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1 Introduction

The round sphere free energy has played several important roles in the study of Quantum
Field Theory (QFT) in three space-time dimensions. First, it was conjectured in [1-4] and
later proven in [5, 6] that the sphere free energy F' = —log|Z| provides a measure of the
number of degrees of freedom in 3d conformal field theories (CFTs), in the sense that it
obeys a monotonicity property under renormalization group (RG) flow known as the F-
theorem. In a preceding related development, it was shown that the A/ = 2 superconformal
R-symmetry at the infrared fixed point of RG flows that preserve Abelian flavor symmetry
can be determined through a procedure called F-maximization [3, 7, 8] (see [9] for a review),
which is the three-dimensional analog of a similar procedure called a-maximization in 4d
N =1 SCFTs [10]. F-maximization means maximizing the sphere free energy F over a
set of “trial” U(1) R-charges. For 3d SCFTs with Lagrangian descriptions and at least
N = 2 supersymmetry, it had been shown that F' can be calculated exactly using the
technique of supersymmetric localization [7, 11] (see [12] for a review), as a function of
various deformation parameters such as field theory mass or Fayet-Iliopolous parameters.
This observation has led to remarkable tests (see for example [13-22]) and discoveries [23]
of various field theory dualities, as well as precision tests of AdS/CFT [24-26].! Lastly,
derivatives of the sphere free energy with respect to some of the parameters it depends
on, evaluated at the SCFTs values of these parameters, have been related to integrated
correlation functions [8, 37, 38] that have served as crucial inputs in analytic bootstrap
studies of N' = 6 and N = 8 superconformal field theories at strong coupling [38-44].2
The exact computations of the derivatives of the sphere free energy allowed one to fully
evaluate these correlation functions up to the first few non-trivial orders in the derivative
expansion on the string-theory / M-theory side.

!For the sphere free energy in 3d holographic theories beyond the tree-level supergravity approximation,
see for instance [27-33] for calculations on the field theory side and [34-36] for studies of the bulk dual.
2See [45-48] for analogous studies in four-dimensional ' = 4 supersymmetric Yang-Mills theory.



The last line of work mentioned above raises the following question: What information
about string theory and, in particular, its weakly-coupled supergravity limit, is contained
in the sphere free energy of a CEFT with a holographic dual and in its deformations? In
this paper we begin to answer this question for 3d N' = 2 SCFTs. We choose to focus on
3d N = 2 theories partly because, as mentioned above, the sphere free energy is exactly
calculable using supersymmetric localization in this case, so the answer to the question
posed above has concrete quantitative consequences. Intuitively, we should expect that
since the sphere free energy is calculable using localization, it is a supersymmetric quantity,
and it should therefore contain information only about (certain) supersymmetry-protected
quantities in the bulk also. Our goal in this paper is to make this statement precise.

We consider 3d SCFTs on S? deformed by field theory “real mass” parameters denoted
collectively by m. On S3, one can introduce a real mass parameter for every Abelian flavor
symmetry® of an SCFT by 1) coupling the abelian flavor current multiplet to a background
vector multiplet; and 2) giving supersymmetry-preserving expectation values proportional
to m to the scalars in this background vector multiplet [8]. As explained in [8], if the real
mass parameters m are analytically continued to pure imaginary values, they correspond
precisely to the trial R-charges used in the F-maximization procedure of [7].

To make precise the statement that F(m) captures only certain supersymmetry-
protected information in the bulk, we use an effective field theory approach?® to construct
the 4d bulk theory dual to our mass-deformed deformed 3d SCFT on S3. Thus, we ex-
plore the properties of F'(m) in N' =2 QFT in AdS, which we construct in several ways:
using properties of the 0sp(2|4) supersymmetry algebra, as we do in section 2, or starting
from N = 2 superconformal gravity and using superconformal tensor calculus, as we do
in section 3, or starting from on-shell matter-coupled N/ = 2 supergravity, as we do in
section 4.

In particular, in sections 2 and 3, we analyze various types of supersymmetric bulk
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interactions referred to as “D-terms,” “chiral F-terms,” “non-chiral F-terms”, “flavor cur-

)

rent terms,” as well as 1/4-BPS interactions. We define all these supersymmetric bulk
interactions precisely using the osp(2]4) algebra.” As we will show, the o0sp(2|4) algebra
implies that the sphere free energy (or derivatives thereof with respect to m evaluated at
the conformal point, m = 0) is independent of all D-terms, 1/4-BPS interactions, and non-
chiral F-terms, but can in principle depend non-trivially on the chiral F-term couplings or

on the coupling constant of the flavor current term, also known as a bulk real mass term.

3The Abelian flavor symmetry group could be a subgroup of a non-Abelian flavor symmetry group.

“4In sections 2 and 3, our construction can accommodate a large class of interaction terms, but in section 4
we will restrict to two-derivative interactions.

SWhen defining these interaction terms, we require the supersymmetry variation of the term in the bulk
Lagrangian to transform into a total derivative. Since AdS4 has a boundary, such a total derivative might
integrate to a non-zero boundary term. If this is the case, then our bulk interaction must be supplemented
by a boundary interaction that ensures that the supersymmetry variation of the sum of the two interactions
vanishes. (See, for example, [26, 49] for instances where such boundary terms are necessary in order preserve
supersymmetry.) In this work, we will assume that for the interactions we consider we can always find a
suitable boundary term that ensures supersymmetry invariance. It would be interesting to investigate
further precisely which interactions need to be supplemented by boundary terms.



This stands in contrast with A/ = 1 theories in AdS, for which, in general, the sphere free
energy has non-trivial dependence even on the A" = 1 D-term couplings.®

In section 2, we show that the construction of the various supersymmetric interactions
and the derivation of their properties can be done abstractly, without explicitly writing
the supersymmetry transformation rules in detail. This analysis relies only on the AdS
supersymmetry algebra osp(2]4). As far as we know, this is a novel way of studying the
supersymmetry properties of interactions in AdS space.

It is also instructive to explore a systematic construction of supersymmetric interac-
tions in AdS following the approach pioneered by Festuccia-Seiberg [50]. In this method
one can obtain theories with global AdSy supersymmetry by starting from an off-shell su-
pergravity theory and fixing an appropriate background for the fields of its Weyl multiplet.
For 4d N = 2 theories, such a construction was considered in [51] starting from gauge-fixed
N = 2 conformal supergravity [52]. The construction of the AdS background of conformal
supergravity is similar to the S* construction in [51, 53, 54] and it requires compensating
vector and tensor multiplets. We review the AdS4 construction in section 3. We apply it
to several examples and relate it to the discussion in section 2.

While in the approaches developed in sections 2 and 3, it is clear how to construct
the various supersymmetric interactions, this construction is often quite cumbersome, es-
pecially for D-terms. One important shortcoming is that, to our knowledge, the simplest
long multiplet, namely an N' = 2 massive vector multiplet in AdS (consisting of one massive
vector field, five real scalar fields, and four Dirac fermions), has not been constructed using
either of these approaches. The study of this multiplet is important because this multiplet
arises generically in the effective AdS, theories corresponding to N' = 2 AdS, backgrounds
of M-theory. Thus, in section 4, we develop another approach to obtain N' = 2 effective
field theories in AdS. This approach is based on taking a certain rigid limit of NV = 2
on-shell supergravity coupled to matter. In the N = 1 case, a similar decoupling limit
starting with on-shell A/ = 1 supergravity was used in [49, 55] to obtain N' = 1 theories
in AdS. We extend the method to several examples of A/ = 2 theories. In particular, we
apply the Stueckelberg mechanism to construct the Lagrangian of the long vector multiplet
and some of its interactions.

A shortcoming of the method of section 4 is that it may not be clear whether a
particular construction corresponds to D-terms, F-terms, or 1/4-BPS interactions. It is
reasonable to conjecture that the bulk theory of the long vector multiplet arises only
from interactions that do not affect the S free energy. To support this conjecture, we
show in section 5 that the one-loop partition function of a free bulk N' = 2 massive
vector multiplet with mass my is indeed independent of my . As a more intricate piece of
evidence for the conjecture, we show in section 6 that the full supersymmetric exchange
contribution of a massive vector multiplet to the fourth derivative g%i |m:0 vanishes.” These

As an example, we will consider a free massive ' = 1 vector multiplet in the one-loop approximation in
section 5. In this case, the mass term is a D-term, but the one-loop contribution to the sphere free energy
does depend non-trivially on the vector multiplet mass.

"We focus on the fourth derivative of F because this is the lowest derivative to which the long vector
multiplet contributes.



calculations indicate quite explicitly that the sphere free energy F(m) cannot be used
to determine the vector multiplet mass my, which in the boundary theory corresponds
to the scaling dimension of a long single-trace superconformal multiplet with a scalar
superconformal primary. By contrast, the hypermultiplet mass my arises from a conserved
current term in the bulk, and one might expect that F'(m) depends non-trivially on my.
Indeed, we calculate the one-loop partition function of a hypermultiplet in section 5 and
exhibit this fact.

We close this introduction with a more compact summary of the rest of the paper. In
section 2, we construct the various supersymmetric interactions using the osp(2]4) algebra
and show that in theories with holographic duals, F'(m) is independent of the D-terms, the
non-chiral F-terms, and the 1/4-BPS interactions. In section 3 we relate our construction
from section 2 to the more standard way of obtaining effective field theories on curved man-
ifolds using background off-shell N' = 2 supergravity. In section 4 we present yet another
approach for constructing effective field theories in AdS that is based on a rigid limit of
on-shell N/ = 2 supergravity. We use this approach to construct supersymmetric actions for
a massive vector multiplet. In section 5, we evaluate the bulk one-loop contribution to the
S3 partition function coming from free massive vector multiplets and hypermultiplets, and
show that, while the hypermultiplet contribution depends non-trivially on the hypermulti-
plet mass, the massive vector multiplet contribution is independent of the vector multiplet
mass. In section 6, we consider the contributions to the fourth derivative g%”m:o coming
from the tree-level exchange of a massive vector multiplet and show that it vanishes. The
observations of sections 5 and 6 support the conjecture mentioned above that the mass
term in the massive vector multiplet action as well as the interactions between massive
vector multiplets and massless vector multiplets are either D-terms, non-chiral F-terms,
or 1/4-BPS interactions. Lastly, we end in section 7 with a discussion of our results and
future directions.

2 Supersymmetric interactions in AdS

The goal of this section is to see what kinds of supersymmetric bulk interactions the sphere
free energy F'(m) depends on. We study this question perturbatively in m, meaning that
we study the dependence of derivatives of F'(m) with respect to m, evaluated at m = 0, on
the bulk interactions. The advantage of working perturbatively in m is that we can expand
the action around the AdS background that corresponds to the CFT at m = 0, and thus
we can make use of the AdS supersymmetry algebra osp(2(4).

As we explain in more detail below, the supersymmetry algebra in either AdS or flat
space has eight supercharges, four of which are left-handed and four right-handed. In
addition half of the right-handed (left-handed) supercharges have R-charge +1 while the
other half have R-charge —1. Supersymmetric interactions can preserve various amounts

of SUSY. In particular, in flat space, we may consider the following interactions:®

e D-terms, obtained by acting with all 8 supercharges on some scalar field X.

8In superconformal field theories, these interactions were discussed in [56].



o 1/4-BPS interactions, obtained by acting with all four supercharges of a given R~
charge as well as two supercharges of the opposite R-charge and the same chirality
on some scalar field X.

e Non-chiral F-terms, obtained by acting with all 4 supercharges of a given R-charge
on some scalar field X.

e Chiral F-terms, obtained by acting with all 4 supercharges of a given chirality on
some scalar field X.

e Flavor current terms, obtained by acting with 2 supercharges on some scalar field X.

Apart from the D-terms, in all the other cases, it is assumed that X cannot be obtained
by acting with supercharges on some other field and that it obeys appropriate shortening
conditions. In AdS, we keep the same terminology above, but we allow, in principle, each
supersymmetric term described above to receive corrections in 1/L, where L is the curvature
radius of AdS. Such corrections are in general needed in order to preserve supersymmetry.

As we will argue, of the types of supersymmetric interactions mentioned above, the
D-terms, 1/4-BPS interactions, and the non-chiral F-terms are exact with respect to one
of the supercharges preserved by the boundary mass deformation, while the chiral F-terms
and the flavor current terms in general are not. It follows that F'(m) is then independent
of the former type of interactions, but it could depend on the latter.

Let us now provide more details, starting with the SUSY algebra and its properties in
sections 2.1 and 2.2, following with the construction of the various supersymmetric inter-
actions in section 2.3, and ending with the proof of Euclidean SUSY and SUSY exactness
in sections 2.4 and 2.5.

2.1 N =2 supersymmetry algebra in AdS,

N = 2 supersymmetry in AdSy is based on the osp(2]4) superalgebra that acts locally on
the fields. Since this algebra and its properties are the main ingredients in the construc-
tion of supersymmetric interactions, let us take a moment to review it. Since we will be
working with spinors, we should be clear on our conventions: we will follow the conventions
established in [57] for spinors, gamma matrices, index placement, etc.

The bosonic subalgebra of 0sp(2]4) contains the AdS spacetime algebra so(3,2) = sp(4).
In our treatment,” the ten generators of sp(4) split into four “momenta” P, and six local
Lorentz generators M,,. The P, act on fields as covariant derivatives P, = D,,'” while the
M, transform only the frame indices of vectors and spinors, e.g. for a spinor field ¥(zx),
the My, act as MgV (x) = —%fyab\lf(x). In flat space, the P, commute, but in AdS, they
satisfy

1
[Pa7Pb] = ﬁMabv (21)
90ur treatment of the algebras sp(4) and osp(2|4) is related to a more standard presentation in ap-

pendix A.
"Here P, = D, = e/ D,, where e/ and D,, are, respectively, inverse frame fields and standard covariant
derivative for AdS4.



where L is the radius of AdS4. (See, for example, section 12.6.1 of [57].) The other
commutators between M, and P, simply follow from the Lorentz transformation properties
of P, and My:

[Pas Mpe] = 2n4pP) [Map, Mea) = 4najeMap) - (2.2)

The superalgebra osp(2|4) extends the sp(4) AdS algebra of P, and M, by two left-
handed fermionic generators Q;, i = 1,2 (obeying PrQ; = @Q;) and two right-handed
fermionic generators Q! (obeying PrQ! = Q¢).!! There is also a U(1)z symmetry generator
R with the property that Q' and Q? have R-charges +1 and —1, respectively, and Q; and
()2 have R-charges —1 and +1. This information is incorporated in the commutation
relations

[R,Q;] = -7/ Qy, [R,Q"] = 73;/Q’, (2.3)

where 73;7 = i(03);7, where o3 is the third Pauli matrix.!? The commutators of the s0(3,2)
generators with the supercharges are

1 . A 1 .
[Pa, Q] = —ﬁTsiﬂaQ] ) [Po, Q'] = _iTéj’Yana 20
1 ~ 1 ; )
[Map, Qi] = _§7abQi; [Map, Q'] = _§'Yab@l-
Last and most important, the anti-commutator of the supercharges are
- 1 /1 ab
1Q;,Q;} = of \ g7V Map + it ) Pr,
S 1 /1 . iy
(@@} = o7 (3787 Map + <7R) Pr, (25)
2L \2
_ . 1.
Here, e12 = —2! = g15 = —£9; = 1.13 All commutators not explicitly written in (2.1)—(2.5)

vanish.

It is useful to note that complex conjugation acts by raising all the lower ¢, j indices
and lowering all the upper ones, without any additional minus signs. It is a general rule
that, in addition to complex conjugating all the numerical factors, complex conjugation
interchanges P;, and Pgr and hence it transforms left-handed spinors to right-handed ones
and vice versa.

1 The four-component spinor indices are usually suppressed; when needed they are denoted by o, 3, . . ..
The Q¢, Q; may be viewed as the chiral projections of Majorana spinors.

12T section 3 we derive the actions of 0sp(2|4)-invariant theories from a parent superconformal theory
invariant under the algebra su(2,2|2) with R-symmetry su(2) x u(1). The Pauli matrix 73 is a convenient
choice of a direction within su(2) for the residual u(1) & so(2) of the osp(2[4) theories.

3The 4, 4,... indices are raised and lowered following the NW-SE convention. In particular, note that
(73)i5 = T3i"er; = (i01)s; and (13)" = %137 = (—io1)¥. For useful information on the 77 matrices, see
appendix 20.A of [57]. It is important to note that the upper/lower placement of indices %,j,... on all
spinors cannot be changed because it indicates their chirality.



In supersymmetric field theories, invariant interaction terms are commonly defined as
integrals of the top component of various multiplets of operators. The SUSY variations
of these top components are total spacetime derivatives. In the remainder of this section
we construct several interaction terms for N/ = 2 SUSY in AdS, without the need for a
detailed description of the multiplets. It is sufficient to apply properly chosen products of
the supercharges to the lowest weight operators which define each multiplet.

