CFT operators on the 2D celestial sphere and the identification of an infinite asymptotic
symmetry algebra isomorphic to the Virasoro algebra.

2.1 Bulk to boundary mapping

A conformal primary wavefunction is a wavefunction Φ∆,J (Xµ; z, z̄) on R1,3 which transforms
under SL(2,C) as a 4D tensor field of spin-s and as a 2D conformal primary of conformal
dimension ∆ and spin J

Φ∆,J

(
ΛµνXν ; az + b

cz + d
,
āz̄ + b̄

c̄z̄ + d̄

)
= (cz + d)∆+J

(
c̄z̄ + d̄

)∆−J
D (Λ) Φ∆,J (Xµ; z, z̄) ,

(2.1)
where D(Λ) is the 3+1D spin-s representation of the Lorentz algebra [8, 9, 24]. A special
subclass of conformal primary wave functions are the perturbative wave functions with that
solve the linearized equations of motion for a massless (in which case J = ±s) or massive
spin-s particle in vacuum. Given a local 4D operator Ô(X) and a linearized conformal
primary wavefunction Φ±∆,J(X; z, z̄), we can define the associated local CCFT operator
O±∆,J (z, z̄) by taking the overlap computed via the appropriate Klein-Gordon inner product(
,
)
Σ on a Cauchy slice Σ

O±∆,J (z, z̄) = i
(
Ô,Φ±∆,J(z, z̄)∗

)
Σ

(2.2)

with Φ±∆,J(X; z, z̄)∗ = Φ∓∆∗,−J(X; z, z̄). Here the ± superscript indicates whether the
operator prepares an outgoing or incoming state, respectively. In the interacting theory we
want to push the Cauchy slice to future or past null infinity to prepare the out or in states
from the corresponding 4D vacuum state.

In this paper we will aim to go beyond perturbation theory and determine the properties
of celestial correlation functions of general local operators that follow from universal
gravitational dynamics in the bulk. The above perturbative dictionary, however, still gives
useful guidance. A first lesson is that, as shown in [9], finite energy perturbative modes are
captured by conformal dimensions on the principal series

∆=1 + iλ, λ ∈ R. (2.3)

Hence it is reasonable to conclude that the spectrum of primary operators in CCFT will
in general include operators with complex conformal dimensions. This in particular has
consequences for the Hermiticity properties of the CCFT Hamiltonian and for the relation
between celestial and bulk time-evolution. Secondly, the fact that there exists a map from
bulk operators to boundary operators gives a direct motivation for our working hypothesis
that the CCFT Hilbert space and bulk Hilbert space should be identified. This also means
that the CCFT and bulk dynamics should be related. We will present a proposal for
including dynamical time evolution in the bulk-to-boundary dictionary in section 4.1.
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In conventional treatments of celestial conformal field theory 4D translations are
realized as an exact symmetry generated by conserved translation charges Pµ that act on
the conformal primary operators via [18]

PµO±∆,J(z, z̄)=±qµO±∆+1,J(z, z̄). (2.4)

The associated Ward identities imply the existence of infinite towers of primary operators
with precise relationships between their OPE coefficients. When applying standard celestial
CFT technology we need to keep in mind these larger multiplet structures [18, 25, 26]
and consider the behavior of correlators in the complex ∆ plane [27, 28]. Following this
symmetry guided approach to its logical conclusion reveals that CCFT exhibits a large
extended symmetry group in the form of a w1+∞-algebra [29].

In this paper we will largely ignore the enhanced symmetry structure of CCFT, including
those that follow from 4D translation symmetry. Instead we will mostly concentrate on
properties of that follow from 4D Lorentz symmetry and its infinite dimensional extension,
superrotation symmetry.

2.2 Asymptotic symmetry algebra

The key evidence that underlies celestial conformal field theory is that the asymptotic
superrotation symmetries of gravity act on the celestial sphere via local 2D conformal
transformations. This implies the existence of an infinite set of superrotation generators,
which can be combined to constitute the local stress energy tensor of the CCFT. We start
with a brief review of this result, while highlighting the role of the conformally soft modes.

In Bondi gauge, the metric near future null infinity takes the form [30, 31]

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ + 2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2

+
[(
DzCzz −

1
4rDz(CzzCzz) + 4

3r (Nz + u∂zmB)
)
dudz + c.c.

]
+ . . .

(2.5)

using the conventions of [1]. The radiative data are captured by the news tensor Nzz = ∂uCzz,
which can be specified as a free function of (u, z, z̄) while the u evolution of the Bondi
mass mB and angular momentum aspect Nz are determined by the constraint equations
Guµ = 8πGTMuµ at large-r.

The asymptotic symmetry group is determined by identifying residual diffeomorphisms
which preserve these falloffs but act non-trivially near I+. These include supertranslations
which shift the generators of null infinity by a free function of (z, z̄), as well as superrotations
which enhance the Lorentz subgroup and will be our focus here. In Bondi gauge the
superrotation vector fields take the form

ξY =
(

1 + u

2r

)
Y ∂z −

u

2rD
z̄DzY ∂z̄ −

1
2 (u+ r)DzY ∂r + u

2DzY ∂u + c.c. (2.6)

Under these diffeomorphisms, the news transforms as

δYNzz = u

2DAY
A∂uNzz + LYNzz −D3

zY
z. (2.7)

The last term is an inhomogeneous shift of the superrotation Goldstone mode [32, 33].
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A key observation by Strominger [1] is that Ward identities for asymptotic symmetries
are manifested as soft theorems of the S-matrix. The canonical charge generating the
superrotation symmetry can be split into a soft and a hard part [22]. Combining the
contributions from future (+) and past (−) null infinity (or more generally a signed sum
over boundary components) we get a Ward identity of the form

Q± = Q±S +Q±H , Q = Q+ −Q− = 0. (2.8)

Acting on the vacuum, the operator QS adds a soft graviton mode, while QH induces the
corresponding symmetry transformation of the matter fields and finite energy gravitational
fluctuations.

The real power of the celestial CFT framework derives from the identification of the
subleading soft graviton with the local 2D stress energy tensor which at tree level takes the
form [11]

T CFT
zz = 1

8πG

∫
duuÑzz. (2.9)

Here Ñzz ≡ −6i
∫
d2w
√
γ 1

(z−w)4N
ww amounts to a shadow transform of the news tensor.2

This operator inserts a zero energy graviton that couples to angular momentum and boost
energy. Its charges

QS(Y ) =
∮

dz

2πiY
zTCFT

zz (2.10)

generate the superrotation transformations and measure the spin memory effect [34].
Superrotations act on the celestial sphere as local conformal transformations z →

z + Y (z). The Laurent modes of the stress tensor thus generate a Virasoro algebra

Tn =
∮
dz

2πi z
n+1TCFT

zz , [Tn, Tm] = (n−m)Tn+m (2.11)

with vanishing central charge. The insertion of a stress tensor in a CCFT correlation
function of primary local operators gives rise to the familiar conformal Ward identity of
2D CFT〈

TCFT
zz (z)O1(z1) . . .On(zn)

〉
=
∑
k

[
hk

(z − zk)2 + ∂zk
z − zk

] 〈
O1(z1) . . .On(zn)

〉
(2.12)

and similar for T̄z̄z̄. In terms of our holographic dictionary, this 2D Ward identity follows
from the subleading soft graviton theorem in 4D [21, 22].

2.3 Superrotation Goldstone modes

Besides the CCFT stress tensor, the gravity theory contains geometric soft modes associated
with supertranslations and superrotations. In the absence of matter stress energy, the
off-diagonal asymptotic metric component Czz can be decomposed as [35, 36]

Czz = (u+ C)Θzz − 2D2
zC. (2.13)

Here C is the supertranslation Goldstone mode and Θzz is the superrotation Goldstone mode.
2This is a proper 2D conformal shadow transform if the u-integral is performed first. Namely, the

duu-integral of the news gives a weight ∆ = 0, J = −2 operator whose shadow has weight ∆ = 2, J = 2.
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The Θzz mode encodes the celestial backreaction due to insertion of a classical source
that couples to CCFT stress tensor TCFT

zz . It transforms under superrotations as (here
Y = Y z)3

δY Θzz = [QS(Y ),Θzz] = Y ∂zΘzz + 2∂zYΘzz − ∂3
zY. (2.14)

We see that superrotation transformation rule of Θzz is identical to the conformal transfor-
mation rule of a 2D CFT stress tensor with unit central charge. Note, however, that Θzz

itself is not a superrotation generator: its Laurent coefficients do not generate a Virasoro
algebra but commute among themselves

Θn =
∮
dz

2πi z
n+1Θzz [Θn,Θm] = 0. (2.15)

Meanwhile, the Tn generators and Θm modes do satisfy a non-trivial commutator algebra.
Equation (2.14) implies that

[Tn,Θm] = (n−m) Θn+m−
(
m3−m

)
δn+m. (2.16)

As we will show in the next section, the commutation relations (2.11), (2.15) and (2.16) can
be repackaged in the form of (an Inönü-Wigner contraction of) a pair of Virasoro algebras
with divergent central charge.

