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1 Introduction

The round sphere free energy has played several important roles in the study of Quantum
Field Theory (QFT) in three space-time dimensions. First, it was conjectured in [1–4] and
later proven in [5, 6] that the sphere free energy F = − log |Z| provides a measure of the
number of degrees of freedom in 3d conformal field theories (CFTs), in the sense that it
obeys a monotonicity property under renormalization group (RG) flow known as the F -
theorem. In a preceding related development, it was shown that the N = 2 superconformal
R-symmetry at the infrared fixed point of RG flows that preserve Abelian flavor symmetry
can be determined through a procedure called F -maximization [3, 7, 8] (see [9] for a review),
which is the three-dimensional analog of a similar procedure called a-maximization in 4d
N = 1 SCFTs [10]. F -maximization means maximizing the sphere free energy F over a
set of “trial” U(1) R-charges. For 3d SCFTs with Lagrangian descriptions and at least
N = 2 supersymmetry, it had been shown that F can be calculated exactly using the
technique of supersymmetric localization [7, 11] (see [12] for a review), as a function of
various deformation parameters such as field theory mass or Fayet-Iliopolous parameters.
This observation has led to remarkable tests (see for example [13–22]) and discoveries [23]
of various field theory dualities, as well as precision tests of AdS/CFT [24–26].1 Lastly,
derivatives of the sphere free energy with respect to some of the parameters it depends
on, evaluated at the SCFTs values of these parameters, have been related to integrated
correlation functions [8, 37, 38] that have served as crucial inputs in analytic bootstrap
studies of N = 6 and N = 8 superconformal field theories at strong coupling [38–44].2
The exact computations of the derivatives of the sphere free energy allowed one to fully
evaluate these correlation functions up to the first few non-trivial orders in the derivative
expansion on the string-theory / M-theory side.

1For the sphere free energy in 3d holographic theories beyond the tree-level supergravity approximation,
see for instance [27–33] for calculations on the field theory side and [34–36] for studies of the bulk dual.

2See [45–48] for analogous studies in four-dimensional N = 4 supersymmetric Yang-Mills theory.
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The last line of work mentioned above raises the following question: What information
about string theory and, in particular, its weakly-coupled supergravity limit, is contained
in the sphere free energy of a CFT with a holographic dual and in its deformations? In
this paper we begin to answer this question for 3d N = 2 SCFTs. We choose to focus on
3d N = 2 theories partly because, as mentioned above, the sphere free energy is exactly
calculable using supersymmetric localization in this case, so the answer to the question
posed above has concrete quantitative consequences. Intuitively, we should expect that
since the sphere free energy is calculable using localization, it is a supersymmetric quantity,
and it should therefore contain information only about (certain) supersymmetry-protected
quantities in the bulk also. Our goal in this paper is to make this statement precise.

We consider 3d SCFTs on S3 deformed by field theory “real mass” parameters denoted
collectively by m. On S3, one can introduce a real mass parameter for every Abelian flavor
symmetry3 of an SCFT by 1) coupling the abelian flavor current multiplet to a background
vector multiplet; and 2) giving supersymmetry-preserving expectation values proportional
to m to the scalars in this background vector multiplet [8]. As explained in [8], if the real
mass parameters m are analytically continued to pure imaginary values, they correspond
precisely to the trial R-charges used in the F -maximization procedure of [7].

To make precise the statement that F (m) captures only certain supersymmetry-
protected information in the bulk, we use an effective field theory approach4 to construct
the 4d bulk theory dual to our mass-deformed deformed 3d SCFT on S3. Thus, we ex-
plore the properties of F (m) in N = 2 QFT in AdS, which we construct in several ways:
using properties of the osp(2|4) supersymmetry algebra, as we do in section 2, or starting
from N = 2 superconformal gravity and using superconformal tensor calculus, as we do
in section 3, or starting from on-shell matter-coupled N = 2 supergravity, as we do in
section 4.

In particular, in sections 2 and 3, we analyze various types of supersymmetric bulk
interactions referred to as “D-terms,” “chiral F-terms,” “non-chiral F-terms”, “flavor cur-
rent terms,” as well as 1/4-BPS interactions. We define all these supersymmetric bulk
interactions precisely using the osp(2|4) algebra.5 As we will show, the osp(2|4) algebra
implies that the sphere free energy (or derivatives thereof with respect to m evaluated at
the conformal point, m = 0) is independent of all D-terms, 1/4-BPS interactions, and non-
chiral F-terms, but can in principle depend non-trivially on the chiral F-term couplings or
on the coupling constant of the flavor current term, also known as a bulk real mass term.

3The Abelian flavor symmetry group could be a subgroup of a non-Abelian flavor symmetry group.
4In sections 2 and 3, our construction can accommodate a large class of interaction terms, but in section 4

we will restrict to two-derivative interactions.
5When defining these interaction terms, we require the supersymmetry variation of the term in the bulk

Lagrangian to transform into a total derivative. Since AdS4 has a boundary, such a total derivative might
integrate to a non-zero boundary term. If this is the case, then our bulk interaction must be supplemented
by a boundary interaction that ensures that the supersymmetry variation of the sum of the two interactions
vanishes. (See, for example, [26, 49] for instances where such boundary terms are necessary in order preserve
supersymmetry.) In this work, we will assume that for the interactions we consider we can always find a
suitable boundary term that ensures supersymmetry invariance. It would be interesting to investigate
further precisely which interactions need to be supplemented by boundary terms.
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This stands in contrast with N = 1 theories in AdS, for which, in general, the sphere free
energy has non-trivial dependence even on the N = 1 D-term couplings.6

In section 2, we show that the construction of the various supersymmetric interactions
and the derivation of their properties can be done abstractly, without explicitly writing
the supersymmetry transformation rules in detail. This analysis relies only on the AdS
supersymmetry algebra osp(2|4). As far as we know, this is a novel way of studying the
supersymmetry properties of interactions in AdS space.

It is also instructive to explore a systematic construction of supersymmetric interac-
tions in AdS following the approach pioneered by Festuccia-Seiberg [50]. In this method
one can obtain theories with global AdS4 supersymmetry by starting from an off-shell su-
pergravity theory and fixing an appropriate background for the fields of its Weyl multiplet.
For 4d N = 2 theories, such a construction was considered in [51] starting from gauge-fixed
N = 2 conformal supergravity [52]. The construction of the AdS background of conformal
supergravity is similar to the S4 construction in [51, 53, 54] and it requires compensating
vector and tensor multiplets. We review the AdS4 construction in section 3. We apply it
to several examples and relate it to the discussion in section 2.

While in the approaches developed in sections 2 and 3, it is clear how to construct
the various supersymmetric interactions, this construction is often quite cumbersome, es-
pecially for D-terms. One important shortcoming is that, to our knowledge, the simplest
long multiplet, namely an N = 2 massive vector multiplet in AdS (consisting of one massive
vector field, five real scalar fields, and four Dirac fermions), has not been constructed using
either of these approaches. The study of this multiplet is important because this multiplet
arises generically in the effective AdS4 theories corresponding to N = 2 AdS4 backgrounds
of M-theory. Thus, in section 4, we develop another approach to obtain N = 2 effective
field theories in AdS. This approach is based on taking a certain rigid limit of N = 2
on-shell supergravity coupled to matter. In the N = 1 case, a similar decoupling limit
starting with on-shell N = 1 supergravity was used in [49, 55] to obtain N = 1 theories
in AdS. We extend the method to several examples of N = 2 theories. In particular, we
apply the Stueckelberg mechanism to construct the Lagrangian of the long vector multiplet
and some of its interactions.

A shortcoming of the method of section 4 is that it may not be clear whether a
particular construction corresponds to D-terms, F-terms, or 1/4-BPS interactions. It is
reasonable to conjecture that the bulk theory of the long vector multiplet arises only
from interactions that do not affect the S3 free energy. To support this conjecture, we
show in section 5 that the one-loop partition function of a free bulk N = 2 massive
vector multiplet with mass mV is indeed independent of mV . As a more intricate piece of
evidence for the conjecture, we show in section 6 that the full supersymmetric exchange
contribution of a massive vector multiplet to the fourth derivative ∂4F

∂m4

∣∣
m=0 vanishes.

7 These

6As an example, we will consider a free massive N = 1 vector multiplet in the one-loop approximation in
section 5. In this case, the mass term is a D-term, but the one-loop contribution to the sphere free energy
does depend non-trivially on the vector multiplet mass.

7We focus on the fourth derivative of F because this is the lowest derivative to which the long vector
multiplet contributes.
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calculations indicate quite explicitly that the sphere free energy F (m) cannot be used
to determine the vector multiplet mass mV , which in the boundary theory corresponds
to the scaling dimension of a long single-trace superconformal multiplet with a scalar
superconformal primary. By contrast, the hypermultiplet mass mH arises from a conserved
current term in the bulk, and one might expect that F (m) depends non-trivially on mH .
Indeed, we calculate the one-loop partition function of a hypermultiplet in section 5 and
exhibit this fact.

We close this introduction with a more compact summary of the rest of the paper. In
section 2, we construct the various supersymmetric interactions using the osp(2|4) algebra
and show that in theories with holographic duals, F (m) is independent of the D-terms, the
non-chiral F-terms, and the 1/4-BPS interactions. In section 3 we relate our construction
from section 2 to the more standard way of obtaining effective field theories on curved man-
ifolds using background off-shell N = 2 supergravity. In section 4 we present yet another
approach for constructing effective field theories in AdS that is based on a rigid limit of
on-shell N = 2 supergravity. We use this approach to construct supersymmetric actions for
a massive vector multiplet. In section 5, we evaluate the bulk one-loop contribution to the
S3 partition function coming from free massive vector multiplets and hypermultiplets, and
show that, while the hypermultiplet contribution depends non-trivially on the hypermulti-
plet mass, the massive vector multiplet contribution is independent of the vector multiplet
mass. In section 6, we consider the contributions to the fourth derivative ∂4F

∂m4

∣∣
m=0 coming

from the tree-level exchange of a massive vector multiplet and show that it vanishes. The
observations of sections 5 and 6 support the conjecture mentioned above that the mass
term in the massive vector multiplet action as well as the interactions between massive
vector multiplets and massless vector multiplets are either D-terms, non-chiral F-terms,
or 1/4-BPS interactions. Lastly, we end in section 7 with a discussion of our results and
future directions.

2 Supersymmetric interactions in AdS

The goal of this section is to see what kinds of supersymmetric bulk interactions the sphere
free energy F (m) depends on. We study this question perturbatively in m, meaning that
we study the dependence of derivatives of F (m) with respect to m, evaluated at m = 0, on
the bulk interactions. The advantage of working perturbatively in m is that we can expand
the action around the AdS background that corresponds to the CFT at m = 0, and thus
we can make use of the AdS supersymmetry algebra osp(2|4).

As we explain in more detail below, the supersymmetry algebra in either AdS or flat
space has eight supercharges, four of which are left-handed and four right-handed. In
addition half of the right-handed (left-handed) supercharges have R-charge +1 while the
other half have R-charge −1. Supersymmetric interactions can preserve various amounts
of SUSY. In particular, in flat space, we may consider the following interactions:8

• D-terms, obtained by acting with all 8 supercharges on some scalar field X.
8In superconformal field theories, these interactions were discussed in [56].
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• 1/4-BPS interactions, obtained by acting with all four supercharges of a given R-
charge as well as two supercharges of the opposite R-charge and the same chirality
on some scalar field X.

• Non-chiral F-terms, obtained by acting with all 4 supercharges of a given R-charge
on some scalar field X.

• Chiral F-terms, obtained by acting with all 4 supercharges of a given chirality on
some scalar field X.

• Flavor current terms, obtained by acting with 2 supercharges on some scalar field X.

Apart from the D-terms, in all the other cases, it is assumed that X cannot be obtained
by acting with supercharges on some other field and that it obeys appropriate shortening
conditions. In AdS, we keep the same terminology above, but we allow, in principle, each
supersymmetric term described above to receive corrections in 1/L, where L is the curvature
radius of AdS. Such corrections are in general needed in order to preserve supersymmetry.

As we will argue, of the types of supersymmetric interactions mentioned above, the
D-terms, 1/4-BPS interactions, and the non-chiral F-terms are exact with respect to one
of the supercharges preserved by the boundary mass deformation, while the chiral F-terms
and the flavor current terms in general are not. It follows that F (m) is then independent
of the former type of interactions, but it could depend on the latter.

Let us now provide more details, starting with the SUSY algebra and its properties in
sections 2.1 and 2.2, following with the construction of the various supersymmetric inter-
actions in section 2.3, and ending with the proof of Euclidean SUSY and SUSY exactness
in sections 2.4 and 2.5.

2.1 N = 2 supersymmetry algebra in AdS4

N = 2 supersymmetry in AdS4 is based on the osp(2|4) superalgebra that acts locally on
the fields. Since this algebra and its properties are the main ingredients in the construc-
tion of supersymmetric interactions, let us take a moment to review it. Since we will be
working with spinors, we should be clear on our conventions: we will follow the conventions
established in [57] for spinors, gamma matrices, index placement, etc.

The bosonic subalgebra of osp(2|4) contains the AdS spacetime algebra so(3, 2) ∼= sp(4).
In our treatment,9 the ten generators of sp(4) split into four “momenta” Pa and six local
Lorentz generators Mab. The Pa act on fields as covariant derivatives Pa = Da,10 while the
Mab transform only the frame indices of vectors and spinors, e.g. for a spinor field Ψ(x),
the Mab act as MabΨ(x) = −1

2γabΨ(x). In flat space, the Pa commute, but in AdS, they
satisfy

[Pa, Pb] = 1
L2Mab , (2.1)

9Our treatment of the algebras sp(4) and osp(2|4) is related to a more standard presentation in ap-
pendix A.

10Here Pa = Da = eµaDµ where eµa and Dµ are, respectively, inverse frame fields and standard covariant
derivative for AdS4.
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where L is the radius of AdS4. (See, for example, section 12.6.1 of [57].) The other
commutators betweenMab and Pa simply follow from the Lorentz transformation properties
of Pa and Mab:

[Pa,Mbc] = 2ηa[bPc] , [Mab,Mcd] = 4η[a[cMd]b] . (2.2)

The superalgebra osp(2|4) extends the sp(4) AdS algebra of Pa and Mab by two left-
handed fermionic generators Qi, i = 1, 2 (obeying PLQi = Qi) and two right-handed
fermionic generators Qi (obeying PRQi = Qi).11 There is also a U(1)R symmetry generator
R with the property that Q1 and Q2 have R-charges +1 and −1, respectively, and Q1 and
Q2 have R-charges −1 and +1. This information is incorporated in the commutation
relations

[R,Qi] = −τ3i
jQj , [R,Qi] = τ3j

iQj , (2.3)

where τ3i
j = i(σ3)ij , where σ3 is the third Pauli matrix.12 The commutators of the so(3, 2)

generators with the supercharges are

[Pa,Qi] = − 1
2Lτ3ijγaQj , [Pa,Qi] = − 1

2Lτ
ij
3 γaQj ,

[Mab,Qi] = −1
2γabQi , [Mab,Qi] = −1

2γabQ
i .

(2.4)

Last and most important, the anti-commutator of the supercharges are

{Qi, Q̄j} = 1
2L

(1
2τ3ijγ

abMab + εijR

)
PL ,

{Qi, Q̄j} = 1
2L

(1
2τ

ij
3 γ

abMab + εijR

)
PR ,

{Qi, Q̄j} = {Qj , Q̄i} = −1
2δ

j
i
/P .

(2.5)

Here, ε12 = −ε21 = ε12 = −ε21 = 1.13 All commutators not explicitly written in (2.1)–(2.5)
vanish.

It is useful to note that complex conjugation acts by raising all the lower i, j indices
and lowering all the upper ones, without any additional minus signs. It is a general rule
that, in addition to complex conjugating all the numerical factors, complex conjugation
interchanges PL and PR and hence it transforms left-handed spinors to right-handed ones
and vice versa.

11The four-component spinor indices are usually suppressed; when needed they are denoted by α, β, . . ..
The Qi, Qi may be viewed as the chiral projections of Majorana spinors.

12In section 3 we derive the actions of osp(2|4)-invariant theories from a parent superconformal theory
invariant under the algebra su(2, 2|2) with R-symmetry su(2) × u(1). The Pauli matrix τ3 is a convenient
choice of a direction within su(2) for the residual u(1) ∼= so(2) of the osp(2|4) theories.

13The i, j, . . . indices are raised and lowered following the NW-SE convention. In particular, note that
(τ3)ij = τ3i

kεkj = (iσ1)ij and (τ3)ij = εikτ3k
j = (−iσ1)ij . For useful information on the ~τij matrices, see

appendix 20.A of [57]. It is important to note that the upper/lower placement of indices i, j, . . . on all
spinors cannot be changed because it indicates their chirality.
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In supersymmetric field theories, invariant interaction terms are commonly defined as
integrals of the top component of various multiplets of operators. The SUSY variations
of these top components are total spacetime derivatives. In the remainder of this section
we construct several interaction terms for N = 2 SUSY in AdS4 without the need for a
detailed description of the multiplets. It is sufficient to apply properly chosen products of
the supercharges to the lowest weight operators which define each multiplet.

2.2 Identities obeyed by the supercharges

To construct the supersymmetric actions directly from the algebra, all we need are a few
identities obeyed by the supercharges. The first is the (Majorana-like) flip property

Q̄iQj = Q̄jQi −
1
L
εijR , (2.6)

which can be derived from the first equation in (2.5).14 For strictly anti-commuting spinors,
as in flat space, Q̄iQj = Q̄jQi and the second term in (2.6) would vanish. This term is a
consequence of the curvature of AdS. Similarly, for strictly anti-commuting Qi, the cubic
term ε̄QiQ̄jQk+cyclic permutations in i, j, k would vanish (for any spinor parameter ε̄) by
the Schouten identity. But because Qi obey the first equation in (2.6), we have instead the
modified Schouten identity

ε̄QiQ̄jQk + cyclic = 1
4Lτ3ij ε̄γ

abQkMab −
1

2Lεij ε̄QkR+ 1
L
τ3ij ε̄Qk + cyclic , (2.7)

where “cyclic” refers to the two cyclic permutations in i, j, k. Lastly, there are two com-
mutators that will be needed:

[ε̄Qi, Q̄jQk] = −1
2δ

i
j ε̄ /PQk −

1
2δ

i
k ε̄ /PQj −

1
L
δikτ3jlε̄Ql ,

[ε̄Qi, Q̄jQk] = ε̄γab (τ3ijQk + τ3ikQj)Mab

4L + ε̄(εijQk + εikQj)R
2L

+ 3τ3ij ε̄Qk − εijτ3k
lε̄Ql

2L .

(2.8)

They can be derived straightforwardly using the algebra given in the previous subsection. In
addition to (2.6)–(2.8), we also have the complex conjugate identities obtained by changing
the positions of all the i, j, k indices. The relations (2.7)–(2.8) are valid for an arbitrary
spinor ε, but when we apply them to AdS supersymmetry below, ε will be a Killing spinor
to be defined shortly.