2.2 Identities obeyed by the supercharges

To construct the supersymmetric actions directly from the algebra, all we need are a few
identities obeyed by the supercharges. The first is the (Majorana-like) flip property

Q:iQ; = Q;Q; — %é‘in, (2.6)

which can be derived from the first equation in (2.5).'* For strictly anti-commuting spinors,
as in flat space, @i(@j = @j(@i and the second term in (2.6) would vanish. This term is a
consequence of the curvature of AdS. Similarly, for strictly anti-commuting Q;, the cubic
term E@i@j(@k + cyclic permutations in i, 7, k would vanish (for any spinor parameter €) by
the Schouten identity. But because Q; obey the first equation in (2.6), we have instead the
modified Schouten identity

- ) 1 _ 1 1 )
€QiQ;Qy, + cyclic = EﬁijwakaMab = 5 G €QuR + 7 75;€Qk + cyclic, (2.7)
where “cyclic” refers to the two cyclic permutations in ¢, j, k. Lastly, there are two com-

mutators that will be needed:

[EQZa Qj@k] = _§5j€PQk - §5k€PQj - Z5k7—3jl€Qla
B —.ab ii i . Ma = ” i VR
[E@l, @]Qk] _ €y (T3 j@k + 73 k’Q]) b + 6(5 ij +e k@]) (28)
4L 2L
. 373i1€Qk — £ij731 €Q,
2L '

They can be derived straightforwardly using the algebra given in the previous subsection. In
addition to (2.6)—(2.8), we also have the complex conjugate identities obtained by changing
the positions of all the 4, j, k indices. The relations (2.7)-(2.8) are valid for an arbitrary
spinor €, but when we apply them to AdS supersymmetry below, € will be a Killing spinor
to be defined shortly.

2.3 Supersymmetric interactions

Given the N = 2 AdS supersymmetry algebra reviewed above, one can straightforwardly
construct supersymmetry-preserving interactions that are based on multiplets of the AdS

To derive it, note that with spinor indices written out explicitly, the first equation in (2.5) reads,
QiaQ;” + Q;°Qia = £ 73i;(Y**Pr)a” Mab + 5521 R(PL)o”. Contracting this expression with C*5 = —65
gives the desired result. See section 3.2.2 of [57] for more information on the C matrix and on using spinor
indices.



supersymmetry. Note that for any (fundamental or composite) field ®, the supersymmetry
variation 6P is

6P =€Q;® + QD (2.9)

with SUSY parameters € and ¢;, which are Majorana spinors, projected by Pr and Pk,
respectively. In flat space, the SUSY parameters are constant spinors, but this is not so in
AdS, where they must obey Killing spinor equations. Indeed, the variation § should obey
§D,® = D,6® for any ®. This condition requires'®

I

. , 1 ;
Dgye' = _ET?)J’Y(IGJ' , Dgei = 9L 3ijYa€’ - (2.10)

These are the Killing spinor equations for A" = 2 SUSY in AdS. The appearance of 73 may
be unfamiliar, but one can put these equations into a more familiar form after defining
e = et — 7l and ¢ = €2 — 7¥¢;. The equations (2.10) then imply Dye = ﬁ'yae and
D.ée = ﬁ'yae’ , which are the more standard AdS Killing spinor equations. From ¢ and ¢’
we can extract €’ and ¢; by performing the appropriate chiral projections.

A supersymmetric interaction is a term Siy; in the action that obeys §Si,x = 0. For
the F-terms, D-terms, and flavor current terms we will construct, Sy is an integral of a

local operator Ojyg, namely

Sint = /d4ﬂ§ vV —g Oint s (211)

such that dOjy is a total spacetime derivative.

2.3.1 Chiral F-terms

The chiral F-terms are osp(2|4)-invariant interactions constructed from (composite) AdS
chiral multiplets. A chiral multiplet is a multiplet that contains an R-symmetry neutral
scalar field A that is annihilated by all four right-handed supercharges:

Q'A=0, (2.12)

for i = 1,2, as well as all of the other fields that can be obtained by acting with @Q; on A
— see table 1.1% (An anti-chiral multiplet would obey Q;A = 0 instead.) The condition
QA = 0 is a shortening condition in AdS.

The F-term preserves 0sp(2|4), and therefore it must be R-charge neutral and a Lorentz
scalar. From table 1, we see that there are three such fields:

R-charge neutral scalars: A, QQA4, QQ:Q.Q.A (2.13)

15§D,® = Dy6® implies (D&)Q; + € [Py, Q;] + (Du&)Q" + &[Pa, Q'] = 0, which, together with the
commutation relations in (2.4), implies (2.10). We will derive these Killing spinor equations in a different
way from conformal supergravity in section 3.

16 Acting with Q° does not produce any new fields because Q° can be (anti)commuted to all the way to
the right using the algebra, where they annihilate A. Since {Q;,Q'} = {Q’,Q;} = —%5{ P, and since P,
acts on the fields as a covariant derivative P, = D,, the commutators generated during this process give
covariant derivatives of the fields already present in table 1.



field su(2)r, @ su(2)g spin | U(1)g charge
A (0,0) 0
QA (%, o) +1
QuQ)A (0,0) 0, +1
e9Qiy*Q; A (1,0) 0
Q0124 (3.0) +1
Q:1Q1Q2Q24 (0,0) 0

Table 1. The field content of the chiral multiplet, with all operators being complex. It contains
16 + 16 independent real operators, where operators of spin (jr,,jr) are counted with multiplicity
(22 +1)(2jr +1).

Since we would like the F-term to preserve osp(2[4), it should be constructed as an integral
of some linear combination of the R-charge neutral scalars. We claim that the F-term is
given by the expression

Sp = /d4ﬂc V=g Or(x),

6

with  Op(z) = S A) + %©1@2A<x> + Q101 QQeA(),

(2.14)

as we will now show.
To prove (2.14), it is useful to consider the more general ansatz

Or(z) = c1A(z) + c2Q1Q2A(z) + Q1Q1Q2Q2A(z) . (2.15)

Using My A(z) = RA(z) = 0 and the rearrangements (2.7) and (2.6), one can reverse the
indices 1 and 2 in (2.15) and write the equivalent form

Or(z) = c1A(z) + 2Q2Q1 A(z) + Q2Q2Q1 Q1 A(z) . (2.16)

Since the Killing spinor equations (2.10) relate €! to ez and €2 to €1, the total variation (2.9),
with & = Op, splits into the two independent terms

('Q1 + &Q*H)0r, (61Q' + €Q2)Op, (2.17)

each of which we must separately require to be a total derivative.

First, let us compute (e'Q; + €Q?)Op. The first part, €' Qi O, is easier because the
Schouten identity implies €'Q;Q:Q; = 0, and so € Q; acts only on the first two terms
of (2.15):

iCQ

€Q10F = <C1 + L) eQiA -

Co _
7 QA (2.18)
On the last term, we used the Schouten identity (2.7) and the flip property (2.6) as well
as the fact that A is annihilated by both R and My,. To compute é&Q?Op, it is easier to
start with (2.16). We use e2Q?A = 0 as well as the commutation relation (2.8):

_ T C2) _ _ =

a0 0r = (; - 7 ) aP®A - DA%, (2.19)



When summing together (2.18) and (2.19), we should use the equality Dgéay® = %El,
which is a contraction of the Majorana conjugate of (2.10). Note that this implies that for
any spinor Y, the sum of céol)Y + ¢/Y is the total derivative cD,(e27*Y) provided that
the coefficients satisfy ¢/ = %c. Applying this observation to the sum of (2.18) and (2.19)
gives us two equations for the parameters ¢; and co, namely

g 21 (1 c c2 27
icp _ 20 (i ¢ _e_ 2 2.20
“rTT I <L 2) ’ 2~ L’ (2:20)
which have the solutions
6 43
c1 = ﬁ’ Cy = f . (221)
This proves that the F-term must be of the form in eq. (2.14). Moreover, we have also
shown that
_ _ _ ) _
EQ+a@)0r=D1", V= -a (104+Q0Q4) . (22)

which is a total derivative, as advertised. The same calculation, with the indices 1 and 2
swapped on the supercharges and on the Killing spinors, shows that the second quantity
in (2.17) is also a total derivative:

= — Ta 6 — - .a i B
(62(@2 + 61(@1)0F = Da\IjFa \I/F = —€17 (LQQA + Q1Q2Q2A> . (223)
Thus, O is a total derivative,
60p = Do (V% + 0%, (2.24)

which shows that the variation §Sp of the F-term interaction Sp = [d*z\/—gOp(x) is
a boundary term: 6Sp = [ d%x/—yng (¥ + %), where n, is the outward pointing
normal and /=7 is the square root of the determinant of the boundary metric. Thus,
SF is supersymmetric provided that W% + \IJ‘}; vanishes at the boundary sufficiently fast.
Alternatively, it may be possible to add a pure boundary term to Sy whose variation would
cancel 6Sp precisely. See also footnote 5 and the Discussion section.

2.3.2 Flavor current term

Another supersymmetric term in the bulk comes from a flavor current multiplet in AdS.
We will provide a more systematic description of this multiplet in the next section, but for
now we note that the lowest components of the multiplet are the three J;; = Jj;, subject
to the reality condition J¥ = Ji5. (Indices are raised/lowered with the e-symbol.) The
reality condition implies that the component iJyo is strictly real, while Jy; and Joo are
each other’s complex conjugates. The R-charges are determined by the transformation
rule [R, J;;] = —Tgikjkj —nglJil. This tells us that Jio, Ji1, Joo have R-charges 0, —2, and
+2, respectively. In addition to these facts, the flavor current multiplet is also defined by
shortening conditions that restrict the fermionic components:

Qudjr = QUJ® =0. (2.25)

~10 -



field su(2)r @ su(2)g spin | U(1)g charge
J12 (0,0) 0
J11, Ja2 (0,0) -2,2
Q1J12,Q2J12 1.0 -1,1
Q' J12,Q% 12 0,3 1,-1
Q1Q2J12 (0,0)
Q'Q?J12 (0,0)
(Q'°Q; — Q%4*Q2)J12 (%, %) conserved

Table 2. The field content of the flavor current multiplet. It contains 8 4+ 8 independent real
operators.

Apart from J;;, the other independent fields in the multiplet are constructed by acting with
Q; and Q' on Jji, subject to the constraints (2.25) — see table 2 for a list of independent
operators. Importantly, the multiplet contains a conserved current, so it is necessarily asso-
ciated with a U(1) symmetry of the effective field theory in AdS. (We will see in section 3.4
that a representation of the superconformal algebra on this multiplet’s component fields
requires that the top component is a conserved current with scale dimension A = 3.)

A supersymmetry-preserving deformation involving the fields of this multiplet must be
R-charge neutral. In addition to Ji2, there are two other R-charge neutral scalar fields in
the multiplet, namely Q;QsJi2 and its complex conjugate is —Q'Q?J;o. Thus, the flavor
current term must be a linear combination of

R-charge neutral scalars: Jiz, Qi1QaJi2, Q'Q%Jys. (2.26)
As we will show, the osp(2|4)-invariant term in the action is

Sy = /d4x¢fgoJ<x),

Jia(z)
L

(2.27)

with  Oy(z) = —3i + QiQaJ12(z) — Q'Q%J1a(x) .

To show that this is the only o0sp(2|4)-invariant linear combination of the scalar fields
in (2.26), we proceed as in the previous section. We study the action of €Q; and €Q* on

the general linear combination

Oy = aJiz + bQ1QaJ12 + cQ'Q* 12, (2.28)

The quantities €Q;Jio and €Q%Jy» cannot be simplified further, so we proceed to the
second operator, noting that we can write O = Q1Q4Ji2 in several different ways:

Op = Q1Q2J12 = Q2Q1J12 = —%@1Q1J22 = —%QQQQJH- (2.29)

The second equality follows from the flip property (2.6) and the others follow from the
shortening condition (2.25). Let’s calculate. First, since Q;Q;Q; = 0 due to the Schouten
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identity (2.7), we have

éQ0, = _%E1Q1©1Q1J22 =0. (2.30)
Similarly, we also have

EQ0, = —%EQQ2@2Q2J11 =0. (2.31)
To calculate €,Q'0,, we start with the form O, = —%QlQngg = —%Ql(@lju. The

shortening condition allows us to write
aQ'0, = —%[ElQl,@lQl]Jll = —ePQaJ12 + %€1Q1J12 ; (2.32)
where we used (2.8) and shortening again. A very similar computation gives
Q%0 = —&PQ1J12 + %€2Q2J12. (2.33)
The sum of the four previous equations gives the full SUSY variation of Oy, namely

501) = % (El@ljm + E2@2J12>
— (e1PQaJ12 + 1PQ1 J12) -

(2.34)

The variation of the third operator in (2.28), namely O, = Q'Q%Jys, is the complex
conjugate of (2.34):

—1
60, = — (€' Q112 + €QaJ12
L ( ) (2.35)
- (EIlDQlez + EszlJm) .
The SUSY variation of @7 can now be assembled as
007 =adJiz +b6Oy + cdO,
ic\ (a -2 LW = 02
= (a - L) (6 Q1J12 + € Q2J12) + (a + L) (61@ Ji2 + €Q J12) (2.36)
—b(apQ2J12 + EPQ1J12) — ¢ (gllDQQJm + EQ]?QIJH) ;
Using Dq€e; = ﬁ?’ya, Dgét = —ﬁ«?g%, etc. we see that in order for (2.36) to be a total
derivative, the following equations must be obeyed
21 ic 21 ib
[ P —_ R = _— . 2.
7 (a L)’ 7¢ (a—i—L) (2.37)
The solution is c = —b and a = —%b. Taking b = 1 reproduces (2.27). In addition, we have

also shown that

005 = DV, T = —67°QaJ12 — €7°Q1J12 + Q% 12 + E9°Q1 J12. (2.38)
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2.3.3 D-terms and similar interactions

In this section we provide a unified treatment of the first three interactions listed at the
beginning of this section. We study the expression

Sip — / d'z/=g0(z), O@) =0 Q*Q?B, (2.39)

where B(z) is a field with R-charge +4 that in (2.39) is acted on by all four supercharges

of R-charge —1. All the interactions can be written either in this form or as its complex

conjugate. We focus on (2.39) since the analysis of the conjugate form is entirely analogous.
The field B(z) has the following properties in the three cases of interest:

1. D-terms: B = Q2Q, Q'Q'X, for an R-neutral scalar field X.

2. 1/4 BPS terms; B(z) takes either of two possible forms: i) B = QoQoX where X
satisfies Q' X = 0, or ii) B = Q'Q'X where QX = 0.
3. Non-chiral F-terms: Q2B = Q'B = 0.

In the last two cases we also assume that B cannot be obtained from the SUSY variation
of another field. Note that Q2Q? commutes with Q;Qy, so those operators can be written
in any order in (2.39). Further, of all fields obtained by acting with the supercharges on
B, O is the only R-charge neutral scalar, so (2.39) is the only supersymmetric invariant
candidate.

We now show that (2.39) is supersymmetric. To be precise, we show that

€Q+&Q)0, (aQ'+eQ)o (2.40)

are separately total derivatives. The first condition is easy because the Schouten iden-
tity (2.7) and its conjugate imply that €'Q; Q;Q; = 0 and &Q? Q?Q? = 0, so

0,0 =6Q*0=0 — (€'Q1 + Q%0 =0. (2.41)

For the second quantity in (2.40), we start with €,Q'O. Notice first that €,Q'B = 0 in the
three cases of interest.'” Thus,

&Q'0 = [6Q', @1Q: Q*Q? B = <[€1Q17@1@1] Q’Q* + Qi [ngl,@zQzD B. (2.42)

Using the conjugate of (2.8) as well as RB = 4iB and the fact that My, annihilates scalar
operators, we obtain

o2
6Q'o = (—EllDQl Q’Q* + Qi 2%11_/@ ) B. (2.43)

We then swap the order of €,Q? and Q;Q; because they commute:

212@ @1Q1> B. (2.44)

6Q'o = <_Ellp@1 Q*Q? +

"Depending on which case we consider, we may have to use [Q', Q2] = 0 and the conjugate of (2.7) or
the shortening conditions obeyed by B.
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We can follow the exact same steps to evaluate e2Qy0, with the result

2ie2Q,
L

Q0 = (—eﬁw@z QiQ: — @2@2> B. (2.45)
Adding together (2.44) and (2.45) and using D,€é; = ﬁ?% and D,é® = —ﬁ@lva, we
exhibit the desired total derivative:

(6Q'+ Q)0 = DUy, ¥h = (-ar"QQ*Q* - &' QuQi) B, (2.46)

This information, together with (2.41), establishes that 6O is a total derivative. Thus
St = [ d*z\/—g O is supersymmetric, provided that V¢ vanishes at the boundary, or
that appropriate boundary terms are added to Siy.

2.4 SUSY in Euclidean AdS and its Killing spinors

Since the physics of interest in this paper involves supersymmetric field theories on S3, we
now review the formulation of Euclidean SUSY using the conventions of [26]. In particular,
we replace 79 with 4* and keep the other 4™, with m = 1,2, 3 unchanged:

0 onm 4 0 —if
m _ _ 2.4
Y <0m0>, Y (Z.I()), (2.47)

where o, are the Pauli matrices, and I is the 2 x 2 identity matrix. All the equations
presented above still hold with the obvious changes, e.g. \/—g — /9.