The interpretation of Θzz as the superrotation Goldstone mode is made more manifest
by writing it as

Θzz = −{Z(z), z} (2.17)

where {f, z} = f ′′′

f ′ −
3
2
(f ′′
f ′
)2 denotes the Schwarzian derivative. From equation (2.14), we

then see that infinitesimal superrotations generate a linear shift in Z(z) via

δY Z(z) = [QS(Y ), Z(z)] = Y (z). (2.18)

Hence, by exponentiation, Z(z) represents the full non-linear superrotation Goldstone mode.
The soft superrotation dynamics and the associated appearance of a Virasoro algebra with
non-zero effective central charge will play a key role in the derivation of the Lyapunov
behavior of CCFT.

3 Celestial backreaction

The appearance of Virasoro symmetry and soft modes in 4D gravity is reminiscent of the
asymptotic structure of 3D anti-de Sitter gravity. This relationship was anticipated in early
work by de Boer and Solodukhin [4], based on the fact that 4D Minkowski space-time admits
a hyperbolic foliation, as indicated in figure 3. The leaves of constant X2 are Euclidean
AdS3 geometries inside the future and past lightcones of the origin (blue), and Lorentzian
dS3 geometries outside this lightcone (red). Lorentz transformations act as isometries on
(A)dS3 and thus preserve the foliation. The celestial spheres are the common asymptotic

3As compared to ex. [22] where the canonical commutation relations in 4D imply δY Θzz = i[QS(Y ),Θzz],
our use of [ , ] will denote the 4D Poisson bracket. This is intended to be suggestive for what follows since
the algebra matches what is expected for the radial quantization commutator.
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i0 i0

i+

i−

Figure 3. A hyperbolic foliation of Minkowski space.

boundaries connecting the two types of slices. Given that (A)dS3 gravity possesses an
asymptotic symmetry group isomorphic to the product of two Virasoro algebras, it is natural
that the asymptotic symmetries and soft dynamics of 4D gravity near the celestial boundary
includes this same structure as a subsector [7]. In this section, we will use this observation
to elucidate the link between celestial backreaction, symmetries and the central charge of
the CCFT conformal algebra.

3.1 Superrotated space-time

The geometric origin of the Virasoro algebra can be understood directly from a 4D perspective
by considering the vacuum solutions of the 4D Einstein equations obtained by acting with a
finite superrotation on the standard Minkowski metric. Here we will focus on the structure
of pure-superrotation vacua, setting C = 0 in equation (2.13). Let us now try to understand
what this sector looks like from the bulk. We first write the superrotated metric in
Bondi gauge and then apply the coordinate transformation to cast it in the hyperbolic
foliation form.

Finite superrotated vacuum solutions were studied in [35, 37]. In Bondi gauge the
metric for a pure superrotation takes the form

guu = −1− 2uV√
r2 + u2V

, gur = −r√
r2 + u2V

, guA = −DA

√
r2 + u2V (3.1)

gAB =
(
r2 + 2u2V

)
γAB + u

√
r2 + u2VΘAB, V = 1

8γ
ABγCDΘACΘBD

in terms of our Θ mode above. The above class of space-time metrics are all related via
diffeomorphisms and therefore classically equivalent. In the quantum theory, however, they
become physically distinguishable. A given perturbative vacuum of the 4D bulk QFT looks
like a local vacuum state only in a specific local coordinate system. Once we have specified
a QFT vacuum state, local diffeomorphism invariance is spontaneously broken. It is this
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sense in which on can think of the variable Z(z) in (2.17) as the Goldstone mode due to the
spontaneous breaking of diffeomorphism invariance by the QFT vacuum (see also [38–41]).

To compare to the above AdS3/CFT2 intuition for gravitational realizations of Virasoro
symmetries, it is worthwhile to look at this metric in terms of a hyperbolic foliation of
Minkowski space [4] illustrated in figure 3. For ease of presentation, we will focus on the
two regions adjacent to the future celestial sphere. We will label these two regions by means
of their respective points at infinity i+ and i0. The flat Minkowski space metric in the
(future) blue and (spacelike) red regions reads

ds2 = −dη2 + η2
(
dρ2 + sinh2ρ 2γzz̄dzdz̄

)
i+ (3.2)

ds2 = dρ̃2 + ρ̃2
(
−dη̃2 + cosh2η̃ 2γzz̄dzdz̄

)
i0. (3.3)

To write the Bondi gauge superrotation vacuum (3.1) in the above foliation-friendly coordi-
nates, we make the following coordinate identification

u = ηe−ρ, r = η
√

sinh2ρ− e−2ρV , i+ (3.4)

u = −ρ̃e−η̃, r = ρ̃
√

cosh2η̃ − e−2η̃V , i0. (3.5)

The superrotated metric (3.1) in the new coordinates takes the form of a hyperbolic foliation

ds2 =−dη2+η2
(
dρ2+

(
sinh2ρ+e−2ρV

)
2γzz̄dzdz̄+

(
1−e−2ρ

)(
Θ+
zzdz

2+Θ+
z̄z̄dz̄

2
))

i+

(3.6)

ds2 = dρ̃2+ρ̃2
(
−dη̃2+

(
cosh2η̃+e−2η̃V

)
2γzz̄dzdz̄−

(
1+e−2η̃

)(
Θ−zzdz2+Θ−z̄z̄dz̄2

))
i0.

(3.7)

We recognize the metric on the three-dimensional leaves as the Bañados geometry describing
locally (A)dS space-times [42]. Here we have given the Θ mode a ± superscript to indicate
its restriction to the interior region to the future of the celestial sphere S2 or the exterior
region to the past of S2. Requiring continuity of the metric across the future lightcone
would imply that the two Goldstone modes must be identical

Θ+
zz = Θ−zz. (3.8)

The global metric obtained by combining the red and blue regions then describes a superro-
tated vacuum space-time with vanishing stress energy.

3.2 Extended Virasoro algebra

If we were doing AdS3/CFT2, we would normally equate the Θ±zz in the Bañados metric
with the CFT stress tensor. The asymptotic Virasoro symmetry algebra in this case has
non-zero central charge proportional to the AdS3 curvature radius in units of the 3D Planck
length. In our setting, the asymptotic (A)dS3 space-time has infinite radius. If instead
we introduce an IR cut-off by setting the (A)dS radius equal to R = 2/ε, measured in 3D

– 10 –
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Planck units, applying the (A)dS/CFT dictionary to both the blue and red regions would
identify two stress energy tensors whose Laurent modes

T±zz = ± i

2εΘ±zz, L±n =
∮
dz

2πi z
n+1T±zz, (3.9)

generate two Virasoro algebras with divergent central charge [7][
L±n , L

±
m

]
= (n−m)L±n+m ∓

i

4ε
(
m3 −m

)
δn+m. (3.10)

Note that the central charge and normalization of T± are imaginary because of the non-
standard signature and curvature radius of the hyperbolic slicing: the space-like AdS-slices
in the blue interior region have a time-like radius, whereas the time-like dS-slices in the
exterior region have positive curvature. The vacuum condition (3.8) amounts to the
condition Tn = L+

n +L−n = 0. Note that the operator Tn generates a Virasoro algebra (2.11)
with zero central charge and setting Tn = 0 is therefore a self-consistent first class constraint.

The above reasoning based on AdS/CFT intuition looks somewhat heuristic and has
some tension with the standard celestial holographic dictionary equating the CFT stress
tensor with the sub-leading superrotation memory mode (2.9). We can resolve this tension
as follows. First we observe that the combined algebra (2.16) generated by the Tn and Θm

derived in the previous section can be reached from an Inönü-Wigner contraction of a pair
of Virasoro algebras (3.10) with divergent central charge via the identification4

L±n = 1
2

(
Tn ±

i

2εΘn

)
, (3.11)

upon adding in the commutation relation [Θn,Θm] = −4ε2(n−m)Tn+m which vanishes in
the ε→ 0 limit. This observation suggests that, starting from the two Virasoro symmetry
algebras associated with the asymptotic symmetries of the (A)dS3 leaves of the hyperbolic
foliation, we can extract the modes Tn and Θn of the CCFT stress tensor TCFT

zz and
Goldstone mode Θzz via the identification

Tn = L+
n + L−n , Θn = −2iε

(
L+
n − L−n

)
. (3.12)

Let us summarize our proposal. Up to now, it has been open question whether the
celestial Virasoro algebra should include a central charge term or not and, if so, what
the value of the central charge should be. The above identifications provide a possible
answer: the CCFT in fact incorporates two stress tensors, obtained by combining the stress
tensor T CFT

zz (z) obtained from the sub-leading soft graviton mode with the superrotation
Goldstone mode Θzz(z) via

T ±zz(z) = 1
2
(
T CFT
zz (z)± i

2εΘzz(z)
)
. (3.13)

The Laurent modes of these two stress tensors satisfy the Virasoro algebras (3.10) with
divergent imaginary central charge. The appearance of imaginary central charge is consistent
with the Hermiticity properties of the mode operators acting on the CCFT Hilbert space.

4Note that Θ is a boundary value of the news, while T involves 1
G

times a duu integral of the news. So ε
is indeed dimensionless, since [G] = L2 in 4d.
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3.3 Incorporating backreaction
In this section we will argue that examining a sector of CCFT operators that commutes
with one of the subalgebras (3.11) amounts to incorporating backreaction effects where the
celestial operators excite the superrotation Goldstone mode. If we look at operators in a
sector that commutes with L−n then we are able to apply techniques associated to large
central charge limits of CFT correlators. As we will now explain, this means that we will
only consider operators that carry energy relative to one of the 2D stress tensors, and use
the coordinate freedom to set the other stress tensor equal to zero.