2.3 Supersymmetric interactions

Given the N = 2 AdS supersymmetry algebra reviewed above, one can straightforwardly
construct supersymmetry-preserving interactions that are based on multiplets of the AdS

14To derive it, note that with spinor indices written out explicitly, the first equation in (2.5) reads,
QiαQjβ + QjβQiα = 1

4Lτ3ij(γabPL)αβMab + 1
2LεijR(PL)αβ . Contracting this expression with Cαβ = −δαβ

gives the desired result. See section 3.2.2 of [57] for more information on the C matrix and on using spinor
indices.
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supersymmetry. Note that for any (fundamental or composite) field Φ, the supersymmetry
variation δΦ is

δΦ = ε̄iQiΦ + ε̄iQiΦ , (2.9)

with SUSY parameters εi and εi, which are Majorana spinors, projected by PL and PR,
respectively. In flat space, the SUSY parameters are constant spinors, but this is not so in
AdS, where they must obey Killing spinor equations. Indeed, the variation δ should obey
δDaΦ = DaδΦ for any Φ. This condition requires15

Daε
i = − 1

2Lτ
ij
3 γaεj , Daεi = − 1

2Lτ3ijγaε
j . (2.10)

These are the Killing spinor equations for N = 2 SUSY in AdS. The appearance of τ3 may
be unfamiliar, but one can put these equations into a more familiar form after defining
ε = ε1 − τ1i

3 εi and ε′ = ε2 − τ2i
3 εi. The equations (2.10) then imply Daε = 1

2Lγaε and
Daε

′ = 1
2Lγaε

′, which are the more standard AdS Killing spinor equations. From ε and ε′
we can extract εi and εi by performing the appropriate chiral projections.

A supersymmetric interaction is a term Sint in the action that obeys δSint = 0. For
the F-terms, D-terms, and flavor current terms we will construct, Sint is an integral of a
local operator Oint, namely

Sint =
∫
d4x
√
−gOint , (2.11)

such that δOint is a total spacetime derivative.

2.3.1 Chiral F-terms

The chiral F-terms are osp(2|4)-invariant interactions constructed from (composite) AdS
chiral multiplets. A chiral multiplet is a multiplet that contains an R-symmetry neutral
scalar field A that is annihilated by all four right-handed supercharges:

QiA = 0 , (2.12)

for i = 1, 2, as well as all of the other fields that can be obtained by acting with Qi on A
— see table 1.16 (An anti-chiral multiplet would obey QiA = 0 instead.) The condition
QiA = 0 is a shortening condition in AdS.

The F-term preserves osp(2|4), and therefore it must be R-charge neutral and a Lorentz
scalar. From table 1, we see that there are three such fields:

R-charge neutral scalars: A , Q̄1Q2A , Q̄1Q1Q̄2Q2A (2.13)
15δDaΦ = DaδΦ implies (Daε̄i)Qi + ε̄i[Pa,Qi] + (Daε̄i)Qi + ε̄i[Pa,Qi] = 0, which, together with the

commutation relations in (2.4), implies (2.10). We will derive these Killing spinor equations in a different
way from conformal supergravity in section 3.

16Acting with Qi does not produce any new fields because Qi can be (anti)commuted to all the way to
the right using the algebra, where they annihilate A. Since {Qi, Q̄j} = {Qj , Q̄i} = − 1

2δ
j
i
/P , and since Pa

acts on the fields as a covariant derivative Pa = Da, the commutators generated during this process give
covariant derivatives of the fields already present in table 1.
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field su(2)L ⊕ su(2)R spin U(1)R charge
A (0, 0) 0

QiA
(

1
2 , 0
)

±1
Q̄(iQj)A (0, 0) 0, ±1

εijQ̄iγ
abQjA (1, 0) 0

QiQ̄1Q2A
(

1
2 , 0
)

±1
Q̄1Q1Q̄2Q2A (0, 0) 0

Table 1. The field content of the chiral multiplet, with all operators being complex. It contains
16 + 16 independent real operators, where operators of spin (jL, jR) are counted with multiplicity
(2jL + 1)(2jR + 1).

Since we would like the F-term to preserve osp(2|4), it should be constructed as an integral
of some linear combination of the R-charge neutral scalars. We claim that the F-term is
given by the expression

SF =
∫
d4x
√
−gOF (x) ,

with OF (x) = 6
L2A(x) + 4i

L
Q̄1Q2A(x) + Q̄1Q1Q̄2Q2A(x) ,

(2.14)

as we will now show.
To prove (2.14), it is useful to consider the more general ansatz

OF (x) = c1A(x) + c2Q̄1Q2A(x) + Q̄1Q1Q̄2Q2A(x) . (2.15)

Using MabA(x) = RA(x) = 0 and the rearrangements (2.7) and (2.6), one can reverse the
indices 1 and 2 in (2.15) and write the equivalent form

OF (x) = c1A(x) + c2Q̄2Q1A(x) + Q̄2Q2Q̄1Q1A(x) . (2.16)

Since the Killing spinor equations (2.10) relate ε1 to ε2 and ε2 to ε1, the total variation (2.9),
with Φ = OF , splits into the two independent terms

(ε̄1Q1 + ε̄2Q2)OF , (ε̄1Q1 + ε̄2Q2)OF , (2.17)

each of which we must separately require to be a total derivative.
First, let us compute (ε̄1Q1 + ε̄2Q2)OF . The first part, ε̄1Q1OF , is easier because the

Schouten identity implies ε̄1Q1Q̄1Q1 = 0, and so ε̄1Q1 acts only on the first two terms
of (2.15):

ε̄1Q1OF =
(
c1 + ic2

L

)
ε̄1Q1A−

c2
2 ε̄

1Q2Q̄1Q1A . (2.18)

On the last term, we used the Schouten identity (2.7) and the flip property (2.6) as well
as the fact that A is annihilated by both R and Mab. To compute ε̄2Q2OF , it is easier to
start with (2.16). We use ε̄2Q2A = 0 as well as the commutation relation (2.8):

ε̄2Q2OF =
(
i

L
− c2

2

)
ε̄2 /DQ1A− ε̄2 /DQ2Q̄1Q1A . (2.19)
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When summing together (2.18) and (2.19), we should use the equality Daε̄2γ
a = 2i

L ε̄1,
which is a contraction of the Majorana conjugate of (2.10). Note that this implies that for
any spinor Υ, the sum of cε̄2 /DΥ + c′Υ is the total derivative cDa(ε̄2γaΥ) provided that
the coefficients satisfy c′ = 2i

L c. Applying this observation to the sum of (2.18) and (2.19)
gives us two equations for the parameters c1 and c2, namely

c1 + ic2
L

= 2i
L

(
i

L
− c2

2

)
, −c2

2 = −2i
L
, (2.20)

which have the solutions

c1 = 6
L2 , c2 = 4i

L
. (2.21)

This proves that the F-term must be of the form in eq. (2.14). Moreover, we have also
shown that

(ε̄1Q1 + ε̄2Q2)OF = DaΨa , Ψa ≡ −ε̄2γa
(
i

L
Q1A+ Q2Q̄1Q1A

)
, (2.22)

which is a total derivative, as advertised. The same calculation, with the indices 1 and 2
swapped on the supercharges and on the Killing spinors, shows that the second quantity
in (2.17) is also a total derivative:

(ε̄2Q2 + ε̄1Q1)OF = DaΨ̃a
F , Ψ̃a

F ≡ −ε̄1γa
(
i

L
Q2A+ Q1Q̄2Q2A

)
. (2.23)

Thus, δOF is a total derivative,

δOF = Da(Ψa
F + Ψ̃a

F ) , (2.24)

which shows that the variation δSF of the F-term interaction SF =
∫
d4x
√
−gOF (x) is

a boundary term: δSF =
∫
∂ d

3x
√
−γna(Ψa

F + Ψ̃a
F ), where na is the outward pointing

normal and √−γ is the square root of the determinant of the boundary metric. Thus,
SF is supersymmetric provided that Ψa

F + Ψ̃a
F vanishes at the boundary sufficiently fast.

Alternatively, it may be possible to add a pure boundary term to SF whose variation would
cancel δSF precisely. See also footnote 5 and the Discussion section.

2.3.2 Flavor current term

Another supersymmetric term in the bulk comes from a flavor current multiplet in AdS.
We will provide a more systematic description of this multiplet in the next section, but for
now we note that the lowest components of the multiplet are the three Jij = Jji, subject
to the reality condition J ij = J∗ij . (Indices are raised/lowered with the ε-symbol.) The
reality condition implies that the component iJ12 is strictly real, while J11 and J22 are
each other’s complex conjugates. The R-charges are determined by the transformation
rule [R, Jij ] = −τ3 i

kJkj− τ3 j
lJil. This tells us that J12, J11, J22 have R-charges 0, −2, and

+2, respectively. In addition to these facts, the flavor current multiplet is also defined by
shortening conditions that restrict the fermionic components:

Q(iJjk) = Q(iJ jk) = 0 . (2.25)
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field su(2)L ⊕ su(2)R spin U(1)R charge
J12 (0, 0) 0

J11, J22 (0, 0) −2, 2
Q1J12,Q2J12

(
1
2 , 0
)

−1, 1
Q1J12,Q2J12

(
0, 1

2

)
1,−1

Q̄1Q2J12 (0, 0) 0
Q̄1Q2J12 (0, 0) 0

(Q̄1γaQ1 − Q̄2γaQ2)J12
(

1
2 ,

1
2

)
conserved 0

Table 2. The field content of the flavor current multiplet. It contains 8 + 8 independent real
operators.

Apart from Jij , the other independent fields in the multiplet are constructed by acting with
Qi and Qi on Jjk subject to the constraints (2.25) — see table 2 for a list of independent
operators. Importantly, the multiplet contains a conserved current, so it is necessarily asso-
ciated with a U(1) symmetry of the effective field theory in AdS. (We will see in section 3.4
that a representation of the superconformal algebra on this multiplet’s component fields
requires that the top component is a conserved current with scale dimension ∆ = 3.)

A supersymmetry-preserving deformation involving the fields of this multiplet must be
R-charge neutral. In addition to J12, there are two other R-charge neutral scalar fields in
the multiplet, namely Q̄1Q2J12 and its complex conjugate is −Q̄1Q2J12. Thus, the flavor
current term must be a linear combination of

R-charge neutral scalars: J12 , Q̄1Q2J12 , Q̄1Q2J12 . (2.26)

As we will show, the osp(2|4)-invariant term in the action is

SJ =
∫
d4x
√
−gOJ(x) ,

with OJ(x) = −3iJ12(x)
L

+ Q̄1Q2J12(x)− Q̄1Q̄2J12(x) .
(2.27)

To show that this is the only osp(2|4)-invariant linear combination of the scalar fields
in (2.26), we proceed as in the previous section. We study the action of ε̄iQi and ε̄iQi on
the general linear combination

OJ = aJ12 + bQ̄1Q2J12 + cQ̄1Q2J12 , (2.28)

The quantities ε̄iQiJ12 and ε̄iQiJ12 cannot be simplified further, so we proceed to the
second operator, noting that we can write Ob = Q̄1Q2J12 in several different ways:

Ob = Q̄1Q2J12 = Q̄2Q1J12 = −1
2Q̄1Q1J22 = −1

2Q̄2Q2J11 . (2.29)

The second equality follows from the flip property (2.6) and the others follow from the
shortening condition (2.25). Let’s calculate. First, since Q1Q̄1Q1 = 0 due to the Schouten
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identity (2.7), we have

ε̄1Q1Ob = −1
2 ε̄

1Q1Q̄1Q1J22 = 0 . (2.30)

Similarly, we also have

ε̄2Q2Ob = −1
2 ε̄

2Q2Q̄2Q2J11 = 0 . (2.31)

To calculate ε̄1Q1Ob, we start with the form Ob = −1
2Q1Q1J22 = −1

2Q1Q1J
11. The

shortening condition allows us to write

ε̄1Q1Ob = −1
2[ε̄1Q1, Q̄1Q1]J11 = −ε̄1 /DQ2J12 + i

L
ε̄1Q1J12 , (2.32)

where we used (2.8) and shortening again. A very similar computation gives

ε̄2Q2Ob = −ε̄2 /DQ1J12 + i

L
ε̄2Q2J12 . (2.33)

The sum of the four previous equations gives the full SUSY variation of Ob, namely

δOb = i

L

(
ε̄1Q1J12 + ε̄2Q2J12

)
−
(
ε̄1 /DQ2J12 + ε̄2 /DQ1J12

)
.

(2.34)

The variation of the third operator in (2.28), namely Oc = Q̄1Q2J12, is the complex
conjugate of (2.34):

δOc = −i
L

(
ε̄1Q1J12 + ε̄2Q2J12

)
−
(
ε̄1 /DQ2J12 + ε̄2 /DQ1J12

)
.

(2.35)

The SUSY variation of OJ can now be assembled as

δOJ = a δJ12 + bδOb + cδOc

=
(
a− ic

L

)(
ε̄1Q1J12 + ε̄2Q2J12

)
+
(
a+ ib

L

)(
ε̄1Q1J12 + ε̄2Q2J12

)
− b

(
ε̄1 /DQ2J12 + ε̄2 /DQ1J12

)
− c

(
ε̄1 /DQ2J12 + ε̄2 /DQ1J12

)
,

(2.36)

Using Daε̄1 = i
2L ε̄

2γa, Daε̄
1 = − i

2L ε̄2γa, etc. we see that in order for (2.36) to be a total
derivative, the following equations must be obeyed

−2i
L
b =

(
a− ic

L

)
,

2i
L
c =

(
a+ ib

L

)
. (2.37)

The solution is c = −b and a = −3ib
L . Taking b = 1 reproduces (2.27). In addition, we have

also shown that

δOJ = DaΨa
J , Ψa

J ≡ −ε̄1γaQ2J12 − ε̄2γaQ1J12 + ε̄1γaQ2J12 + ε̄2γaQ1J12 . (2.38)
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2.3.3 D-terms and similar interactions

In this section we provide a unified treatment of the first three interactions listed at the
beginning of this section. We study the expression

Sint =
∫
d4x
√
−gO(x) , O(x) = Q̄1Q1 Q̄2Q2B , (2.39)

where B(x) is a field with R-charge +4 that in (2.39) is acted on by all four supercharges
of R-charge −1. All the interactions can be written either in this form or as its complex
conjugate. We focus on (2.39) since the analysis of the conjugate form is entirely analogous.

The field B(x) has the following properties in the three cases of interest:

1. D-terms: B = Q̄2Q2 Q̄1Q1X, for an R-neutral scalar field X.

2. 1/4 BPS terms; B(x) takes either of two possible forms: i) B = Q̄2Q2X where X
satisfies Q1X = 0, or ii) B = Q̄1Q1X where Q2X = 0.

3. Non-chiral F-terms: Q2B = Q1B = 0.

In the last two cases we also assume that B cannot be obtained from the SUSY variation
of another field. Note that Q̄2Q2 commutes with Q̄1Q1, so those operators can be written
in any order in (2.39). Further, of all fields obtained by acting with the supercharges on
B, O is the only R-charge neutral scalar, so (2.39) is the only supersymmetric invariant
candidate.

We now show that (2.39) is supersymmetric. To be precise, we show that

(ε̄1Q1 + ε̄2Q2)O , (ε̄1Q1 + ε̄2Q2)O (2.40)

are separately total derivatives. The first condition is easy because the Schouten iden-
tity (2.7) and its conjugate imply that ε̄1Q1 Q̄1Q1 = 0 and ε̄2Q2 Q̄2Q2 = 0, so

ε̄1Q1O = ε̄2Q2O = 0 =⇒ (ε̄1Q1 + ε̄2Q2)O = 0 . (2.41)

For the second quantity in (2.40), we start with ε̄1Q1O. Notice first that ε̄1Q1B = 0 in the
three cases of interest.17 Thus,

ε̄1Q1O = [ε̄1Q1 , Q̄1Q1 Q̄2Q2]B =
(
[ε̄1Q1, Q̄1Q1] Q̄2Q2 + Q̄1Q1 [ε̄1Q1, Q̄2Q2]

)
B . (2.42)

Using the conjugate of (2.8) as well as RB = 4iB and the fact that Mab annihilates scalar
operators, we obtain

ε̄1Q1O =
(
−ε̄1 /DQ1 Q̄2Q2 + Q̄1Q1

2iε̄1Q2

L

)
B . (2.43)

We then swap the order of ε̄1Q2 and Q̄1Q1 because they commute:

ε̄1Q1O =
(
−ε̄1 /DQ1 Q̄2Q2 + 2iε̄1Q2

L
Q̄1Q1

)
B . (2.44)

17Depending on which case we consider, we may have to use [Q1,Q2] = 0 and the conjugate of (2.7) or
the shortening conditions obeyed by B.
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We can follow the exact same steps to evaluate ε̄2Q2O, with the result

ε̄2Q2O =
(
−ε̄2 /DQ2 Q̄1Q1 −

2iε̄2Q1
L

Q̄2Q2
)
B . (2.45)

Adding together (2.44) and (2.45) and using Daε̄1 = i
2L ε̄

2γa and Daε̄
2 = − i

2L ε̄1γa, we
exhibit the desired total derivative:

(ε̄1Q1 + ε̄2Q2)O = DaΨa
D , Ψa

D ≡
(
−ε̄1γaQ1 Q̄2Q2 − ε̄2γaQ2 Q̄1Q1

)
B . (2.46)

This information, together with (2.41), establishes that δO is a total derivative. Thus
Sint =

∫
d4x
√
−gO is supersymmetric, provided that Ψa

D vanishes at the boundary, or
that appropriate boundary terms are added to Sint.

2.4 SUSY in Euclidean AdS and its Killing spinors

Since the physics of interest in this paper involves supersymmetric field theories on S3, we
now review the formulation of Euclidean SUSY using the conventions of [26]. In particular,
we replace γ0 with γ4 and keep the other γm, with m = 1, 2, 3 unchanged:

γm =
(

0 σm
σm 0

)
, γ4 =

(
0 −iI
iI 0

)
, (2.47)

where σm are the Pauli matrices, and I is the 2 × 2 identity matrix. All the equations
presented above still hold with the obvious changes, e.g. √−g → √g.

Since we will consider the effective action expanded around (Euclidean) AdS, also
known as the hyperbolic space H4, let us present an explicit parameterization of H4 and
solutions to the Killing spinor equations. We write the H4 metric (set the curvature radius
L = 1 for simplicity) in sphere slicing as

ds2 = 4
(1− r2)2

(
dr2 + r2ds2

S3

)
, (2.48)

where ds2
S3 is the line element on the unit-radius S3. The coordinate r is a radial coordinate

ranging from r = 0 to r = 1 at the boundary. The sphere slicing made manifest in (2.48)
is convenient for studying CFTs placed on S3. We can take the frame ea = eaµdx

µ to be

em = 2r
1− r2 ê

m , e4 = 2
1− r2dr , (2.49)

where êm, m = 1, 2, 3 are frame vectors on an S3 of unit radius.
The AdS Killing spinor equation

DaT = 1
2γaT

(2.50)

has 4 linearly independent solutions that can be taken to be

T1 = 1√
1− r2

(
−irζ1
ζ1

)
, T2 = 1√

1− r2

(
−irζ2
ζ2

)
,

T3 = 1√
1− r2

(
ξ1
irξ1

)
, T4 = 1√

1− r2

(
ξ2
irξ2

)
,

(2.51)
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where ζ1,2 are two linearly independent solutions to the S3 Killing spinor equation ∇iζ =
+ i

2σiζ, and ξ1,2 are two linearly independent solutions to the S3 Killing spinor equation
∇iξ = − i

2σiξ on S3. We normalize these spinors using ζT1 iσ2ζ2 = 1 and ξT1 iσ2ξ2 = 1.
Note that, with this normalization, the determinant of the 4×4 matrix whose columns are
the TA is18

det
(
T1 T2 T3 T4

)
= 1 . (2.52)

This equation will be very useful shortly.
For our N = 2 theories, we should solve the Killing spinor equations (2.10). As

explained after eq. (2.10), ε1 + iε2 and ε2 + iε1 obey the equation (2.50) that we solved
above. Thus, we have the following solutions to the N = 2 Killing spinor equations: there
are 4 solutions of definite chirality

ε1 = PLTA , ε2 = −iPRTA , ε2 = 0 , ε1 = 0 , (2.53)

with A = 1, . . . , 4, and 4 more solutions

ε1 = 0 , ε2 = 0 , ε2 = PLTA , ε1 = −iPRTA . (2.54)

Thus, using δ = ε̄iQi + ε̄iQi we define and use below the eight SUSY variations

δA+ = T̄A
(
Q1 − iQ2

)
, δA− = T̄A

(
Q2 − iQ1

)
, (2.55)

with A = 1, . . . , 4. The ± index denotes the fact that if we act with δA± changes the u(1)R
R-symmetry by charge by ±1.