Since we will consider the effective action expanded around (Euclidean) AdS, also
known as the hyperbolic space H?, let us present an explicit parameterization of H* and
solutions to the Killing spinor equations. We write the H* metric (set the curvature radius
L =1 for simplicity) in sphere slicing as
4

dsQ:m(

dr? + T'QdS%;g) , (2.48)
where dS%g is the line element on the unit-radius S3. The coordinate r is a radial coordinate
ranging from r = 0 to 7 = 1 at the boundary. The sphere slicing made manifest in (2.48)
is convenient for studying CFTs placed on S3. We can take the frame e = ey dzt to be

m 2r ATTL 4: 2
1—r2

T1o2¢ €

e dr, (2.49)

where é™, m = 1,2, 3 are frame vectors on an S3 of unit radius.
The AdS Killing spinor equation

D,T = %%T (2.50)

has 4 linearly independent solutions that can be taken to be

o1 (—irQ) oL (—z’r@)
vie2\a ) Vi e ) (251

e 1 &1 7o 1 &2
vi—e i) Vi e
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where (12 are two linearly independent solutions to the S3 Killing spinor equation V;¢ =
+%ai§ , and & 2 are two linearly independent solutions to the S? Killing spinor equation
Vi€ = —%aif on S3. We normalize these spinors using ({io2¢s = 1 and & io9éy = 1.
Note that, with this normalization, the determinant of the 4 x 4 matrix whose columns are
the T4 is'®

det (T1 Ty Ty T4) —1. (2.52)

This equation will be very useful shortly.

For our N/ = 2 theories, we should solve the Killing spinor equations (2.10). As
explained after eq. (2.10), €' 4 iex and €2 + ie; obey the equation (2.50) that we solved
above. Thus, we have the following solutions to the N’ = 2 Killing spinor equations: there
are 4 solutions of definite chirality

el =P Ty, €a = —iPrTx, =0, €6 =0, (2.53)
with A =1,...,4, and 4 more solutions

1_ _ 2 _ _

e =0, € =10, € =PrTy, €1 = —iPrTy . (2.54)

Thus, using § = €Q; + Q" we define and use below the eight SUSY variations
Sar =T (@1 - in) . 04 =Ta (@2 — in) , (2.55)

with A =1,...,4. The £ index denotes the fact that if we act with d44 changes the u(1)g
R-symmetry by charge by +1.

If we restrict to A = 1, 2, then the four such supercharges in (2.55) generate an su(2|1)
subalgebra. (The same is true for A = 3,4.) We see from (2.51) that T4, with A = 1,2 only
involve the boundary spinor ¢ and Ty with A = 3,4 only involve the boundary spinor &.
On S3, it can be checked that bilinears in ¢ and bilinears in ¢ give, respectively, S? Killing
vectors corresponding to the su(2), and su(2), factors of the su(2), x su(2), isometry of S3.
Thus, the spinors ¢ extend su(2), x su(2), to su(2|1), x su(2),, while the spinors & extend
it to su(2)y x su(21),.

2.5 SUSY exactness and independence of interaction couplings

Our primary goal is to understand what bulk interactions affect the mass-deformed sphere
free energy F'(m) of the boundary theory. However, this observable is a particular case of
a more general class of observables with the same property, so we can prove the following
more general result:

In an N = 2 SCFT on S3 with a holographic dual, the correlation functions of any
boundary operators invariant under su(2|1), x su(2), are independent of the interactions
considered in section 2.3.3, but could depend non-trivially on the other couplings. (A similar
statement holds for operators invariant under su(2), x su(2|1),.)

¥Note that the Killing spinors used in this paper are commuting.
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The abstract proof of this statement is very simple given our construction from sec-
tion 2.3.3, and it is done in two steps. The first step is to note that since (2.52) implies
that Q1Q; Q?Q? = 44124634 041, we can write (2.39) as

(’)(ac) = 51+P($) s 'P(J}) = 452+53+54+B(x) . (2.56)

Thus, O is d14-exact. A similar argument shows that O is also §4-exact with any A =
1,...,4.

The second step is to use the Ward identity to show that any correlation functions of
O(x) and other operators (in the bulk or in the boundary theory) that are §;4-invariant
must vanish:

(O(x) (any 014-invariant operators)) = d14(P(x) (any d;4-invariant operators)) = 0.
(2.57)

Integrating over = then implies that the set of Witten diagrams associated with a given
Sint must vanish. Since any su(2|1), x su(2),-invariant operator is in particular invariant
under d14, the statement that the CFT correlators of su(2|1), x su(2),-invariant operators
are independent of the class of interactions considered in section 2.3.3 follows.

This proof does not apply to the chiral F-term of section 2.3.1 or to the flavor current
term of section 2.3.2, as they are not d4-exact. No analogue of (2.57) holds for these inter-
actions and so the sphere partition function may depend on the corresponding parameters.
We will see in examples that this is the case.

As we have seen, because D-terms (and also 1/4-BPS terms and non-chiral F-terms) are
both §14-invariant and d;-exact, they cannot effect d14-invariant correlation functions. In
appendix B we consider the more general question of when D-terms for a given superalgebra
are exact under some supercharge in the superalgebra. We show that the existence of a
nilpotent supercharge (that is a supercharge which, like 414, squares to zero), suffices to
prove the exactness of D-terms.

The N = 1 supersymmetric algebra osp(1]|4) does not contain nilpotent supercharges,
and so we can ask whether in this case D-terms are exact under any of the supercharges.
In appendix B we show that they are not exact. As a result, no analogue of (2.57) holds in
this case, and so the N' = 1 S3 partition function will generically depend on bulk D-terms.

2.6 The real mass deformation on the boundary

Let us now apply the general statement shown in the previous subsection to conclude that
F(m) is independent of the SUSY exact couplings. To make things concrete, let us consider
the case where the 3d N/ = 2 SCFT has a U(1) flavor symmetry with flavor current j,.
The N = 2 superconformal multiplet that contains the conserved current also contains a
dimension 1 real scalar J and a dimension 2 real scalar K, and a dimension-3/2 complex

fermion =.19

9Note that the conserved current multiplet in the boundary SCFT is of course different from the bulk
conserved current multiplet studied in section 2.3.2.
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Suppose we normalize the bosonic operators so that, in flat space,

PN T 9 1
(Ju ()4 (0)) = W(‘Sm/a - 8#‘9”)‘:??7

T

(J(2)J(0)) = 167277 (2.58)
(K(T)K(0)) = w

for some normalization constant 7. The correlation functions on S3 can be obtained
from (2.58) by performing a Weyl rescaling. With these normalizations, the real mass
deformation corresponds to adding the following term to the SCFT action on S3:

m / @7 1/9(@) BJ(J?) + K(f)] , (2.59)

where a is the radius of $2.2° With appropriate conventions, (2.59) can be shown to be
invariant under su(2|1)y x su(2), (as opposed to?! su(2), x su(2|1),.). Thus, derivatives of
F(m) with respect to m can be interpreted as correlation functions of the su(2|1), x su(2),-
invariant integrated operator [ d®%\/g(%) [%J @)+ K (f)], and so based on the result of
the previous section it is independent of the bulk SUSY-exact couplings when computed
using Witten diagrams.

3 AdS, as a background of N/ = 2 off-shell supergravity

In this section, we provide a different perspective on the construction of the supersym-
metric interactions presented in the previous section. Here, we obtain the supersymmetric
theories in AdS from an appropriate supergravity background solution of conformal super-
gravity.?? Before we begin the technical treatment, let us describe the relation between the
various theories which play a role in this section. The parent theory is N/ = 2 conformal
supergravity (see [57, 58] and references therein) containing two types of supercharges, the
Q,, Q!, which anti-commute to momenta, and the S;,S?, which anti-commute to special
conformal transformations. The four-component spinor indices are suppressed in this no-
tation. The indices ¢ = 1,2 transform under an SU(2) x U(1) R-symmetry. All symmetries
are gauged. The SU(2) generators are proportional to Pauli matrices, i.e. 7}/ = i5;/. After

20The absence of terms of higher order in m appearing explicitly in (2.59) is a regularization choice.
Indeed, it is possible that the supersymmetry Ward identities require the K(Z) x K(y) OPE to contain an
operator-valued contact term of the form §® (& — ) L(Z), where L is an operator of dimension exactly 1. In
conformal perturbation theory, the effect of such a contact term would be as if m?L were included explicitly
in the action (2.59), and this is the reason why oftentimes such a term is included explicitly in the action.
(For example, an m?|¢|> term would be present in the theory of a massive chiral multiplet.) Regardless
of whether or not we include m?L explicitly, we should make sure that our regularization scheme preserves
supersymmetry. See also the discussion in section 4 of [56].

*!One can also consider the deformation m [ d*# /g(Z) [—5](5:’) + K(f)] , which would then be invariant
under su(2), x su(2|1),.

22Gee also appendix C where the boundary real mass deformation is also phrased in the language of this
section.
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partial gauge fixing, the remaining supergravity fields, including compensating multiplets,
are fixed to background values which include fixing the metric to that of AdS4. This pro-
cess is described in more detail in section 3.1. The result is a theory invariant under the
global superalgebra o0sp(2|4) with supercharges Q;, Q! that are linear combinations of the
previous Q, S. The R-symmetry is reduced to a U(1)r generated by 73,7.

3.1 Supergravity background for AdS,

As explained in the work of Festuccia and Seiberg [50] in the context of 4d A" = 1 theories
on curved manifolds, a systematic way to write down curved space QFT Lagrangians is to
couple a QFT to off-shell background supergravity. The same procedure was used for 4d
N = 2 theories in [51, 54]. The N = 2 effective theories in AdS, fall under this class. AdSy
is realized as a supersymmetric background of off-shell N' = 2 supergravity in a way that
is very similar to the S* construction also explored in [54].

The construction proceeds as follows. As in [54], one arrives at the appropriate off-shell
N = 2 supergravity by starting with N' = 2 conformal supergravity as well as compensating
vector and tensor multiplets. Thus, we start with a Weyl multiplet with field content

Weyl multiplet: bosonic: e, bu,w,ﬂb, fu, ij,Af,Ta_b, D (3.1)
fermionic: ¥,", ¢, X",

where eZ,bﬂ,wuab, f“a,Vm-j ,Aff are respectively, the gauge fields associated with trans-
lations, dilatations, Lorentz transformations, special conformal transformations, and the
SU(2)g and U(1) g symmetries, and v,%, ¢, are the gauge fields associated with Poincaré
and superconformal symmetries. The compensator vector multiplet has field content

Vector multiplet compensator: bosonic: X, X, ALY (3.2)
fermionic: €, QF, '
obeying Y} = Y% and the compensator tensor multiplet has field content
Tensor multiplet compensator: bosonic: L;j, G, G,Eu, (3.3)

fermionic: ¢°, ¢;

obeying L;-"j = LY. Here, p is a spacetime coordinate index, a, b are frame indices, and i, j
are SU(2) g indices that are raised and lowered with the epsilon symbol as in [57, 58]. The
off-shell supergravity theory is obtained by imposing curvature constraints that determine
the gauge fields wu“b, fu®, and gb,f in terms of the other fields (explicit expressions are
given below), and making the gauge choices [52]:

byzo, X:M, QZZO, Lz’j:7_3ij907 (34)
where M and ¢ are arbitrary dimensionful constants whose values will not be important,

and where ng = —73i; = (—tio1); as in [57, 58]. The gauge choice b, = 0 fixes the
special conformal transformations. The gauge choice X = M fixes the dilatations as well
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as the U(1)g symmetry of conformal supergravity. The gauge choice ; = 0 fixes the
superconformal transformations. Lastly, the gauge choice L;; = 73;;¢ breaks the SU(2)g
transformations to SO(2)g. The remaining fields determine an off-shell supergravity theory.

Since we treat the supergravity fields as background fields, we do not need to write
down an action for them, but instead set them to background values constrained to preserve
global supersymmetry. This means that all supersymmetry variations must vanish. This
will be important when coupling this theory to matter since it will ensure that the resulting
theory is supersymmetric.

The supersymmetric AdS4 background is achieved as follows. First and foremost, we
are looking for an AdS, background metric, so we should set the frame appropriately:

€ = €l aas, (3.5)
where AdS, has radius L. Then, we set the following fields to zero:

Vil = AR =T =D=A,=Ey =9,/ =x' =¢' = 0. (3.6)

a

The remaining scalar fields G and Y;; will be non-zero. Since all the fermions vanish either
by (3.4) or (3.6), the SUSY variations of all the bosons vanish automatically. The SUSY
variations of the fermions then are (see egs. (2.90), (3.15), (3.103) of [58]):

5¢L = CZ (Daﬁi - 'YanZ) )

(592' = aXGi + Y;'jej + 2X77,' y

: 3.7
50 (37)
i Lo L ij
o' = §lDLJej - §G€ +2LYn;.
To ensure the vanishing of these variations with the gauge choice (3.4), we take
2 M
G= *%p ; Yij = 7 73ij - (3.8)
With these choices, the SUSY variations in (3.7) vanish provided that?3
i_ i i_ L i
Doe' =7an", 0" =—5773¢,
1 4 (3.9)
Dgei = vami ni = —ﬁﬁnjﬁj ;

where the second line is the complex conjugate of the first. These are precisely the Killing
spinor equations we also found in the previous section in eq. (2.10). Here, we obtained
them from the condition that the supersymmetry variations of the fermions in the back-
ground supergravity multiplet vanish. Note that, as mentioned above, in addition to the
gauge-fixing constraints, one also has to impose curvature constraints that determine the
composite gauge fields wlﬂb, fu®, and d),f. Evaluated on our AdS background, one finds

. 1 1 1
ot =0l ggg G =00 S = “f e B = e (3.10)

ZNote that €' and n' have opposite chirality.
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The AdS supersymmetry algebra presented in section 2.1 is obtained via this construc-
tion because it is a subalgebra of the superconformal algebra. The 4d N' = 2 superconformal

algebra has the following generators:2*

momentum generators P, Lorentz generators Mgy,
special conformal generators K, dilatation generator D, U(1)z R-symmetry generator T,
SU(2) g R-symmetry generators U;7, Poincaré supercharges Q; and Q' and superconformal
charges S; and S’. They obey the su(2,2|2) algebra given, for instance, in section 20.2.1
of [57] or section 1 of [58].

In the conformal supergravity construction, the momentum generators P, act on the
fields as derivatives P, = D, that are covariant with respect to all “standard” gauge fields,
meaning all gauge fields except for the ones for translation, e,*. For our AdS background,
the only standard gauge fields that are non-vanishing are the spin connection wuab and the
special conformal gauge field f,* given in (3.10). The spin connection is part of the usual

covariant derivative D,, but f,* is not. Using (3.10), we have that
1

412

The action by D, on the fields is just that of the AdS momentum generators P, introduced

D, =D, — —K,. (3.11)

in section 2.1. Thus,

Po=Put 5Ke,  May =My, (3.12)
where we also identified the local Lorentz generators in AdS with the superconformal ones.
It is easy to check using the superconformal algebra that the commutation relations (2.1)
and (2.2) follow from the commutation relations of P,, K,, and Mg.

Regarding the rest of the algebra, note that the Poincaré supersymmetry transforma-
tions have parameters ¢; and € while the superconformal transformations have parameters
n; and ni. The SUSY variation corresponds to the action of €Q; + ﬁiSi +&6Q + ﬁiSi on
the fields. In our AdS background, however, the n and e parameters are related by the
right-hand equation of (3.9). This gives

i ; i Qi = 1 ; _ P Sy
€Q; +1n'S; + Q" +m;S' =€ (Qi—ﬂ/Tgiij) + €; <Q —2L7‘3JS]‘> . (313)

Identifying this expression with €Q; + €Q¢, where Q; and Q' are the AdS supercharges,
we find
Qi :Q-—irg»sj Q=Q - iTgijs. (3.14)
2 3 2L 1] bl 2L J
In addition, the R-symmetry in AdS is the U(1) subalgebra of SU(2)g generated by 73, so

we write
R=U/rn;". (3.15)

Using the relations (3.12), (3.14), and (3.15) between the AdS superalgebra generators
and the superconformal ones, one can show that the remaining (anti)commutation rela-
tions (2.3)—(2.5) in AdS follow from those found in section 20.2.1 of [57] or section 1 of [58].

24We use bold letters for these generators. In [57], these generators are denoted by the same symbols,
but not in bold.
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3.2 The N =2 F-term from conformal supergravity

We now study the chiral F-term interaction from the perspective of conformal supergravity.
In the A/ = 2 AdS background of the previous subsection, we consider the superconformal
chiral multiplet. In applications, this multiplet will most often be composite. It contains
the components

Chiral multiplet: bosonic: A, B;;, G, C
(3.16)

fermionic: W;, A;,

where A, C, and B;; are complex scalar fields, GG, is an anti-self-dual two-form tensor, and
¥, and A; are left-handed fermions. We can also consider the complex conjugate anti-chiral
multiplet. The field A is the superconformal primary (it is annihilated by S;, ¢, K), while
the other components are each ordinary conformal primaries (they are each annihilated by
K,). The A component has scaling dimension (Weyl weight) w as well as an equal U(1)g
charge w as a consequence of the superconformal shortening conditions. As one goes up in
the multiplet, the Weyl weight goes up in 1/2 units while the U(1)g charge goes down in
1/2 units: the Weyl weights of ¥;, B;;, G, A;, and C are w+1/2, w+ 1, w+1, w+3/2,
and w + 2, respectively, while their chiral weights are w —1/2, w — 1, w — 1, w — 3/2, and
w — 2. The SUSY variations of a chiral multiplet are given in (3.27) of [58] (see also (B.4)
of [59] but note that the normalization of B;; is different there and here from that in [58]
by a factor of 2):

SA = 13\1@,
§W; = ID(Ae;) + BUGJ - 47 P eijel + (2w — 4) Ay
AT ek +2(1 —w)i ¥y

1
e Ele’Yab\II +4

0A; = _17ab$(Fab€i) - ilpBiﬁjkEk +5Ceie! = (1+ w) By *ny, + S Fom,
0C = —Dy(e7ey"A;) + (2w — 4)e ;A .

