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a b s t r a c t

We consider the classical sensor scheduling problem for linear systems where only one sensor is

activated at each time. We show that the sensor scheduling problem has a close relation to the

sensor design problem and the solution of a sensor schedule problem can be extracted from an

equivalent sensor design problem. We propose a convex relaxation to the sensor design problem

and a reference covariance trajectory is obtained from solving the relaxed sensor design problem.

Afterwards, a covariance tracking algorithm is designed to obtain an approximate solution to the

sensor scheduling problem using the reference covariance trajectory obtained from the sensor design

problem. While the sensor scheduling problem is NP-hard, the proposed framework circumvents this

computational complexity by decomposing this problem into a convex sensor design problem and

a covariance tracking problem. We provide theoretical justification and a sub-optimality bound for

the proposed method using dynamic programming. The proposed method is validated over several

experiments portraying the efficacy of the framework.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation and prior work

Advancements in network control systems, distributed sys-
tems, and the development of multi-agent autonomous systems
for surveillance require the development of efficient algorithms
allocating resources to manage the sensory data originating from
a large number of sensors observing different parts of a single or
distributed system, see for example, Evans et al. (2005), Gupta
et al. (2006), Maity and Baras (2015), Williams (2007) and Zhang
and Hristu-Varsakelis (2006). These problems have a long history
starting with (Meier et al., 1967) and Athans (1972), and they
include static sensor scheduling problems as well as trajectory
optimization scenarios for mobile sensors, e.g., Williams (2007).
In the sensor scheduling problem, we aim to minimize an error
criteria (e.g., the mean square error) where the error is dependent
on sensor measurements over a fixed time horizon. We are con-
strained by the number of sensors that can be activated at each
time. This problem has many applications including estimation
of spatial phenomenon in Nowak et al. (2004), target track-
ing in Masazade et al. (2012), robot navigation in Vitus (2011).
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Different methods have been applied to solve these problems.

For example, in Nowak et al. (2004) the scheduler is found by

employing hierarchical sensor networks to trade-off the mean

square error and communication cost. Whereas, a sparsity pro-

moting penalty function is added to the objective function to help

find a scheduler in Masazade et al. (2012), and, in Vitus (2011),

a scheduler is found by solving a novel incremental optimization

problem.

The optimization problems solving for optimal sensor sched-

ules are generally mixed-integer nonlinear programs, and thus,

quickly become intractable. Often these optimization problems

do not possess any amenable structure that could be exploited to

reduce their computational complexities. Owing to this difficulty,

a whole array of approximation attempts have been proposed to

solve these problems. The work of Meier et al. (1967) proposed a

solution that checks all possible sensor schedules, whereas, Vitus

et al. (2012) devised a solution that prunes the exponentially

sized search tree to reduce the search space at the expense of

added computation due to pruning. Joshi and Boyd (2008) re-

laxed the problem into a convex optimization problem, a heuristic

that often works well in practice. He and Chong (2004) modeled

the sensor scheduling problem as a partially observable Markov

decision process (POMDP) and proposed approximate solutions

to solve this POMDP. A stochastic optimization based solution for

an infinite-horizon steady state problem is addressed by Gupta

et al. (2006). Greedy solutions to the sensor scheduling problem

have been proposed as well, such as Wang et al. (2004). Chhetri
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et al. (2007) propose a greedy solution that also includes in-
teger programming. Some of these greedy solutions leverage
ideas from submodularity, e.g., Tzoumas et al. (2016). These ap-
proaches also include optimizing a slightly different objective
function (e.g., convexification of the objective). Additionally, Liu
et al. (2014) has proposed an optimal sensor schedule by re-
stricting the scheduling in the class of periodic functions. The
existence of periodic sensor scheduling has been proven in Ori-
huela et al. (2014) where a sub-optimal one-step ahead strategy is
thoroughly studied as a possible example of observation scheme.