If we restrict to A = 1, 2, then the four such supercharges in (2.55) generate an su(2|1)
subalgebra. (The same is true for A = 3, 4.) We see from (2.51) that TA, with A = 1, 2 only
involve the boundary spinor ζ and TA with A = 3, 4 only involve the boundary spinor ξ.
On S3, it can be checked that bilinears in ζ and bilinears in ξ give, respectively, S3 Killing
vectors corresponding to the su(2)` and su(2)r factors of the su(2)`×su(2)r isometry of S3.
Thus, the spinors ζ extend su(2)` × su(2)r to su(2|1)` × su(2)r, while the spinors ξ extend
it to su(2)` × su(2|1)r.

2.5 SUSY exactness and independence of interaction couplings

Our primary goal is to understand what bulk interactions affect the mass-deformed sphere
free energy F (m) of the boundary theory. However, this observable is a particular case of
a more general class of observables with the same property, so we can prove the following
more general result:

In an N = 2 SCFT on S3 with a holographic dual, the correlation functions of any
boundary operators invariant under su(2|1)` × su(2)r are independent of the interactions
considered in section 2.3.3, but could depend non-trivially on the other couplings. (A similar
statement holds for operators invariant under su(2)` × su(2|1)r.)

18Note that the Killing spinors used in this paper are commuting.
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The abstract proof of this statement is very simple given our construction from sec-
tion 2.3.3, and it is done in two steps. The first step is to note that since (2.52) implies
that Q̄1Q1 Q̄2Q2 = 4δ1+δ2+δ3+δ4+, we can write (2.39) as

O(x) = δ1+P(x) , P(x) ≡ 4 δ2+δ3+δ4+B(x) . (2.56)

Thus, O is δ1+-exact. A similar argument shows that O is also δA+-exact with any A =
1, . . . , 4.

The second step is to use the Ward identity to show that any correlation functions of
O(x) and other operators (in the bulk or in the boundary theory) that are δ1+-invariant
must vanish:

〈O(x) (any δ1+-invariant operators)〉 = δ1+〈P(x) (any δ1+-invariant operators)〉 = 0 .
(2.57)

Integrating over x then implies that the set of Witten diagrams associated with a given
Sint must vanish. Since any su(2|1)` × su(2)r-invariant operator is in particular invariant
under δ1+, the statement that the CFT correlators of su(2|1)`× su(2)r-invariant operators
are independent of the class of interactions considered in section 2.3.3 follows.

This proof does not apply to the chiral F-term of section 2.3.1 or to the flavor current
term of section 2.3.2, as they are not δA+-exact. No analogue of (2.57) holds for these inter-
actions and so the sphere partition function may depend on the corresponding parameters.
We will see in examples that this is the case.

As we have seen, because D-terms (and also 1/4-BPS terms and non-chiral F-terms) are
both δ1+-invariant and δ1+-exact, they cannot effect δ1+-invariant correlation functions. In
appendix B we consider the more general question of when D-terms for a given superalgebra
are exact under some supercharge in the superalgebra. We show that the existence of a
nilpotent supercharge (that is a supercharge which, like δ1+, squares to zero), suffices to
prove the exactness of D-terms.

The N = 1 supersymmetric algebra osp(1|4) does not contain nilpotent supercharges,
and so we can ask whether in this case D-terms are exact under any of the supercharges.
In appendix B we show that they are not exact. As a result, no analogue of (2.57) holds in
this case, and so the N = 1 S3 partition function will generically depend on bulk D-terms.

2.6 The real mass deformation on the boundary

Let us now apply the general statement shown in the previous subsection to conclude that
F (m) is independent of the SUSY exact couplings. To make things concrete, let us consider
the case where the 3d N = 2 SCFT has a U(1) flavor symmetry with flavor current jµ.
The N = 2 superconformal multiplet that contains the conserved current also contains a
dimension 1 real scalar J and a dimension 2 real scalar K, and a dimension-3/2 complex
fermion Ξ.19

19Note that the conserved current multiplet in the boundary SCFT is of course different from the bulk
conserved current multiplet studied in section 2.3.2.
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Suppose we normalize the bosonic operators so that, in flat space,

〈jµ(~x)jν(0)〉 = τ

16π2 (δµν∂2 − ∂µ∂ν) 1
|~x|2

,

〈J(~x)J(0)〉 = τ

16π2 |~x|2
,

〈K(~x)K(0)〉 = τ

8π2 |~x|4
,

(2.58)

for some normalization constant τ . The correlation functions on S3 can be obtained
from (2.58) by performing a Weyl rescaling. With these normalizations, the real mass
deformation corresponds to adding the following term to the SCFT action on S3:

m

∫
d3~x

√
g(~x)

[
i

a
J(~x) +K(~x)

]
, (2.59)

where a is the radius of S3.20 With appropriate conventions, (2.59) can be shown to be
invariant under su(2|1)` × su(2)r (as opposed to21 su(2)` × su(2|1)r). Thus, derivatives of
F (m) with respect to m can be interpreted as correlation functions of the su(2|1)`× su(2)r-
invariant integrated operator

∫
d3~x

√
g(~x)

[
i
aJ(~x) +K(~x)

]
, and so based on the result of

the previous section it is independent of the bulk SUSY-exact couplings when computed
using Witten diagrams.

3 AdS4 as a background of N = 2 off-shell supergravity

In this section, we provide a different perspective on the construction of the supersym-
metric interactions presented in the previous section. Here, we obtain the supersymmetric
theories in AdS from an appropriate supergravity background solution of conformal super-
gravity.22 Before we begin the technical treatment, let us describe the relation between the
various theories which play a role in this section. The parent theory is N = 2 conformal
supergravity (see [57, 58] and references therein) containing two types of supercharges, the
Qi,Qi, which anti-commute to momenta, and the Si,Si, which anti-commute to special
conformal transformations. The four-component spinor indices are suppressed in this no-
tation. The indices i = 1, 2 transform under an SU(2)×U(1) R-symmetry. All symmetries
are gauged. The SU(2) generators are proportional to Pauli matrices, i.e. ~τij = i~σi

j . After
20The absence of terms of higher order in m appearing explicitly in (2.59) is a regularization choice.

Indeed, it is possible that the supersymmetry Ward identities require the K(~x)×K(~y) OPE to contain an
operator-valued contact term of the form δ(3)(~x−~y)L(~x), where L is an operator of dimension exactly 1. In
conformal perturbation theory, the effect of such a contact term would be as if m2L were included explicitly
in the action (2.59), and this is the reason why oftentimes such a term is included explicitly in the action.
(For example, an m2 |φ|2 term would be present in the theory of a massive chiral multiplet.) Regardless
of whether or not we include m2L explicitly, we should make sure that our regularization scheme preserves
supersymmetry. See also the discussion in section 4 of [56].

21One can also consider the deformation m
∫
d3~x
√
g(~x)

[
− i
a
J(~x) +K(~x)

]
, which would then be invariant

under su(2)` × su(2|1)r.
22See also appendix C where the boundary real mass deformation is also phrased in the language of this

section.
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partial gauge fixing, the remaining supergravity fields, including compensating multiplets,
are fixed to background values which include fixing the metric to that of AdS4. This pro-
cess is described in more detail in section 3.1. The result is a theory invariant under the
global superalgebra osp(2|4) with supercharges Qi, Qi that are linear combinations of the
previous Q, S. The R-symmetry is reduced to a U(1)R generated by τ3 i

j .

3.1 Supergravity background for AdS4

As explained in the work of Festuccia and Seiberg [50] in the context of 4d N = 1 theories
on curved manifolds, a systematic way to write down curved space QFT Lagrangians is to
couple a QFT to off-shell background supergravity. The same procedure was used for 4d
N = 2 theories in [51, 54]. The N = 2 effective theories in AdS4 fall under this class. AdS4
is realized as a supersymmetric background of off-shell N = 2 supergravity in a way that
is very similar to the S4 construction also explored in [54].

The construction proceeds as follows. As in [54], one arrives at the appropriate off-shell
N = 2 supergravity by starting with N = 2 conformal supergravity as well as compensating
vector and tensor multiplets. Thus, we start with a Weyl multiplet with field content

Weyl multiplet: bosonic: eaµ, bµ, ωµab, fµa, Vµij , ARµ , T−ab, D
fermionic: ψµi, φµi, χi ,

(3.1)

where eaµ, bµ, ωµab, fµa, Vµij , ARµ are respectively, the gauge fields associated with trans-
lations, dilatations, Lorentz transformations, special conformal transformations, and the
SU(2)R and U(1)R symmetries, and ψµi, φµi are the gauge fields associated with Poincaré
and superconformal symmetries. The compensator vector multiplet has field content

Vector multiplet compensator: bosonic: X, X̄,Aµ, Yij
fermionic: Ωi,Ωi ,

(3.2)

obeying Y ∗ij = Y ij , and the compensator tensor multiplet has field content

Tensor multiplet compensator: bosonic: Lij , G, Ḡ, Eab
fermionic: φi, φi ,

(3.3)

obeying L∗ij = Lij . Here, µ is a spacetime coordinate index, a, b are frame indices, and i, j
are SU(2)R indices that are raised and lowered with the epsilon symbol as in [57, 58]. The
off-shell supergravity theory is obtained by imposing curvature constraints that determine
the gauge fields ωµab, fµa, and φµ

i in terms of the other fields (explicit expressions are
given below), and making the gauge choices [52]:

bµ = 0 , X = M , Ωi = 0 , Lij = τ3ijϕ , (3.4)

where M and ϕ are arbitrary dimensionful constants whose values will not be important,
and where τ ij3 = −τ3ij = (−iσ1)ij as in [57, 58]. The gauge choice bµ = 0 fixes the
special conformal transformations. The gauge choice X = M fixes the dilatations as well
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as the U(1)R symmetry of conformal supergravity. The gauge choice Ωi = 0 fixes the
superconformal transformations. Lastly, the gauge choice Lij = τ3ijϕ breaks the SU(2)R
transformations to SO(2)R. The remaining fields determine an off-shell supergravity theory.

Since we treat the supergravity fields as background fields, we do not need to write
down an action for them, but instead set them to background values constrained to preserve
global supersymmetry. This means that all supersymmetry variations must vanish. This
will be important when coupling this theory to matter since it will ensure that the resulting
theory is supersymmetric.

The supersymmetric AdS4 background is achieved as follows. First and foremost, we
are looking for an AdS4 background metric, so we should set the frame appropriately:

eaµ = eaµ
∣∣
AdS4

, (3.5)

where AdS4 has radius L. Then, we set the following fields to zero:

Vµi
j = ARµ = T−ab = D = Aµ = Eab = ψµ

i = χi = φi = 0 . (3.6)

The remaining scalar fields G and Yij will be non-zero. Since all the fermions vanish either
by (3.4) or (3.6), the SUSY variations of all the bosons vanish automatically. The SUSY
variations of the fermions then are (see eqs. (2.90), (3.15), (3.103) of [58]):

δψiµ = eaµ

(
Daε

i − γaηi
)
,

δΩi = /∂Xεi + Yijε
j + 2Xηi ,

δχi = 0 ,

δφi = 1
2
/DLijεj −

1
2Gε

i + 2Lijηj .

(3.7)

To ensure the vanishing of these variations with the gauge choice (3.4), we take

G = −2ϕ
L
, Yij = M

L
τ3ij . (3.8)

With these choices, the SUSY variations in (3.7) vanish provided that23

Daε
i = γaη

i , ηi = − 1
2Lτ

ij
3 εj ,

Daεi = γaηi , ηi = − 1
2Lτ3ijε

j ,
(3.9)

where the second line is the complex conjugate of the first. These are precisely the Killing
spinor equations we also found in the previous section in eq. (2.10). Here, we obtained
them from the condition that the supersymmetry variations of the fermions in the back-
ground supergravity multiplet vanish. Note that, as mentioned above, in addition to the
gauge-fixing constraints, one also has to impose curvature constraints that determine the
composite gauge fields ωµab, fµa, and φµi. Evaluated on our AdS background, one finds

ωµ
ab = ωµ

ab
∣∣
AdS4

, φµ
i = 0 , fµ

a = −1
4Rµ

a + 1
24eµ

aR = 1
4L2 eµ

a . (3.10)

23Note that εi and ηi have opposite chirality.
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The AdS supersymmetry algebra presented in section 2.1 is obtained via this construc-
tion because it is a subalgebra of the superconformal algebra. The 4d N = 2 superconformal
algebra has the following generators:24 momentum generators Pa, Lorentz generators Mab,
special conformal generators Ka, dilatation generator D, U(1)R R-symmetry generator T,
SU(2)R R-symmetry generators Ui

j , Poincaré supercharges Qi and Qi and superconformal
charges Si and Si. They obey the su(2, 2|2) algebra given, for instance, in section 20.2.1
of [57] or section 1 of [58].

In the conformal supergravity construction, the momentum generators Pa act on the
fields as derivatives Pa = Da that are covariant with respect to all “standard” gauge fields,
meaning all gauge fields except for the ones for translation, eµa. For our AdS background,
the only standard gauge fields that are non-vanishing are the spin connection ωµab and the
special conformal gauge field fµa given in (3.10). The spin connection is part of the usual
covariant derivative Da, but fµa is not. Using (3.10), we have that

Da = Da −
1

4L2 Ka . (3.11)

The action by Da on the fields is just that of the AdS momentum generators Pa introduced
in section 2.1. Thus,

Pa = Pa + 1
4L2 Ka , Mab = Mab , (3.12)

where we also identified the local Lorentz generators in AdS with the superconformal ones.
It is easy to check using the superconformal algebra that the commutation relations (2.1)
and (2.2) follow from the commutation relations of Pa, Ka, and Mab.

Regarding the rest of the algebra, note that the Poincaré supersymmetry transforma-
tions have parameters εi and εi while the superconformal transformations have parameters
ηi and ηi. The SUSY variation corresponds to the action of ε̄iQi + η̄iSi + ε̄iQi + η̄iSi on
the fields. In our AdS background, however, the η and ε parameters are related by the
right-hand equation of (3.9). This gives

ε̄iQi + η̄iSi + ε̄iQi + η̄iSi = ε̄i
(

Qi −
1

2Lτ3ijSj
)

+ ε̄i

(
Qi − 1

2Lτ3
ijSj

)
. (3.13)

Identifying this expression with ε̄iQi + ε̄iQi, where Qi and Qi are the AdS supercharges,
we find

Qi = Qi −
1

2Lτ3ijSj , Qi = Qi − 1
2Lτ3

ijSj . (3.14)

In addition, the R-symmetry in AdS is the U(1) subalgebra of SU(2)R generated by τ3, so
we write

R = Ui
jτ3j

i . (3.15)

Using the relations (3.12), (3.14), and (3.15) between the AdS superalgebra generators
and the superconformal ones, one can show that the remaining (anti)commutation rela-
tions (2.3)–(2.5) in AdS follow from those found in section 20.2.1 of [57] or section 1 of [58].

24We use bold letters for these generators. In [57], these generators are denoted by the same symbols,
but not in bold.
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3.2 The N = 2 F-term from conformal supergravity

We now study the chiral F-term interaction from the perspective of conformal supergravity.
In the N = 2 AdS background of the previous subsection, we consider the superconformal
chiral multiplet. In applications, this multiplet will most often be composite. It contains
the components

Chiral multiplet: bosonic: A,Bij , G−ab, C
fermionic: Ψi,Λi ,

(3.16)

where A, C, and Bij are complex scalar fields, G−ab is an anti-self-dual two-form tensor, and
Ψi and Λi are left-handed fermions. We can also consider the complex conjugate anti-chiral
multiplet. The field A is the superconformal primary (it is annihilated by Si, Si, Ka), while
the other components are each ordinary conformal primaries (they are each annihilated by
Ka). The A component has scaling dimension (Weyl weight) w as well as an equal U(1)R
charge w as a consequence of the superconformal shortening conditions. As one goes up in
the multiplet, the Weyl weight goes up in 1/2 units while the U(1)R charge goes down in
1/2 units: the Weyl weights of Ψi, Bij , G−ab, Λi, and C are w+ 1/2, w+ 1, w+ 1, w+ 3/2,
and w+ 2, respectively, while their chiral weights are w− 1/2, w− 1, w− 1, w− 3/2, and
w − 2. The SUSY variations of a chiral multiplet are given in (3.27) of [58] (see also (B.4)
of [59] but note that the normalization of Bij is different there and here from that in [58]
by a factor of 2):

δA = 1
2 ε̄

iΨi ,

δΨi = /D(Aεi) + 1
2Bijε

j + 1
4γ

abF−abεijε
j + (2w − 4)Aηi

δBij = ε̄(i /DΨj) − ε̄kΛ(iεj)k + 2(1− w)η̄(iΨj)

δF−ab = 1
4ε

ij ε̄i /DγabΨj + 1
4 ε̄

iγabΛi −
1
2(1 + w)εij η̄iγabΨj

δΛi = −1
4γ

ab /D(F−abεi)−
1
2
/DBijε

jkεk + 1
2Cεijε

j − (1 + w)Bijεjkηk + 3− w
2 γabF−abηi

δC = −Da(εij ε̄iγaΛj) + (2w − 4)εij η̄iΛj .
(3.17)

The reason why the chiral multiplet is useful for understanding the superconformal
origin of the chiral F-term interaction is that, although the chiral multiplet (3.16) forms a
representation of the superconformal algebra su(2, 2|2), it reduces (for any weight w) to the
representation of osp(2|4) described in section 2.3.1. Moreover, it is clear from (3.17) that
when the Weyl weight w = 2, the C component transforms as a total derivative. Therefore
the integral

w = 2 : SF =
∫
d4x
√
−g C(x) . (3.18)

defines an F-term invariant (related to eq. (3.30) of [58]).
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When w 6= 2, the chiral superconformal multiplet also reduces to a chiral multiplet of
osp(2|4). To show this, first note that when w = 2 and the relations of (3.9) are used, the
transformation rules (3.17) become

δA = 1
2 ε̄

iΨi ,

δΨi = /D(Aεi) + 1
2Bijε

j + 1
4γ

abF−abεijε
j

δBij = ε̄(i /DΨj) − ε̄kΛ(iεj)k + 1
L
τ3(i|k|ε̄

kΨj)

δF−ab = 1
4ε

ij ε̄i /DγabΨj + 1
4 ε̄

iγabΛi + 3
4Lε

ijτ3ik ε̄
kγabΨj

δΛi = −1
4γ

ab /D(F−abεi)−
1
2
/DBijε

jkεk + 1
2Cεijε

j + 3
2Lτ3klBijε

jkεl − 1
4Lτ3ikγ

abF−abε
k

δC = −Da(εij ε̄iγaΛj) ,
(3.19)

Generalizing the F-term (3.18) to w 6= 2 can be done by noticing that for a chiral multiplet
(A,Ψi, Bij , F

−
ab,Λi, C) with Weyl weight w, the chiral multiplet (A,Ψi, B

′
ij , F

−
ab,Λ′i, C ′) with

B′ij = Bij −
2(w − 2)

L
Aτ3ij ,

Λ′i = Λi + w − 2
L

τ3ikε
kjΨj ,

C ′ = C + w − 2
L

τ ij3 Bij −
2(w − 2)(w − 3)

L2 A

(3.20)

transforms, in the AdS background, as a Weyl multiplet of weight w = 2. Thus, the general
F-term is

SF-term =
∫
d4x
√
−g C ′(x) =

∫
d4x
√
−g

[
C + w − 2

L
τ ij3 Bij −

2(w − 2)(w − 3)
L2 A

]
.