S =

»h\»a W

. 1 3
€Yaphi — - (1 +w)e nivap ¥V
2

(3.17)

The reason why the chiral multiplet is useful for understanding the superconformal
origin of the chiral F-term interaction is that, although the chiral multiplet (3.16) forms a
representation of the superconformal algebra su(2,2(2), it reduces (for any weight w) to the
representation of 0sp(2|4) described in section 2.3.1. Moreover, it is clear from (3.17) that
when the Weyl weight w = 2, the C' component transforms as a total derivative. Therefore
the integral

w=2: Sp = /d4:c V—9C(z). (3.18)

defines an F-term invariant (related to eq. (3.30) of [58]).
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When w # 2, the chiral superconformal multiplet also reduces to a chiral multiplet of
0sp(2]4). To show this, first note that when w = 2 and the relations of (3.9) are used, the
transformation rules (3.17) become

1.

0A = ="V, ,

2

1 .
ov; = lD(AEZ) + §Bij€j + ab = bgz]

17
. . 1
OBij = €iPV ) — & Mgy + T TsmE )

1 1 3
5Fb 15 EZ]D’Yab\I/ + 46 'YabA + EE T3zk€ ’Yab\p
_ ; 3 , 1 _
oN; = —Z’yablp(Fabei) — ilDBijgj €L + 506@'6] + ETgleijé‘JkGl — ETgik’yabFaka
5C = —Dy(7en A;),

(3.19)

Generalizing the F-term (3.18) to w # 2 can be done by noticing that for a chiral multiplet
(A, U;, B;j, F,, A;, C') with Weyl weight w, the chiral multiplet (A, ¥;, B, F, AL, C') with

ab’ 0 ab?
2(w — 2
Bz{j = Bz‘j ( 7 )AT?)ij 3
_9 ,
A=A+ LL ke W, (320)
w—2 4 2(w —2)(w —3)
C'=C+ TéjBij 72 A
transforms, in the AdS background, as a Weyl multiplet of weight w = 2. Thus, the general
F-term is
2 2(w —2)(w —3
SF-term = /d4.’L‘ VvV C/ /d4l' V= |: Bij - ( 132( )A
(3.21)

We can connect this discussion to the more abstract derivation of the chiral F-term in
section 2.3.1. In particular, from (3.17), we identify

_ 1 21w
Q1A =—- (312 — A) ;

? L 1) (3.22)
A=-——4+"p 714.
Q:1Q1Q2Q, 5 + ! 7 Bt — 7
A little algebra shows that the chiral F-term in (3.21) can be written as
_ 4i 6
S¥-term = —2/d4$ V=9 {Q1Q1Q2Q2A + 7 QA+ 541, (3:23)

which matches the form (2.14) that we derived in section 2.3.1 up to a normalization
factor. We thus see the power of the abstract approach of section 2.3.1 at work — we were
able to derive the form (3.23) without a detailed understanding of the supersymmetry
transformation rules of all the fields in the multiplet.
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3.3 An F-term example: prepotential interactions in AdS

We can consider a concrete example of a chiral F-term coming from a prepotential interac-
tion. Suppose we have n Abelian vector multiplets (X7, X7, Af“ YJ, QLanh 1=1,....n,
in AdS in addition to the compensating multiplets used in the conformal supergravity con-
struction. The SUSY transformation rules for the vector multiplets are given in eq. (3.15)

of [58]. Specialized to our AdS background, we have
1.
ox!1 = 2éal,
2

1 : | .
00l = dxTe; + Zy“bF({geijeﬂ +Yie — ZTginf e,
F N T S N e Sy o (3:24)
0A, = € Evusl; + €€ Y27,

1 1
0V = e + e DA,

where F is the field strength of Aﬁ. The transformation rules for X! and Q¥ follow
by complex conjugation. One can then consider a prepotential interaction F'(X) that is
homogeneous of degree w in X.?® The prepotential is in fact the lowest component of a
chiral multiplet whose components are given in eq. (3.107) of [58]. On our AdS background,
the bosonic fields become

1

A=-F
2 b
. i =
Bij = iFyY;) — 2 1197,
C = —iF[DaDaXI — %F[JYUIY{]Z + iF]]Fa_bIFfabI + %F]JQ{]DQU

i

i il J OK i i7 O ~abp—J K
—I—ZF[JKYZ] Qi Qj —TGF[JKewﬂi’ya Fab Qj +48

F[JKLQ£Q{Q§(Q£€ij€kl s
(3.25)

where Fr = OrF, Frj = 010;F, etc. The chiral F-term is then given by (3.21), with w

being the degree of homogeneity of F' with respect to X. Note that C(z) agrees (after

partial integration of the first term) with the Lagrangian for interacting gauge multiplets
with global supersymmetry in flat spacetime (see (20.15) of [57].)

3.4 The flavor current term from conformal supergravity

We now construct the flavor current interaction of section 2.3.2 by superconformal methods.
We start with a tensor multiplet with components given in (3.3), and define the conserved
current by Hodge duality. To make this subsection self-contained we repeat (3.3):

Tensor multiplet: bosonic: L;j, G, G, E.

‘ (3.26)
fermionic: ¢, ¢;,

Z5Note that in the usual prepotential construction in N = 2 supergravity, one also includes the compen-
sating multiplet among the X! and one requires w = 2. No such requirement will be needed here.
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where the scalars L;; obey the reality condition Lj; = Ly, E,, is a two-form gauge field,

and G is a complex scalar whose conjugate is G. The SUSY transformation rules are (see
section 3.2.5 of [58])

SLij = €0y + eneee!),
56 =

0G = —&1pg’ — %T3ijgj¢ia

PLY €; + §€”Eej — iGel - ZL”ngkek ,
(3.27)

0By, = %i?”mucﬁj% - %ié-’mycbja” ,
where we restricted to the AdS background and used the definition E* = e~ 'e#*79, E,,,
and where the expressions for §G and d¢' are obtained by complex conjugation.

The key observation which gives us the conserved current multiplet is that the di-
vergence of E* above vanishes by Hodge duality, so that the current defined by j¢ =
%5“5Cd8bEcd is conserved, i.e. D,j* = 0. Thus 7 has scaling dimension 3. The other com-
ponents are simply renamed from those of (3.26), so the components of the flavor current
multiplet are

Flavor current multiplet: bosonic: J;;, K, K, ja
A (3.28)
fermionic: &%,&;,
where J7; = JY. The transformation rules in AdS are
8.1 = €y + eme e
51’_151‘]‘ L 4 [ k

13 =3 J €j+§6 jej—iKe —ZJ T3kE"

(3.29)

1 .
0K = —& &' — ETBijgjfza
5@_14 abp) ¢ Lo abp e i B ke agi 3 jckoa
7 —56’}/ 23 Sij—i-iei’)/ b6 _ET?)j GRS _ETSk €Y.

Note that D,d5% = 0. Also note the chirality convention €', £ are left-handed and ¢;, &;
are right-handed. From these transformation rules, it is not hard to check that the flavor

current deformation is

Shavor term = / d*z/—g (K + K~ %T?Z;j Jij) : (3.30)
because the quantity in the brackets is a total derivative

b (K +K— %T;f Jij) = — D, (7€ + @) . (3.31)

In order to connect this discussion with the discussion in section 2.3.2, note that the
transformation rules (3.29) imply

5 __ K i Aoz, - K i 3.32
Q1Q2J12 = 2+ 7 QQJ12—2 7 (3.32)

— 24 —



Eliminating K and K using these equations, one finds that the flavor current term can be
written as

T - .
Sﬂavor term — —2/d433 V=g <_BZ£2 + @1@2J12 - @1@2J12) ) (333)

which agrees with (2.27) up to an unimportant normalization factor.

There is another way to derive the flavor term (3.30). A conserved current multiplet
couples to a vector multiplet V = (X, X AL, Y5, 9, QY in a supersymmetric way. This
coupling is

Su_y = /d4x V=g <Auj“ ~ XK — XK + J;;YV — €Q; — 59) . (3.34)

Using the transformation rules (3.24) for the vector multiplet and (3.29) for the current
multiplet, one can check that the SUSY variation of the integrand in (3.34) is a total
derivative. Now let us think of the vector multiplet )V as a background multiplet, so
that we can set the vector multiplet fields to any values we wish. In order to preserve
supersymmetry, however, we should ensure that the SUSY variations of the vector multiplet
fields vanish. From the variations (3.24), it is easy to see that, with m a constant with
dimensions of mass,

= m m Ts;j ,
X=X=7, YijZEL’J, A= =Q; =0, (3.35)

is indeed a supersymmetric background. Plugging these values into (3.34) one obtains
Sa_y = —?/d‘*m/—g(K + K- T3L"JJ> , (3.36)

which again agrees with the flavor term (3.30) up to an unimportant overall normalization
constant.

3.5 A flavor current term example: the hypermultiplet mass term

We now will consider a theory of Ny free massless hypermultiplets with global flavor sym-
metry USp(2Ng). We will couple this multiplet to a background abelian vector multiplet
which gauges a U(1) subgroup of USp(2Np). With proper choice of the background the
hypermultiplet will become massive.

The Ny hypermultiplets consist of scalars ¢; 4, with i = 1,2, and A =1,...2Ny and
fermions (4 and ¢4:

2N hypermultiplets: bosonic: g; A,in

3.37
fermionic: Ca, ¢4 ( )

The scalars obey the reality condition ¢, = g = v QAqu B, where Q48 is the anti-

symmetric symplectic form of USp(2Ny). For concreteness, we can consider a basis where

QA8 is block diagonal, with each block being equal to ioy:

0AB = i . (3.38)
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The fermions (4 are left-handed, while their conjugates ¢4 are right-handed. The sym-
plectic indices can be raised and lowered with Q4% = Q4p using the NW-SE convention
on all bosonic quantities, but we will not raise and lower the indices on the fermions since
they are used to also indicate the chirality.

Let us consider a U(1) subgroup of USp(2Ny) whose generator is T4”. This means
that under infinitesimal U(1) transformations with parameter 6, we have 6¢*4 = 0T4¢'2
and 6¢ia = —0T1Pq;p. Consistent raising and lowering rules require that TAB — QACT.B
and Tup = Qu°Tep are symmetric matrices. As an example, we can consider the case
where these matrices are block diagonal, with each 2 x 2 block being the same:

103 101
T4B = ios , Tag = —T48 = 101 ) (3.39)

The gauge covariant derivatives are

D,uq auq A,uquTBAa uCA ,u( + ‘Uu ’Yab( - A CBTB . (3.40)

4
The hypermultiplet Lagrangian is then a particular case?® of eq. (3.163) of [58]:

1 . 1 . ;
Sgauged hyp — /d4$ V=g |:_2DuquDMQiA + ﬁqlAQiA +2 |X|2 TBATAquBQiC

+ ¢ TaBY 45 + (—EAJDCA +2XCACBTAp + 21T ¢ P AV ey + C-C-)] :
(3.41)

It is invariant under the SUSY rules (3.101) of [58], which, when restricted to our AdS
background, become:

6qt = —ie¢h +igiCpel’QPA
(3.42)

L ) o 4 .
6 = §qu”‘ei +iXTpqPeyje’ — o—ig el

2L

If we treat the vector multiplet as a background vector multiplet and give the fields of
this multiplet the supersymmetric values in (3.35), we obtain the action for Ny massive
hypermultiplets in AdS:

1
Stmassive hyp = /d Ty — |: ,uq aMQzA + L2q QzA + 7TBATACQZB%C
(3.43)

+ ﬁq T3ZJTA q;B + (*fAlﬁCA + mEACBTAB + c.c.)] .

260 obtain (3.41) from (3.163) of [58], proceed as follows. First, note that what we call ¢™* is the same as
it*+4q* iq' — ¢ )

iq' +¢* —ig® +q*)

The dilatation Killing vector is chosen to be k3 = ¢~ . The Killing vector associated with the U(1) isometry

is kX = Tp“¢*B X4 and the corresponding triplet of moment maps is P= fqlAﬁJTAquc. We also have

the section A™ = f*4x ¢ in [58], and we choose frame vectors such that ¢4 = % (

tap = Tap. Lastly, we take gxy = dxy and dig = JA.
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The case where all the hypermultiplets have equal masses corresponds to the choice (3.39).
To make this clearer, note that we can write the terms involving the scalar fields only in
terms of g1 4, because the go4 are related by complex conjugation to the g1 4. The massive
hypermultiplet action becomes

Smassive hyp — / d4x V=g

2
Z(_ ‘@LQMF - (m2 - L2> \(hA\Q

A
= CalCt = CPGa -+ imACA — imCaca) (3.44)
m 2 m 2
T A%d lqral” + T A%:en lqial”| .

Thus, all fermions have the same mass m, while the scalars g; 4 have squared masses equal

to m? — % — 7 when A is odd and m? — % + 7 when A is even. In the more general
case (3.43), from comparing with (3.36), we can identify the flavor current deformation as

the term proportional to m in (3.43):
1 . . _ _
Sﬂavor term — T d4$ vV —g 7qZA7—3z'jTABq]B + CACBTAB + CACBTAB . (345)
2L

We can arrive at the same result by first identifying the composite flavor multiplet
fields from comparing the linear term in the vector multiplet fields in (3.41) with the
general coupling (3.34) between a vector multiplet and a flavor current multiplet. This
comparison gives

Ja = (8aQiA)TBAqu - QiATBA(aaqu) =+ C_A’YaTBACB - EA'YaTABCB )
Jij = iaT*P ¢, K = -2{"(PTap, K = —2(.¢gT*B (3.46)

& = 2T5"q"PCaciy, & = 2T aqip¢e".
Then, eq. (3.36) with the values (3.46) reproduces (3.45).

3.6 Other supersymmetric interactions from conformal supergravity

We will not perform a detailed analysis of the conformal supergravity origin of the SUSY-
exact supersymmetric interactions from section 2.3.3. However, let us point out that the
unconstrained multiplet in AdS can be obtained from an unconstrained superconformal
multiplet. Such a multiplet was analyzed in [60]. It starts with a field C with Weyl weight
w and chiral weight n obeying no constraints. As in the case of the chiral F-term, we
expect that when all the supergravity fields are set to their background AdS values, the
parameters w and n can be redefined away. When n = 0, the long superconformal multiplet
can be taken to be real, and it should reduce precisely to the unconstrained AdS multiplet
that was used in section 2.3.3 to construct the D-term interactions.?” When n # 0 the
long superconformal multiplet is necessarily complex, so it should reduce to two copies of
the (real) unconstrained multiplet in AdS.

*"One should set C = X, where X is the R-neutral scalar below (2.39).
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While the D-term can be obtained from a long superconformal multiplet of spin 0,
the non-chiral F-term and the 1/4-BPS interactions mentioned in section 2.3.3 can be
obtained from other superconformal multiplets that obey shortening conditions. In the
study of supersymmetric deformations of superconformal field theories in flat space, it was
observed in [56] that analogous 1/2-BPS and 1/4-BPS deformations also exist in that case.
For instance, see table 22 of [56], where the non-chiral F-terms are given on the second
line and the 1/4-BPS deformations are given on the fifth and sixth lines. That table also
contains the flavor current deformation on the first line, the chiral F-terms on the third
and fourth lines, and the D-terms on the last line.

4 Effective field theory in AdS from on-shell supergravity and the N' = 2
massive vector multiplet

So far, we constructed effective Lagrangians in AdS, in two ways: using the osp(2[4)
algebra, in section 2, and starting from conformal supergravity in section 3. In the latter
case, AdS; was realized as a supersymmetric background of a certain N/ = 2 off-shell
supergravity that is obtained from conformal supergravity with compensating vector and
tensor multiplets. In section 4.1, we will explore another approach, namely the decoupling
limit of matter-coupled N' = 2 on-shell supergravity. Several applications of this formalism
then follow: first to the free massive hypermultiplet in section 4.2, then to the F-term
interactions of a vector multiplet in section 4.3, to the quadratic Lagrangian of a massive
vector multiplet in section 4.4, and finally to the cubic interactions of a massive and massless
vector multiplet in section 4.5. These applications prepare the way for sections 5 and 6 in
which we undertake calculations of the sphere free energy.

4.1 A rigid limit of matter-coupled N = 2 supergravity

N = 2 on-shell supergravity is described in section 21 of [57]. As emphasized there, while
the action is derived using the superconformal gravity formalism, the final result can be
derived in other ways and is more general than the derivation would indicate. Let us
describe briefly the data that goes into the N/ = 2 supergravity theory, and then how to
obtain the rigid AdSy theory from it.

The N = 2 supergravity theory with ny vector multiplet and ny hypermultiplets is
constructed from the following data:

« A prepotential F'(X'), which is a holomorphic function of ny 4 1 variables X! (with
I =0,...,ny) that is homogeneous of degree 2. This determines the scalar target
space, which is an ny-dimensional special Kédhler manifold parameterized by complex
coordinates z%, with o =1,...,ny.

e A hypermultiplet scalar manifold, which is quaternionic-Kéhler and has 4ny real
dimensions or, equivalently, ng quaternionic dimensions. It is parameterized by the
real coordinates ¢" (with w = 1,...4ny), and it is negatively curved, with its Ricci

scalar curvature proportional to —x?2.