The two CCFT stress tensors (3.13) can be thought of as the generators of two
independent superrotation symmetry groups with infinitesimal parameters Y ±. The stress
tensors themselves transform inhomogeneously under their respective superrotations

δY ±T
±
zz=[QS(Y ±), T±zz] = Y ±∂zT

±
zz + 2∂zY ±T±zz ∓

i

4ε∂
3
zY
±. (3.14)

Hence, instead of viewing T±zz as two separate stress energy tensors, we can equally well
think of them as two independent superrotation Goldstone modes. The infinitesimal
superrotation transformation (3.14) exponentiates to the familiar inhomogeneous conformal
transformation rule of a 2D CFT stress tensor involving the Schwarzian derivative. As
before, we can make the interpretation of T±zz as superrotation Goldstone modes more
manifest by writing both as a pure superrotation parametrized by two dynamical variables

T±zz=∓
i

4ε{Z
±, z}. (3.15)

From equation (3.14) we then see that infinitesimal superrotations generate a linear shift
in Z±(z) via δY Z

±(z) = Y (z). Hence Z±(z) both behave as non-linear superrotation
Goldstone modes.

Given the factorized form of the superrotation symmetry algebra, it is reasonable to
assume that the CCFT operator algebra can also be naturally factorized into a tensor
product of two operator algebras, spanned by primary operators O+ and O− (and their
respective descendants) that transform non-trivially under one Virasoro algebra and trivially
under the other.5 The leading term of the OPE of the T±zz stress tensors of, say, a local
primary operators O+ at the origin takes the form

T+
zz (z) O+ (0) ∼

(
h

z2 + 1
z
∂

)
O+ (0)

(3.16)
T−zz (z) O+ (0) ∼ regular for z → 0.

In the sector where T−zz = 0, we can identify the Z+(z) Goldstone mode introduced in (3.15)
with the standard Z(z) superrotation Goldstone mode introduced in (2.17). Hence, looking

5We use subscripts here to avoid conflating this with the ± superscript labeling in and out particles.
Unless necessary we will drop the in/out label. As we will see in the appendix, once we go to the celestial
torus these can be interchanged with an appropriate π rotation.
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at the above form of the OPE, we deduce that in the direct neighborhood of the local
operator, the Z(z) behaves as follows

− i

2ε{Z, z} = h

z2 ⇔ Z(z) = z1−2iεh, (3.17)

where we used that ε is small. The above two equations tell us that the insertion of a local
operator O+

h (0) leads to a gravitational backreaction in the form of a superrotation that
creates a conical singularity at the local operator, with infinitesimal deficit angle equal to
2iεh. This map has a branch cut connecting the north to south poles of the celestial sphere,
which extends into the bulk along the locus X1 = X2 = 0. If we take the angular coordinate
around this locus to span the usual range φ ∈ (0, 2π] this locus becomes a cosmic string.
The case where Z(z) = zα with α ∈ R was considered in [43], where α = ᾱ = 1− 4Gµ for a
string of energy density µ. The spinning analog is the cosmon [44]. Meanwhile if we instead
take φ ∈ (0, 2π

α ] we obtain a bulk geometry that is free of conical defects, at the price of
introducing an angular deficit on the celestial sphere itself [37]. We will adopt this latter
interpretation in what follows.

In this sector, the Goldstone and memory modes are linearly related. This linear relation
implies that we can express the celestial backreaction as an operator product relation

Θzz(z)O+(0) ∼ −2iε
(
h

z2 + 1
z
∂

)
O+(0) (3.18)

between the Θzz Goldstone mode and the local operator. So in terms of the Θzz field, the
backreaction is of order ε. We note further that, since we want the bulk geometry to be
a smooth saddle, we are introducing an infinitesimal deficit angle on the celestial sphere
determined by the weight of the operator under TCFT.

4 Rindler time and the celestial torus

Let us now proceed to examine the Hilbert space description of CCFT on the celestial
sphere and its analytic continuation to the celestial torus. Our guiding assumptions will be
that this Hilbert space description exists, and secondly, that the Hilbert states and inner
product can, via a suitable holographic dictionary, be identified with the Hilbert states and
inner product of a unitary 4D quantum gravity theory. As we will argue, this 4D theory
should be viewed from the perspective of a Rindler observer.

4.1 Radial evolution on the celestial sphere

An intrinsic way to introduce a Hilbert space description of celestial CFT is via standard
radial quantization: choose an origin (z, z̄) = (0, 0) on the celestial sphere S2 and identify
time translations with scale transformations (z, z̄) 7→ (αz, αz̄). Finite radial time translations
are generated by the evolution operator

U (t) = et(L0+L̄0). (4.1)

The radial time evolution acts on local operators via

U (t)O∆ (z, z̄)U † (t) = et∆O∆
(
etz, etz̄

)
. (4.2)
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We would like to identify this transformation with unitary time evolution in the 4D quantum
gravity theory. Hence, unlike in standard Euclidean 2D CFT, U(t) should be a unitary
operator. Indeed, as shown in [9], a difference between celestial CFT and ordinary 2D
CFT is that finite energy scattering states in the 4D theory are mapped to CCFT primary
fields that carry conformal dimensions on the principal series with complex scale dimension
∆ = 1 + iλ, λ ∈ R. This indicates that the Hilbert space inner product in CCFT (at least
when restricted to the subspace of primary states) should be chosen such that L0 + L̄0 is
anti-Hermitian rather than Hermitian. This difference with the standard BPZ inner-product
is dictated by our postulate that the 2D and 4D Hilbert space should be identified and will
play a crucial role in what follows.6

Denoting O∆(z, z̄) by O(λ, z, z̄), we introduce local operators O(τ, z, z̄) that act at
some given instant τ , via

O (τ, z, z̄) =
∫

dλ eiλτ

2 sinh πλ O (λ, z, z̄) . (4.3)

The reason for including the spectral factor (2 sinh πλ)−1 will become clear below. The
radial time evolution simultaneously shifts τ and dilates z and z̄

U (t)O (τ, z, z̄)U † (t) = O
(
τ + t, etz, etz̄

)
. (4.4)

Defining rescaled celestial coordinates via

(w, w̄) =
(
e−τz, e−τ z̄

)
, (4.5)

this equation takes the suggestive form

U (t)O (τ, w, w̄)U † (t) = O (τ + t, w, w̄) . (4.6)

Hence we can read U(t) either as the radial evolution operator in the z coordinates or
as the evolution operator that implements the time evolution in τ . From now on we will
often suppress the w-dependence of the local operators O(τ, w, w̄) and simply denote them
as O(τ).

4.1.1 Periodicity of celestial correlators

One can show that CCFT correlation functions of local operators O(τ) in (4.3) can be
expressed in terms of the original scattering amplitudes via〈

O±1 (τ1) . . .O±n (τn)
〉

=
[ ∏

i

∫ ∞
0
dωi e

∓iωie±τi
]
A(ωi) (4.7)

where we’ve restored the ± label distinguishing the in- and outgoing asymptotic states.
The above relation shows that the τ coordinate has the same properties as a Rindler
coordinate: τ covers only the u < 0 half of the light-cone time along future null infinity and
the correlation functions exhibit 2π periodicity along the imaginary τ direction〈

O±1 (τ1) . . . O±n−1(τn−1)O±n (τn)
〉

=
〈
O±n (τn +2πi)O±1 (τ1) . . . O±n−1(τn−1)

〉
. (4.8)

6See [45] for a recent effort to realize the 2D BPZ inner product from a 4D construction.
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Hence the correlation functions of the O(τ) operators look like thermal expectation values
at finite temperature T = 1/2π. In the following, we will identify τ as the time coordinate
of a uniformly accelerating observer moving towards the north pole of the celestial sphere.

The conclusion that celestial correlators behave as thermal expectation values looks a
bit surprising, given that radial quantization in standard 2D CFT on the Euclidean sphere
produces vacuum expectation values at zero temperature. However, as emphasized above,
the radial rescaling (z, z̄)→ (etz, etz̄) represents unitary real time evolution in CCFT, in
spite of the fact that the celestial sphere itself is Euclidean. Our postulate that the 4D
Hilbert space and 2D Hilbert space should be identified dictates reality conditions that are
at odds with the topology and signature of the celestial sphere.

A more appropriate setting for our purpose is to define 4D scattering amplitudes
through analytic continuation from 4D Klein space K2,2 with (2,2) signature and replace
the celestial sphere S2 by the celestial torus T1,1 [46]. As we will see below, a practical way
to view the relationship between the two celestial spaces is to perform a Wick rotation
from the celestial sphere starting from the exponential map (1.4) taking us to the celestial
cylinder illustrated in figure 1.