(3.21)

We can connect this discussion to the more abstract derivation of the chiral F-term in
section 2.3.1. In particular, from (3.17), we identify

Q̄1Q2A = −1
2

(
B12 −

2iw
L
A

)
,

Q̄1Q1Q̄2Q2A = −C2 + iw

L
B12 + w(w − 1)

L2 A .

(3.22)

A little algebra shows that the chiral F-term in (3.21) can be written as

SF-term = −2
∫
d4x
√
−g

[
Q̄1Q1Q̄2Q2A+ 4i

L
Q̄1Q2A+ 6

L2A

]
, (3.23)

which matches the form (2.14) that we derived in section 2.3.1 up to a normalization
factor. We thus see the power of the abstract approach of section 2.3.1 at work — we were
able to derive the form (3.23) without a detailed understanding of the supersymmetry
transformation rules of all the fields in the multiplet.
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3.3 An F-term example: prepotential interactions in AdS

We can consider a concrete example of a chiral F-term coming from a prepotential interac-
tion. Suppose we have n Abelian vector multiplets (XI , X̄I , AIµ, Y

I
ij ,ΩI

i ,ΩiI), I = 1, . . . , n,
in AdS in addition to the compensating multiplets used in the conformal supergravity con-
struction. The SUSY transformation rules for the vector multiplets are given in eq. (3.15)
of [58]. Specialized to our AdS background, we have

δXI = 1
2 ε̄

iΩI
i ,

δΩI
i = /∂XIεi + 1

4γ
abF I−ab εijε

j + Y I
ijε

j − 1
L
τ3ijX

Iεj ,

δAIµ = 1
2ε

ij ε̄iγµΩI
j + 1

2εij ε̄
iγµΩIj ,

δY I
ij = 1

2 ε̄(i
/DΩI

j) + 1
2εikεjlε̄

(k /DΩl)I ,

(3.24)

where F Iab is the field strength of AIµ. The transformation rules for X̄I and ΩiI follow
by complex conjugation. One can then consider a prepotential interaction F (X) that is
homogeneous of degree w in X.25 The prepotential is in fact the lowest component of a
chiral multiplet whose components are given in eq. (3.107) of [58]. On our AdS background,
the bosonic fields become

A = i

2F ,

Bij = iFIY
I
ij −

i

4FIJ Ω̄I
iΩJ

j ,

C = −iFIDaD
aX̄I − i

2FIJY
ijIY J

ij + i

4FIJF
−I
ab F

−abI + i

2FIJ Ω̄I
i /DΩiJ

+ i

4FIJKY
ijIΩ̄J

i ΩK
j −

i

16FIJKε
ijΩ̄I

i γ
abF−Jab ΩK

j + i

48FIJKLΩ̄I
iΩJ

l Ω̄K
j ΩL

k ε
ijεkl ,

(3.25)

where FI = ∂IF , FIJ = ∂I∂JF , etc. The chiral F-term is then given by (3.21), with w

being the degree of homogeneity of F with respect to X. Note that C(x) agrees (after
partial integration of the first term) with the Lagrangian for interacting gauge multiplets
with global supersymmetry in flat spacetime (see (20.15) of [57].)

3.4 The flavor current term from conformal supergravity

We now construct the flavor current interaction of section 2.3.2 by superconformal methods.
We start with a tensor multiplet with components given in (3.3), and define the conserved
current by Hodge duality. To make this subsection self-contained we repeat (3.3):

Tensor multiplet: bosonic: Lij , G, Ḡ, Eµν
fermionic: φi, φi ,

(3.26)

25Note that in the usual prepotential construction in N = 2 supergravity, one also includes the compen-
sating multiplet among the XI and one requires w = 2. No such requirement will be needed here.
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where the scalars Lij obey the reality condition L∗ij = Lij , Eµν is a two-form gauge field,
and G is a complex scalar whose conjugate is Ḡ. The SUSY transformation rules are (see
section 3.2.5 of [58])

δLij = ε̄(iφj) + εikεjlε̄
(kφl) ,

δφi = 1
2
/∂Lijεj + 1

2ε
ij /Eεj −

1
2Gε

i − 1
L
Lijτ3jkε

k ,

δG = −ε̄i /Dφi −
1
L
τ3ij ε̄

jφi ,

δEµν = 1
4 iε̄

iγµνφ
jεij −

1
4 iε̄iγµνφjε

ij ,

(3.27)

where we restricted to the AdS background and used the definition Eµ ≡ e−1εµνρσ∂νEρσ,
and where the expressions for δḠ and δφi are obtained by complex conjugation.

The key observation which gives us the conserved current multiplet is that the di-
vergence of Eµ above vanishes by Hodge duality, so that the current defined by ja =
1
3!ε

abcd∂bEcd is conserved, i.e. Daj
a = 0. Thus ja has scaling dimension 3. The other com-

ponents are simply renamed from those of (3.26), so the components of the flavor current
multiplet are

Flavor current multiplet: bosonic: Jij ,K, K̄, ja
fermionic: ξi, ξi ,

(3.28)

where J∗ij = J ij . The transformation rules in AdS are

δJij = ε̄(iξj) + εikεjlε̄
(kξl) ,

δξi = 1
2
/∂J ijεj + 1

2ε
ij/jεj −

1
2Kε

i − 1
L
J ijτ3jkε

k ,

δK = −ε̄i /Dξi −
1
L
τ3ij ε̄

jξi ,

δja = 1
2 ε̄

iγabDbξ
jεij + 1

2 ε̄iγ
abDbξjε

ij − 3
4Lτ3j

k ε̄kγ
aξj − 3

4Lτ3k
j ε̄kγaξj .

(3.29)

Note that Daδj
a = 0. Also note the chirality convention εi, ξi are left-handed and εi, ξi

are right-handed. From these transformation rules, it is not hard to check that the flavor
current deformation is

Sflavor term =
∫
d4x
√
−g

(
K + K̄ − 1

L
τ ij3 Jij

)
, (3.30)

because the quantity in the brackets is a total derivative

δ

(
K + K̄ − 1

L
τ ij3 Jij

)
= −Da(ε̄iγaξi + ε̄iγaξi) . (3.31)

In order to connect this discussion with the discussion in section 2.3.2, note that the
transformation rules (3.29) imply

Q̄1Q2J12 = −K2 + iJ12
L

, Q̄1Q2J12 = K̄

2 −
iJ12
L

. (3.32)
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Eliminating K and K̄ using these equations, one finds that the flavor current term can be
written as

Sflavor term = −2
∫
d4x
√
−g

(
−3iJ12

L
+ Q̄1Q2J12 − Q̄1Q̄2J12

)
, (3.33)

which agrees with (2.27) up to an unimportant normalization factor.
There is another way to derive the flavor term (3.30). A conserved current multiplet

couples to a vector multiplet V = (X, X̄,Aµ, Yij ,Ωi,Ωi) in a supersymmetric way. This
coupling is

SA−J =
∫
d4x
√
−g
(
Aµj

µ −XK − X̄K̄ + JijY
ij − ξ̄iΩi − ξ̄iΩi

)
. (3.34)

Using the transformation rules (3.24) for the vector multiplet and (3.29) for the current
multiplet, one can check that the SUSY variation of the integrand in (3.34) is a total
derivative. Now let us think of the vector multiplet V as a background multiplet, so
that we can set the vector multiplet fields to any values we wish. In order to preserve
supersymmetry, however, we should ensure that the SUSY variations of the vector multiplet
fields vanish. From the variations (3.24), it is easy to see that, with m a constant with
dimensions of mass,

X = X̄ = m

2 , Yij = m

2
τ3ij
L

, Aµ = Ωi = Ωi = 0 , (3.35)

is indeed a supersymmetric background. Plugging these values into (3.34) one obtains

SA−J = −m2

∫
d4x
√
−g
(
K + K̄ − τ3ij

L
J ij
)
, (3.36)

which again agrees with the flavor term (3.30) up to an unimportant overall normalization
constant.

3.5 A flavor current term example: the hypermultiplet mass term

We now will consider a theory of NH free massless hypermultiplets with global flavor sym-
metry USp(2NH). We will couple this multiplet to a background abelian vector multiplet
which gauges a U(1) subgroup of USp(2NH). With proper choice of the background the
hypermultiplet will become massive.

The NH hypermultiplets consist of scalars qiA, with i = 1, 2, and A = 1, . . . 2NH and
fermions ζA and ζA:

2NH hypermultiplets: bosonic: qiA, qiA

fermionic: ζA, ζA .
(3.37)

The scalars obey the reality condition q∗iA = qiA ≡ εijΩABqjB, where ΩAB is the anti-
symmetric symplectic form of USp(2NH). For concreteness, we can consider a basis where
ΩAB is block diagonal, with each block being equal to iσ2:

ΩAB =


iσ2

iσ2
. . .

 . (3.38)
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The fermions ζA are left-handed, while their conjugates ζA are right-handed. The sym-
plectic indices can be raised and lowered with ΩAB = ΩAB using the NW-SE convention
on all bosonic quantities, but we will not raise and lower the indices on the fermions since
they are used to also indicate the chirality.

Let us consider a U(1) subgroup of USp(2NH) whose generator is TAB. This means
that under infinitesimal U(1) transformations with parameter θ, we have δqiA = θTB

AqiB

and δqiA = −θTABqiB. Consistent raising and lowering rules require that TAB = ΩACTC
B

and TAB = ΩA
CTCB are symmetric matrices. As an example, we can consider the case

where these matrices are block diagonal, with each 2× 2 block being the same:

TA
B =


iσ3

iσ3
. . .

 , TAB = −TAB =


iσ1

iσ1
. . .

 . (3.39)

The gauge covariant derivatives are

Dµq
iA = ∂µq

iA −AµqiBTBA , Dµζ
A = ∂µζ

A + 1
4ωµ

abγabζ
A −AµζBTBA . (3.40)

The hypermultiplet Lagrangian is then a particular case26 of eq. (3.163) of [58]:

Sgauged hyp =
∫
d4x
√
−g
[
−1

2Dµq
iADµqiA + 1

L2 q
iAqiA + 2 |X|2 TBATACqiBqiC

+ qiATA
BYi

jqjB +
(
−ζ̄A /DζA + 2Xζ̄AζBTAB + 2iTBAqiB ζ̄AΩjεij + c.c.

)]
.

(3.41)

It is invariant under the SUSY rules (3.101) of [58], which, when restricted to our AdS
background, become:

δqiA = −iε̄iζA + iε̄jζBε
jiΩBA ,

δζA = 1
2 i
/DqiAεi + iX̄TB

AqiBεijε
i − 1

2Liq
iAτ3ijε

j .
(3.42)

If we treat the vector multiplet as a background vector multiplet and give the fields of
this multiplet the supersymmetric values in (3.35), we obtain the action for NH massive
hypermultiplets in AdS:

Smassive hyp =
∫
d4x
√
−g
[
−1

2∂µq
iA∂µqiA + 1

L2 q
iAqiA + m2

2 TB
ATA

CqiBqiC

+ m

2Lq
iAτ3i

jTA
BqjB +

(
−ζ̄A /DζA +mζ̄AζBTAB + c.c.

)]
.

(3.43)

26To obtain (3.41) from (3.163) of [58], proceed as follows. First, note that what we call qiA is the same as

the section AiA = f iAXq
X in [58], and we choose frame vectors such that qiA = 1√

2

(
iq3 + q4 iq1 − q2

iq1 + q2 −iq3 + q4

)
.

The dilatation Killing vector is chosen to be kXD = qX . The Killing vector associated with the U(1) isometry
is kX = TB

AqiBfXiA and the corresponding triplet of moment maps is ~P = 1
2q
iA~τi

jTA
CqjC . We also have

tAB = TAB . Lastly, we take gXY = δXY and dAB = δAB .
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The case where all the hypermultiplets have equal masses corresponds to the choice (3.39).
To make this clearer, note that we can write the terms involving the scalar fields only in
terms of q1A, because the q2A are related by complex conjugation to the q1A. The massive
hypermultiplet action becomes

Smassive hyp =
∫
d4x
√
−g
[∑
A

(
− |∂µq1A|2 −

(
m2 − 2

L2

)
|q1A|2

− ζ̄A /DζA − ζ̄A /DζA + imζ̄AζA − imζ̄AζA
)

− m

L

∑
A odd

|q1A|2 + m

L

∑
A even

|q1A|2
]
.

(3.44)

Thus, all fermions have the same mass m, while the scalars q1A have squared masses equal
to m2 − 2

L2 − m
L when A is odd and m2 − 2

L2 + m
L when A is even. In the more general

case (3.43), from comparing with (3.36), we can identify the flavor current deformation as
the term proportional to m in (3.43):

Sflavor term = m

∫
d4x
√
−g
[ 1

2Lq
iAτ3ijTABq

jB + ζ̄AζBTAB + ζ̄AζBT
AB
]
. (3.45)

We can arrive at the same result by first identifying the composite flavor multiplet
fields from comparing the linear term in the vector multiplet fields in (3.41) with the
general coupling (3.34) between a vector multiplet and a flavor current multiplet. This
comparison gives

ja = (∂aqiA)TBAqiB − qiATBA(∂aqiB) + ζ̄AγaTB
AζB − ζ̄AγaTABζB ,

Jij = qiAT
ABqjB , K = −2ζ̄AζBTAB , K̄ = −2ζ̄AζBTAB ,

ξj = 2iTBAqiBζAεij , ξj = −2iTBAqiBζAεij .
(3.46)

Then, eq. (3.36) with the values (3.46) reproduces (3.45).

3.6 Other supersymmetric interactions from conformal supergravity

We will not perform a detailed analysis of the conformal supergravity origin of the SUSY-
exact supersymmetric interactions from section 2.3.3. However, let us point out that the
unconstrained multiplet in AdS can be obtained from an unconstrained superconformal
multiplet. Such a multiplet was analyzed in [60]. It starts with a field C with Weyl weight
w and chiral weight n obeying no constraints. As in the case of the chiral F-term, we
expect that when all the supergravity fields are set to their background AdS values, the
parameters w and n can be redefined away. When n = 0, the long superconformal multiplet
can be taken to be real, and it should reduce precisely to the unconstrained AdS multiplet
that was used in section 2.3.3 to construct the D-term interactions.27 When n 6= 0 the
long superconformal multiplet is necessarily complex, so it should reduce to two copies of
the (real) unconstrained multiplet in AdS.

27One should set C = X, where X is the R-neutral scalar below (2.39).
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While the D-term can be obtained from a long superconformal multiplet of spin 0,
the non-chiral F-term and the 1/4-BPS interactions mentioned in section 2.3.3 can be
obtained from other superconformal multiplets that obey shortening conditions. In the
study of supersymmetric deformations of superconformal field theories in flat space, it was
observed in [56] that analogous 1/2-BPS and 1/4-BPS deformations also exist in that case.
For instance, see table 22 of [56], where the non-chiral F-terms are given on the second
line and the 1/4-BPS deformations are given on the fifth and sixth lines. That table also
contains the flavor current deformation on the first line, the chiral F-terms on the third
and fourth lines, and the D-terms on the last line.

4 Effective field theory in AdS from on-shell supergravity and the N = 2
massive vector multiplet

So far, we constructed effective Lagrangians in AdS4 in two ways: using the osp(2|4)
algebra, in section 2, and starting from conformal supergravity in section 3. In the latter
case, AdS4 was realized as a supersymmetric background of a certain N = 2 off-shell
supergravity that is obtained from conformal supergravity with compensating vector and
tensor multiplets. In section 4.1, we will explore another approach, namely the decoupling
limit of matter-coupled N = 2 on-shell supergravity. Several applications of this formalism
then follow: first to the free massive hypermultiplet in section 4.2, then to the F-term
interactions of a vector multiplet in section 4.3, to the quadratic Lagrangian of a massive
vector multiplet in section 4.4, and finally to the cubic interactions of a massive and massless
vector multiplet in section 4.5. These applications prepare the way for sections 5 and 6 in
which we undertake calculations of the sphere free energy.

4.1 A rigid limit of matter-coupled N = 2 supergravity

N = 2 on-shell supergravity is described in section 21 of [57]. As emphasized there, while
the action is derived using the superconformal gravity formalism, the final result can be
derived in other ways and is more general than the derivation would indicate. Let us
describe briefly the data that goes into the N = 2 supergravity theory, and then how to
obtain the rigid AdS4 theory from it.

The N = 2 supergravity theory with nV vector multiplet and nH hypermultiplets is
constructed from the following data:

• A prepotential F (XI), which is a holomorphic function of nV + 1 variables XI (with
I = 0, . . . , nV ) that is homogeneous of degree 2. This determines the scalar target
space, which is an nV -dimensional special Kähler manifold parameterized by complex
coordinates zα, with α = 1, . . . , nV .

• A hypermultiplet scalar manifold, which is quaternionic-Kähler and has 4nH real
dimensions or, equivalently, nH quaternionic dimensions. It is parameterized by the
real coordinates qu (with u = 1, . . . 4nH), and it is negatively curved, with its Ricci
scalar curvature proportional to −κ2.
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• The structure constants fIJK of the gauge algebra. These structure constants also
determine the couplings of the vector fields to the scalars and fermions in the vector
multiplets. For simplicity, we focus on the case of an Abelian gauge theory, so the
fIJ

K vanish.

• The gauging describing the coupling of the nV + 1 vector fields AIµ to the hypermul-
tiplet matter fields. This coupling is encoded in Killing vectors kuI , or equivalently
the triplet of moment maps denoted by ~PI . The Killing vectors and moment maps
must obey compatibility conditions with the quaternionic structure.

The action for rigid N = 1 SUSY in AdS4 was obtained by decoupling supergravity
fields in [55]. The N = 2 procedure is much trickier; it proceeds via an expansion at
small κ:

1. First, we assume scalings in κ of the various fields so that at leading order, namely
order 1/κ2, one obtains pure N = 2 supergravity with negative cosmological constant
adjusted to produce a classical solution of the equations of motion describing AdS4
with radius L.

2. We then observe that this solution with metric tensor of AdS4 and vanishing gravitino
and graviphoton fields is supersymmetric.

3. Next, we consider fluctuations around this background at order κ0. At this order,
the matter fields decouple from the supergravity fluctuations, so we can focus on the
matter fields alone. In addition, several simplifications occur, e.g. the hypermultiplet
manifold becomes flat since its curvature was proportional to κ2 → 0.

We now go through the steps in detail. Although we write the steps as an expansion
in κ, the dimensionless expansion parameter is κ/L.