~ 98 —



 The structure constants f7;% of the gauge algebra. These structure constants also
determine the couplings of the vector fields to the scalars and fermions in the vector
multiplets. For simplicity, we focus on the case of an Abelian gauge theory, so the
f[ JK vanish.

e The gauging describing the coupling of the ny + 1 vector fields A{L to the hypermul-
tiplet matter fields. This coupling is encoded in Killing vectors k7, or equivalently
the triplet of moment maps denoted by 13[. The Killing vectors and moment maps
must obey compatibility conditions with the quaternionic structure.

The action for rigid A/ = 1 SUSY in AdS,; was obtained by decoupling supergravity
fields in [55]. The N = 2 procedure is much trickier; it proceeds via an expansion at

small x:

1. First, we assume scalings in x of the various fields so that at leading order, namely
order 1/x2, one obtains pure N’ = 2 supergravity with negative cosmological constant
adjusted to produce a classical solution of the equations of motion describing AdS,
with radius L.

2. We then observe that this solution with metric tensor of AdS4 and vanishing gravitino
and graviphoton fields is supersymmetric.

3. Next, we consider fluctuations around this background at order x°. At this order,
the matter fields decouple from the supergravity fluctuations, so we can focus on the
matter fields alone. In addition, several simplifications occur, e.g. the hypermultiplet
manifold becomes flat since its curvature was proportional to k% — 0.

We now go through the steps in detail. Although we write the steps as an expansion
in k, the dimensionless expansion parameter is x/L.

4.1.1 Step 1: pure N = 2 supergravity with negative cosmological constant

At leading order, take the prepotential

n_ ¢ 02 0
and take X? = 1. This implies that the Kihler potential for the vector multiplet scalars is
K = O(x°). We choose a direction in SU(2) space, say the third direction, and set the P,

moment map to be a constant of order O(1/x2),

- 1 0
Fy= 7 (0,0,1) + O(x"), (4.2)
and all other moment maps to be O(k”). We scale the scalar and fermion fields with &

in such a way that their kinetic terms are O(x"). Lastly, we take all gauge fields Aﬁ, the

gravitini, and the metric to be of order O(x?).
With these simple choices, the Lagrangian (21.34) of [57] becomes

1 |R
K2 |2

_ 1 T30 Y hd + he. 3
i P Dyl — —F9, FH0 — 3V + | +O0(x°). (4.3)

1,
e L= g hv 2L 12
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Note that the quantity S¥ (see (21.39) of [57]) that gives the gravitino mass term above
evaluates to

g o 1 .
I
§9 = PPX" = o7 + O(x"). (4.4)
Eq. (4.3) is the pure N/ = 2 supergravity Lagrangian containing as dynamical fields only
the metric, the gravitini, and the gauge field which represents the graviphoton.
4.1.2 Step 2: supersymmetric AdS, solution

The equations of motion following from (4.3) are solved by the AdS, solution of radius L,
with vanishing gravitini and graviphoton:

Juv = Guv Y =0, A(A)L =0. (4.5)

AdSy’

This solutions is supersymmetric as can be checked from the vanishing supersymmetry
variation of the fields. The SUSY variations of the bosonic fields automatically vanish
because the fermions vanish. For the SUSY variation, note that A, V,fj, and T, are
O(k?), while S% is O(k~2) as in (4.4). Thus, the gravitino variation is

; . 1 .. )
0Y;, = Dye' + ﬁTéj’y#Ej + O(k?), (4.6)
with a similar expression for dv,;. These expressions vanish provided that the SUSY

parameters € and ¢; obey the Killing spinor equations
i1 2 _ 1 j 2 4
D€' = ——13'v,¢; + O(K7), D,e; = ——73i57.€ + O(K), (4.7)
2L 2L
which are the same equations as the ones encountered in the previous sections. As indicated,
these equations hold only at leading order in &, but this is sufficient for our purposes.

4.1.3 Step 3: effective theory in AdS,

We now expand to the next order in k. We proceed in pragmatic fashion, emphasizing
the facts needed for the expansion of the action (21.34).%® In this discussion the index I
will take values from 0 to ny, while Z will take values from 1 to ny, and so will a. As
a temporary notation, quantities before expansion will carry the asterisk as a subscript,
e.g. F.(XD).

Vector multiplets. We consider a theory with ny Abelian vector multiplets with the

4 KR ’ )(;|< ’

for some arbitrary function F(Y7) that will become the prepotential of the rigid AdS
theory. We then define the homogeneous coordinates X! = y,(2%)Z!(2%) in terms of ny

28 All equations numbered (21.xy) refer to Ch. 21 of [57].
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variables z®. We assume that Z¥ = 1, as is common, and that the ZZ(2®) do not receive
corrections in x. The variable y, will have the expansion y, = 1 + x%y + O(x%), where y is
determined from the conventional constraint, see (21.1):

= 1
N*IJX»{X;] = T3

5 Ni1y =28Fq, (4.9)
K

One solves the constraint for gy, and then expands to find y. The Kéhler potential, see
(21.2), is obtained from

2 2
Ki(z,2) = K+ O(k?) = — log(y«) = ?(1 + k%Y + O(x?)). (4.10)
The result is
_F+F 1,7 7\ /= = 411
IC: 9 +Z<Z —Z)(aIF_aIF7>. ( )

which determines the Kihler metric g77 = 8707K. The expansion of N,z in (21.5) deter-
mines gauge field kinetic terms. Since we have set Ag = 0, we need only the components
T.J components:

Nrg = —%5157}5. (4.12)

Henceforth, we simplify the notation by identifying the indices Z and « by taking ZZ =
T

zt = z*

Gauged hypermultiplets. The Abelian gauge fields AT couple to the hypermultiplet
matter fields. In supergravity, the hypermultiplet scalar manifold is a quaternionic Kahler
manifold parameterized by coordinates ¢* and with curvature proportional to —x2.2? The
quaternionic Kéhler manifold is described by a frame field fi4, and its inverse f%;4, with
indices u = 1,...,4nyg and indices i, A = 1,...,2ny. From these we construct the metric
huw and the hypercomplex structure J:

FiAuftia =at, FAL s =

* A ' } ) (4.13)
Jiu' = _fiAuffjATiJ ) P = fiAuEUCABf’ZBU’

with C4p an antisymmetric matrix (see section 20.3.4 of [57] for details). The hypercomplex
structures Jy ., obey J1,YJ2,% = J3,%. The coupling to vector multiplets is described by
the Killing vectors k¥ ; and moment maps P, ;. These obey the condition

auﬁ*l+2ﬁ*uXﬁ*I:£uvk:], (414)

where W, ,, are functions defined through VwJ—:ku” + 2004 X J_;u” =0.

In the limit kK — 0, the hypermultiplet scalar manifold becomes flat, but this limit has
to be taken with care because we want P, to approach the value given in (4.2) which is
of order O(1/k?), so subleading corrections in x will be important. At the end of the day,

29We lower and raise the u indices with the metric hy, and its inverse.
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what we will need is that the frame fields, the metric, and the hypercomplex structures
approach corresponding quantities on a flat R¥"# space

f* u fZA ( 2)7 h*uv :5U’U+O(K‘2)7 j:ku’u = JUU+O(H2)? (415)

while the functions J,, vanish as k — 0 as
2

T Tuut” + O(s). (4.16)

ﬁ*u =
(For more details, see appendix D.) The Killing vectors kY; approach
1
Yo = —Ejguqu +k§ +O(x7), kit = k¢ + O(x°) (4.17)

where k{ and k% are (commuting) flat space Killing vectors, and the moment maps approach

5] 1 q - qu — — 9
P.o=(0,0,—— B, Pr=P . 4.1
0 (00H2L+ 4L>+ + O(k?), 7= Pr+O(K%) (4.18)

Here, ﬁo and Pr are the flat space moment maps related to the flat space Killing vectors via
OuPr = Juwk?,  for I =0,T. (4.19)

Note that the formulas for &}, and P, differ from those for ki and P,7. The Killing
vectors are triholomorphic. They obey both the flat space Killing equations and must be
compatible with the hypercomplex structure, viz.

Oukro + Ok =0,  9kV T — JP0kY =0,  for I =0,T. (4.20)

In addition, in supergravity, Abelian Killing vectors must obey the condition kY IJ_; wkl ;=
—KQﬁ*I X ﬁ*J. For us, this implies
1

Wi Tky =0,  KiJky = ——

1 1
7 (2;@2J2 v P2 — k:%J;vq” — P},Qk;%qu) .(4.21)

Finally, in order to write down the supergravity potential as well as the supersymmetry
variations later on, it is useful to define the following quantities:

q"qu
4L 2L

. S
Wi = — P — ZT:?(?I/Q (4.22)

T
Sij = Prijz" + Poij + — 315 + 57 734K,

3 ) u u 1 u v
Nig=ifiB, (kIzI+kO—2LJ3 g )QBA,

which are the terms proportional to x° in the expansions of the corresponding expressions
in supergravity, see (21.39—.40). Then, after writing

3

Vi=— K2[2

+V 4+ 0(k?), (4.23)
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(21.46) gives
3 3 . _ o .
—ZTéijk - lekTZijk + Wk gm T Wz + AN AN = 5 V. (4.24)

At order x°, the Lagrangian is then

1
e_1£| =— gzjﬁuzza“ij — §Duq“D“qu -V

0 =
+ {—iNzyFLIF””j - i%Jf@Ilﬁxm — Calpc? (4.25)
— 2ik%ei; T X T Ca + 2toanCH P + 25tz apCA P + h-C-} :

where the covariant derivatives are

Dyuq" = uq" — ALY,

1
Duxi = (% + 4%“”%1)) Xt + Tt 0,27, (4.26)
1 1 ;
D¢t = (a“ + 4%@%) ¢ = AftzpCP L tia” = a0k P
The supersymmetry variations of the bosonic fields are
1.
5ZI = i_lej':v
5q" = —ie' ¢ fia, (4.27)

1,
5Ag = 55”6{)/”)(]1- +h.c..
The supersymmetry variations of the fermions are

ox; = dz"ei — 7T (SNgic) F v eijel + g™ Wyjie
L o (4.28)
0¢H = Sifulbgte — Nite'.

4.1.4 U(1)gp symmetry

The on-shell supergravity theory has a local U(1)g symmetry, gauged by the graviphoton
field Ag. Since we set Ag to zero, the rigid theory in AdS we constructed above will
have U(1)r as a global symmetry. The U(1)r transformation properties of the various
fields are described by the Killing vectors k¥ as defined in (4.17) for the scalar fields and
toal = % YiA0pkY fiB, for the fermions. In particular, under U(1)x transformations with
parameter 6, we have

Sozt =0,  Spq" =2LOKY,,  Sex'T =073, 6o¢* =2L0top?CP, (4.29)

as well as the conjugates of these transformations for the hermitian conjugate fields.
In (4.29), the normalization is chosen such that the vector multiplet fermions transform as
X% = i0x' and §x*F = —ifx*?, which we take to mean that y'? have U(1)g charge +1
while x?% have U(1)g charge —1.
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4.2 Quadratic action for a massive hypermultiplet

One of the simplest applications of the formalism above is to the case ny = 1, ny = 0
of a (massive) hypermultiplet. The only freedom we have is to choose the Killing vec-
tor k{j, which, per the discussion in section 4.1.4, determines the U(1)r charges of the
hypermultiplet fields.

To be concrete, let us choose the frame fields to be3°

f121 = f211 = f113 — _f223 _
f212 — f114 — f224 _ _f122 _ (430)

SEEE

with the other components vanishing. Using (4.13), with Cap = eap, we find hyy = Sy
and the hypercomplex structures then turn out to be

0001 0 010 0-10 0
0 0-10 0 001 10 00

gl o2 . P = 4.31
0100 1000 00 01 (431)
~10 0 0 0 -100 00 -10

One can check that these anti-symmetric matrices obey the relation J'J? = J3, and
its cyclic permutations. With a vanishing kg, we would have kgq, = i(qQ, —q*, —q*, ¢®) +
O(k?), which, by (4.29), would imply that ¢! — i¢? has R-charge 41 and ¢® — i¢* has R-
charge —1. In order for the conditions in (4.20) to be obeyed, one should choose a k{ such
that the matrix @ with entries Q," = 0,k§ commutes with the three matrices in (4.31).
Since the three matrices (4.31) represent the generators of one of the two SU(2) subgroups
of the SO(4) = SU(2) x SU(2) group that rotates the ¢"’s, it follows that ) must be one
of the generators of the SU(2) that commutes with (4.31). Up to a redefinition of the ¢"’s,
such a generator can always be put into the form

-10 0
r—1 0

0
1
Q_2L 0
0

R (4.32)

0

— o O O

0
0
0

for some proportionality constant r. Assuming that the gauge symmetry acts linearly on
the ¢“, this means that

o T—1
ko = (q2

—qt. ¢t —¢® 4.33
5T =04 =), (4.33)

which implies k%) = 5= (rg?, —rqt, (r — 2)¢*, —(r — 2)¢®) + O(k?). From (4.29), it follows
that the R-charge of ¢' — ig? is » and that of ¢® — i¢* is r — 2. One can also determine
toal = Z;LngAB, which implies that the R-charge of ¢! is r — 1 while that of (2 is —(r —1).

30These are the same expressions as in (20.47) of [57] rescaled by a factor of 1/v/2.
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SCFT operator || scaling dimension | spin | R-charge || bulk dual field
® T 0 T q' —ig?
LG r+ % % r—1 it
@’ r+1 0 r—2 ¢ —ig*

Table 3. Operator content of a boundary chiral multiplet and its bulk dual. Note that each of the
operators/fields is complex.

Consequently, (o and ¢! also have R-charges r — 1 and —(r — 1), respectively. One can then
compute the moment map associated with (4.33):

- r—1 @ —@—¢
Py=— Qa3 + @, 243 — Qqs, 2] (4.34)
2L 2
The formulas presented above®' determine the Lagrangian
- 1 r(r—3) (r+1)(r—2)
1p_ 1+ wpy, 1)2 2v2] _ T DW= 2) [ 342 4\2
e L=—5Dug"D'qu — =5 (6% + (7] 517 (%) + (7] )

+ {—C_AJDCA + 2%5%2 + h.c.} .

The spectrum of this theory is as follows. In the bosonic sector, the masses of the two scalar
fields ¢! and ¢? are thus 7(r — 3)/L?, while the masses of ¢* and ¢* are (r +1)(r —2)/L%. In
the fermion sector, the Dirac fermion ¢!+i(y has mass /L, while ¢; —i¢? has mass —r/L.

By the AdS/CFT dictionary, a scalar field of mass mp in AdS is dual to a boundary
operator of dimension Ap, where m%L? = Ag(Ap — 3).3% Similarly, a Majorana/Dirac
fermion of mass mp is dual to a Majorana/Dirac fermionic operator in the 3d CFT of
dimension Ap, with Ap = [mp|L+ 3.33 In addition, the U(1)p charge in the bulk should
match the U(1)g charge of the dual operators in the N/ = 2 boundary SCFT.

It follows that the bulk hypermultiplet described above is dual to an N = 2 chiral
multiplet on the SCFT side consisting of a scalar operator ® of dimension r and R-charge
r (dual to ¢! —ig?), a fermionic operator ¥ of dimension r 4 1/2 and R-charge r — 1 (dual
to ¢! +i¢2), and another scalar operator ® of dimension r + 1 and R-charge r — 2 (dual to

q® —iq*). See table 3 for a summary.

. (r=1)(ig" +4°) (g3 +ig*) ir[(@)2+(a®)?]+i(2=n)[(¢®) % +(¢M)?] )
: P 2L , iL i
In particular, Sij = | i) ()2)4iG-n(*) 2+ (r=1)(=iq' +4*)(¢* ~iq") and N'a
iL 2L
r(@®—igh)  i2-r)(¢®—ig?)
2v/2L 2v/2L
i(r—2)(¢®+ig?)  —ir(¢'=ig®) |-
2v/2L 2v2L

32In the range f% < m%L% < =2, two possible values of Ap are possible, namely Ap, = % + % + m?
in the usual quantization or Ag_ = % — 3 /% + m?2 in the alternate quantization.

BIf 0 < |mp|L < %, it is in principle also possible to also have Ap = — |mp| L + 3

5, but this situation

does not arise in supersymmetric theories.
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SCFT operator || scaling dimension | spin | R-charge || bulk dual field
J 1 0 0 A
= % % 1 Xt —ixa
= % % —1 X1+ ix?
K 2 0 0 B
Ju 2 1 A,

Table 4. The conformal primaries of an N' = 2 flavor current multiplet.

4.3 Action for massless vector multiplet

Another application of the formalism above is to a single massless vector multiplet. In
top-down AdS/CFT constructions, a massless vector multiplet would appear if the dual
N = 2 SCFT has a flavor U(1) symmetry. Thus, we take ny = 1 and ngyg = 0 above.
Since there is only one vector multiplet, we drop the index Z and denote the components
by V = (2,2, X', Xis Ay), with gauge field strength F),,. The quadratic action is obtained
from the prepotential

F(z) =22, (4.36)

. 2
which gives K = |z|2, g1 = 1, and N3 = —35. In addition, one finds S;; = %7’3@']’,
W1 = =277 and N'4 = 0, from which one can derive the potential V = —2 |2|? /L2

The full Lagrangian is then

_ 1 1 . 1 2|22
1
e L=—-0,20'z — gFWF‘“’ - ZXi]DXZ - lelﬁ)@ + Iz (4.37)
It is convenient to define z = (A 4 iB)//2, so that the Lagrangian is
_ 1 1 1 1_ 1 A? + B?
e L= *Q(BMA)Q - 5(%3)2 = gFw " = DX = X DX+ (4.38)

The fields A and B are scalar fields with mass —2/L?, and they correspond to SCFT
operators J and K of scaling dimension 1 and 2, respectively, that belong to the dual
conserved current multiplet — see table 4 for a complete list of conformal primaries in the
conserved current multiplet and their corresponding bulk dual fields.