4.2 Klein space and the celestial torus

Scattering amplitudes are often defined by analytic continuation from Euclidean signature.
In gravity, however, the condition of bulk diffeomorphism invariance restricts momenta
to remain on-shell. For this reason, it has proven to be effective to define amplitudes in
quantum gravity through analytic continuation from (2,2) signature. Null infinity of Klein
space K2,2 takes the form of a 2-torus with (1,1) signature. This is most easily seen by
introducing the double polar coordinate parametrization of K2,2

(X0, X1, X2, X3) = (q cosψ, σ cosφ, σ sinφ, q sinψ) (4.9)

as in [46]. The (2,2) metric in polar coordinates reads

ds2 = −dX2
0 + dX2

1 + dX2
2 − dX2

3 = −dq2 − q2dψ2 + dσ2 + σ2dφ2. (4.10)

Future null infinity I is defined by following the light-like trajectory q = σ to ∞. It takes
the form of a two torus T1,1 with metric

ds2 = −dψ2 + dφ2 ψ ∼ ψ + 2π, φ ∼ φ+ 2π. (4.11)

A direct 4D way to go from (1,3) Minkowski space to (2,2) Klein space is to Wick
rotate the X3 coordinate. Alternatively, if we are only interested in asymptotic holographic
data, we can directly perform the Wick rotation from the celestial sphere to the celestial
torus. To do this, we suitably complexify the coordinates (z, z̄) on S2 and write them as

z = e−τ+iφ, z̄ = e−τ−iφ with τ = t− iψ (4.12)

with t, ψ and φ all real. By the above argumentation, ψ should be identified with the
Euclidean Rindler time.
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i0

i′

LIR

LIR

ψ

φ

Figure 4. Penrose diagram for R2,2. Null infinity is resolved by two AdS3/Z hyperboloids at fixed
X2 = ±L2

IR glued together along a celestial torus. These hyperboloids cap off different cycles of the
celestial torus.

The 2+2 Lorentz group SO(2, 2) factorizes (up to a Z2 identification) into the product
SL(2,R) × SL(2,R) of two 1D conformal groups acting on the celestial torus via Möbius
transformations

tan y±2 →
a tan y±

2 + b

c tan y±
2 + d

, y± = ψ ± φ. (4.13)

The lightcone coordinates y± are also periodic with period 2π. Note, however, that the
torus defined by the periods (4.10) is a Z2 orbifold of the light-like torus T̃ 1,1 defined by
the 2π lightlike shifts in y±.

The boundary of K2,2 has the topology of a three sphere S3 with the celestial torus at
its equator. The past and future hemispheres are identified with spatial infinity i0 and with
future infinity i′. The conformal metric for both takes the form of an AdS3/Z, one with
(2,1) and the other with (1,2) signature

ds2
3 = − cosh2ρ dψ2 + sinh2ρ dφ2 + dρ2 ψ ∼ ψ + 2π i′ (4.14)

ds2
3 = − sinh2 η̃ dψ̃2 + cosh2 η̃ dφ̃2 − dη̃2 φ̃ ∼ φ̃+ 2π i0. (4.15)

The identifications ψ̃ ∼ ψ̃ + 2π and φ ∼ φ + 2π are automatically imposed by imposing
smoothness at η̃ = 0 and ρ = 0. The two AdS3/Z caps are glued together via the
identification φ̃ = φ and ψ̃ = ψ.

It is useful to compare the metric (4.10) with the standard Rindler metric in
Lorentzian signature

ds2 = −ξ2dτ2 + dξ2 + dσ2 + σ2dφ2. (4.16)

The metrics (4.10) and (4.16) can be mapped to each other through the identification between
the corresponding Euclidean metrics. We can double Wick rotate the (2,2) signature metric
to Euclidean signature by replacing the q coordinate by qE = iq. Similarly, we obtain the
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Euclidean version of the Rindler metric (4.16) by Wick rotating the Rindler time coordinate
to τE = −iτ . Equating the two metrics

ds2
E = dq2

E + q2
Edψ

2 + dσ2 + σ2dφ2 = dξ2 + ξ2dτ2
E + dσ2 + σ2dφ2 (4.17)

leads us to identify the Rindler space coordinate ξ with the Euclidean qE coordinate of
the Klein space-time and the celestial time coordinate ψ with the Euclidean Rindler time
coordinate τE

ξ = qE = iq, ψ = τE = iτ (4.18)

on the locus t = 0.

4.3 Superrotated Klein space

As described the previous section for Minkowski space-time, one can again write a general
class of vacuum solutions obtain by acting the with finite superrotation transformations on
Klein space. Here we only state the form of the solutions in both regions

ds2 = −dη2 + η2
(
dρ2 − 1

4
(
eρdx+ + 4e−ρΘ+

−−dx
−
) (
eρdx− + 4e−ρΘ+

++dx
+
))

i′

(4.19)

ds2 = dρ̃2 + ρ̃2
(
−dη̃2 − 1

4
(
eη̃dx+ − 4e−η̃Θ−−−dx−

) (
eη̃dx− − 4e−η̃Θ−++dx

+
))

i0.

(4.20)

In the vacuum solutions without any matter stress energy in the bulk, we need to impose
the condition that Θ± = Θ±. The standard Klein vacuum solution corresponds to special
case that Θ±−− = Θ±++ = 1/4. The holographic CFT interpretation of this non-zero value
of Θ± is that the CCFT on the celestial torus has both a finite Casimir energy and a
finite temperature. Indeed, as before, we can make a holographic dictionary between the
asymptotic symmetry groups and Goldstone variables Θ± of the (A)dS3 at i′ and i0 and the
appearance of two stress energy tensors T± in the dual CCFT on T1,1. We will now describe
some general properties of the partition function and correlation functions of this CCFT.

5 CFT on the celestial torus

Via a slight generalization of the dictionary outlined above for the celestial sphere (which we
review in appendix A), one can identify scattering amplitudes in (2,2) signature space-time
with correlation functions of a putative 2D CFT defined on T1,1. It is reasonable to assume
that this CCFT is identical to the one obtained by Wick rotating the Euclidean CCFT
defined on the celestial sphere and placing it on T1,1.

We have shown that the chiral symmetry algebra of this CCFT contains two Virasoro
algebras L+

n and L−n with imaginary central charge c→ ±i∞ and that this result is naturally
linked to the way in which the celestial geometry is embedded in asymptotic infinity. In
particular, in (2,2) signature, the celestial torus forms the interface between two halves
of the asymptotic three sphere S3, each of which take the form of an AdS3/Z space-time
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with infinite curvature radius. Hence, if we would cut the asymptotic three sphere open at
the equator, along the celestial torus, we create two disconnected AdS3 space-times with
asymptotic boundaries. It is natural to interpret the two Virasoro algebras as the edge
modes associated with the asymptotic symmetry groups of theses two AdS3 hemispheres.
Since the two AdS3 space-times have infinite radius, the corresponding Virasoro algebras
have infinite central charge. The central charge is imaginary because both hemispheres
have a non-standard signature.

In the following, we will assume that the Hilbert space and operator algebra of the
CCFT can be factorized into a tensor product of two Hilbert spaces and two operator
algebras, spanned by highest weight states and primary operators O+ and O− and their
respective L+

−n and L−−n Virasoro descendants. To simplify the discussion and notation,
we will focus our discussion below on the partition function and correlation functions
of operators restricted to one of these two sectors. We will not explicitly indicate the
+ or − label.

5.1 Partition function

The first step in understanding the CCFT on the celestial torus is to write the partition
function, defined by performing the CCFT path-integral on T1,1. First, let us determine the
modular parameter. Noting that the Lorentzian torus is obtained by analytic continuation
from the Euclidean torus, or equivalently, by taking a real slice of the complexified torus
ds2 = (dx+ σdy)(dx̄+ σ̄dȳ) with modular parameter σ via the identification x = x̄ = φ,
y = ȳ = ψ and σ = −σ̄ = 1. The sum over states in the partition function are therefore
weighted by U = qL0 q̄L̄0 with q = e2πiσ = e2πi and q̄ = e−2πiσ̄ = e2πi. So the partition
function on the celestial torus takes the form

Z = tr
(
e2πi(L0+L̄0)

)
. (5.1)

Here the trace is defined over the Hilbert space of all primary and descendant states in the
CCFT, as defined via the standard operator state correspondence.

Concretely, we again wish to define the CCFT Hilbert space on the celestial torus
via an operator state correspondence of the form |h, h̄〉 = O∆,J(0, 0)|0〉, where (h, h̄) =(1

2(∆+J), 1
2(∆−J)

)
. Note, however, that the states contributing to the trace in the T1,1

partition function are not created by local operators on the celestial torus itself: the point
(z, z) = (0, 0) does not describe a point on T1,1. Instead, we will identify it with the north
pole of the celestial sphere.

According to the metric on T1,1, ψ is a periodic Lorentzian time coordinate. Hence
it looks like the T1,1 has closed time-like curves. This seems problematic, since we would
like to consider the celestial CFT as a physical theory with consistent causal dynamics.
However, just as for the celestial sphere, the signature of time direction on the celestial torus
is opposite to what one would have expected based on the corresponding 4D interpretation
of this time flow. As we have argued, evolution in the ψ direction should be viewed as
Euclidean Rindler time evolution. Hence, as before, we will need to choose our Hilbert
space inner product such that the operator U = e2πi(L0+L̄0) that implements a full 2π shift
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e2πi(L0+L̄0) = = ∑
i, N

e−2πλi

|i, N〉R

R〈i, N |

Figure 5. The evolution operator U = e2π(L0+L̄0) that brings states around the celestial torus
can be expanded in states defined via the operator state correspondence of the CCFT on the
celestial sphere.

in the ψ coordinate has purely real eigenvalues of the form e−2πλ < 1, that in the mapping
to 4D Rindler space represent the Boltzmann weights of the thermal Minkowski vacuum.