4.1.1 Step 1: pure N = 2 supergravity with negative cosmological constant

At leading order, take the prepotential

F (XI) = − i

4κ2 (X0)2 +O(κ0) , (4.1)

and take X0 = 1. This implies that the Kähler potential for the vector multiplet scalars is
K = O(κ0). We choose a direction in SU(2) space, say the third direction, and set the ~P0
moment map to be a constant of order O(1/κ2),

~P0 = 1
κ2L

(0, 0, 1) +O(κ0) , (4.2)

and all other moment maps to be O(κ0). We scale the scalar and fermion fields with κ

in such a way that their kinetic terms are O(κ0). Lastly, we take all gauge fields AIµ, the
gravitini, and the metric to be of order O(κ0).

With these simple choices, the Lagrangian (21.34) of [57] becomes

e−1L = 1
κ2

[
R

2 − ψ̄iµγ
µνρDνψ

i
ρ −

1
8F

0
µνF

µν0 −
τ3 ijψ̄

i
µγ

µνψjν + h.c.
2L + 3

L2

]
+O(κ0) . (4.3)
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Note that the quantity Sij (see (21.39) of [57]) that gives the gravitino mass term above
evaluates to

Sij = P ijI X̄
I = 1

κ2L
τ ij3 +O(κ0) . (4.4)

Eq. (4.3) is the pure N = 2 supergravity Lagrangian containing as dynamical fields only
the metric, the gravitini, and the gauge field which represents the graviphoton.

4.1.2 Step 2: supersymmetric AdS4 solution

The equations of motion following from (4.3) are solved by the AdS4 solution of radius L,
with vanishing gravitini and graviphoton:

gµν = gµν
∣∣∣
AdS4

, ψi = 0 , A0
µ = 0 . (4.5)

This solutions is supersymmetric as can be checked from the vanishing supersymmetry
variation of the fields. The SUSY variations of the bosonic fields automatically vanish
because the fermions vanish. For the SUSY variation, note that Aµ, Vµij , and T−ab are
O(κ2), while Sij is O(κ−2) as in (4.4). Thus, the gravitino variation is

δψiµ = Dµε
i + 1

2Lτ
ij
3 γµεj +O(κ2) , (4.6)

with a similar expression for δψµi. These expressions vanish provided that the SUSY
parameters εi and εi obey the Killing spinor equations

Dµε
i = − 1

2Lτ
ij
3 γµεj +O(κ2) , Dµεi = − 1

2Lτ3ijγµε
j +O(κ2) , (4.7)

which are the same equations as the ones encountered in the previous sections. As indicated,
these equations hold only at leading order in κ, but this is sufficient for our purposes.

4.1.3 Step 3: effective theory in AdS4

We now expand to the next order in κ. We proceed in pragmatic fashion, emphasizing
the facts needed for the expansion of the action (21.34).28 In this discussion the index I
will take values from 0 to nV , while I will take values from 1 to nV , and so will α. As
a temporary notation, quantities before expansion will carry the asterisk as a subscript,
e.g. F∗(XI

∗ ).

Vector multiplets. We consider a theory with nV Abelian vector multiplets with the
prepotential

F∗(XI
∗ ) = − i4(X0

∗ )2
( 1
κ2 − F (Y I) +O(κ2)

)
, Y I ≡ XI∗

X0
∗
, (4.8)

for some arbitrary function F (Y I) that will become the prepotential of the rigid AdS
theory. We then define the homogeneous coordinates XI

∗ = y∗(zα)ZI∗ (zα) in terms of nV
28All equations numbered (21.xy) refer to Ch. 21 of [57].
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variables zα. We assume that Z0
∗ = 1, as is common, and that the ZI∗ (zα) do not receive

corrections in κ. The variable y∗ will have the expansion y∗ = 1 + κ2y +O(κ4), where y is
determined from the conventional constraint, see (21.1):

N∗ IJX
I
∗ X̄

J
∗ = − 1

κ2 , N∗ IJ = 2=F∗IJ (4.9)

One solves the constraint for y∗ and then expands to find y. The Kähler potential, see
(21.2), is obtained from

K∗(z, z̄) = K +O(κ2) = 2
κ2 log(y∗) = 2

κ2 (1 + κ2y +O(κ2)). (4.10)

The result is

K ≡ F + F̄

2 + 1
4
(
zI − z̄I

) (
∂̄IF̄ − ∂IF ,

)
. (4.11)

which determines the Kähler metric gIJ = ∂I ∂̄JK. The expansion of N∗IJ in (21.5) deter-
mines gauge field kinetic terms. Since we have set A0

µ = 0, we need only the components
IJ components:

NIJ = − i4 ∂̄I ∂̄J F̄ .
(4.12)

Henceforth, we simplify the notation by identifying the indices I and α by taking ZI∗ =
zI = zα.

Gauged hypermultiplets. The Abelian gauge fields AI couple to the hypermultiplet
matter fields. In supergravity, the hypermultiplet scalar manifold is a quaternionic Kähler
manifold parameterized by coordinates qu and with curvature proportional to −κ2.29 The
quaternionic Kähler manifold is described by a frame field f iA∗ u and its inverse fu∗ iA, with
indices u = 1, . . . , 4nH and indices i, A = 1, . . . , 2nH . From these we construct the metric
huv and the hypercomplex structure ~J :

f iA∗ vf
u
∗ iA = δuv , f iA∗ uf

u
∗ jB = δij

~J∗u
v = −f iA∗ uf

v
∗ jA~τ

j
i , h∗uv = f iA∗ uεijCABf

jB
∗ v ,

(4.13)

with CAB an antisymmetric matrix (see section 20.3.4 of [57] for details). The hypercomplex
structures ~J∗uv obey J1

∗u
vJ2
∗ v
w = J3

∗u
w. The coupling to vector multiplets is described by

the Killing vectors ku∗ I and moment maps ~P∗ I . These obey the condition

∂u ~P∗ I + 2~ω∗u × ~P∗ I = ~J∗uvk
v
∗ I , (4.14)

where ~ω∗u are functions defined through ∇w ~J∗uv + 2~ω∗w × ~J∗u
v = 0.

In the limit κ→ 0, the hypermultiplet scalar manifold becomes flat, but this limit has
to be taken with care because we want ~P∗ 0 to approach the value given in (4.2) which is
of order O(1/κ2), so subleading corrections in κ will be important. At the end of the day,

29We lower and raise the u indices with the metric huv and its inverse.
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what we will need is that the frame fields, the metric, and the hypercomplex structures
approach corresponding quantities on a flat R4nH space

f iA∗ u = f iAu +O(κ2) , h∗uv = δuv +O(κ2) , ~J∗uv = ~Juv +O(κ2) , (4.15)

while the functions ~ω∗u vanish as κ→ 0 as

~ω∗u = κ2

4
~Juvq

v +O(κ4) . (4.16)

(For more details, see appendix D.) The Killing vectors ku∗ I approach

ku∗ 0 = − 1
2LJ

3u
vq
v + ku0 +O(κ2) , ku∗ I = kuI +O(κ2) (4.17)

where ku0 and kuI are (commuting) flat space Killing vectors, and the moment maps approach

~P∗ 0 =
(

0, 0, 1
κ2L

+ ququ
4L

)
+ ~P0 +O(κ2) , ~P∗ I = ~PI +O(κ2) . (4.18)

Here, ~P0 and ~PI are the flat space moment maps related to the flat space Killing vectors via

∂u ~PI = ~Juvk
v
I , for I = 0, I . (4.19)

Note that the formulas for ku∗ 0 and ~P∗ 0 differ from those for ku∗ I and ~P∗ I . The Killing
vectors are triholomorphic. They obey both the flat space Killing equations and must be
compatible with the hypercomplex structure, viz.

∂ukIv + ∂vkIu = 0 , ∂uk
v
I
~Jv
w − ~Ju

v∂vk
w
I = 0 , for I = 0, I . (4.20)

In addition, in supergravity, Abelian Killing vectors must obey the condition ku∗ I ~J∗uvkv∗ J =
−κ2 ~P∗ I × ~P∗ J . For us, this implies

kuI
~Juvk

v
J = 0 , kuI

~Juvk
v
0 = − 1

L

(1
2k

u
IJ

2
uvq

v + P 2
I ,−

1
2k

u
IJ

1
uvq

v − P 1
I ,

1
2k

u
Iqu

)
. (4.21)

Finally, in order to write down the supergravity potential as well as the supersymmetry
variations later on, it is useful to define the following quantities:

Sij = PIij z̄
I + P0ij + ququ

4L τ3ij + 1
2Lτ3 ijK ,

WI
ij = −PI ij −

1
L
τ ij3 ∂IK ,

N i
A = if iBu

(
kuIz

I + ku0 −
1

2LJ
3u
vq
v
)

ΩBA ,

(4.22)

which are the terms proportional to κ0 in the expansions of the corresponding expressions
in supergravity, see (21.39–.40). Then, after writing

V∗ = − 3
κ2L2 + V +O(κ2) , (4.23)
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(21.46) gives

− 3
L
τ ik3 Sjk −

3
L
Sikτ3jk +WI

ikgIJ W̄J jk + 4N i
AN̄j

A = δij V . (4.24)

At order κ0, the Lagrangian is then

e−1L
∣∣
κ0 =− gIJ ∂µzI∂µz̄J −

1
2Dµq

uDµqu − V

+
{
− i4NIJF

+I
µν F

+µνJ − 1
4gIJ χ̄

I
i /Dχ

iJ − ζ̄A /DζA

− 2ik̄uIεijf jAuχ̄iIζA + 2t0AB ζ̄AζB + 2zItIAB ζ̄AζB + h.c.
}
.

(4.25)

where the covariant derivatives are

Dµq
u = ∂µq

u −AIµkuI ,

Dµχ
I
i =

(
∂µ + 1

4ωµ
abγab

)
χIi + ΓIJKχKi ∂µzJ ,

Dµζ
A =

(
∂µ + 1

4ωµ
abγab

)
ζA −AIµtIBAζB , tIA

B ≡ 1
2f

v
iA∂vkI

uf iBu .

(4.26)

The supersymmetry variations of the bosonic fields are

δzI = 1
2 ε̄

iχIi ,

δqu = −iε̄iζAfuiA ,

δAIµ = 1
2ε

ij ε̄iγµχ
I
j + h.c. .

(4.27)

The supersymmetry variations of the fermions are

δχIi = /∂zIεi − gIJ (=NJK)F−Kab γabεijε
j + gIJ W̄J jiε

j ,

δζA = 1
2 if

iA
u /Dq

uεi − N̄i
Aεi .

(4.28)

4.1.4 U(1)R symmetry

The on-shell supergravity theory has a local U(1)R symmetry, gauged by the graviphoton
field A0

µ. Since we set A0
µ to zero, the rigid theory in AdS we constructed above will

have U(1)R as a global symmetry. The U(1)R transformation properties of the various
fields are described by the Killing vectors ku∗ 0 as defined in (4.17) for the scalar fields and
t0A

B ≡ 1
2f

v
iA∂vk

u
∗ 0f

iB
u for the fermions. In particular, under U(1)R transformations with

parameter θ, we have

δθz
I = 0 , δθq

u = 2Lθ ku∗ 0 , δθχ
iI = θ τ3 j

iχjI , δθζ
A = 2Lθ t0BAζB , (4.29)

as well as the conjugates of these transformations for the hermitian conjugate fields.
In (4.29), the normalization is chosen such that the vector multiplet fermions transform as
δχ1I = iθχ1I and δχ2I = −iθχ2I , which we take to mean that χ1I have U(1)R charge +1
while χ2I have U(1)R charge −1.
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4.2 Quadratic action for a massive hypermultiplet

One of the simplest applications of the formalism above is to the case nH = 1, nV = 0
of a (massive) hypermultiplet. The only freedom we have is to choose the Killing vec-
tor ku0 , which, per the discussion in section 4.1.4, determines the U(1)R charges of the
hypermultiplet fields.

To be concrete, let us choose the frame fields to be30

f12
1 = f21

1 = f11
3 = −f22

3 = i√
2
,

f21
2 = f11

4 = f22
4 = −f12

2 = 1√
2
,

(4.30)

with the other components vanishing. Using (4.13), with CAB = εAB, we find huv = δuv
and the hypercomplex structures then turn out to be

J1 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 , J2 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , J3 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 . (4.31)

One can check that these anti-symmetric matrices obey the relation J1J2 = J3, and
its cyclic permutations. With a vanishing ku0 , we would have kuSG 0 = 1

2L(q2,−q1,−q4, q3)+
O(κ2), which, by (4.29), would imply that q1 − iq2 has R-charge +1 and q3 − iq4 has R-
charge −1. In order for the conditions in (4.20) to be obeyed, one should choose a ku0 such
that the matrix Q with entries Quv = ∂uk

v
0 commutes with the three matrices in (4.31).

Since the three matrices (4.31) represent the generators of one of the two SU(2) subgroups
of the SO(4) ∼= SU(2) × SU(2) group that rotates the qu’s, it follows that Q must be one
of the generators of the SU(2) that commutes with (4.31). Up to a redefinition of the qu’s,
such a generator can always be put into the form

Q = r − 1
2L


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , (4.32)

for some proportionality constant r. Assuming that the gauge symmetry acts linearly on
the qu, this means that

ku0 = r − 1
2L (q2,−q1, q4,−q3) , (4.33)

which implies ku∗ 0 = 1
2L(rq2,−rq1, (r − 2)q4,−(r − 2)q3) + O(κ2). From (4.29), it follows

that the R-charge of q1 − iq2 is r and that of q3 − iq4 is r − 2. One can also determine
t0A

B = r−1
2L τ3A

B, which implies that the R-charge of ζ1 is r−1 while that of ζ2 is −(r−1).

30These are the same expressions as in (20.47) of [57] rescaled by a factor of 1/
√

2.
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SCFT operator scaling dimension spin R-charge bulk dual field
Φ r 0 r q1 − iq2

Ψ r + 1
2

1
2 r − 1 ζ1 + iζ2

Φ′ r + 1 0 r − 2 q3 − iq4

Table 3. Operator content of a boundary chiral multiplet and its bulk dual. Note that each of the
operators/fields is complex.

Consequently, ζ2 and ζ1 also have R-charges r−1 and −(r−1), respectively. One can then
compute the moment map associated with (4.33):

~P0 = −r − 1
2L

(
q1q3 + q2q4, q2q3 − q1q4,

q2
3 + q2

4 − q2
1 − q2

2
2

)
. (4.34)

The formulas presented above31 determine the Lagrangian

e−1L =− 1
2Dµq

uDµqu −
r(r − 3)

2L2

[
(q1)2 + (q2)2

]
− (r + 1)(r − 2)

2L2

[
(q3)2 + (q4)2

]
+
{
−ζ̄A /DζA + 2 ir

L
ζ̄1ζ2 + h.c.

}
.

(4.35)

The spectrum of this theory is as follows. In the bosonic sector, the masses of the two scalar
fields q1 and q2 are thus r(r−3)/L2, while the masses of q3 and q4 are (r+1)(r−2)/L2. In
the fermion sector, the Dirac fermion ζ1+iζ2 has mass r/L, while ζ1−iζ2 has mass −r/L.

By the AdS/CFT dictionary, a scalar field of mass mB in AdS is dual to a boundary
operator of dimension ∆B, where m2

BL
2 = ∆B(∆B − 3).32 Similarly, a Majorana/Dirac

fermion of mass mF is dual to a Majorana/Dirac fermionic operator in the 3d CFT of
dimension ∆F , with ∆F = |mF |L+ 3

2 .33 In addition, the U(1)R charge in the bulk should
match the U(1)R charge of the dual operators in the N = 2 boundary SCFT.

It follows that the bulk hypermultiplet described above is dual to an N = 2 chiral
multiplet on the SCFT side consisting of a scalar operator Φ of dimension r and R-charge
r (dual to q1− iq2), a fermionic operator Ψ of dimension r+ 1/2 and R-charge r− 1 (dual
to ζ1 + iζ2), and another scalar operator Φ′ of dimension r+ 1 and R-charge r− 2 (dual to
q3 − iq4). See table 3 for a summary.

31In particular, Sij =

(
(r−1)(iq1+q2)(q3+iq4)

2L
ir[(q1)2+(q2)2]+i(2−r)[(q3)2+(q4)2]

4L
ir[(q1)2+(q2)2]+i(2−r)[(q3)2+(q4)2]

4L
(r−1)(−iq1+q2)(q3−iq4)

2L

)
and N i

A =(
r(q2−iq1)

2
√

2L
i(2−r)(q3−iq4)

2
√

2L
i(r−2)(q3+iq4)

2
√

2L
−ir(q1−iq2)

2
√

2L

)
.

32In the range − 9
4 < m2

BL
2 < −2, two possible values of ∆B are possible, namely ∆B+ = 3

2 +
√

9
4 +m2

in the usual quantization or ∆B− = 3
2 −

√
9
4 +m2 in the alternate quantization.

33If 0 < |mF |L < 1
2 , it is in principle also possible to also have ∆F = − |mF |L + 3

2 , but this situation
does not arise in supersymmetric theories.
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SCFT operator scaling dimension spin R-charge bulk dual field
J 1 0 0 A

Ξ 3
2

1
2 1 χ1 − iχ2

Ξ̃ 3
2

1
2 −1 χ1 + iχ2

K 2 0 0 B

jµ 2 1 0 Aµ

Table 4. The conformal primaries of an N = 2 flavor current multiplet.

4.3 Action for massless vector multiplet

Another application of the formalism above is to a single massless vector multiplet. In
top-down AdS/CFT constructions, a massless vector multiplet would appear if the dual
N = 2 SCFT has a flavor U(1) symmetry. Thus, we take nV = 1 and nH = 0 above.
Since there is only one vector multiplet, we drop the index I and denote the components
by V = (z, z̄, χi, χi, Aµ), with gauge field strength Fµν . The quadratic action is obtained
from the prepotential

F (z) = z2 , (4.36)

which gives K = |z|2, g11 = 1, and N11 = − i
2 . In addition, one finds Sij = |z|2

2L τ3 ij ,
W1

ij = − z̄
Lτ

ij
3 , and N i

A = 0, from which one can derive the potential V = −2 |z|2 /L2.
The full Lagrangian is then

e−1L = −∂µz∂µz̄ −
1
8FµνF

µν − 1
4 χ̄i

/Dχi − 1
4 χ̄

i /Dχi + 2 |z|2

L2 . (4.37)

It is convenient to define z = (A+ iB)/
√

2, so that the Lagrangian is

e−1L = −1
2(∂µA)2 − 1

2(∂µB)2 − 1
8FµνF

µν − 1
4 χ̄i

/Dχi − 1
4 χ̄

i /Dχi + A2 +B2

L2 . (4.38)

The fields A and B are scalar fields with mass −2/L2, and they correspond to SCFT
operators J and K of scaling dimension 1 and 2, respectively, that belong to the dual
conserved current multiplet — see table 4 for a complete list of conformal primaries in the
conserved current multiplet and their corresponding bulk dual fields.

One can consider interactions by including non-linear terms in the AdS prepotential
F (z). As an example, if we require a z → −z symmetry, then the next allowed prepotential
interaction is a quartic term:

F (z) = z2 + βz4 , (4.39)

for some complex coupling constant β. It is straightforward to compute the corrections in
β to all the quantities determining the action. Focusing only on the terms involving the
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scalar field z, the Lagrangian now has the following expansion at small |β|:

e−1L =− ∂µz∂µz̄ + 2 |z|2

L2 +
[
β(z4 + 4z3z̄)

2L2 − 3βz2∂µz∂
µz̄ + h.c.