One can consider interactions by including non-linear terms in the AdS prepotential
F(2). As an example, if we require a z — —z symmetry, then the next allowed prepotential

interaction is a quartic term:
F(z) = 2%+ B2*, (4.39)

for some complex coupling constant 5. It is straightforward to compute the corrections in
B to all the quantities determining the action. Focusing only on the terms involving the
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scalar field z, the Lagrangian now has the following expansion at small |3]:

22 [BG 44598 Lo o :
3+ 512 — 362°0,20"Z + h.c.| + O(|B8]") (4.40)

+ other fields.

As we will see in section 6, the term in the square bracket will give a non-vanishing con-
tribution to the fourth derivative of the sphere free energy in the boundary SCFT. In
preparation for that computation, we note that it is possible to significantly simplify the
form of the interaction term by adding a total derivative to the Lagrangian and using the
equations of motion. Indeed, if we add

e Laer = O (B2*0"2 + hic.) (4.41)

and use the equations of motion to discard terms involving [z and [z, we can write
L =L+ Lyer as

2z 24

>4
z
L? +5 212

+Bﬂ + O(|8]?) + other fields . (4.42)

e 1L = —0,20"z +

We can easily write this expression in terms of the fields A and B that are dual to operators
of well-defined scaling dimensions.

4.4 Quadratic action for massive vector multiplet

Let us now use the formalism introduced above to construct a massive vector multiplet, first
at the quadratic level and then with interactions. Without supersymmetry, the quadratic
Lagrangian for a massive vector field B,, of mass my is the Proca Lagrangian

1 1 m?
e ‘L = gGNVGNV + TVB#BM’ (443)

where G, = 0,B, — 0,B,, and the unconventional normalization is chosen so that it
matches the normalization in the supersymmetric case below. The massive vector field B,
can be written in terms of a (massless) gauge field A,,, with the usual gauge symmetry A, —
A, + 0, This gauges the shift symmetry of a real scalar field ¢, which transforms as ¢ —
¢+ %A. The quadratic action consistent with this gauge symmetry is the Stueckelberg
Lagrangian

1 v 1( _my ><u _myv u>
L= GFuE g (00 - T ) (90 - TEAY) (4.44)

where F),, = 0,A, — 0, A, is the gauge field strength. Denoting

V2 (4.45)

Bu:Au_WTV e s

and noticing that G, = F),,, it is then easy to see that (4.44) is equivalent to (4.43).
This analysis extends to interactions of B, with other fields, provided that in the (A, ¢)
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description all such interactions are gauge invariant, so they depend on A, and ¢ only
through the gauge-invariant combination B, = A, — m—\/gﬁugzb.

A massive N' = 2 vector multiplet can be constructed by supersymmetrizing the
Stueckelberg trick presented above. In this case, one starts with one N' = 2 vector multiplet
and one hypermultiplet. One then gauges a shift symmetry of one of the hypermultiplet
scalars, as we now explain. We take nyy = ng = 1. As in the case of the massless vector
field of section 4.3, we will drop the index Z and denote the vector multiplet fields simply
by (z,2,x" Xi, Au), with gauge field strength F},,. The hypermultiplet fields will be the
real scalar fields ¢,, with u = 1,...,4, and the fermions ¢ and (4. Note that x; and ¢4
are left-handed, while x’ and (4 are right-handed. In order to obtain a quadratic action,
we take again the quadratic prepotential

F(z2) = 2%, (4.46)
which gives g;1 = 1 and N7 = —%, so that the kinetic terms in the Lagrangian are
-1 ow= 1 o 1 uv 1_ % 1 ) -~ A ~A
e @mz—uﬁz—iDmﬂ7%—§&J’—Zmﬂx—zxﬁm—gdk — (M PCa .
(4.47)

The covariant derivative D,q, must correspond to a gauged shift symmetry of one of the
hypermultiplet scalars, say q4. This will give us a massive vector field via the Stuckelberg
mechanism as in (4.43)—(4.45), with ¢ = q4. Thus we choose

my

DuQu = au‘]u — 0Oy %A,u . (4.48)
This implies that the Killing vector corresponding to this gauging is
v ="2(0,0,0,1). (4.49)

V2
Then, with the choice of hypercomplex structures in (4.31), the moment map that
solves (4.19) is

- m
Pl = 7‘;((]17 q2, Q3) . (450)

The consistency conditions (4.20)—(4.21) also require a non-zero k{':

- 1
9, —q,q,—q), Po=—— <Q1QS + 9244, G293 — G144,

1
k’u

0 =57 oL

ﬁ+ﬁﬁ£>
. .

(4.51)

These choices imply tiap = 0 and tg4? = i(Tg) AB. Then, the mass terms in the La-

grangian are

_ 2 ¢ ¢ @ 2myz+z
1 2 1 2 2 2 43
- _ I T I SU _ 3 AMv=zT=<
e Lumass <mv 2) (2 + 5 + 2] my + NG a3 (452)

. _ . _ 2% - . _ . _ 27 -
+imy 3G — imyx'é — fClCz — imy X2l +imy ¢+ fClCQ-
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The sum of (4.47) and (4.52) is the quadratic Lagrangian of a massive vector multiplet in
AdS. Notice that there is no potential for the field g4, as required for a scalar with a shift
Symmetry.

The next task is to rewrite the Lagrangian in terms of physical fields of definite mass,
obtained by diagonalizing L .ss in (4.52). For orientation, we first point out that a massive
vector multiplet in AdS is dual in the dual SCFT to a generic long scalar superconformal
multiplet of single-trace operators. Such a multiplet, Sa, starts with a scalar superconfor-
mal primary with scale dimension A and R-charge 0. In addition it contains the following
conformal primaries as superconformal descendents: fermionic operators x and ¥ of dimen-
sion A + 1/2 and R-charges +1; three scalar operators ¢, 6, and O’ of dimension A + 1
and R-charges 0 and £2; a vector operator V), of dimension Ay = A + 1 and R-charge
0; two more fermionic operators ¢ and € of dimension A + 3/2 and R-charges +1; and
lastly, a scalar operators O” of scaling dimension A + 2 and R-charge 0. This information
is recorded in table 5. In a holographic setup, each of these operators would have its own
bulk field.

In particular, the vector operator V,, of dimension Ay = A 41 is dual to the massive
vector By, of mass my, and the standard AdS/CFT dictionary identifies m? = (Ay —
1)(Ay —2)/L?. In terms of the scaling dimension A of the superconformal primary, we have

A(A-1)
2 _
In order to identify the scalar fields of definite mass, let us define
Or A z4z n A—-1
L=Voa—12 T®B\aa 1
zZ—Z
Cy = ;
03 =dq1, (4.54)
04 =42,
On A—-1z+4+2z A
sT\Vaoa—1 2 B\aa—1
Writing the sum of (4.47) and (4.52) in terms of the new fields, we have
—1 1 m m%/ w1 2 2 2 2 :
e L= _gGin - TBMB —5 Z {(O#Ck) + kak} + fermions, (4.55)
k=1
where the squared masses of the scalar fields are
A(A — A+1)(A-2 A+2)(A-1
m? = ( 3)7 m%:mgzmi:( +1)( ) m%z( +2)( ) (4.56)

L2 L2 ’ L?
Thus, by the AdS CFT dictionary, the field C is dual to a scalar operator of dimension

A (the superconformal primary O of the multiplet), Cy, C3 + iCy, and C3 — iCy are each
dual to scalar conformal primary operators of dimension A + 1 (namely @', ¢, and @),
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SCFT operator || scaling dimension | spin | R-charge || bulk dual field
@) A 0 0 Ch
Xa A+3 i 1
Lo A+ 3 3 ~1
10) A+1 0 2 C3 +1Cy
& A+1 0 -2 Cs —iCy
o A+1 0 0 Co
Vi A+1 1 0 B,
€a A+3 : 1
€ A+3 1 -1
o" A+2 0 0 Cs

Table 5. Operator content of a generic long scalar multiplet. Such a multiplet is dual to a massive
vector multiplet.

and C5 is dual to a scalar conformal primary of dimension A + 2 (namely O”). Note that
the choice of k% in (4.51) corresponds to r = 2 in (4.33), and thus ¢! + i¢? has R-charge
2 while ¢ 4 ig* and the vector multiplet scalars have R-charge 0. From (4.54), it follows
that C3 4+ iCy have R-charge +2 while all other scalar fields have vanishing R-charge. See
table 5.

A similar analysis in the fermion sector reveals two fermions dual to fermionic operators
of dimension A + 1/2, and two fermions dual to fermionic operators of dimension A + 3/2,
as expected from the operator content of the long superconformal multiplet. We will not
describe the diagonalization in the fermion sector in more detail because it will not be
needed in our analysis.

As an aside, let us point out that the Stuckelberg mechanism by which we constructed
the long vector multiplet corresponds to multiplet recombination in the boundary SCFT.
From the SCFT perspective, we started off with a conserved current multiplet (dual to a
massless vector multiplet) and a chiral multiplet of dimension 2 (equal to the R-charge of
the superconformal primary), and the two multiplets combined into a generic long multiplet
whose dimension can then vary. For the recombination to be possible, it is important that
the chiral multiplet has dimension 2 because only then does this multiplet contain a scalar
operator of dimension 3 and vanishing R-charge that can become the conformal descendant
Oy g* after the multiplets recombine. It is very nice that these requirements appear naturally
in the supergravity construction.

4.5 Interactions with massless vector multiplet

Let us now consider a massive vector multiplet interacting with a massless vector multiplet
via a cubic prepotential. We construct the massive vector multiplet as in the previous
section from a massless vector multiplet (z1, z1, X},x“,Ai) coupled to a hypermultiplet
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(qu, ¢4, Ca) by gauging the shift symmetry of the scalar field g4. The massless vector mul-

34

tiplet will be (22, 2o, Xf, %, Ai) Before considering the interactions, the prepotential is

Fy(z1,20) = 27 + 25 . (4.57)

as well as the hypermultiplet gauging as in (4.50)—(4.51). The quadratic Lagrangian is
simply a sum of (4.37) (with (2, 2, xs, X', Au) — (zQ,EQ,X?,XQi,Ai)) and (4.47) and (4.52)
(with (z, 2, xi, X%, 4,) — (zl,Zl,X%,Xli,A}L)). Equivalently, it can be written as the sum
of (4.38) and (4.55). Focusing only on the scalar fields, we have

A2+ B2 A1

T — Z |:2(8MC]€)2 + micg + Other ﬁelds,

1 1
e 1Ly = ——(9,A)% — Z(9,B)* +
2 2 e

(4.58)

where the masses are as in (4.56), and where the ellipses denote terms involving the fermions
and/or the vector fields.
We consider a cubic prepotential interaction such that the total prepotential is

F(z1,22) = Fa(21,20) + az123 (4.59)

for some complex coupling constant . This prepotential generates interaction terms in
the Lagrangian. For scalar fields In particular, we have both cubic terms, specifically

— 2 1
Z1Z% +2 |22‘ 21 + Evaqug

_ o _ _

e 1Ly = -3 290, 220" 21 + O, (2122) 0" 20 — 7 +h.c.,
(4.60)
and quartic terms

-1 0‘22% 2 12/ 2 2 2 2 2

e Ly=— 1612 {QmVL (¢ +aq5+q3) + 4\/§va271(13 + 427 + ZQ:| +h.c.
|04|2 |f<72’2 2 12/ 2 2 2 V2 - 2 2
_ 78_[/2 {2va (ql + qs + Q3) +2 2mVLQ3(Zl —+ Zl) +4 |Zl‘ —+ ‘22| ] ,

(4.61)

together with higher-order terms we do not need.

It is possible to simplify the expressions for the interaction vertices by adding a total
derivative and using the equations of motion to eliminate the terms involving the Laplacians
of the various fields. Indeed, instead of £ = Lo + L3+ L4+ - -+, we can consider

L =L+ Ler (4.62)
where in this case

2
(6 (6 (0%
Lier = 0" Zzgauél + 521228“22 + |8’ ’22|2 22(9#22 +h.c.| . (4.63)

34We choose to write the indices on the z fields as lower in order to avoid confusion with powers of the
fields.
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Then, after using the equations of motion, we can expand £’ as
L'=Lo+ L5+ L+, (4.64)

with the new cubic and quartic vertices being

2 S 2

elpon = 4 237 + amy. 7521, (4.65)
4 4
2.4 ~2:4 2
@z tatz o 4 2 _ . .
e L) =— L2 s |72 |22]" 4+ 4 |22|” 0220 22 | + terms involving z; and ¢, .

(4.66)

The vertices written explicitly in (4.65) and (4.66) are the only ones that contribute at tree
level to the fourth mass derivative of the S3 free energy.

5 One-loop free energy for free multiplets

In this section we restrict our attention to a free massive hypermultiplet, described in
section 4.2, as well as a free massive vector multiplet, described in section 4.4, and inves-
tigate whether the sphere free energy of the dual field theory, computed in the one-loop
approximation, depends on the mass parameters.

Consider a free field in AdS4 dual to an operator of spin ¢ and conformal dimension A.
The contribution of such a field to the S? free energy comes solely from the determinant
factor obtained after performing the Gaussian integral in the bulk. This contribution is
divergent and requires regularization. After subtracting the power divergences (or equiva-
lently, using zeta function regularization [61]), one is still left with a logarithmic divergence
as well as a finite contribution to the sphere free energy given by [62, 63]

_ 1 EEANEE _3 2)2
]:A’g— 2Hg <A 2> 2Gg (A 2> logL A 5 (5.1)

where L is the AdS, radius, A is the UV cutoff. For real bosons, the functions Gy(z) and
Hy(z) take the form

2041 N2/, 1 7
Golw) = =5 — |o —<£+2> (gx +6>_240 ,
Hy(x) = 2+l [33:2(26 +1)% — 8zt 4 24¢’ (—3,33 + ;) — 72z’ (—2,3: + ;)

— 6 ((25 +1)2— 12x2) ¢ (—1,1‘ + ;) + 6z ((% +1)2 - 4932) % (0, T+ ;)] :

(5.2)
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where ('(a,b) = % is the derivative of the Hurwitz zeta function. For Majorana

fermions, the functions Gy(x) and Hy(z) take the form:

241 N2/ 5 1 1
Gy(z) = s |* (ﬁ + 2) (2:17 3) + 30!
20417 4 2 2 / /
Hy(z) = ——|8a" = 32°(20 +1)* — 24¢’ (=3, 2) + 722¢' (-2, 7) (5.3)

+6 ((20+1)? = 122%) ¢/ (~1,2) — 62 (20 + 1)? — 42?) ¢’ (O,x)} .

To compute the free-energy for a SUSY multiplet, we must simply sum over the fields
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of that multiplet. For a hypermultiplet with mass®® my = r — 1, we can use table 3 to

write the sphere free energy as
Fn =2 hyper(r> = 2~Fr,0 + Q‘Fr—l—%,% + 2-Fr+1,0 . (54)

Plugging in (5.1)—(5.2), we find

P = 2per(r) = = |2 Tl log(AL) + (= 1 0,7) — ¢(-1.7)

r(r—2) N 83
12 144 °

(5.5)
+

Clearly, this expression is a non-trivial function of r, which shows that changing the mass
my = r — 1 of the hypermultiplet cannot be SUSY exact.

One can do a similar calculation for a massive vector multiplet. From table 5 we can
read off the field content and identify the sphere free energy as

FN =2 vector(A) = -/TA,O + 2JTA+%7% + 3JTA+1,O + FA+1,1 + 2FA+%,% + ‘FA+2,0 . (56)

Summing these all together, we find that the free energy for a massive vector is UV-finite
and independent of A:

5

= (5.7)

FN =2 Vector(A)

This supports our conjecture that changing the mass of the long vector multiplet is a SUSY
exact deformation.

For comparison, let us discuss briefly two multiplets of A" = 1 supersymmetry. First,
a chiral multiplet of mass m = A — 1 is dual to a scalar N/ = 1 superconformal multiplet
consisting of scalar conformal primaries operators of dimension A and A + 1 as well as a
fermionic operator of dimension A + 1/2. The one-loop free energy is simply half that for
a hypermultiplet, namely

1
F./\/: 1 chiral(A) = iFN =2 hyper(A) . (58)

3% A massless hypermultiplet is such that the scalar operators are conformally coupled and the fermions
are massless, thus being dual to scalar operators of dimensions 1 and 2 and to fermionic operators of
dimension 3/2.

43 —



Again, this is a non-trivial function of A and hence a non-trivial function of the hyper-
multiplet mass. In this case, it is known that the chiral multiplet mass is a superpotential
deformation, hence it is an A" = 1 F-term. Based on this example, the S partition function
must depend in general on the A/ = 1 F-term couplings.