Based on the mapping between the 2D and 4D Hilbert space, we again deduce that
the conformal weights are captured by data on the principal series, and thus take the form
∆ = 1 + iλ. Using the Laurent modes of the stress tensor, we generate Virasoro descendants

|i, N〉 ∝
∏
j,j̄

L−nj L̄−n̄j̄ |hi, h̄i〉 (5.2)

where N is the short-hand label for the collection of all descendant states with total
conformal weight (L0 + L̄0)|i, N〉 = (∆i+ N)|i, N〉 with N ≡

∑
j nj +

∑
j̄ n̄j̄ . The

partition function on T1,1 is a trace over the Hilbert space of all CCFT states. Since in each
case the conformal dimension of the descendent states is shifted by integer values, the unit
modular parameter implies that all states in the same conformal tower appear with the
same weight in the partition function (5.1).

e2πi(L0+L̄0)=
∑
i,N

e2πi∆i |i, N〉〈i, N | =
∑
i,N

e−2πλi |i, N〉〈i, N |. (5.3)

Upon taking a trace, we find

Z=
∑
i,N

e2πi∆i =
∑
i,N

e−2πλi . (5.4)

We see that the partition sum contains a formally divergent factor in the form of the
unrestricted sum over descendant states.

5.2 Goldstone modes

The partition function Z in (5.4) contains a divergent factor Z0 due to the presence of
an infinite tower of Virasoro descendants. Their contribution is not suppressed, since,
for the specific shape of the celestial torus, all descendants of a given primary state with
conformal dimension ∆ = 1 + iλ acquire the same Boltzmann weight e−2πλ+2πiN = e−2πλ.
The divergent factor Z0 and infinite tower of descendants are both linked to the emergence
of massless Goldstone modes associated with the Virasoro group Diff(S1)×Diff(S1). Indeed,
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Z0 can be shown to equal to the volume of the Virasoro group. In anticipation of their
relevance the Lyapunov behavior of OTOCs, let us make this Goldstone mode contribution
to the partition sum more explicit.

It is natural to define the celestial torus partition function with q = e2πi as the limit of
a finite expression

Z= lim
q→e2πi

∑
i

χhi(q)χh̄i(q̄). (5.5)

Here we introduced the Virasoro characters χh(q), defined as the trace of qL0− c
24 over the

Virasoro representation with highest weight h and central charge c. As explained above, the
conformal weights and the central charge are both imaginary. In particular, the asymptotic
flat space-time corresponds to the c → i∞ limit. Plugging in the explicit form of the
spectrum gives

Z=
∑
i

e−2πλiZhi,h̄i Zh,h̄ = lim
q→1

χh(q)χh̄(q̄). (5.6)

We will now show that the prefactors Zh,h̄ are in fact all identical and equal to the volume
of Diff(S1).

The Virasoro character with conformal weight h and central charge c can be represented
as a path integral over a co-adjoint orbit of Diff(S1), the group of diffeomorphisms of the
unit circle in the complex z plane [47–50]

χh(q) =
∫

[Df ] e
ic

24π

∫
dtdz (Ω− T ) with


T = −{f, z}

Ω = ḟ
2f ′

(
f ′′′

f ′
− 2

(
f ′′

f ′

)2
)

f(e2πiz)= e2πiαf(z).

(5.7)

Here the functional integral runs over a two dimensional field f(z, t), with t a periodic
Euclidean time coordinate with period β2D = log q and z restricted to the unit circle. Hence,
for fixed t, the function f(z, t) represents an element of Diff(S1) and the integral runs over
all paths in the Virasoro group. Diff(S1) is a symplectic manifold endowed with a canonical
symplectic two-form ω and (5.7) is a path integral over this phase space. Ω is the geometric
Virasoro action, defined via the property that (upon replacing ḟdt = δf , so that Ω becomes
a one-form on the Virasoro group manifold) its exterior derivative with respect to f equals
δΩ = ω with ω the canonical symplectic two-form on Diff(S1). The geometric action and
symplectic form are designed such that, upon quantization, the operators T satisfy the
Virasoro algebra

[T (z1) , T (z2)] = −~ (T (z1) + T (z2)) δ′ (z12) + ~
2δ
′′′ (z12) , ~ = 6

c
. (5.8)

Moreover, the twisted boundary condition f(e2πiz) = e2πiαf(z) specifies the specific co-
adjoint orbit associated with the highest weight representation with conformal weight h
related to the twist angle α via

24h
c

= 1− α2, (5.9)
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matching (3.17) above. Note that in the c→ i∞ limit with h finite, the twist angle goes
to zero (α → 1). From the point of view of the quantum theory (5.7) of the Virasoro
algebra (5.8), sending c→ i∞ corresponds to taking a classical ~→ 0 limit. In this limit,
the trace over the Hilbert space reduces to an integral over the phase space.

As shown in [51], in the scaling limit q → 1, c → i∞ with qc/12 = e−β fixed, the
partition function (5.7) of the geometric Virasoro theory reduces to the partition function
of Schwarzian quantum mechanics

lim
q→1,c→i∞

qc/12= e−1/β

χh(q) =
∫

[Df ] e
1
β

∫
dz {f, z} (5.10)

up to a divergent prefactor of the form eS0−βE0 . Here the functional integral runs over
all diffeomorphisms f(z) of the unit circle. In the strong coupling β → ∞ limit of the
Schwarzian QM, the overall divergent prefactor in the CCFT partition function reduces to
the volume of the Virasoro group Diff(S1) × Diff(S1). More generally, if we relax this limit,
we would find that the celestial CFT contains a soft sector described by Schwarzian quantum
mechanics with coupling β = − 12

c log q . This suggests a possible link between celestial CFT
and SYK-like dynamics [52].

5.3 Correlation functions

Up to now, we have followed the standard philosophy and used the properties and symmetries
of scattering amplitudes and the asymptotic geometry to extract information about the
properties of the celestial CFT. In what follows, we will aim toward setting up the CCFT
as a physical quantum system equipped with a Hilbert space and intrinsic dynamics. We
will adopt the following guiding principles:

1. The spectrum of Hilbert states in CCFT, obtained by radial quantization on the
celestial sphere S2, is isomorphic to the spectrum of the bulk theory in the Rindler
wedge seen by a single Rindler observer.

2. Any observable that we can compute in the Rindler wedge has a celestial holographic
CFT dual. In and out states in the wedge are created by operators localized at the
north and south pole of S2.

3. The thermal mixed state seen by the Rindler observer corresponds to a thermal state
in CCFT on S2. The Minkowski vacuum maps to a TFD state entangling two CCFTs
defined on two copies of S2.

The previous subsection examined how to cut open and insert a complete set of states
on the celestial torus. Combining this with our construction of local primary operators on
T1,1 detailed in appendix A, we can give a 2D description for evaluating their correlation
functions. In what follows, we will be interested in the time ordering dynamics and will
suppress the φ coordinate. Unless otherwise specified the same statements will hold for
operators smeared over the φ cycle. Using our discussion of the modular parameter in the
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previous section, the τ -ordered correlator can be written as a trace over a complete set of
states in the Hilbert space〈

O1(τ1) . . . On(τn)
〉
=Tr

(
e2πi(L0+L̄0)O1(τ1) . . . On(τn)

)
. (5.11)

Alternatively, we can represent this correlation function as an expectation value in the
thermofield double state〈

O1(τ1) . . . On(τn)
〉
=
〈
TFD

∣∣O1(τ1) . . . On(τn)
∣∣TFD

〉
. (5.12)

The thermofield double state is an entangled state between two copies of the CCFT Hilbert
space, with the property that the mixed state in one copy obtained by tracing out the other
copy is given by the thermal density matrix.

|TFD〉 = ∑
i, N

e−πλi |i, N〉R |i, N〉L = ∑
i, N

e−πλi

|i, N〉
L

|i, N〉
R

(5.13)

We see that the Minkowski vacuum appears to prepare an entangled state on the S1 × S1.
Via our interpretation of the ψ evolution as imaginary Rindler time, it is natural to identify
this TFD state with the Minkowski vacuum as experienced by the Rindler observer.〈

O1(τ1) . . . On(τn)
〉
=
∑
i,N

e−2πλi〈i, N ∣∣O1(τ1) . . . On(τn)
∣∣i, N〉. (5.14)

For the two point function we have

〈
O2(τ)O1(0)

〉
=

∑
i,j,N,Ñ

e−(2π−iτ)λi−iτλj〈i, N ∣∣O1
∣∣j, Ñ〉〈j, Ñ ∣∣O2

∣∣i, N〉 =
∑
i,j

j

i

O1O2

.

(5.15)
Here on the right we have captured the sum over intermediate Virasoro sectors in graphical
notation. Due to the left-right factorization of the conformal algebra, the correlation
function are given by a (possibly infinite or continuous) sum of terms that factorize into a
product of left- and right-moving conformal blocks. In the following section we will use
features of 2D Virasoro blocks to examine OTOCs in this sector. The conformal block
decomposition of perturbative amplitudes in celestial CFT has been studied in [53–55].