]
+O(|β|2)

+ other fields .
(4.40)

As we will see in section 6, the term in the square bracket will give a non-vanishing con-
tribution to the fourth derivative of the sphere free energy in the boundary SCFT. In
preparation for that computation, we note that it is possible to significantly simplify the
form of the interaction term by adding a total derivative to the Lagrangian and using the
equations of motion. Indeed, if we add

e−1Lder = ∂µ
(
βz3∂µz̄ + h.c.

)
, (4.41)

and use the equations of motion to discard terms involving �z and �z̄, we can write
L′ = L+ Lder as

e−1L′ = −∂µz∂µz̄ + 2 |z|2

L2 + β
z4

2L2 + β̄
z̄4

2L2 +O(|β|2) + other fields . (4.42)

We can easily write this expression in terms of the fields A and B that are dual to operators
of well-defined scaling dimensions.

4.4 Quadratic action for massive vector multiplet

Let us now use the formalism introduced above to construct a massive vector multiplet, first
at the quadratic level and then with interactions. Without supersymmetry, the quadratic
Lagrangian for a massive vector field Bµ of mass mV is the Proca Lagrangian

e−1L = 1
8GµνG

µν + m2
V

4 BµB
µ , (4.43)

where Gµν = ∂µBν − ∂νBµ, and the unconventional normalization is chosen so that it
matches the normalization in the supersymmetric case below. The massive vector field Bµ
can be written in terms of a (massless) gauge field Aµ, with the usual gauge symmetry Aµ →
Aµ+∂µλ. This gauges the shift symmetry of a real scalar field φ, which transforms as φ→
φ + mV√

2 λ. The quadratic action consistent with this gauge symmetry is the Stueckelberg
Lagrangian

e−1L = 1
8FµνF

µν + 1
2

(
∂µφ−

mV√
2
Aµ

)(
∂µφ− mV√

2
Aµ
)
, (4.44)

where Fµν = ∂µAν − ∂νAµ is the gauge field strength. Denoting

Bµ = Aµ −
√

2
mV

∂µφ , (4.45)

and noticing that Gµν = Fµν , it is then easy to see that (4.44) is equivalent to (4.43).
This analysis extends to interactions of Bµ with other fields, provided that in the (Aµ, φ)
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description all such interactions are gauge invariant, so they depend on Aµ and φ only
through the gauge-invariant combination Bµ = Aµ −

√
2

mV
∂µφ.

A massive N = 2 vector multiplet can be constructed by supersymmetrizing the
Stueckelberg trick presented above. In this case, one starts with one N = 2 vector multiplet
and one hypermultiplet. One then gauges a shift symmetry of one of the hypermultiplet
scalars, as we now explain. We take nV = nH = 1. As in the case of the massless vector
field of section 4.3, we will drop the index I and denote the vector multiplet fields simply
by (z, z̄, χi, χi, Aµ), with gauge field strength Fµν . The hypermultiplet fields will be the
real scalar fields qu, with u = 1, . . . , 4, and the fermions ζA and ζA. Note that χi and ζA
are left-handed, while χi and ζA are right-handed. In order to obtain a quadratic action,
we take again the quadratic prepotential

F (z) = z2 , (4.46)

which gives g11 = 1 and N11 = − i
2 , so that the kinetic terms in the Lagrangian are

e−1Lkin = −∂µz∂µz̄ −
1
2DµquD

µqu −
1
8FµνF

µν − 1
4 χ̄i

/Dχi − 1
4 χ̄

i /Dχi − ζ̄A /DζA − ζ̄A /DζA .

(4.47)

The covariant derivative Dµqu must correspond to a gauged shift symmetry of one of the
hypermultiplet scalars, say q4. This will give us a massive vector field via the Stuckelberg
mechanism as in (4.43)–(4.45), with φ = q4. Thus we choose

Dµqu = ∂µqu − δu4
mV√

2
Aµ . (4.48)

This implies that the Killing vector corresponding to this gauging is

ku1 = mV√
2

(0, 0, 0, 1) . (4.49)

Then, with the choice of hypercomplex structures in (4.31), the moment map that
solves (4.19) is

~P1 = mV√
2

(q1, q2, q3) . (4.50)

The consistency conditions (4.20)–(4.21) also require a non-zero ku0 :

ku0 = 1
2L(q2,−q1, q4,−q3) , ~P0 = − 1

2L

(
q1q3 + q2q4, q2q3 − q1q4,

q2
3 + q2

4 − q2
1 − q2

2
2

)
.

(4.51)

These choices imply t1AB = 0 and t0A
B = 1

2L(τ3)AB. Then, the mass terms in the La-
grangian are

e−1Lmass =−
(
m2
V −

2
L2

)(
q2

1
2 + q2

2
2 + |z|2

)
−m2

V

q2
3
2 + 2mV

L

z + z̄√
2
q3

+ imV χ̄
2ζ1 − imV χ̄

1ζ2 −
2i
L
ζ̄1ζ2 − imV χ̄2ζ

1 + imV χ̄1ζ
2 + 2i

L
ζ̄1ζ2 .

(4.52)
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The sum of (4.47) and (4.52) is the quadratic Lagrangian of a massive vector multiplet in
AdS. Notice that there is no potential for the field q4, as required for a scalar with a shift
symmetry.

The next task is to rewrite the Lagrangian in terms of physical fields of definite mass,
obtained by diagonalizing Lmass in (4.52). For orientation, we first point out that a massive
vector multiplet in AdS is dual in the dual SCFT to a generic long scalar superconformal
multiplet of single-trace operators. Such a multiplet, S∆, starts with a scalar superconfor-
mal primary with scale dimension ∆ and R-charge 0. In addition it contains the following
conformal primaries as superconformal descendents: fermionic operators χ and χ̃ of dimen-
sion ∆ + 1/2 and R-charges ±1; three scalar operators φ, φ̃, and O′ of dimension ∆ + 1
and R-charges 0 and ±2; a vector operator Vµ of dimension ∆V = ∆ + 1 and R-charge
0; two more fermionic operators ξ and ξ̃ of dimension ∆ + 3/2 and R-charges ±1; and
lastly, a scalar operators O′′ of scaling dimension ∆ + 2 and R-charge 0. This information
is recorded in table 5. In a holographic setup, each of these operators would have its own
bulk field.

In particular, the vector operator Vµ of dimension ∆V = ∆ + 1 is dual to the massive
vector Bµ of mass mV , and the standard AdS/CFT dictionary identifies m2

V = (∆V −
1)(∆V −2)/L2. In terms of the scaling dimension ∆ of the superconformal primary, we have

m2
V = ∆(∆− 1)

L2 . (4.53)

In order to identify the scalar fields of definite mass, let us define

C1 =
√

∆
2∆− 1

z + z̄√
2

+ q3

√
∆− 1
2∆− 1 ,

C2 = z − z̄√
2i

,

C3 = q1 , (4.54)
C4 = q2 ,

C5 =
√

∆− 1
2∆− 1

z + z̄√
2
− q3

√
∆

2∆− 1 .

Writing the sum of (4.47) and (4.52) in terms of the new fields, we have

e−1L = −1
8GµνG

µν − m2
V

4 BµB
µ − 1

2

5∑
k=1

[
(∂µCk)2 +m2

kC
2
k

]
+ fermions , (4.55)

where the squared masses of the scalar fields are

m2
1 = ∆(∆− 3)

L2 , m2
2 = m2

3 = m2
4 = (∆ + 1)(∆− 2)

L2 , m2
5 = (∆ + 2)(∆− 1)

L2 . (4.56)

Thus, by the AdS CFT dictionary, the field C1 is dual to a scalar operator of dimension
∆ (the superconformal primary O of the multiplet), C2, C3 + iC4, and C3 − iC4 are each
dual to scalar conformal primary operators of dimension ∆ + 1 (namely O′, φ, and φ̃),

– 39 –



J
H
E
P
0
1
(
2
0
2
2
)
1
7
1

SCFT operator scaling dimension spin R-charge bulk dual field
O ∆ 0 0 C1

χα ∆ + 1
2

1
2 1

χ̃α ∆ + 1
2

1
2 −1

φ ∆ + 1 0 2 C3 + iC4

φ̃ ∆ + 1 0 −2 C3 − iC4

O′ ∆ + 1 0 0 C2

Vµ ∆ + 1 1 0 Bµ

ξα ∆ + 3
2

1
2 1

ξ̃α ∆ + 3
2

1
2 −1

O′′ ∆ + 2 0 0 C5

Table 5. Operator content of a generic long scalar multiplet. Such a multiplet is dual to a massive
vector multiplet.

and C5 is dual to a scalar conformal primary of dimension ∆ + 2 (namely O′′). Note that
the choice of ku0 in (4.51) corresponds to r = 2 in (4.33), and thus q1 + iq2 has R-charge
2 while q3 + iq4 and the vector multiplet scalars have R-charge 0. From (4.54), it follows
that C3 ± iC4 have R-charge ±2 while all other scalar fields have vanishing R-charge. See
table 5.

A similar analysis in the fermion sector reveals two fermions dual to fermionic operators
of dimension ∆ + 1/2, and two fermions dual to fermionic operators of dimension ∆ + 3/2,
as expected from the operator content of the long superconformal multiplet. We will not
describe the diagonalization in the fermion sector in more detail because it will not be
needed in our analysis.

As an aside, let us point out that the Stuckelberg mechanism by which we constructed
the long vector multiplet corresponds to multiplet recombination in the boundary SCFT.
From the SCFT perspective, we started off with a conserved current multiplet (dual to a
massless vector multiplet) and a chiral multiplet of dimension 2 (equal to the R-charge of
the superconformal primary), and the two multiplets combined into a generic long multiplet
whose dimension can then vary. For the recombination to be possible, it is important that
the chiral multiplet has dimension 2 because only then does this multiplet contain a scalar
operator of dimension 3 and vanishing R-charge that can become the conformal descendant
∂µj

µ after the multiplets recombine. It is very nice that these requirements appear naturally
in the supergravity construction.

4.5 Interactions with massless vector multiplet

Let us now consider a massive vector multiplet interacting with a massless vector multiplet
via a cubic prepotential. We construct the massive vector multiplet as in the previous
section from a massless vector multiplet (z1, z̄1, χ

1
i , χ

1i, A1
µ) coupled to a hypermultiplet
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(qu, ζA, ζA) by gauging the shift symmetry of the scalar field q4. The massless vector mul-
tiplet will be (z2, z̄2, χ

2
i , χ

2i, A2
µ).34 Before considering the interactions, the prepotential is

F2(z1, z2) = z2
1 + z2

2 . (4.57)

as well as the hypermultiplet gauging as in (4.50)–(4.51). The quadratic Lagrangian is
simply a sum of (4.37) (with (z, z̄, χi, χi, Aµ)→ (z2, z̄2, χ

2
i , χ

2i, A2
µ)) and (4.47) and (4.52)

(with (z, z̄, χi, χi, Aµ) → (z1, z̄1, χ
1
i , χ

1i, A1
µ)). Equivalently, it can be written as the sum

of (4.38) and (4.55). Focusing only on the scalar fields, we have

e−1L2 = −1
2(∂µA)2 − 1

2(∂µB)2 + A2 +B2

L2 −
5∑

k=1

[1
2(∂µCk)2 +m2

kC
2
k

]
+ other fields ,

(4.58)

where the masses are as in (4.56), and where the ellipses denote terms involving the fermions
and/or the vector fields.

We consider a cubic prepotential interaction such that the total prepotential is

F (z1, z2) = F2(z1, z2) + αz1z
2
2 , (4.59)

for some complex coupling constant α. This prepotential generates interaction terms in
the Lagrangian. For scalar fields In particular, we have both cubic terms, specifically

e−1L3 = −α2

z2∂µz2∂
µz̄1 + ∂µ(z1z2)∂µz̄2 −

z̄1z
2
2 + 2 |z2|2 z1 + 1√

2mV Lq3z
2
2

L2

+ h.c. ,

(4.60)

and quartic terms

e−1L4 =− α2z2
2

16L2

[
2m2

V L
2(q2

1 + q2
2 + q2

3) + 4
√

2mV Lz1q3 + 4z2
1 + z2

2

]
+ h.c.

− |α|
2 |z2|2

8L2

[
2m2

V L
2(q2

1 + q2
2 + q2

3) + 2
√

2mV Lq3(z1 + z̄1) + 4 |z1|2 + |z2|2
]
,

(4.61)

together with higher-order terms we do not need.
It is possible to simplify the expressions for the interaction vertices by adding a total

derivative and using the equations of motion to eliminate the terms involving the Laplacians
of the various fields. Indeed, instead of L = L2 + L3 + L4 + · · · , we can consider

L′ = L+ Lder (4.62)

where in this case

Lder = ∂µ
[
α

4 z
2
2∂µz̄1 + α

2 z1z2∂µz̄2 + |α|
2

8 |z2|2 z̄2∂µz2 + h.c.
]
. (4.63)

34We choose to write the indices on the z fields as lower in order to avoid confusion with powers of the
fields.
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Then, after using the equations of motion, we can expand L′ as

L′ = L2 + L′3 + L′4 + · · · , (4.64)

with the new cubic and quartic vertices being

e−1L′3 = αm2
V

4 z2
2 z̄1 + ᾱm2

V

4 z̄2
2z1 , (4.65)

e−1L′4 = −α
2z4

2 + ᾱ2z̄4
2

16L2 + |α|
2

8

[
− 3
L2 |z2|4 + 4 |z2|2 ∂µz2∂

µz̄2

]
+ terms involving z1 and qu .

(4.66)

The vertices written explicitly in (4.65) and (4.66) are the only ones that contribute at tree
level to the fourth mass derivative of the S3 free energy.

5 One-loop free energy for free multiplets

In this section we restrict our attention to a free massive hypermultiplet, described in
section 4.2, as well as a free massive vector multiplet, described in section 4.4, and inves-
tigate whether the sphere free energy of the dual field theory, computed in the one-loop
approximation, depends on the mass parameters.

Consider a free field in AdS4 dual to an operator of spin ` and conformal dimension ∆.
The contribution of such a field to the S3 free energy comes solely from the determinant
factor obtained after performing the Gaussian integral in the bulk. This contribution is
divergent and requires regularization. After subtracting the power divergences (or equiva-
lently, using zeta function regularization [61]), one is still left with a logarithmic divergence
as well as a finite contribution to the sphere free energy given by [62, 63]

F∆,` = −1
2H`

(
∆− 3

2

)
− 1

2G`
(

∆− 3
2

)
logL2Λ2 , (5.1)

where L is the AdS4 radius, Λ is the UV cutoff. For real bosons, the functions G`(x) and
H`(x) take the form

G`(x) = 2`+ 1
24

[
x4 −

(
`+ 1

2

)2 (
2x2 + 1

6

)
− 7

240

]
,

H`(x) = 2`+ 1
72

[
3x2(2`+ 1)2 − 8x4 + 24ζ ′

(
−3, x+ 1

2

)
− 72xζ ′

(
−2, x+ 1

2

)
− 6

(
(2`+ 1)2 − 12x2

)
ζ ′
(
−1, x+ 1

2

)
+ 6x

(
(2`+ 1)2 − 4x2

)
ζ ′
(

0, x+ 1
2

)]
,

(5.2)
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where ζ ′(a, b) = ∂ζ(a,b)
∂a is the derivative of the Hurwitz zeta function. For Majorana

fermions, the functions G`(x) and H`(x) take the form:

G`(x) = −2`+ 1
24

[
x4 −

(
`+ 1

2

)2 (
2x2 − 1

3

)
+ 1

30

]
,

H`(x) = 2`+ 1
72

[
8x4 − 3x2(2`+ 1)2 − 24ζ ′ (−3, x) + 72xζ ′ (−2, x)

+ 6
(
(2`+ 1)2 − 12x2

)
ζ ′ (−1, x)− 6x

(
(2`+ 1)2 − 4x2

)
ζ ′ (0, x)

]
.

(5.3)

To compute the free-energy for a SUSY multiplet, we must simply sum over the fields
of that multiplet. For a hypermultiplet with mass35 mH ≡ r − 1, we can use table 3 to
write the sphere free energy as

FN = 2 hyper(r) = 2Fr,0 + 2Fr+ 1
2 ,

1
2

+ 2Fr+1,0 . (5.4)

Plugging in (5.1)–(5.2), we find

FN = 2 hyper(r) =−
[
r(r − 2)

2 + 5
12

]
log(ΛL) + (r − 1)ζ ′(0, r)− ζ ′(−1, r)

+ 7r(r − 2)
12 + 83

144 .
(5.5)

Clearly, this expression is a non-trivial function of r, which shows that changing the mass
mH = r − 1 of the hypermultiplet cannot be SUSY exact.

One can do a similar calculation for a massive vector multiplet. From table 5 we can
read off the field content and identify the sphere free energy as

FN = 2 vector(∆) = F∆,0 + 2F∆+ 1
2 ,

1
2

+ 3F∆+1,0 + F∆+1,1 + 2F∆+ 3
2 ,

1
2

+ F∆+2,0 . (5.6)

Summing these all together, we find that the free energy for a massive vector is UV-finite
and independent of ∆:

FN = 2 vector(∆) = 5
24 .

(5.7)

This supports our conjecture that changing the mass of the long vector multiplet is a SUSY
exact deformation.

For comparison, let us discuss briefly two multiplets of N = 1 supersymmetry. First,
a chiral multiplet of mass m = ∆ − 1 is dual to a scalar N = 1 superconformal multiplet
consisting of scalar conformal primaries operators of dimension ∆ and ∆ + 1 as well as a
fermionic operator of dimension ∆ + 1/2. The one-loop free energy is simply half that for
a hypermultiplet, namely

FN = 1 chiral(∆) = 1
2FN = 2 hyper(∆) . (5.8)

35A massless hypermultiplet is such that the scalar operators are conformally coupled and the fermions
are massless, thus being dual to scalar operators of dimensions 1 and 2 and to fermionic operators of
dimension 3/2.
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Again, this is a non-trivial function of ∆ and hence a non-trivial function of the hyper-
multiplet mass. In this case, it is known that the chiral multiplet mass is a superpotential
deformation, hence it is an N = 1 F-term. Based on this example, the S3 partition function
must depend in general on the N = 1 F-term couplings.

Let us also discuss the case of an N = 1 massive vector multiplet. Such a multiplet is
dual to an N = 1 superconformal multiplet with a fermionic superconformal primary. The
conformal primaries in the multiplet are: a fermionic operator of dimension ∆, a scalar
operator of dimension ∆ + 1/2; a vector operator also of dimension ∆ + 1/2; and another
fermionic operator of dimension ∆ + 1. The S3 free energy is then

FN = 1 vector(∆) = F∆, 1
2

+ F∆+ 1
2 ,0

+ F∆+ 1
2 ,1

+ F∆+1, 1
2
. (5.9)

This expression evaluates to

FN = 1 vector(∆) =
[∆(∆− 2)

2 + 13
24

]
log(ΛL)− 42∆(∆− 2) + 37

72

− (∆− 1)ζ ′
(

0,∆− 3
2

)
+ ζ ′

(
−1,∆− 3

2

)
− 1

2 log
(

∆− 3
2

)
.

(5.10)

This expression is again a non-trivial function of ∆ and hence of the vector multiplet mass.
In this case, however, it can be shown that the N = 1 vector multiplet mass term is a
D-term [64]. This computation therefore shows that the S3 partition function cannot be
independent of the N = 1 D-term couplings.