Let us also discuss the case of an N’ = 1 massive vector multiplet. Such a multiplet is
dual to an N = 1 superconformal multiplet with a fermionic superconformal primary. The
conformal primaries in the multiplet are: a fermionic operator of dimension A, a scalar
operator of dimension A + 1/2; a vector operator also of dimension A 4 1/2; and another
fermionic operator of dimension A 4 1. The S? free energy is then

FN: 1 vector(A) - -FA,% + fA+%70 + ‘FA—I—%,l + ]:A-‘rl,% . (59)

This expression evaluates to

A(A -2 13 42A(A —2) + 37
FN: 1 vector(A) = {(2) + 24} log(AL) - ( 79 )

—(A—l)(’(O,A—Z) b (-1,A—?2’> —;log<A—Z> .

This expression is again a non-trivial function of A and hence of the vector multiplet mass.

(5.10)

In this case, however, it can be shown that the A/ = 1 vector multiplet mass term is a
D-term [64]. This computation therefore shows that the S® partition function cannot be
independent of the N'= 1 D-term couplings.

6 Integrated four-point correlators

In this section we will compute directly certain holographic contributions to the fourth
derivative %|m=0'36 As explained in section 2.6, the real mass deformation of the bound-
ary theory is m [ d®% \/g(%)[iJ(Z) + K(Z)], where we set the radius of the sphere to one
and parameterized the sphere with coordinates . Thus, the fourth mass derivative is

<(/ 3 \Jg(@) i (7) + K(f)]>4> . (6.1)

Since the scaling dimension of J is equal to 1 and that of K is equal to 2, in order to

o'r
Oom4

m=0
evaluate (6.1) in a holographic setup, we should first calculate

4
d*7 ) g(Z) ¢i(Z 6.2
<H/ 9(2) 61 >> (62)

for scalar operators ¢; with scaling dimensions A; = 1,2. In section 6.1, we will evaluate the
contribution to (6.2) coming from a tree-level scalar exchange, and in section 6.2, we will
explain how to determine contributions coming from certain four-point contact diagrams.

36Tt follows from the work of [8] that the fourth derivative d*F/dm* of the free energy is an unambiguous
quantity.
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Afterwards, in section 6.3, we will apply these results to evaluate the quantity (6.1) at tree-
level that we will use in two examples. In section 6.4, we will evaluate the contribution
to (6.1) from the prepotential four-point contact interaction described in section 4.3 and
show that it does not vanish. This result is consistent with the prepotential being an
F-term interaction. Lastly, in section 6.5, we determine the contribution to (6.1) from a
long vector multiplet exchange and show that it vanishes exactly. This fact supports our
conjecture that the massive vector multiplet interactions are SUSY exact.

6.1 Exchange diagram contribution to integrated correlator

Consider first the contribution to the separated-point correlator
(P01 (Z1)P2(Z2)p3(Z3)Ppa(Zy)) of operators ¢; of dimension A; coming from the s-channel
exchange of an operator of dimension A. Let us consider this correlator first in flat
space, and pass to the correlator on S later. Similarly, let us consider (Euclidean) AdS4

parameterized in Poincaré coordinates
dy2 + dy
Y3
For unit three point couplings, the exchange Witten diagram is
dty d*w

yo wo

ds® = (6.3)

Goh(y; 71) G5 (y; T2) G (w; T3) G b (w; T4) GEp (y; w)
(6.4)

ER ayasn, (Ti) = /

where y = (y0,%) and w = (wp, W) are the two bulk points and Z; are the four boundary
points. Let us choose the normalization of the bulk-to-boundary propagator such that

A
GA, (y: 7) = D(A (%) . (6.5)
In this normalization, the split representation of the bulk-bulk propagator is
0o g\ 1 240 3\
ot =g [ 228 513 64903 w3,
BB(y ) 271'3 o 27” % 2 B )\2 F(}\)F(—A) BO (y ) (w Z)
(6.6)

where the integration contour is the imaginary axis provided that A > 3/2. In the following
discussion, we will assume A > 3/2 and analytically continue the results to the alternate-
quantization range A < 3/2 afterwards. Note that the scalar bulk-bulk propagator obeys
the equation

1
(V2 =m®)Gpp(y.w) = ——==3V(y —w),  m>=A(A=3). (6.7)
9(y)
Also, in the normalization (6.5) of the bulk-boundary propagator, if we compute correlators

of the ¢; operators as in (6.4) without any additional normalization factors, then the ¢;

are normalized as given by

(61(7)6:(0)) = é‘VAA N, = 2523020 (2, — 1), 68)
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This normalization factor will be important when applying these results to the correlators
of J and K, which are normalized as in (2.58).
After plugging (6.6) into (6.4), we can perform the integrals over y and w using

d*y A A CAy AgA
G5 (y; 1) G533 (y; T2) G55 (y; Ta) = - 6.9
/ yO B9 Bo |fl2|A123 ‘523‘A231 |f31|A312 ( )

where we defined A, = A; + A — Ay, and where

7T3/2P(A1+A2+A3—3

CA1,Ag, A3 = B 5 ) P(A123/2)P(A231/2)P(A312/2). (6.10)

After renaming Z — Z5, we find

1 oo g\ 1 CA1,00,342CA3,04,3 -2
EA —»Z — 7/ 7/d3—» ' 1)
A1A2A3Ay (.'1: ) 2773 ico 211 L5 (A _ ;)2 _ )\2 ]__‘()\)F(_A)
2 (6.11)
1

X
‘f12‘A125 |:E25|A251 |3—3»51|A512 |:E»34’A346 |:1—::45|A463 |£53|A634

where A5 = + Aand Ag =2 — A\
So far, we have worked in ﬂat space in the boundary CFT. To map the correlator to
53, we use the stereographic map. In stereographic coordinates, the metric on S® is

1
1+

ds® = Q(F)%di®, Q@) (6.12)

N

The general rule for going from R? to S? is that the distance between two points |Z;;| is
replaced by the chordal distance s;; = Q(%;)"/2Q(%;)"/?|%,;|. Thus
4
Egs(7;) = E(Z) [] @)~ (6.13)

=1

The integrated correlator we want to compute is

In () = [ H(d%ZF JEs@).  \s@=0@  (©614)

where d®7 \/g(Z) is the volume element on S3. Quite nicely, the integrated correlator

becomes

oo I\ 1 CAL, A2, 242CA5,A4,2 -2
I A) = 57/ g(& SV
A1A2A3A4( ) o3 /wo QW@/H (d \/7) §)2 — )2 F(A)F(_/\)
2
1

A1zs A2s51 As12 A4 ,Ad63 D634
81277825 551 "534 S45  Ss3
(6.15)
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We can easily do all the Z; integrals in (6.15). Indeed, because of rotational symmetry,
we can set s to any value we want (everywhere except for the measure) and multiply the
answer by the volume of S3, Vol(S3) = 272. The simplest choice is |#5| — oo, in which case

1 SR § o) D S 0 2 )
81A125 Agsy A151283A4346 Ags3 A634 ‘le‘Ale |534|A346 405+06 64 |i:12|A125 |£:34|A346 ’
(6.16)
Thus,
TINVNYNYY (A) = (617)
1 272 [ice g\ H?:l dgfz' Q(fi)?’*Ai 1 CAl,Ag,%+)\CA3,A47%*)\

213 64 Cieo 27 |512|A125 |£.’34|A346 (A B %)2 32 CANT(=A)

The integrals in 21 2 and '3 4 factorize. The first one is

/d3fl d3fQQ(fl)3_A1Q(f2)3_A2 _ 64 / dgfl deQ
’1—3'12‘A125 2A125 (1+ |51’2)37A1(1 + ‘3—3‘2|2)37A2 |fl2|A125
(6.18)

Integrals of this type were evaluated in [65]. In their notation, the integral in (6.18) (without
the prefactor) equals I'g(3 — A1,3 — A9, Aj95/2). In general, the resulting expression
for (6.17) is pretty complicated, but it simplifies if A; € {1,2}, where it takes the form

_I(4) A(4X2 — 1) sin(7))
IA1A2A3A4 (A) = H@ A; / i 87 13 A - 3/2)2 — AQ] 0053(7-()\) . (619)

This integral can be performed by contour integration assuming A > 3/2. The result is
I(A) = 16710 {1 +(A=1)(A =2 (A-1)], (6.20)

where 1) denotes a polygamma function defined as the third derivative of the logarithm of
the gamma function. (In general, (™) (z) = j;ntrl logI'(z).) While we derived the expres-

sion (6.20) for A > 3/2, it also holds in the range 1 < A < 3/2 by analytic continuation.

6.2 Contact diagram contributions to integrated correlator

Let us now move on to the contribution to the integrated (¢1(Z1)pa(Z2)d3(Z3)pa(Zs))gs
correlator from contact Witten diagrams. We do not have to do any new computations,
because the contact Witten diagrams relevant for our applications below can be obtained
from the m — oo limit of the s-channel scalar exchange that we evaluated in the previous
section. Indeed, the equation (6.7) for the bulk-bulk propagator implies that, at large m,
we have the expansion

Gpa(y,w) = (ﬂ; + %v“’ + O(m—ﬁ)) 59 (y — w), (6.21)
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where the Laplacian acts on the point y. This equation implies that

1 1

A _ (0) (2) -6
ERinonsns = 30000000 T 1 708 A A0A, T o(m™7), (6.22)

where Eﬁl AyAsA, Was defined in (6.4) and C®") are contact Witten diagrams with 2n
derivatives:

. dly . . .
C§3A2A3A4(:ﬂ)—/ i G (s 71) G5y T2) GB3 (y; 43) Gpp (y; T4) |

S d*y S S S
O sans @) = [ SV (683 20GRYw: 22)] Gyl 7GRyl 7).

(6.23)

and so on. Let us denote the contribution of the diagram 0221722 AsA, (Ti) to the integrated

sphere correlator by J(A2:LA)2 Asn,- BY considering the large m expansion of (6.19) with

= (3+ V9 + 4m?)/2, namely

1 8 22 316

I(A) = 8710 | = — —
(&) = &r T ams T Toms

g +0(m™19] | (6.24)

we find that for A; = 1,2,

(2n) 10
(2n) _ J . 0) 10 2) 64
TA1Asagay = A AyAsA, with J© = 8710, J? = — 3 (6.25)

Note that because the bulk-boundary propagator G5 55 obeys the equation V2G4 By =
A(A; — 3)GBBv and for A; = 1,2, we have A;(A; —3) = —2, we can expand the Laplacian
in the second line of (6.23) and find that the contact diagram

, d'y , ,
Cssasd@) = [ G )0 OB s B GRp s B O i) (6:20

contributes to the integrated correlator an amount equal to

J o JP 4O 16710

j@ _ J? — — 6.27
Arf2fsBa — AT AGA3A, ] 2 3 (6.27)
6.3 Fourth derivative of the sphere free energy

To go from the normalization in (6.8) to the normalization in (2.58), we should proceed as
follows. For every ¢; = J, we take A; = 1 and multiply the correlator by

\[
N = Wk (6.28)

Similarly, for every ¢; = K, we take A; = 2 and multiply the correlator by 5 \f s =2N. It
follows that in order to calculate the integrated four-point correlator of any combination of
J and K operators, we should multiply the expressions (6.19) and (6.25) by N41A1AxA3zA,
as well as by the interaction vertices. Quite nicely, the product A;AsA3Ay cancels the

denominators of the expressions (6.19) and (6.25), so we simply have to multiply I(A)

48 —



or J@% by N* and the interaction vertex coefficients if we want to find the integrated
four-point correlator of any combination of four J and K operators.

In particular, let us consider a real field C' dual to an operator of dimension A with
leading order kinetic Lagrangian —7(8 C)? - (A 3 2. Let us assume this field interacts
with the fields A and B that are the bulk fields dual, respectively, to the operators J and

K in (6.1), through the three-point contact vertices®’

1 1
e_lﬁg_pt = 5)\AA0A20 + AapcABC + 5)\330320. (6.29)

Then, the s-channel exchange contribution to the integrated correlator Z in (6.1) equals

s-channel (6 ' 30)
C' exch

N4 (/\?4140 — 4)\ch — 2 AAcABBC + AzBBC —didqacAaBC + 4i)\BBC>\ABC) I(A)

where the )&AC term comes from the (JJJJ) part of (6.1), the AgacAapc term comes
from (JJJK), etc. One can recognize the quantity in the brackets of (6.30) as the perfect
square (Aaac — 2idapc — Apac)?. In fact, there is a further simplification that is manifest
when we write the vertex (6.29) in terms of the complex field z = (A + iB)/v/2 and its
conjugate,

1
e Lap = gAea0?” C+Aazc 2] C + )\zzcz C. (6.31)

Then \,,c = %O\AAC —2iAapc — Apc) and so only the square of the holomorphic vertex
coefficient .. contributes to (6.30). The total exchange contribution is then

] = 12N\, I(A), (6.32)
C exchange

where we multiplied (6.30) by a factor of 3 in order to account for the t-channel and
u-channel exchanges as well.

A similar analysis can be done for contact four-point interactions. The most general
interaction with up to two derivatives takes the form

1 1 1
4‘)\zzzzz + 3'>\zzzzz2 |Z|2 + 7)\,2222 |Z|4 + Aziizz |Z|2 + = 4 Zzzzz

1

—1 =4
€ ['4—pt =

, (6.33)

1 ) i
+ 3 5 [2)‘/” zz7 +)\lzg,zz|zl + 2/\’22222/ } (8Hz)2_

As in the case of the exchange diagram, only the holomorphic vertices contribute to the
fourth derivative of the sphere free energy:

7 = ANNo O 24NN TP (6.34)

contact

3TThese interaction vertices, as well as those in (6.33), below are written in the Lorentzian-signature
Lagrangian in mostly plus signature.

— 49 —



In order to apply these results to a specific situation, we need to compare the inter-
action vertices in the setup of interest to (6.31) and (6.33), and then sum together (6.32)
and (6.34).

6.4 Application: quartic prepotential interaction

As a first application, let us examine the case of the quartic prepotential interaction in
section 4.3. In this case, from comparing (4.42) to (6.33) we see that, after setting L = 1,

/

222z = 0 Thus, in this case

we can identify \,,,, = 125 and A

2
7 = 48N 08 = 3%725. (6.35)

contact

The fact that this expression does not vanish shows that this prepotential interaction is
not SUSY exact. This is consistent with it being an F-term.

6.5 Application: long vector multiplet exchange

We can now analyze the more complicated case of a long vector multiplet exchange. In this
case, the relevant interaction vertices are in (4.65) for the 3-point ones and in (4.66) for
the 4-point ones. In those expressions, zo is the vector multiplet scalar playing the role of z
in (6.31) and (6.33), and z; is a scalar from the massive vector multiplet. However z; is not
a field of definite mass. Expressing it in terms of the definite-mass fields C; using (4.54)

(with z — 21), we have3®

p— 08BN g (Ligy OVALGVATT)
4212 V2A — 1

Comparing with (6.31), we extract the interaction vertices (with L = 1)

W _es@a-1 [ A
22C1 — 2\@ 2A—17

aA(A—-1)
)\zzCQ = —ZW,

W _aAA-1) [A-1
ZZC_S_ 2\/5 2A_17

and from comparing (4.66) with (6.33), we have

e ! (6.36)

(6.37)

3a? ,
)\zzzz = _7 ’ 22,22 — 0.

(6.38)

Plugging these expressions into (6.32) and (6.34) and using the fact that the scaling di-
mensions of the operators dual to C1, Co, and C5 are A, A 4+ 1, and A + 2, respectively,
we find the final answer

~ 3a2A%(A - 1)2N* ( A A-1

T 2A_lj'(A)—I(A—i—l)—|—2A_1

1A + 2))

long exch 2

— 6N JO)

(6.39)

38The scalar fields C3, Cy do not contribute to (6.36) because they carry R-charge. (See table 5.)
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Using the expression for I(A) in (6.20) as well as the identity ¥® (z +1) — @ (z) = 2/
we finally find

z

=0, (6.40)

long exch

in support of our conjecture that the interactions between a massless vector and massive
vector multiplet are SUSY exact.

7 Discussion

In this paper, we studied N' = 2-preserving supersymmetric interactions in AdS and how
they affect the (mass-deformed) S® free energy in the boundary dual SCFT. In particular,
in section 2 we showed that certain N' = 2 D-terms, non-chiral F-terms, and 1/4-BPS
interactions are SUSY exact, and they do not affect the S free energy. By contrast,
chiral F-terms and flavor current terms in the bulk do affect the S® free energy. Later
on, in sections 5 and 6, we provided evidence that the mass parameter and the interaction
couplings of a massive vector multiplet are SUSY exact, although the precise type of
interaction was not determined. Our calculations also showed that N’ = 1 D-terms are not
exact and do affect the sphere free energy.

Our results are fully consistent with the observation made in [66-68] (see also [69, 70])
that, at the two-derivative level in the bulk, the sphere free energy is directly related to
the prepotential of the bulk supergravity theory. Indeed, as shown in section 3.3, prepo-
tential interactions are particular cases of bulk chiral F-terms. As far as higher-derivative
interactions are concerned, the higher-derivative interactions constructed in [36] using su-
perconformal tensor calculus are other examples of chiral F-terms. The fact that they
affect the S° free energy [36] is again consistent with our results.