6 Signatures of chaos in celestial CFT

Equipped with our 4D and 2D understandings of the CCFT dynamics and its relation to
Rindler dynamics, we are prepared to study the out of time ordered correlation functions
and identify the onset of chaotic behavior in both pictures. In this section, we will first
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Figure 6. The TOC and OTOC contours. The imaginary time direction is compact.

introduce the OTOCs of interest and then outline and compare three basic methods of
computation. The first two rely on standard tools from 2D conformal field theory, namely i)
the known expressions for the monodromy matrices that relate different operator orderings
of Virasoro conformal blocks and ii) the analytic properties of a suitably chosen vacuum
block. Both methods are closely related and aided by fact that CCFT conformal blocks
arise from taking the large central charge limit of Virasoro blocks. We then compare the
CCFT results with the prediction obtained by including the gravitational backreaction
of the 4D Einstein theory. We will see that all methods of computation will give the
same answer. This match is not coincidental, but the consequence of a direct geometric
correspondence between the gravitational backreaction and the monodromy properties of
the CCFT conformal blocks.

6.1 OTOCs on the celestial torus

We are interested in studying the OTOCs of four local operators in celestial CFT on the
celestial torus. As explained in the previous section, the Hilbert space on T1,1 is obtained by
acting with local operators on the thermofield double state and, correspondingly, correlators
are given by expectation values between two TFD states. For simplicity, we will only keep
track of the t dependence of the correlation function.

Consider an operator B(t0) smeared in the φ direction inserted at time instance t0 and
an operator A(t1) smeared in the φ direction inserted at a later time t1. We will look at
two types of states: the state |x〉 prepared by the time ordered configuration and the state
|y〉 prepared by a time fold configuration

|x〉 = A(t1)B(t0)|TFD〉 (6.1)

|y〉 = B(t0)A(t1)|TFD〉. (6.2)

We can write the TO and OTO four-point correlation functions as inner products of
these states

〈x|y〉 = tr
(
e2πi(L0+L̄0)B† (t0)A† (t1)B (t0)A (t1)

)
(6.3)

〈x|x〉 = tr
(
e2πi(L0+L̄0)B† (t0)A† (t1)A (t1)B (t0)

)
. (6.4)
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The overlap 〈x|y〉 between the time ordered ket-state |y〉 and out-of-time-ordered bra-state
〈x| is the OTOC. The corresponding τ time-contour is indicated in figure 6. The time
ordered four-point function defined by the norm 〈x|x〉 diverges and needs to be regulated
by point-splitting. To leading order in the point-splitting distance, it factorizes into the
product of two-point functions on the sphere, times the partition function on the celestial
torus. It will be useful to consider the normalized ratio of the OTOC and TOC

〈x|y〉
〈x|x〉

= 〈B
†A†BA〉

〈B†A†AB〉
= 〈B†A†BA〉
〈B†B〉〈A†A〉

. (6.5)

Below we will describe three ways of computing this ratio.
As a first preparation, we start by writing the time-ordered and out-of-time-ordered

four point functions as a sum over conformal partial waves

〈B†A†AB〉 =
∑

ijkl,ijkl

Ψijkl(z)Ψ̄ijkl(z̄) (6.6)

〈B†A†BA〉 =
∑

ijkl,ijkl

Ψijkl(z∗)Ψ̄ijkl(z̄
∗). (6.7)

Here Ψijkl(z) and Ψijkl(z∗) are the respective chiral conformal blocks. The sum over all four
pairs of indices runs over the full spectrum of the CCFT. With a slight abuse of notation,
we are using the complex coordinate z as short-hand for the location of the four operators
along the celestial torus rather than just the cross ratio. The conformal blocks exhibits
branch cuts for the special values of z at which the two operators A and B are light-like
separated. The OTOC is obtained from the TOC by analytically continuing z to a new
value, which for brevity we denote by z∗. The conformal blocks on the celestial torus can
be diagrammatically represented as

Ψijkl(z)= δij i k i `

A BB† A†

; Ψijkl(z∗) = i k j `

B AB† A†

. (6.8)

Here i, j, k and ` label the intermediate Virasoro representations.
In equation (6.8), we used the fact that the two pairs of operators A†(t1), A(t1) and

B†(t0), B(t0) are each right on top of each other. In this limit, we can use the fact that
the identity operator gives the dominant contribution in the OPE between the two pairs of
operators to make the replacement

i
k

j

A† A

= FAik δij
i i

A† A

(6.9)

where the dotted line indicates the vacuum channel and FAik = F 0
k

[
AA
i i

]
is an appropriate

fusion matrix of the CFT. The fusion coefficients FAik are universal for Virasoro CFTs with

– 24 –



J
H
E
P
0
8
(
2
0
2
2
)
1
0
6

given central charge and were computed by Ponsot and Teschner [56]. We will quote a
special limit of their result later on. A similar equation holds for B and B†. Combining the
two relations, we find that the TOC conformal block simplifies to the relation

i k i `

A BB† A†

= FAik F
B
i` i

BB† A† A

(6.10)

representing the fact that 〈B†A†AB〉 factorizes into the product 〈B†B〉〈A†A〉 of two
point functions.

6.1.1 OTOC from the monodromy matrix

To compute the ratio (6.5), we need the ability to exchange operators. This can be done
either by explicit analytic continuation of the relevant conformal blocks, or by means of
the crossing matrices that implement the basis change between the two orderings. We
first describe the latter method. The relevant monodromy properties of CCFT correlation
functions can be studied by standard techniques of 2D conformal field theory.7

We can exchange the operator ordering using the crossing matrix relating conformal
blocks associated to different channels of the four point correlator. The space of four-point
conformal blocks is a linear space with different possible basis choices. The crossing matrices
are the unitary basis transformations that relate two different bases corresponding to the
different ways of summing over a complete sets of intermediate states. For our purpose, the
relevant crossing operator is the one that interchanges the order of two operators

k
j

`

B A

=
∑
i

Ri
j

[
k A
`B

]
k

i
`

A B

. (6.11)

Here i, j, k and ` denote the Virasoro representations. The matrix Ri
j

[k A
`B

]
is called the R-

matrix. In holographic terms, it represents the partial wave decomposition of the 2-particle
scattering matrix between the bulk excitations created by the local CCFT operators A
and B.

Crossing matrices in CFT, like the R-matrix, are determined by the conformal repre-
sentation theory of the Virasoro algebra with a given central charge. An explicit expression
of the R-matrix of Virasoro CFT is given in [56]. We will not write the explicit result here,
except to note that for our purpose we should take the limit of large imaginary central
charge c. In this limit, the crossing matrix can be expressed in terms of the 6j-symbol of

7While low point CCFT correlators defined through the standard celestial holographic dictionary have
various exotic features, we will retain the optimistic assumption that these exotic features are artefacts of
decomposing a Poincaré invariant theory into its Lorentz subgroup, and that these features will not obstruct
the analytic continuation and monodromy properties of higher-point conformal blocks used in this section.
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the 2D global conformal group, which (due to the imaginary value of c) we should identify
with SU(1, 1). This specific large c limit happens to be the same one that reduces the 2D
CFT correlations functions and monodromy matrices to those of 1D Schwarzian quantum
mechanics. The following discussion directly borrows from [51] and [57].

The analytic continuation that relates the time-ordered conformal block Ψijkl(z) and
the out-of-time-ordered conformal block Ψijkl(z∗) involves moving one operator past the
light cone of the other. So the point z∗ lies on the second sheet of the associated branch cut.
To obtain the linear relationship between the basis of conformal blocks evaluated on the
first and second sheet, it is sufficient to apply the local R-matrix relation (6.11) associated
to the interchange of the two operators A and B. In diagrammatic notation, the crossing
relation reads

m k j `

B AB† A†

=
∑
i

Ri
j

[k A
`B

]
m k i `

A BB† A†

. (6.12)

The R-matrix only acts on the Virasoro representation label of the intermediate channel
between the two operators A and B that need to be exchanged in going from the TOC to
the OTOC. We furthermore have made use of the fact that Ψijkl(z) contains a factor of δij
to collapse the sum in (6.11) to a single term.

We can now compute the OTOC ratio (6.5) as follows. First we decompose the OTOC
into conformal blocks. Then we move the operators A and B to the same time instant.
This produces a simple time evolution phase eihjt, where t = t1 − t0 is the time-separation
between the A(t1) and B(t0) operator insertions and hj the conformal dimension of the j
channel. Next we apply the crossing relation (6.12). Finally, we move the operators A and
B back to their original time instants by including a phase e−ihit. This yields the following
result of the OTOC ratio

〈B†A†BA〉
〈B†B〉〈A†A〉

=
∑

ijkl,ijkl

Aijkl(t) Aijkl(t) (6.13)

where
Aijkl(t) = ei(hj−hi)tRij

[
k A
`B

]
FAikF

B
i` (6.14)

and similar expression holds for Aijkl(t). Here (hi, h̄i) and (hj , h̄j) are the left and right
conformal dimensions of the intermediate i and j channel.

The discussion so far has been very general and admittedly somewhat abstract. The
pay-off, however, is that by plugging in the known results for the crossing matrices of the
Virasoro CFT, equations (6.13)–(6.14) immediately give us practical explicit expression for
the chiral components of the OTOC. The result further simplifies by virtue of the fact that
the CCFT has a divergent central charge. As mentioned above, the CFT crossing matrices
in this limit reduce to those of Schwarzian quantum mechanics, and can be expressed
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in terms of the Clebsch-Gordan and 6j-symbols of the global conformal group SU(1, 1).
The relevant calculations are described in detail in [51] and [57]. Here we will just quote
the result.