6 Integrated four-point correlators

In this section we will compute directly certain holographic contributions to the fourth
derivative ∂4F

∂m4

∣∣
m=0.

36 As explained in section 2.6, the real mass deformation of the bound-
ary theory is m

∫
d3~x

√
g(~x)[iJ(~x) + K(~x)], where we set the radius of the sphere to one

and parameterized the sphere with coordinates ~x. Thus, the fourth mass derivative is

I ≡ −∂
4F

∂m4

∣∣∣∣
m=0

=
〈(∫

d3~x
√
g(~x) [iJ(~x) +K(~x)]

)4
〉
. (6.1)

Since the scaling dimension of J is equal to 1 and that of K is equal to 2, in order to
evaluate (6.1) in a holographic setup, we should first calculate〈 4∏

i=1

∫
d3~x

√
g(~x)φi(~x)

〉
(6.2)

for scalar operators φi with scaling dimensions ∆i = 1, 2. In section 6.1, we will evaluate the
contribution to (6.2) coming from a tree-level scalar exchange, and in section 6.2, we will
explain how to determine contributions coming from certain four-point contact diagrams.

36It follows from the work of [8] that the fourth derivative d4F/dm4 of the free energy is an unambiguous
quantity.
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Afterwards, in section 6.3, we will apply these results to evaluate the quantity (6.1) at tree-
level that we will use in two examples. In section 6.4, we will evaluate the contribution
to (6.1) from the prepotential four-point contact interaction described in section 4.3 and
show that it does not vanish. This result is consistent with the prepotential being an
F-term interaction. Lastly, in section 6.5, we determine the contribution to (6.1) from a
long vector multiplet exchange and show that it vanishes exactly. This fact supports our
conjecture that the massive vector multiplet interactions are SUSY exact.

6.1 Exchange diagram contribution to integrated correlator

Consider first the contribution to the separated-point correlator
〈φ1(~x1)φ2(~x2)φ3(~x3)φ4(~x4)〉 of operators φi of dimension ∆i coming from the s-channel
exchange of an operator of dimension ∆. Let us consider this correlator first in flat
space, and pass to the correlator on S3 later. Similarly, let us consider (Euclidean) AdS4
parameterized in Poincaré coordinates

ds2 = dy2
0 + d~y2

y2
0

. (6.3)

For unit three point couplings, the exchange Witten diagram is

E∆
∆1∆2∆3∆4(~xi) ≡

∫
d4y d4w

y4
0w

4
0

G∆1
B∂(y; ~x1)G∆2

B∂(y; ~x2)G∆3
B∂(w; ~x3)G∆4

B∂(w; ~x4)G∆
BB(y;w) ,

(6.4)

where y = (y0, ~y) and w = (w0, ~w) are the two bulk points and ~xi are the four boundary
points. Let us choose the normalization of the bulk-to-boundary propagator such that

G∆
B∂(y; ~x) = Γ(∆)

(
y0

y2
0 + (~y − ~x)2

)∆
. (6.5)

In this normalization, the split representation of the bulk-bulk propagator is

G∆
BB(y;w) = 1

2π3

∫ i∞

−i∞

dλ

2πi

∫
d3~z

1(
∆− 3

2

)2
− λ2

1
Γ(λ)Γ(−λ)G

3
2 +λ
B∂ (y; ~z)G

3
2−λ
B∂ (w; ~z) ,

(6.6)

where the integration contour is the imaginary axis provided that ∆ > 3/2. In the following
discussion, we will assume ∆ > 3/2 and analytically continue the results to the alternate-
quantization range ∆ < 3/2 afterwards. Note that the scalar bulk-bulk propagator obeys
the equation

(∇2 −m2)GBB(y, w) = − 1√
g(y)

δ(4)(y − w) , m2 = ∆(∆− 3) . (6.7)

Also, in the normalization (6.5) of the bulk-boundary propagator, if we compute correlators
of the φi operators as in (6.4) without any additional normalization factors, then the φi
are normalized as given by

〈φi(~x)φi(0)〉 = N∆i

|~x|2∆i
, N∆i

≡ 23−2∆iπ2Γ(2∆i − 1) . (6.8)
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This normalization factor will be important when applying these results to the correlators
of J and K, which are normalized as in (2.58).

After plugging (6.6) into (6.4), we can perform the integrals over y and w using
∫
d4y

y4
0
G∆1
B∂(y; ~x1)G∆2

B∂(y; ~x2)G∆3
B∂(y; ~x3) = c∆1,∆2,∆3

|~x12|∆123 |~x23|∆231 |~x31|∆312
(6.9)

where we defined ∆ijk ≡ ∆i + ∆j −∆k, and where

c∆1,∆2,∆3 ≡
π3/2

2 Γ
(∆1 + ∆2 + ∆3 − 3

2

)
Γ(∆123/2)Γ(∆231/2)Γ(∆312/2) . (6.10)

After renaming ~z → ~x5, we find

E∆
∆1∆2∆3∆4(~xi) = 1

2π3

∫ i∞

−i∞

dλ

2πi

∫
d3~x5

1(
∆− 3

2

)2
− λ2

c∆1,∆2,
3
2 +λc∆3,∆4,

3
2−λ

Γ(λ)Γ(−λ)

× 1
|~x12|∆125 |~x25|∆251 |~x51|∆512 |~x34|∆346 |~x45|∆463 |~x53|∆634

(6.11)

where ∆5 ≡ 3
2 + λ and ∆6 ≡ 3

2 − λ.
So far, we have worked in flat space in the boundary CFT. To map the correlator to

S3, we use the stereographic map. In stereographic coordinates, the metric on S3 is

ds2 = Ω(~x)2d~x2 , Ω(~x) ≡ 1
1 + ~x2

4
. (6.12)

The general rule for going from R3 to S3 is that the distance between two points |~xij | is
replaced by the chordal distance sij = Ω(~xi)1/2Ω(~xj)1/2 |~xij |. Thus

ES3(~xi) = E(~xi)
4∏
i=1

Ω(~xi)−∆i (6.13)

The integrated correlator we want to compute is

I∆1∆2∆3∆4(∆) =
∫ 4∏

i=1

(
d3~xi

√
g(~xi)

)
ES3(~xi) ,

√
g(~x) ≡ Ω(~x)3 , (6.14)

where d3~x
√
g(~x) is the volume element on S3. Quite nicely, the integrated correlator

becomes

I∆1∆2∆3∆4(∆) = 1
2π3

∫ i∞

−i∞

dλ

2πi

∫ 5∏
i=1

(
d3~xi

√
g(~xi)

) 1(
∆− 3

2

)2
− λ2

c∆1,∆2,
3
2 +λc∆3,∆4,

3
2−λ

Γ(λ)Γ(−λ)

× 1
s∆125

12 s∆251
25 s∆512

51 s∆346
34 s∆463

45 s∆634
53

.

(6.15)
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We can easily do all the ~xi integrals in (6.15). Indeed, because of rotational symmetry,
we can set ~x5 to any value we want (everywhere except for the measure) and multiply the
answer by the volume of S3, Vol(S3) = 2π2. The simplest choice is |~x5| → ∞, in which case

1
s∆125

12 s∆251
25 s∆512

51 s∆346
34 s∆453

45 s∆634
53

→
∏4
i=1 Ω(~xi)−∆i

|~x12|∆125 |~x34|∆346 4∆5+∆6
= 1

64

∏4
i=1 Ω(~xi)−∆i

|~x12|∆125 |~x34|∆346
.

(6.16)

Thus,

I∆1∆2∆3∆4(∆) = (6.17)
1

2π3
2π2

64

∫ i∞

−i∞

dλ

2πi

∫ ∏4
i=1 d

3~xi Ω(~xi)3−∆i

|~x12|∆125 |~x34|∆346

1(
∆− 3

2

)2
− λ2

c∆1,∆2,
3
2 +λc∆3,∆4,

3
2−λ

Γ(λ)Γ(−λ) .

The integrals in ~x1,2 and ~x3,4 factorize. The first one is
∫
d3~x1 d

3~x2
Ω(~x1)3−∆1Ω(~x2)3−∆2

|~x12|∆125
= 64

2∆125

∫
d3~x1 d

3~x2

(1 + |~x1|2)3−∆1(1 + |~x2|2)3−∆2 |~x12|∆125

(6.18)

Integrals of this type were evaluated in [65]. In their notation, the integral in (6.18) (without
the prefactor) equals Γ0(3 − ∆1, 3 − ∆2,∆125/2). In general, the resulting expression
for (6.17) is pretty complicated, but it simplifies if ∆i ∈ {1, 2}, where it takes the form

I∆1∆2∆3∆4(∆) = I(∆)∏
i ∆i

I(∆) =
∫

dλ

2πi 8π13 λ(4λ2 − 1) sin(πλ)
[(∆− 3/2)2 − λ2] cos3(πλ) .

(6.19)

This integral can be performed by contour integration assuming ∆ > 3/2. The result is

I(∆) ≡ 16π10
[
1 + (∆− 1)(∆− 2)ψ(2)(∆− 1)

]
, (6.20)

where ψ(2) denotes a polygamma function defined as the third derivative of the logarithm of
the gamma function. (In general, ψ(m)(z) = dm+1

dzm+1 log Γ(z).) While we derived the expres-
sion (6.20) for ∆ > 3/2, it also holds in the range 1 < ∆ < 3/2 by analytic continuation.

6.2 Contact diagram contributions to integrated correlator

Let us now move on to the contribution to the integrated 〈φ1(~x1)φ2(~x2)φ3(~x3)φ4(~x4)〉S3

correlator from contact Witten diagrams. We do not have to do any new computations,
because the contact Witten diagrams relevant for our applications below can be obtained
from the m→∞ limit of the s-channel scalar exchange that we evaluated in the previous
section. Indeed, the equation (6.7) for the bulk-bulk propagator implies that, at large m,
we have the expansion

GBB(y, w) =
( 1
m2 + 1

m4∇
2 +O(m−6)

)
δ(4)(y − w) , (6.21)

– 47 –



J
H
E
P
0
1
(
2
0
2
2
)
1
7
1

where the Laplacian acts on the point y. This equation implies that

E∆
∆1∆2∆3∆4 = 1

m2C
(0)
∆1∆2∆3∆4

+ 1
m4C

(2)
∆1∆2∆3∆4

+O(m−6) , (6.22)

where E∆
∆1∆2∆3∆4

was defined in (6.4) and C(2n) are contact Witten diagrams with 2n
derivatives:

C
(0)
∆1∆2∆3∆4

(~xi) =
∫
d4y

y4
0
G∆1
B∂(y; ~x1)G∆2

B∂(y; ~x2)G∆3
B∂(y; ~x3)G∆4

B∂(y; ~x4) ,

C
(2)
∆1∆2∆3∆4

(~xi) =
∫
d4y

y4
0
∇2
[
G∆1
B∂(y; ~x1)G∆2

B∂(y; ~x2)
]
G∆3
B∂(y; ~x3)G∆4

B∂(y; ~x4) ,
(6.23)

and so on. Let us denote the contribution of the diagram C
(2n)
∆1∆2∆3∆4

(~xi) to the integrated
sphere correlator by J

(2n)
∆1∆2∆3∆4

. By considering the large m expansion of (6.19) with
∆ = (3 +

√
9 + 4m2)/2, namely

I(∆) = 8π10
[ 1
m2 −

8
3m4 + 22

3m6 −
316

15m8 +O(m−10)
]
, (6.24)

we find that for ∆i = 1, 2,

J
(2n)
∆1∆2∆3∆4

= J (2n)

∆1∆2∆3∆4
with J (0) = 8π10 , J (2) = −64π10

3 . (6.25)

Note that because the bulk-boundary propagator G∆i
B∂ obeys the equation ∇2G∆i

B∂ =
∆i(∆i− 3)G∆i

B∂ , and for ∆i = 1, 2, we have ∆i(∆i− 3) = −2, we can expand the Laplacian
in the second line of (6.23) and find that the contact diagram

C̃
(2)
∆1∆2∆3∆4

(~xi) =
∫
d4y

y4
0
∂µG

∆1
B∂(y; ~x1)∂µG∆2

B∂(y; ~x2)G∆3
B∂(y; ~x3)G∆4

B∂(y; ~x4) (6.26)

contributes to the integrated correlator an amount equal to

J̃
(2)
∆1∆2∆3∆4

= J (2)

∆1∆2∆3∆4
, J̃ (2) = J (2) + 4J (0)

2 = 16π10

3 . (6.27)

6.3 Fourth derivative of the sphere free energy

To go from the normalization in (6.8) to the normalization in (2.58), we should proceed as
follows. For every φi = J , we take ∆i = 1 and multiply the correlator by

N ≡
√
τ

4
√

2π2 .
(6.28)

Similarly, for every φi = K, we take ∆i = 2 and multiply the correlator by
√
τ

2
√

2π2 = 2N . It
follows that in order to calculate the integrated four-point correlator of any combination of
J and K operators, we should multiply the expressions (6.19) and (6.25) by N 4∆1∆2∆3∆4
as well as by the interaction vertices. Quite nicely, the product ∆1∆2∆3∆4 cancels the
denominators of the expressions (6.19) and (6.25), so we simply have to multiply I(∆)
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or J (2n) by N 4 and the interaction vertex coefficients if we want to find the integrated
four-point correlator of any combination of four J and K operators.

In particular, let us consider a real field C dual to an operator of dimension ∆ with
leading order kinetic Lagrangian −1

2(∂µC)2− ∆(∆−3)
2L2 C2. Let us assume this field interacts

with the fields A and B that are the bulk fields dual, respectively, to the operators J and
K in (6.1), through the three-point contact vertices37

e−1L3-pt = 1
2λAACA

2C + λABCABC + 1
2λBBCB

2C . (6.29)

Then, the s-channel exchange contribution to the integrated correlator I in (6.1) equals

I
∣∣∣
s-channel
C exch

= (6.30)

N 4
(
λ2
AAC − 4λ2

ABC − 2λAACλBBC + λ2
BBC − 4iλAACλABC + 4iλBBCλABC

)
I(∆)

where the λ2
AAC term comes from the 〈JJJJ〉 part of (6.1), the λAACλABC term comes

from 〈JJJK〉, etc. One can recognize the quantity in the brackets of (6.30) as the perfect
square (λAAC −2iλABC −λBBC)2. In fact, there is a further simplification that is manifest
when we write the vertex (6.29) in terms of the complex field z = (A + iB)/

√
2 and its

conjugate,

e−1L3-pt = 1
2λzzCz

2C + λzz̄C |z|2C + 1
2λz̄z̄C z̄

2C . (6.31)

Then λzzC = 1
2(λAAC − 2iλABC −λBBC) and so only the square of the holomorphic vertex

coefficient λzzC contributes to (6.30). The total exchange contribution is then

I
∣∣∣
C exchange

= 12N 4λ2
zzCI(∆) , (6.32)

where we multiplied (6.30) by a factor of 3 in order to account for the t-channel and
u-channel exchanges as well.

A similar analysis can be done for contact four-point interactions. The most general
interaction with up to two derivatives takes the form

e−1L4-pt = 1
4!λzzzzz

4 + 1
3!λzzzz̄z

2 |z|2 + 1
4λzzz̄z̄ |z|

4 + 1
3!λzz̄z̄z̄ z̄

2 |z|2 + 1
4!λz̄z̄z̄z̄ z̄

4

+ 1
2

[1
2λ
′
zz,zzz

2 + λ′zz̄,zz |z|
2 + 1

2λ
′
z̄z̄,zzz

2
]

(∂µz)2

+
[1

2λ
′
zz,zz̄z

2 + λ′zz̄,zz̄ |z|
2 + 1

2λ
′
z̄z̄,zz̄z

2
]
|∂µz|2

+ 1
2

[1
2λ
′
zz,z̄z̄z

2 + λ′zz̄,z̄z̄ |z|
2 + 1

2λ
′
z̄z̄,z̄z̄z

2
]

(∂µz̄)2 .

(6.33)

As in the case of the exchange diagram, only the holomorphic vertices contribute to the
fourth derivative of the sphere free energy:

I
∣∣∣
contact

= 4N 4λzzzzJ
(0) + 24N 4λ′zz,zzJ̃

(2) . (6.34)

37These interaction vertices, as well as those in (6.33), below are written in the Lorentzian-signature
Lagrangian in mostly plus signature.
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In order to apply these results to a specific situation, we need to compare the inter-
action vertices in the setup of interest to (6.31) and (6.33), and then sum together (6.32)
and (6.34).

6.4 Application: quartic prepotential interaction

As a first application, let us examine the case of the quartic prepotential interaction in
section 4.3. In this case, from comparing (4.42) to (6.33) we see that, after setting L = 1,
we can identify λzzzz = 12β and λ′zz,zz = 0. Thus, in this case

I
∣∣∣
contact

= 48N 4J (0)β = 3π2

8 τ2β . (6.35)

The fact that this expression does not vanish shows that this prepotential interaction is
not SUSY exact. This is consistent with it being an F-term.

6.5 Application: long vector multiplet exchange

We can now analyze the more complicated case of a long vector multiplet exchange. In this
case, the relevant interaction vertices are in (4.65) for the 3-point ones and in (4.66) for
the 4-point ones. In those expressions, z2 is the vector multiplet scalar playing the role of z
in (6.31) and (6.33), and z1 is a scalar from the massive vector multiplet. However z1 is not
a field of definite mass. Expressing it in terms of the definite-mass fields Ci using (4.54)
(with z → z1), we have38

e−1L′3 = α∆(∆− 1)
4
√

2L2 z2
2

(
−iC2 + C1

√
∆ + C5

√
∆− 1√

2∆− 1

)
+ h.c. . (6.36)

Comparing with (6.31), we extract the interaction vertices (with L = 1)

λzzC1 = α∆(∆− 1)
2
√

2

√
∆

2∆− 1 ,

λzzC2 = −iα∆(∆− 1)
2
√

2
,

λzzC5 = α∆(∆− 1)
2
√

2

√
∆− 1
2∆− 1 ,

(6.37)

and from comparing (4.66) with (6.33), we have

λzzzz = −3α2

2 , λ′zz,zz = 0 . (6.38)

Plugging these expressions into (6.32) and (6.34) and using the fact that the scaling di-
mensions of the operators dual to C1, C2, and C5 are ∆, ∆ + 1, and ∆ + 2, respectively,
we find the final answer

I
∣∣∣
long exch

= 3α2∆2(∆− 1)2N 4

2

( ∆
2∆− 1I(∆)− I(∆ + 1) + ∆− 1

2∆− 1I(∆ + 2)
)

− 6α2N 4J (0) .

(6.39)

38The scalar fields C3, C4 do not contribute to (6.36) because they carry R-charge. (See table 5.)
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Using the expression for I(∆) in (6.20) as well as the identity ψ(2)(x+ 1)−ψ(2)(x) = 2/x3

we finally find

I
∣∣∣
long exch

= 0 , (6.40)

in support of our conjecture that the interactions between a massless vector and massive
vector multiplet are SUSY exact.

7 Discussion

In this paper, we studied N = 2-preserving supersymmetric interactions in AdS and how
they affect the (mass-deformed) S3 free energy in the boundary dual SCFT. In particular,
in section 2 we showed that certain N = 2 D-terms, non-chiral F-terms, and 1/4-BPS
interactions are SUSY exact, and they do not affect the S3 free energy. By contrast,
chiral F-terms and flavor current terms in the bulk do affect the S3 free energy. Later
on, in sections 5 and 6, we provided evidence that the mass parameter and the interaction
couplings of a massive vector multiplet are SUSY exact, although the precise type of
interaction was not determined. Our calculations also showed that N = 1 D-terms are not
exact and do affect the sphere free energy.