Several different methods were used to construct N’ = 2 supersymmetric interactions
in AdS. The first approach, in section 2, used only manipulations of generators of the
osp(2]4) superalgebra. This was sufficient to prove the statements above about SUSY
exact interactions. Then, in sections 3 and 4, we presented two other methods to construct
supersymmetric Lagrangians in AdS. The first one used off-shell superconformal theories
with the A/ = 2 Weyl multiplet and its compensator multiplets as backgrounds for matter
multiplets, and the second one involved the decoupling limit of on-shell ' = 2 supergravity
coupled to matter.

There are various questions that we leave for future work. The first is whether the
massive vector multiplet mass term and interactions are indeed SUSY exact. To settle this
question, one would perhaps need to derive the kinetic and interaction Lagrangians from an
appropriate off-shell formulation in which the supersymmetry variations are independent
of the vector multiplet mass. In such a formulation, it would then become clear whether
the vector multiplet mass term and its interactions with other multiplets are particular
cases of the supersymmetry-preserving deformations we have studied that do not affect the
S3 free energy.

In this work, we required that the interaction terms in the bulk Lagrangian transform
into total derivatives under a supersymmetry variation. As already mentioned in footnote 5,

~ 51 —



appropriate boundary terms may need to be added in order to ensure that these interactions
are supersymmetric, but we leave a thorough investigation of these boundary terms to
future work. We note, however, that in absence of boundary sources, boundary terms are
needed only if the sum of the dimensions of the operators dual to the bulk fields is at
most equal to 3. For instance, in the examples in refs. [26, 49] the bulk cubic interaction
is between three fields that are dual to boundary operators of dimension 1. The unitarity
bound requires that any operator of an N/ = 2 SCFT that resides in a long multiplet has
scaling dimension strictly greater than 1, so any interactions of the corresponding bulk
fields will necessarily not require any additional boundary terms.

Another question left for future work is whether the S® free energy of N’ = 2 SCFTs
captures a protected sector of these theories. For N' = 4 SCFTs, it is known that the S®
free energy equals the free energy of a 1d topological sector that is built from the 1/2-BPS
operators of the 3d theory [71-73]. Thus, the S® free energy captures information only
about these 1/2-BPS operators. It is not known whether analogous statements continue
to hold true for N'= 2 SCFTs. In the present work, we have shown that, in the dual AdSy
theory, the S? free energy of the boundary theory does capture a protected sector consisting
of special types of bulk interactions. It would be very interesting to determine whether
such a protected sector also exists more generally for all A/ = 2 SCFTs, not necessarily just
for those with holographic duals.

Lastly, it would be interesting to generalize our analysis to a different numbers of space-
time dimensions and other amounts of supersymmetry. Of particular interest is the case
of N/ = 2 superconformal field theories in 4d and their 5d holographic duals, where again
the S* free energy of the mass-deformed theory can be computed using supersymmetric
localization. Another equally interesting generalization would be to supersymmetric theo-
ries on squashed spheres and other curved manifolds. In particular, one can ask whether
the partition functions of such theories also receive contributions only from a very special
class of bulk interactions. Generically, the analog of the analysis performed in section 6
would involve Witten diagrams for spinning correlators. Such calculations would be greatly
simplified with the help of the bispinor embedding space formalism introduced in [74].
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A osp(2|4) algebra

The osp(2|4) algebra has as bosonic generators the sp(4) generators M,g and the R-

symmetry generators R. Here, we can think of a, § as fundamental sp(4) indices, and
Mg is a symmetric rank-two tensor. The supercharges have charge +1 under the R-
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symmetry, so we can represent them as Q,+. The commutation relations are

(Mg, Mw] = WasMpy + wgsMay + wWaryMps + wgy Mas
[Qats Mgyl = WapQyt + war Qs

R, Qax] = +iQax ,
{Qat,9p-} = Mup —iwasR,

where wqg is the symplectic form, which is antisymmetric in the symplectic indices.

(A1)

The correspondence between this presentation of the algebra and that in section 2
is as follows. We can identify the spinor indices used in section 2 with the symplectic
fundamental indices, and we can take the symplectic form to simply be the C matrix
defined in [57]:

Wap = Cag - (A.2)
The sp(4) generators are the My, and P, converted to spinor indices. If we take

1
Mozﬁ = —§Mab’ygbﬁ —+ LPaVZ,B s (Ag)

then the commutation relation in the first line of (A.1) is obeyed. For the R-symmetry
generator, we simply take R = R. And lastly, for the supercharges, if we choose

Qur =V2L(Qh —iQu),  Qa- = V2L (-iQ% - Qua) , (A4)

then one can check that all other commutation relations in (A.1) are satisfied.

B When are D-terms exact?

In section 2.5, we argued that bulk /' = 2 D-terms are exact under some of the su(2|1), x
su(2), C osp(2|4) supercharges. This observation implies that the S3 partition function
and all correlation functions of su(2|1); x su(2),-invariant operators in the dual N' = 2
SCFT are independent of the D-term bulk couplings. In this appendix, we consider the
more general question of when D-terms for a supersymmetric algebra are exact under some
supercharge of the algebra. As we shall see, for this to be the case it suffices for the algebra
to contain a nilpotent operator. We then show that A/ = 1 D-terms in AdS, are not exact,
and so the N = 1 S3 partition function will generically depend on them.

Let us consider a supersymmetric theory on some curved manifold M which is invariant
under some supersymmetry algebra g with n fermionic generators q; , ... , q,. Furthermore,
let us deform our theory by some local interaction

L= //vl dlz O(z), (B.1)

which preserves both the R-symmetries (if any are present) and the isometries of M. By
acting with the supercharges ¢; we can construct new deformations of the theory:

L, L, qgLwithi<j, ..., q--q@Ll. (B.2)
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Here we have used the g anticommutation relations to order the ¢;’s so that the supercharges
with lower values of i are placed to the left. In general, it is possible that some of the
interactions in (B.2) simply vanish or, more generally, that not all the interactions in (B.2)
are linearly-independent. Linear dependencies would necessarily occur when O(z) belongs
to a short multiplet of the supersymmetry algebra, but they could also be present for certain
special O(z) that belong to long SUSY multiplets. Let us consider, however, the “generic”
case in which no such linear dependencies are present. In this case, O(x) necessarily belongs
to a long SUSY multiplet, and the 2™ interactions in (B.2) are a basis for the carrier space
V. of a finite-dimensional representation of g.*

We are interested in studying deformations built from long multiplets that preserve
the supersymmery algebra g. That is, for any £ as above we want to find some interaction

Lp=ad9L+ Z agl)qiﬁ + Z ag)qiqj/l + a@nql gL (B.3)
i i<j
which preserves the supersymmetry algebra g and the isometries of M, and, in particular,
is annihilated by all ¢;. Such interactions are the most general analogues of D-terms. In
the following discussion, we assume that such a SUSY- and isometry-invariant £p can be
found, and we study whether or not the partition function depends on it.
In particular, we will now argue that if g contains some nilpotent supercharge, then
Lp is exact under this nilpotent supercharge. Without loss of generality we can assume
that ¢ is such a nilpotent operator. We can use our basis (B.2) to decompose V. into two
distinct subspaces. Let us define Vj to be the space spanned by deformations

i, - - - i, L for which ¢; > 1 and i1 > i, (B.4)

and let ¢;Vy be the image of Vj under ¢;. Since both Vj and ¢;Vp are 2"~ dimensional
spaces it immediately follows that ¢; is a bijection from V{ to q1 V. Furthermore, we clearly
have Vy = Vo @1 Vo, and ¢1Vj C ker(q), and so from this we conclude that ¢V = ker(qy).
Thus, any ¢i-invariant deformation must be gi-exact. In particular, because the D-term
Lp is annihilated by all supercharges, it must be ¢;-exact.

In equation (2.56) of section 2.5, we saw that the N’ = 2 D-term in AdS; was exact
under one of the su(2|1), supercharges. We showed this by directly constructing the AdSy
D-term and then breaking the osp(2]|4) superalgebra down to su(2|1), x su(2),. Using
the results of this appendix, however, gives us a more direct route to this conclusion.
The su(2|1) superalgebra has nilpotent supercharges,*’ and so it follows that any su(2|1)-
invariant D-term is su(2|1)-exact. Because long o0sp(2]|4) multiplets decompose into long

39Note that while local operators transform in infinite-dimensional representations of the supersymmetry
algebra, the integrated operators (B.2) transform in a finite-dimensional representation. For example, the
repeated action of bosonic generators of the supersymmetry algebra on O(z) yields infinitely-many linearly-
independent local operators. By contrast, acting with the bosonic generators on £ gives a vanishing result;
this is due to the invariance of £ under R-symmetry and isometries of M, as well as the fact that the
integrals of total derivatives vanish.

“0The su(2|1) algebra has a u(1)g symmetry, under which the fermionic generators ¢; and g; (where
1= 1,2 are su(2) indices) are charged. Because no bosonic operator is charged under this u(1)r, it follows
that both ¢; and ¢; are nilpotent.
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su(2|1) multiplets, any the 0sp(2|4) D-term is automatically an su(2|1) D-term and therefore
is su(2[1)-exact.

Let us now turn to the case of N' = 1 D-terms. The AdS4; N = 1 supersymmetry
algebra is osp(1]4). Since in the N/ = 2 case we considered boundary operators that
preserve only an su(2|1), x su(2), algebra, it is now natural to consider boundary operators
preserving an osp(1|2), x su(2), subalgebra of osp(1]|4). Unlike su(2|1) = osp(2|2), the
superalgebra osp(1]|2) does not contain any nilpotent charges, and so we have to work
harder to check whether A = 1 D-terms are exact or not.

The o0sp(1|2) superalgebra is generated by the two supercharges ¢+, along with the
three sp(2) generators Xy and X, which satisfy the (anti)-commutator relations

{a+,9-} = Xo, {g,q+} = X4,
[X(]a qi] = :IZQi ) [Xi 5 Q¥] = —q+, (B5)
[Xo, Xy] =+2X, X+, X_|=Xp.

For a generic local interaction £ which preserves sp(2), the full osp(1|2) multiplet of defor-
mations consists of the four linearly-independent states

‘Cv quE ) q,E ) Q+q,£ ) (BG)
of which only the first and last preserve sp(2). The D-term therefore takes the form
Lp=qyq-L+aLl (B.7)

for constant v (we can always rescale Lp such that the coefficient of ¢;g— L is 1). Imposing

1

the condition ¢ Lp = 0, we find that o = —3, and so

1
Lp=q4q-L— §£. (B.8)

Although Lp is gi-invariant, it is manifestly not gi-exact. We thus conclude that N/ =1
D-terms generically change correlation functions of 0sp(1|2), x su(2),-invariant operators
of holographic N’ =1 SCFTs.

Although we have focused on 0sp(1]2), it is straightforward to extend our arguments to
the superalgebra osp(1|2m) for any m > 1. In particular, as mentioned above, the N =1
AdS, algebra is 0sp(1]4), which means that the S3 partition function of an A" = 1 SCFT
(with no insertions) is in general modified by bulk D-terms. Similarly, the (complexified)
N = 1 supersymmetry algebra on S* is also osp(1[4). Our argument implies that the S*
partition function is modified by D-terms, as previously shown in [75].

C Another perspective on the boundary real mass deformation

In this appendix, let us present another perspective on the real mass deformation of the
boundary SCFTs on S? that we discussed from a CFT perspective in section 2.6. As
discussed there, the change in the action is given by m multiplied by the integral of the linear
combination iJ + K of the scalars in a U(1) flavor current multiplet. (We set the radius
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of S3 to 1 here for simplicity.) In the context of the holographic duality, a flavor current
multiplet on the boundary couples to a dynamical bulk vector multiplet. Let us denote
such a vector multiplet by (X, X, ALY, S, Q%). The SUSY transformation rules are given
in (3.24) with the upper index I omitted. Denoting by (Y1, Y2, Y3) =Y = —377Y;", the
variation of Y3 can also be written as

6Y3 = 2D, (—El’Yaﬁz — &7 + Q% + E%“Ql)
! 1 (C.1)
+ 5 (€292 + Elﬁl + ggQQ + ElQl) .

Let us now identify the operator [ d®#\/g(Z) [iJ(¥) + K(Z)] that couples linearly to
the real mass parameter. One approach is to identify the boundary operators J(&) and
K (Z) as limits of bulk operators from the vector multiplet. Another approach, which is the
one we will follow, is to use supersymmetry: the real mass deformation should be invariant
under d44+ with A = 1,2, and this condition alone will determine the linear term in m up
to normalization.

Note that the spinors 77 and 75 in (2.51) obey the condition P74 = rv4PrT4. Then,
the parameters in (2.53)(2.54) obey €' = iry4e2 and € = iryse;. Using these relations,
we have

1 — 1

0X = —51'7‘ (€274 + €174822) , 0X = 2 (ElQl t gQQQ) ’
' C.2

3 — 7 - a - a T a2 o~ a1 ( )

5 (Y -X - X) =4 Pa (_617 {2 — 7" — ey Q7 —iré Y QL ) '

Splitting the coordinates into a = m = 1,2,3 and a = 4, we have

5 (Y3 ~X - X) = ﬁD4 (—517492 — ei0 — ire? - irE1Q1> +Dp (). (C3)

Thus,
3 \ 1 ¢l
and so the quantity
1 - 1 -
1 PR Y: 3 z _y3
B =lim (1-7) [quxﬁ{l_TQar(rX+TX)+X+X % (C.5)

integrated over a sphere S,. of radius r is supersymmetric with respect to d 44, with A = 1, 2.
The overall factor of (1 — )3 was chosen so that the » — 1 limit is finite.

The operator B is, up to normalization, the CF'T operator that couples linearly to the
real mass parameter:

/ P77/ g(7) [i7(F) + K(F)] « B. (C.6)

One can determine the overall normalization constant by computing, for instance, two
point functions of this operator, but we will not pursue that here.
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D Flat limit of the hypermultiplet manifold

D.1 General properties

As mentioned in the main text, in N/ = 2 supergravity the hypermultiplet scalar manifold
M is a quaternionic-Kéahler manifold of negative Ricci curvature proportional to = k2. For
ny hypermultiplets, we parameterize M by coordinates ¢%, with u = 1,...4n, and let us
denote its metric by h .. Part of the definition of a quaternionic-Kéhler manifold is that
it is endowed with a triplet of hypercomplex structures J_;u” that are covariantly constant
up to an SU(2) rotation:

Vdew + 285w X Jeu’ =0, (D.1)

where @, ,, are functions on the manifold that play the role of the SU(2) connection. Both
the metric hs ., and the hypercomplex structures J_;u” can be obtained from a frame field
as in (4.13), but this detail will not be needed in the discussion that follows.

It can be shown that the quaternionic-Kéhler manifolds are Einstein, and in super-
gravity the Ricci tensor and Ricci scalar are normalized to be

Riwy = —(ni + 2)k°huwy,  Ru = —dnp(ng + 2)°. (D.2)

Another property of the quaternionic-Kéhler manifolds is that the SU(2) curvature is pro-
portional to the complex structures, with the coefficient of proportionality related to the
Ricci curvature in (D.2):

2
g — — — — K T
Ruwy = Oullsy — OpWsqy + 205y, xw*U:—?J*uv. (D.3)

D.2 Flat limit

Since the curvature of M is proportional to x2, when x — 0, the hypermultiplet scalar
manifold becomes flat, with the metric and the hypercomplex structures approaching the
ones in flat space, as in (4.15), which we reproduce here for convenience:

Pacwv = Ouv + O("iz) ) j;uv = j;w + O</€2) ) (D'4)

As mentioned in the main text, the SU(2) connection vanishes in this case, but it is im-
portant to determine the O(x?) term in J,,. This can be determined from solving (D.3)
at leading order in x2. From this equation we see that &, = O(x?), and thus at leading
order we can neglect the term quadratic in @y:

K2 -
Oulsy — OplWsy = —?ij. (D.5)
A solution of this equation is
K2 - 4
(4_.5*“ Zejuqu + O(K] ) y (D 6)

as given in (4.16).
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D.3 Projective space and its flat limit

A more complete derivation of both (D.4) and (D.6) can be derived from an explicit example
of a quaternionic-Kéhler manifold M. We consider the negatively-curved quaternionic
projective space

USp(QTLH, 2)

HP
"= USp(2ny) x SU(2)

(D.7)

of quaternionic dimension ny and, correspondingly, real dimension 4ng. The constant
curvature metric on this space is a quaternionic analog of the Fubini-Study metric, namely:

g2 - _da'dd" &2 [(¢"dg")? + (dg" J1,"q")* + (dg* J2uq*)* + (dg* J3." q*)?]
o K2 v v 2
1= "a'q 4 (1 -~ %quqv)

* )

(D.8)

where repeated indices are summed over regardless of their up/down placement, and where
Jiu, Jou?, and Js,? are the hypercomplex structures in flat R*™# space obeying Ji’ Jjp =
—0;j0, + €k Ik, For example, J,U can be taken to be block diagonal, with each 4 x 4
block on the diagonal being equal to the explicit matrices in (4.31). The Ricci curvature
derived from the metric (D.8) is as in (D.2). The hypercomplex structures J,,* with one
index down and one up are precisely equal to the flat space ones:

— -

Tl = J,7, (D.9)

as can be checked by noticing that they obey the required multiplication relations as well
as covariantly-constant property (D.1) with the connection

2 2
Gy = % (1 — Zq”q“> J.q" . (D.10)

Here, again, repeated indices are summed over regardless of their placement.
It is then straightforward to expand (D.8)—(D.10) in 2 and reproduce (D.4) and (D.6),
and even go to higher orders in the x? expansion if one so desires.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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