It will be convenient to introduce the notation

hk− hj = iν1, hj − h` = iν2, hk− hi = iν3 hi − h` = iν4. (6.15)

One can think of each νi as the left-moving energy injected by each of the four operators
into the correlator. We further make the simplifying assumption that the operator A and
B both have the same conformal dimension h. The chiral OTOC amplitude then reads
as follows

Aijkl(t) = ei(ν3−ν1)t 〈ν4, ν3| S |ν2, ν1〉 (6.16)

where

〈ν4, ν3|S|ν2, ν1〉= (4πiε)i(ν1−ν3)
[ 4∏
a=1

e±
π
2 νaΓ(h± iνa)

]
Γ(i(ν1−ν3)) (6.17)

times the usual energy conservation delta function 2πδ(ν1+ν2−ν3− ν4).
The notation of the OTOC chiral amplitude as an S-matrix element is deliberate.

Following [57], we can rewrite the right-hand side of (6.17) as an overlap integral of the
following gravitational shockwave S-matrix

S=e4πiεp+p− (6.18)

between four 2D Rindler mode functions. Here p+ and p− represent the Minkowski light-cone
momenta and the νa are Rindler energies. Equation (6.18) is the 2D ‘t Hooft S-matrix [58]
that encodes the gravitational shift x− → x− + 4πεp+ on a right moving trajectory due
the presence of a left-moving particle with lightcone momentum p+. This shift has an
exponentially growing effect when viewed in Rindler coordinates. This is a first hint of
Lyapunov behavior in CCFT.

In the next section we will re-derive the above result via the well-tested assumption
that 2D CFT correlation functions in the large c limit are dominated by a suitably chosen
vacuum conformal block.

6.1.2 OTOC from the vacuum block

The above treatment of the OTOC conformal blocks only made use of the Virasoro symmetry
of CCFT. The emergence of gravitational dynamics from this subsector is not surprising,
given its close relationship with AdS3 gravity. If we want to say more about the OTOCs, we
would need to know about and use more of the specific properties of the spectrum, fusion
rules, OPE coefficients and extended symmetries of CCFT. These more detailed properties
are all implicitly contained in the sum over the intermediate channels in (6.13).

Gravitational saddle points describe universal or appropriately averaged properties of
holographic CFTs. One practical implementation of this philosophy is that gravitational
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saddle points can often be identified with the contribution of an appropriate vacuum
conformal block. The time-ordered correlation function can indeed be argued to be given
by an identity conformal block

〈B†4A
†
3A2B1〉

〈A†3A2〉〈B†4B1〉
= Ψ

(
A
A
B
B, vac, z

)
Ψ
(
A
A
B
B, vac, z

)
, z = −

sinh 1
2 t23 sinh 1

2 t14

sinh 1
2 t12 sinh 1

2 t34
. (6.19)

Here the vacuum block is defined on the sphere, or equivalently, the projective plane, and
z denotes the cross ratio of the coordinate location of the four operators on the sphere.
The planar vacuum block dominates for two reasons. First, as before, we assume that the
two pairs of operators A†, A and B†, B are pairwise very close to each other. We already
used this above to write equation (6.10). Second, we can use an exponential conformal
mapping to unwind the thermal circle and re-express a thermal correlation function as a
vacuum expectation value at zero temperature, but with an exponential identification of
coordinates.

The reasoning that the vacuum block dominates for certain correlation functions gener-
alizes Cardy’s argument for determining the high temperature behavior and asymptotic
spectrum of CFTs through vacuum block dominance of the torus partition function. Com-
paring (6.19) with equation (6.6), we see that, just as in the case of the Cardy spectrum,
the sum over intermediate sectors simply factorizes into two independent sums. Moreover,
we learn that the spectral properties of the CCFT should be such that the sum produces
a chiral vacuum block. The above physical argumentation is not rigorous, but is well
motivated for the case of standard holographic 2D CFTs in the context of the AdS/CFT
correspondence. Let us assume the same reasoning can be applied to CCFT.

The out of time ordered correlation function is obtained by analytically continuing
the time ordered conformal blocks to the second sheet. Assuming the vacuum blocks
in (6.19) continue to provide the dominant contribution after the analytic continuation, we
deduce that

〈B†4A
†
3B1A2〉

〈A†3A2〉〈B†4B1〉
= Ψ

(
A
A
B
B, vac, z∗

)
Ψ
(
A
A
B
B, vac, z∗

)
. (6.20)

The vacuum conformal block at large central charge is explicitly known [59]

lim
c→∞

x=cz fixed

Ψ
(
A
A
B
B, vac, z∗

)
= x−2hU(2h, 1, 1/x), x = i

4πε
e

1
2 (t1+t2−t3−t4)

4 sinh 1
2 t12 sinh 1

2 t34
(6.21)

in terms of the confluent hypergeometric function, defined as the integral U(a, 1, y) =
1

Γ(a)
∫∞

0 ds e−sy sa−1

(1+s)a . Combining the two chiral blocks gives the following explicit result
for the OTOC

〈B†4A
†
3B1A2〉

〈A†3A2〉〈B†4B1〉
= x−2hx̄−2h̄ U (2h, 1, 1/x) U

(
2h̄, 1, 1/x̄

)
. (6.22)

Some brief remarks are in order. First, the explicit expression (6.21) of the chiral
OTOC follows by integrating the result (6.16)–(6.17) for the chiral OTOC conformal block
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with uniform measure over all frequencies νa[ 4∏
a=1

∫
dνa
2π e

±iνata

]
〈ν4, ν3| S |ν2, ν1〉 = x−2h U(2h, 1, 1/x). (6.23)

This suggests that the spectrum of the CCFT in the regime of interest is well approximated
by the usual Cardy spectrum. Secondly, this result matches the OTOC in Schwarzian
QM. In nAdS2 holography, it describes the scattering of two particles that collide in the
proximity of the horizon of the 2D black hole in JT gravity. It in particular exhibits the
anticipated maximal Lyapunov behavior.

6.1.3 OTOC from celestial backreaction

Finally, we present a geometric derivation of the OTOC based on 4D physics and our earlier
description in section 3 of the backreaction due to the insertion of local CCFT operators
on the celestial sphere. This gravitational derivation of the OTOC looks a priori quite
different from the above more technically sophisticated CFT analysis, but the two are both
directly linked via the so-called monodromy method for determining the explicit form and
monodromy properties of 2D conformal blocks.

As explained in section 4, the exponential behavior of CCFT correlation functions has
a simple geometric origin in terms of the coordinate identification from the celestial sphere
to the celestial torus

(z, z̄) =
(
ei(τE+φ), ei(τE−φ)

)
, with τE = ψ + it (6.24)

the complexified Rindler time coordinate. After Wick rotating, this coordinate relation
shows that evolution in the Lorentzian Rindler time coordinate t describes an exponential
approach towards the origin of the (z, z̄) plane

(z, z̄) =
(
e−t+iφ, e−t−iφ

)
. (6.25)

We immediately see that any small backreaction in the form of an infinitesimal coordinate
shift in z would cause an exponentially growing Shapiro time delay as measured in the
Rindler time coordinate t. This is an expected consequence of the fact that the late time
Rindler observer is exponentially close to the Rindler horizon, and thus correspondingly
sensitive to infinitesimal shifts relative to the location of the horizon.

In the following we will exhibit the butterfly effect caused by a local CCFT operator
B(z1). As explained in section 3, the stress energy associated with this local operator
induces a small geometrical defect in the form of an infinitesimal angle deficit around
the location z = z1. This angle deficit can be incorporated by means of the infinitesimal
coordinate transformation (here, for simplicity, we only write the holomorphic part of the
transformation)

B(z1) : 1− z

z1
→
(
1− z

z1

)1−2iεhb
, −iε = 3

c
(6.26)

where hb denotes the left-moving scale dimension of B and ε the IR cut-off parameter.
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The above infinitesimal defect is the celestial imprint of the full 4D backreaction
associated with the local CCFT operator. The resulting butterfly effect on another local
operator A is encoded in the out-of-time correlation function, or equivalently, in the
expectation value of the commutator squared

〈
[A(z2), B(z1)]2

〉
[15, 16]. At late times,

the leading contribution to this commutator squared comes from considering the effect of
the coordinate shift (6.26) induced by the insertion of B(z1) on the operator A(z2) as it
approaches the origin. The effect of this shift becomes visible by performing a monodromy
transformation by moving the operator A(z) around the location of B(z1), or equivalently,
by analytically continuing the correlation function to the second sheet. A simple calculation
gives that in the small z2 limit

A(z2)B(z1) = B(z1)A(z2)
∣∣
2nd sheet ' B(z1)A(z2+ 4πiεhbz1). (6.27)

Inserting (6.25), combining the left- and right parts and considering only t dependence, we
find that

[A(t2), B(t1)] ' 2πiε∆b · et2−t1B(t1) ∂t2A(t2) (6.28)

with ∆b the full scale dimension of B(z1).
Equation (6.28) expresses the gravitational backreaction due to the B operator on

the location of the A operator. However, the situation is symmetric: the operator A also
creates a geometric defect that shifts the location of the operator B. We can write the
commutation relation in a more suggestive and symmetric form by noting that ∆b is the
energy of the state created by the operator B. Hence for early t1 we can use the state
operator correspondence to equate ∆bB(t1) = ∂t1B(t1). The above commutation equation
then becomes

[A(t2), B(t1)] ' 2πiε et2−t1∂t1B(t1) ∂t2A(t2). (6.29)

Again we see that the exponential growth of the OTOC is caused by a geometric shockwave
interaction.