Our results are fully consistent with the observation made in [66–68] (see also [69, 70])
that, at the two-derivative level in the bulk, the sphere free energy is directly related to
the prepotential of the bulk supergravity theory. Indeed, as shown in section 3.3, prepo-
tential interactions are particular cases of bulk chiral F-terms. As far as higher-derivative
interactions are concerned, the higher-derivative interactions constructed in [36] using su-
perconformal tensor calculus are other examples of chiral F-terms. The fact that they
affect the S3 free energy [36] is again consistent with our results.

Several different methods were used to construct N = 2 supersymmetric interactions
in AdS. The first approach, in section 2, used only manipulations of generators of the
osp(2|4) superalgebra. This was sufficient to prove the statements above about SUSY
exact interactions. Then, in sections 3 and 4, we presented two other methods to construct
supersymmetric Lagrangians in AdS. The first one used off-shell superconformal theories
with the N = 2 Weyl multiplet and its compensator multiplets as backgrounds for matter
multiplets, and the second one involved the decoupling limit of on-shell N = 2 supergravity
coupled to matter.

There are various questions that we leave for future work. The first is whether the
massive vector multiplet mass term and interactions are indeed SUSY exact. To settle this
question, one would perhaps need to derive the kinetic and interaction Lagrangians from an
appropriate off-shell formulation in which the supersymmetry variations are independent
of the vector multiplet mass. In such a formulation, it would then become clear whether
the vector multiplet mass term and its interactions with other multiplets are particular
cases of the supersymmetry-preserving deformations we have studied that do not affect the
S3 free energy.

In this work, we required that the interaction terms in the bulk Lagrangian transform
into total derivatives under a supersymmetry variation. As already mentioned in footnote 5,
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appropriate boundary terms may need to be added in order to ensure that these interactions
are supersymmetric, but we leave a thorough investigation of these boundary terms to
future work. We note, however, that in absence of boundary sources, boundary terms are
needed only if the sum of the dimensions of the operators dual to the bulk fields is at
most equal to 3. For instance, in the examples in refs. [26, 49] the bulk cubic interaction
is between three fields that are dual to boundary operators of dimension 1. The unitarity
bound requires that any operator of an N = 2 SCFT that resides in a long multiplet has
scaling dimension strictly greater than 1, so any interactions of the corresponding bulk
fields will necessarily not require any additional boundary terms.

Another question left for future work is whether the S3 free energy of N = 2 SCFTs
captures a protected sector of these theories. For N = 4 SCFTs, it is known that the S3

free energy equals the free energy of a 1d topological sector that is built from the 1/2-BPS
operators of the 3d theory [71–73]. Thus, the S3 free energy captures information only
about these 1/2-BPS operators. It is not known whether analogous statements continue
to hold true for N = 2 SCFTs. In the present work, we have shown that, in the dual AdS4
theory, the S3 free energy of the boundary theory does capture a protected sector consisting
of special types of bulk interactions. It would be very interesting to determine whether
such a protected sector also exists more generally for all N = 2 SCFTs, not necessarily just
for those with holographic duals.

Lastly, it would be interesting to generalize our analysis to a different numbers of space-
time dimensions and other amounts of supersymmetry. Of particular interest is the case
of N = 2 superconformal field theories in 4d and their 5d holographic duals, where again
the S4 free energy of the mass-deformed theory can be computed using supersymmetric
localization. Another equally interesting generalization would be to supersymmetric theo-
ries on squashed spheres and other curved manifolds. In particular, one can ask whether
the partition functions of such theories also receive contributions only from a very special
class of bulk interactions. Generically, the analog of the analysis performed in section 6
would involve Witten diagrams for spinning correlators. Such calculations would be greatly
simplified with the help of the bispinor embedding space formalism introduced in [74].
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A osp(2|4) algebra

The osp(2|4) algebra has as bosonic generators the sp(4) generators Mαβ and the R-
symmetry generators R. Here, we can think of α, β as fundamental sp(4) indices, and
Mαβ is a symmetric rank-two tensor. The supercharges have charge ±1 under the R-
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symmetry, so we can represent them as Qα±. The commutation relations are

[Mαβ ,Mγδ] = ωαδMβγ + ωβδMαγ + ωαγMβδ + ωβγMαδ ,

[Qα±,Mβγ ] = ωαβQγ± + ωαγQβ± ,
[R,Qα±] = ±iQα± ,

{Qα+,Qβ−} =Mαβ − iωαβR ,

(A.1)

where ωαβ is the symplectic form, which is antisymmetric in the symplectic indices.
The correspondence between this presentation of the algebra and that in section 2

is as follows. We can identify the spinor indices used in section 2 with the symplectic
fundamental indices, and we can take the symplectic form to simply be the C matrix
defined in [57]:

ωαβ ≡ Cαβ . (A.2)

The sp(4) generators are the Mab and Pa converted to spinor indices. If we take

Mαβ = −1
2Mabγ

ab
αβ + LPaγ

a
αβ , (A.3)

then the commutation relation in the first line of (A.1) is obeyed. For the R-symmetry
generator, we simply take R = R. And lastly, for the supercharges, if we choose

Qα+ =
√

2L
(
Q1
α − iQ2α

)
, Qα− =

√
2L
(
−iQ2

α −Q1α
)
, (A.4)

then one can check that all other commutation relations in (A.1) are satisfied.

B When are D-terms exact?

In section 2.5, we argued that bulk N = 2 D-terms are exact under some of the su(2|1)` ×
su(2)r ⊂ osp(2|4) supercharges. This observation implies that the S3 partition function
and all correlation functions of su(2|1)` × su(2)r-invariant operators in the dual N = 2
SCFT are independent of the D-term bulk couplings. In this appendix, we consider the
more general question of when D-terms for a supersymmetric algebra are exact under some
supercharge of the algebra. As we shall see, for this to be the case it suffices for the algebra
to contain a nilpotent operator. We then show that N = 1 D-terms in AdS4 are not exact,
and so the N = 1 S3 partition function will generically depend on them.

Let us consider a supersymmetric theory on some curved manifoldM which is invariant
under some supersymmetry algebra g with n fermionic generators q1 , . . . , qn. Furthermore,
let us deform our theory by some local interaction

L =
∫
M

ddxO(x) , (B.1)

which preserves both the R-symmetries (if any are present) and the isometries of M. By
acting with the supercharges qi we can construct new deformations of the theory:

L , qiL , qiqjL with i < j , . . . , q1 · · · qnL . (B.2)
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Here we have used the g anticommutation relations to order the qi’s so that the supercharges
with lower values of i are placed to the left. In general, it is possible that some of the
interactions in (B.2) simply vanish or, more generally, that not all the interactions in (B.2)
are linearly-independent. Linear dependencies would necessarily occur when O(x) belongs
to a short multiplet of the supersymmetry algebra, but they could also be present for certain
special O(x) that belong to long SUSY multiplets. Let us consider, however, the “generic”
case in which no such linear dependencies are present. In this case, O(x) necessarily belongs
to a long SUSY multiplet, and the 2n interactions in (B.2) are a basis for the carrier space
VL of a finite-dimensional representation of g.39

We are interested in studying deformations built from long multiplets that preserve
the supersymmery algebra g. That is, for any L as above we want to find some interaction

LD = a(0)L+
∑
i

a
(1)
i qiL+

∑
i<j

a
(2)
ij qiqjL+ · · ·+ a

(n)
1...nq1 · · · qnL (B.3)

which preserves the supersymmetry algebra g and the isometries ofM, and, in particular,
is annihilated by all qi. Such interactions are the most general analogues of D-terms. In
the following discussion, we assume that such a SUSY- and isometry-invariant LD can be
found, and we study whether or not the partition function depends on it.

In particular, we will now argue that if g contains some nilpotent supercharge, then
LD is exact under this nilpotent supercharge. Without loss of generality we can assume
that q1 is such a nilpotent operator. We can use our basis (B.2) to decompose VL into two
distinct subspaces. Let us define V0 to be the space spanned by deformations

qi1 · · · qimL for which i1 > 1 and ik+1 > ik , (B.4)

and let q1V0 be the image of V0 under q1. Since both V0 and q1V0 are 2n−1 dimensional
spaces it immediately follows that q1 is a bijection from V0 to q1V0. Furthermore, we clearly
have VL = V0⊕q1V0, and q1V0 ⊂ ker(q1), and so from this we conclude that q1V0 = ker(q1).
Thus, any q1-invariant deformation must be q1-exact. In particular, because the D-term
LD is annihilated by all supercharges, it must be q1-exact.

In equation (2.56) of section 2.5, we saw that the N = 2 D-term in AdS4 was exact
under one of the su(2|1)` supercharges. We showed this by directly constructing the AdS4
D-term and then breaking the osp(2|4) superalgebra down to su(2|1)` × su(2)r. Using
the results of this appendix, however, gives us a more direct route to this conclusion.
The su(2|1) superalgebra has nilpotent supercharges,40 and so it follows that any su(2|1)-
invariant D-term is su(2|1)-exact. Because long osp(2|4) multiplets decompose into long

39Note that while local operators transform in infinite-dimensional representations of the supersymmetry
algebra, the integrated operators (B.2) transform in a finite-dimensional representation. For example, the
repeated action of bosonic generators of the supersymmetry algebra on O(x) yields infinitely-many linearly-
independent local operators. By contrast, acting with the bosonic generators on L gives a vanishing result;
this is due to the invariance of L under R-symmetry and isometries of M, as well as the fact that the
integrals of total derivatives vanish.

40The su(2|1) algebra has a u(1)R symmetry, under which the fermionic generators qi and q̄i (where
i = 1, 2 are su(2) indices) are charged. Because no bosonic operator is charged under this u(1)R, it follows
that both qi and q̄i are nilpotent.
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su(2|1) multiplets, any the osp(2|4) D-term is automatically an su(2|1) D-term and therefore
is su(2|1)-exact.

Let us now turn to the case of N = 1 D-terms. The AdS4 N = 1 supersymmetry
algebra is osp(1|4). Since in the N = 2 case we considered boundary operators that
preserve only an su(2|1)`×su(2)r algebra, it is now natural to consider boundary operators
preserving an osp(1|2)` × su(2)r subalgebra of osp(1|4). Unlike su(2|1) ∼= osp(2|2), the
superalgebra osp(1|2) does not contain any nilpotent charges, and so we have to work
harder to check whether N = 1 D-terms are exact or not.

The osp(1|2) superalgebra is generated by the two supercharges q±, along with the
three sp(2) generators X0 and X±, which satisfy the (anti)-commutator relations

{q+, q−} = X0 , {q±, q±} = −X± ,
[X0, q±] = ±q± , [X± , q∓] = −q± ,

[X0, X±] = ±2X± , [X+, X−] = X0 .

(B.5)

For a generic local interaction L which preserves sp(2), the full osp(1|2) multiplet of defor-
mations consists of the four linearly-independent states

L, q+L , q−L , q+q−L , (B.6)

of which only the first and last preserve sp(2). The D-term therefore takes the form

LD = q+q−L+ αL (B.7)

for constant α (we can always rescale LD such that the coefficient of q+q−L is 1). Imposing
the condition q+LD = 0, we find that α = −1

2 , and so

LD = q+q−L −
1
2L . (B.8)

Although LD is q±-invariant, it is manifestly not q±-exact. We thus conclude that N = 1
D-terms generically change correlation functions of osp(1|2)` × su(2)r-invariant operators
of holographic N = 1 SCFTs.

Although we have focused on osp(1|2), it is straightforward to extend our arguments to
the superalgebra osp(1|2m) for any m ≥ 1. In particular, as mentioned above, the N = 1
AdS4 algebra is osp(1|4), which means that the S3 partition function of an N = 1 SCFT
(with no insertions) is in general modified by bulk D-terms. Similarly, the (complexified)
N = 1 supersymmetry algebra on S4 is also osp(1|4). Our argument implies that the S4

partition function is modified by D-terms, as previously shown in [75].

C Another perspective on the boundary real mass deformation

In this appendix, let us present another perspective on the real mass deformation of the
boundary SCFTs on S3 that we discussed from a CFT perspective in section 2.6. As
discussed there, the change in the action is given by mmultiplied by the integral of the linear
combination iJ + K of the scalars in a U(1) flavor current multiplet. (We set the radius
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of S3 to 1 here for simplicity.) In the context of the holographic duality, a flavor current
multiplet on the boundary couples to a dynamical bulk vector multiplet. Let us denote
such a vector multiplet by (X, X̄,Aµ, Yij ,Ωi,Ωi). The SUSY transformation rules are given
in (3.24) with the upper index I omitted. Denoting by (Y 1, Y 2, Y 3) = ~Y = −1

2~τi
jYj

i, the
variation of Y 3 can also be written as

δY 3 = i

4Da

(
−ε̄1γaΩ2 − ε̄2γaΩ1 + ε̄1γaΩ2 + ε̄2γaΩ1

)
+ 1

2
(
ε̄2Ω2 + ε̄1Ω1 + ε̄2Ω2 + ε̄1Ω1

)
.

(C.1)

Let us now identify the operator
∫
d3~x

√
g(~x) [iJ(~x) +K(~x)] that couples linearly to

the real mass parameter. One approach is to identify the boundary operators J(~x) and
K(~x) as limits of bulk operators from the vector multiplet. Another approach, which is the
one we will follow, is to use supersymmetry: the real mass deformation should be invariant
under δA+ with A = 1, 2, and this condition alone will determine the linear term in m up
to normalization.

Note that the spinors T1 and T2 in (2.51) obey the condition PLTA = rγ4PRTA. Then,
the parameters in (2.53)–(2.54) obey ε1 = irγ4ε2 and ε2 = irγ4ε1. Using these relations,
we have

δX = −1
2 ir (ε̄2γ4Ω1 + ε̄1γ4Ω2) , δX̄ = 1

2
(
ε̄1Ω1 + ε̄2Ω2

)
,

δ
(
Y 3 −X − X̄

)
= i

4Da

(
−ε̄1γaΩ2 − ε̄2γaΩ1 − irε̄2γ4γ

aΩ2 − irε̄1γ4γ
aΩ1

)
.

(C.2)

Splitting the coordinates into a = m = 1, 2, 3 and a = 4, we have

δ
(
Y 3 −X − X̄

)
= i

4D4
(
−ε̄1γ4Ω2 − ε̄2γ4Ω1 − irε̄2Ω2 − irε̄1Ω1

)
+Dm (· · · ) . (C.3)

Thus,

δ

(
Y 3 −X − X̄ − 1

1− r2∂r

(
rX̄ + 1

r
X

))
= Dm (· · · ) , (C.4)

and so the quantity

B ≡ lim
r→1

(1− r)3
∫
Sr
d3x
√
γ

[ 1
1− r2∂r

(
rX̄ + 1

r
X

)
+X + X̄ − Y 3

]
(C.5)

integrated over a sphere Sr of radius r is supersymmetric with respect to δA±, with A = 1, 2.
The overall factor of (1− r)3 was chosen so that the r → 1 limit is finite.

The operator B is, up to normalization, the CFT operator that couples linearly to the
real mass parameter: ∫

d3~x
√
g(~x) [iJ(~x) +K(~x)] ∝ B . (C.6)

One can determine the overall normalization constant by computing, for instance, two
point functions of this operator, but we will not pursue that here.
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D Flat limit of the hypermultiplet manifold

D.1 General properties

As mentioned in the main text, in N = 2 supergravity the hypermultiplet scalar manifold
M is a quaternionic-Kähler manifold of negative Ricci curvature proportional to = κ2. For
nH hypermultiplets, we parameterizeM by coordinates qu, with u = 1, . . . 4nH , and let us
denote its metric by h∗uv. Part of the definition of a quaternionic-Kähler manifold is that
it is endowed with a triplet of hypercomplex structures ~J∗uv that are covariantly constant
up to an SU(2) rotation:

∇w ~J∗uv + 2~ω∗w × ~J∗u
v = 0 , (D.1)

where ~ω∗u are functions on the manifold that play the role of the SU(2) connection. Both
the metric h∗uv and the hypercomplex structures ~J∗uv can be obtained from a frame field
as in (4.13), but this detail will not be needed in the discussion that follows.

It can be shown that the quaternionic-Kähler manifolds are Einstein, and in super-
gravity the Ricci tensor and Ricci scalar are normalized to be

R∗uv = −(nH + 2)κ2h∗uv , R∗ = −4nH(nH + 2)κ2 . (D.2)

Another property of the quaternionic-Kähler manifolds is that the SU(2) curvature is pro-
portional to the complex structures, with the coefficient of proportionality related to the
Ricci curvature in (D.2):

~R∗uv ≡ ∂u~ω∗ v − ∂v~ω∗u + 2~ω∗u × ~ω∗ v = −κ
2

2
~J∗uv . (D.3)

D.2 Flat limit

Since the curvature of M is proportional to κ2, when κ → 0, the hypermultiplet scalar
manifold becomes flat, with the metric and the hypercomplex structures approaching the
ones in flat space, as in (4.15), which we reproduce here for convenience:

h∗uv = δuv +O(κ2) , ~J∗uv = ~Juv +O(κ2) , (D.4)

As mentioned in the main text, the SU(2) connection vanishes in this case, but it is im-
portant to determine the O(κ2) term in ~ω∗u. This can be determined from solving (D.3)
at leading order in κ2. From this equation we see that ~ω∗u = O(κ2), and thus at leading
order we can neglect the term quadratic in ~ω∗:

∂u~ω∗ v − ∂v~ω∗u ≈ −
κ2

2
~Juv . (D.5)

A solution of this equation is

~ω∗u = κ2

4
~Juvq

v +O(κ4) , (D.6)

as given in (4.16).
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D.3 Projective space and its flat limit

Amore complete derivation of both (D.4) and (D.6) can be derived from an explicit example
of a quaternionic-Kähler manifold M. We consider the negatively-curved quaternionic
projective space

HPnH ≡
USp(2nH , 2)

USp(2nH)× SU(2) (D.7)

of quaternionic dimension nH and, correspondingly, real dimension 4nH . The constant
curvature metric on this space is a quaternionic analog of the Fubini-Study metric, namely:

ds2
∗ = dqudqu

1− κ2

4 q
vqv

+ κ2 [(qudqu)2 + (dqu J1u
wqw)2 + (dqu J2u

wqw)2 + (dqu J3u
wqw)2]

4
(
1− κ2

4 q
vqv
)2 ,

(D.8)

where repeated indices are summed over regardless of their up/down placement, and where
J1u

v, J2u
v, and J3u

v are the hypercomplex structures in flat R4nH space obeying JiuvJjvw =
−δijδwu + εijkJku

w. For example, ~Juv can be taken to be block diagonal, with each 4 × 4
block on the diagonal being equal to the explicit matrices in (4.31). The Ricci curvature
derived from the metric (D.8) is as in (D.2). The hypercomplex structures ~J∗uv with one
index down and one up are precisely equal to the flat space ones:

~J∗u
v = ~Ju

v , (D.9)

as can be checked by noticing that they obey the required multiplication relations as well
as covariantly-constant property (D.1) with the connection

~ω∗u = κ2

4

(
1− κ2

4 q
vqv
)
~Ju
wqw . (D.10)

Here, again, repeated indices are summed over regardless of their placement.
It is then straightforward to expand (D.8)–(D.10) in κ2 and reproduce (D.4) and (D.6),

and even go to higher orders in the κ2 expansion if one so desires.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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