7 Conclusion

In this paper we have argued that celestial conformal field theory, when viewed as a
dynamical quantum system with unitary Hamiltonian time evolution, exhibits characteristics
of maximal quantum chaos. To build our case, we re-examined the soft phase space associated
to the superrotation symmetry of the 4D space-time and used the presence of the (2,0)
Goldstone current [33] to introduce two celestial stress tensors that generate two mutually
commuting Virasoro algebras with a divergent imaginary central charge. Restricting to
operators that commute with one of the Virasoro algebras leads to backreaction effects
which can be most clearly brought to light by means of the out-of-time-ordered correlators.
We studied the OTOCs and demonstrated the Lyapunov growth using standard 2D CFT
technology for large-c systems.

The physical origin of this chaotic behavior lies in the identification of the time
coordinate of CCFT, defined through radial quantization, with the Rindler time coordinate
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experienced by an accelerating observer in 4D space-time. Relating the celestial correlators
to the observation of this accelerating observer involves an analytic continuation from the
celestial sphere to the celestial torus. The celestial torus perspective naturally incorporates
the fact that the CCFT dynamics takes place at finite temperature, in turn, matching
the bulk interpretation in terms of the Rindler observer. This perspective also illuminates
the appearance of two independent Virasoro algebras as the asymptotic symmetry groups
of the two AdS caps that meet at the celestial torus, which ties back into our Goldstone
mode analysis.

We are lead to the following natural future directions and open questions:

Gluing Construction — interpreting our doubled-Virasoro algebra in terms of two
large-radius AdS caps meeting at the celestial torus suggests a natural generalization
to other vacuum transitions and currents. On the bulk gravitational side we have the
impulsive wave analyses of [60–62]. From the celestial CFT current algebra we have
the w1+∞ symmetry of [29, 63]. The (A)dS3 picture advocated here and in [4, 7, 33]
presents a natural route to toy examples of a CCFT and bulk dual pair that captures
this symmetry algebra. We will further explore this tantalizing prospect in [52].

Incorporating Translations — in this paper we have focused on the dynamical proper-
ties of CCFT that follow from superrotation symmetry. Since Lorentz transformations
and superrotations both act relative to a specific space-time point, translation and
supertranslation symmetries are non-linearly realized in the celestial basis via spec-
trum shifting operators. Understanding the relationship between our study and the
supertranslation current would be of interest for several reasons, in particular because
supertranslations are naturally linked to the standard 4D gravitational shock wave
S-matrix. The role of the ε deformation of CCFT is also of interest and may illuminate
the connection between Celestial CFT and flat space limits of AdS [64–66].

Adding Horizons — understanding how black hole physics is encoded in celestial
CFT is an interesting open problem. As seen in [19], extra boundary components
introduce an enhancement in the soft phase space. The observations in [24, 43, 67]
point towards some natural starting points in terms of limits of scattering amplitudes
or changing the modular parameter for CCFT on the celestial torus.

We see that in the course of examining the conformally soft sector, we are confronted
with and are able to gain insight into foundational open questions about CCFT. The fact
that we can predict and analyze the chaotic gravitational bulk dynamics, even without
detailed knowledge of the full structure of CCFT, illustrates the power of 2D conformal
symmetry when it comes to exhibiting interesting bulk physics and dynamics.
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A Local operators on T1,1

In this appendix we describe the map between 4D operators O(X) and CCFT operators on
the celestial torus. We review the salient features of [46], and emphasize the connection
to the construction described in section 2. A practical way to deal with this is to first
construct the CCFT operators that live on the intersection between the celestial sphere and
the celestial torus. At this special locus, the CCFT operators can be imported from the
(1,3) signature space-time by means of the Klein-Gordon overlap with the corresponding
space-time wavefunction.

We can describe the intersection locus between S2 and T1,1 as follows. Plugging the
parametrization (4.12) of the celestial coordinates into formula (1.1) for the reference
direction qµ gives

qµ(t, ψ, φ) = eiψpµ(t, ψ, φ) = e−t+iψ
(
cosh(t− iψ), cosφ, sinφ, sinh(t− iψ)

)
. (A.1)

After Wick rotating X3, the celestial torus is the real time slice T1,1 = {t = 0}. The (2, 2)
four vector q̂µ = eiψp̂µ then reduces to

T1,1 : p̂µ(0, ψ, φ) =
(
cosψ, cosφ, sinφ, sinψ

)
. (A.2)

The celestial sphere is obtained either by setting ψ = 0 or by setting ψ = π in (A.1). Hence
the celestial torus and the two celestial spheres intersect along the two equatorial circles
S1

+ =
{
t= 0, ψ = 0

}
and S1

−=
{
t= 0, ψ = π

}
along which the momenta are both real

S1
+ : p̂µ(0, 0, φ) = (1, cosφ, sinφ, 0), (A.3)

S1
− : p̂µ(0, π, φ) = (−1, cosφ, sinφ, 0). (A.4)

Note that p̂µ = −q̂µ along S1
−. We will also consider the two special points P+ =

{
t =

∞, ψ = 0
}
and P−=

{
t =∞, ψ = π

}
corresponding to the special light-like four momenta

P+ : qµ(−∞, 0, φ) = 1
2
(
1, 0, 0, 1

)
, (A.5)

P− : qµ(−∞, π, φ) = −1
2 (1, 0, 0, 1) . (A.6)

Both points map to the same reference direction for the momentum vector qµ = eiψpµ =
1
2(1, 0, 0, 1) corresponding to the coordinate origin (z, z̄) = (0, 0) at the north pole of the
celestial sphere. We will interpret P± as the center points of the two equatorial circles
S1
±. The two circles and their center points will play a role in the construction of the local

operators and the Hilbert space of the CCFT on T1,1.
Let us now proceed with the construction of local operators on T1,1 starting from

primary wavefunctions in (2,2) signature as in [46]. We will stick to the scalar case for
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simplicity. The space-time wavefunctions corresponding to the scalar primaries on T1,1 take
the form

Φ̂∆(X;ψ, φ) = 1
(−p̂ ·X)∆ with p̂ = (cosψ, cosφ, sinφ, sinψ) (A.7)

where the reference four vector (A.2) is labeled by the point (ψ, φ) on the celestial torus.
In constructing operators from these wavefunctions, we run into the technical subtlety that
there is no obvious analog of the Klein-Gordon inner product (2.2) in (2,2) signature, that
can be used to project the operator O(X) along the space-time wavefunction (A.7). Namely,
in R1,3 the in and out wavefunctions are prepared by an iε prescription that regulates the
Mellin transform

Φ̂±∆(X) = Φ̂∆(X±) (A.8)

where X0
± = X0 ∓ iε. While there is no notion of time ordering in K2,2, we can still

analytically continue X± as in the R1,3 case on the ψ = {0, π} loci. We find

Ô±∆ (0, φ) = i
(
Ô, Φ̂±∆ (0, φ)

)
Σ
, Ô±∆ (π, φ) = i

(
Ô, Φ̂±∆ (π, φ)

)
Σ
. (A.9)

Comparing to the primaries constructed in section 2, we see from (A.1) that

Ô±∆(0, φ) = O±∆(0, φ), Ô±∆(π, φ) = −e−πλÔ±∆(0, φ+ π). (A.10)

These operators sit at the two cuts illustrated in figure 5.13. We see an overcompleteness
originating from how we’ve continued to use a ±iε prescription when we’ve analytically
continued Xµ to K2,2. The space of independent in and out single particle states on the
celestial equator can be mapped to one or the other of the cycles.

We can then use the symmetry generators to translate these operators to generic points
on T1,1. Continuing the t parameter as in (4.12) and taking into account the expected
conformal factor between the sphere wavefunctions (2.1) and torus wavefunctions (A.7)
we have

U(−iψ) Ô±∆(0, φ)U †(−iψ) = Ô±∆(ψ, φ). (A.11)

Comparing this to the bulk interpretation as evolution in the complexified Rindler time
indeed reaffirms the thermofield double interpretation of (5.13). Introducing the light cone
coordinates y± = ψ ± φ, these local operators on T1,1 are termed H-primaries in [46],
because they behave as highest weight operators under the following redefinition of the
global Lorentz generators

H0(y) = 1
2(eiy+

L1 − e−iy
+
L−1), H±1(y) = iL0 ∓

i

2(eiy+
L1 − e−iy

+
L−1) (A.12)

H̄0(y) = 1
2(eiy−L̄1 − e−iy

−
L̄−1), H̄±1(y) = iL̄0 ∓

i

2(eiy−L̄1 − e−iy
−
L̄−1) (A.13)

which also obey the standard SL(2,R)× SL(2,R) algebra

[Hn, Hm] = (n−m)Hn+m,
[
H̄n, H̄m

]
= (n−m) H̄n+m. (A.14)
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We further note that by appropriately smearing these local H-primaries we can produce
L-primaries that, as for S2 primaries inserted at the north pole, diagonalize {L0, L̄0} and
are annihilated by {L1, L̄1}. In terms of the wavefunctions, we have the relation [46]

2∆

(X0 −X3)∆ = 1
(2π)2

∫ 2π

0
dx+

∫ 2π

0
dx−eih(x++x−) 1

(−p̂ ·X)∆ (A.15)

where h = h̄ = 1
2∆. We can apply the same smearing to our local operators and reproduce

the states.
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