1.2. Contribution and outline of the paper

We revisit the sensor scheduling problem of linear Gaussian
systems and recast it as a sensor design problem, which, to the
best of our knowledge, has not been explored in the past research.
While in a sensor scheduling problem we search for the optimal
schedule for a given set of sensors, in a sensor design problem
(details are provided in Section 3.1) we design the optimal sen-
sors. These two classes of problems are treated differently as
their primary objectives are different. However, sensor schedul-
ing problems have a close connection to sensor design problems
and we show that the former can be expressed as a special
case of the latter. We further demonstrate that a class of sensor
design problems can be solved by convex optimization. Using
this derived connection between sensor scheduling problems and
sensor design problems, an approximate solution of a scheduling
problem to select one sensor at any time is constructed. While
some of the prior works e.g., Joshi and Boyd (2008) and Tzoumas
et al. (2016) modify the cost function of a scheduling problem
to make it convex, we show that the sensor design problem is
already a convex optimization problem when the sensor parame-
ters are restricted to a convex set. In this approach, we thus avoid
the need to solve mixed integer programming problems which
are inherent to sensor scheduling problems.

The contributions of this work are as follows: First, we show
that there is a one-to-one connection between sensor schedul-
ing problems and sensor designing problems. Second, we show
that sensor designing problems are indeed convex when the
optimization parameters lie within convex sets. Third, from the
equivalent design problem of a scheduling problem, we obtain a
reference covariance trajectory that is used by our tracking algo-
rithm (Algorithm 1) to find a sensor schedule. Fourth, we use an
approximate dynamic programming based argument to provide
guarantees and a sub-optimality bound of our algorithm. Finally,
through numerical experiments, we demonstrate the efficacy of
our proposed method over some existing methods, e.g., Gupta
et al. (2006) and Tzoumas et al. (2016).

The rest of the paper is structured as follows: In Section 2,
the problem is formulated as a nonlinear integer program. In
Section 3.1, we propose a solution to this problem where we
construct a sensor design problem, and then in Section 3.2, we
provide a covariance-tracking algorithm to obtain the solution
of the original sensor scheduling problem from the solution of
the sensor design problem. We analyze the performance of our
algorithm in Section 3.3 using dynamic programming based ar-
guments. Numerical analysis on the performance of our approach
is provided in Section 4. Finally, we conclude this article in
Section 5.

2. Problem formulation

We consider a linear system of the form

Xt+1 = AtXt + Wt , (1)

where Xt ∈ R
n, X0 ∼ N (μ0, Σ0) is the initial state, {Wt}Tt=0 is an

i.i.d sequence of Gaussian random variable with W0 ∼ N (0,W),

and Wt is independent of X0 (denoted as Wt ⊥⊥ X0) for all t .

The dynamical system (1) is equipped with N sensors which are

described by

Y i
t = Ci

tXt + V i
t , i ∈ N � {1, . . . ,N}, (2)

where {V i
t }Tt=0 is an i.i.d sequence of Gaussian random variables

with V i
0 ∼ N (0,V i). Furthermore, for all t, s and i �= j ∈ N, V i

t and

V
j
s are independent, i.e., V i

t ⊥⊥ V
j
s , and also V i

t ⊥⊥ X0, V
i
t ⊥⊥ Ws.

Only one out of the N sensors are used at any given time

to obtain the measurements, which are then used in estimating

the state of the system (1). Let σ : [0, T ] → N be a sensor

schedule function such that σ (t) = i denotes that the ith sensor

is used at time t to obtain the measurement Y i
t corresponding to

sensor i. Thus, the received measurements up until time t can be

represented as Yt (σ ) � {Y σ (0)

0 , . . . , Y
σ (t)
t }. For a given schedule σ ,

the estimation error and the estimation error covariance at time t

are defined as et (σ ) � Xt−E[Xt |Yt (σ )] and Pt (σ ) � E[et (σ )et (σ )T],
respectively. The objective is to find a sensor schedule σ to min-

imize a cumulative expected quadratic error
∑T

t=0 E[et (σ )Tet (σ )]
over a finite horizon [0, T ], that is, to minimize

∑T
t=0 tr(Pt (σ )).

We define the following two matrix valued functions to main-

tain brevity in the subsequent analysis.

gt (i,M) = M − MCi
t
T(Ci

tMCi
t
T + V i)−1Ci

tM, (3a)

ht (M) = At−1MAt−1
T + W. (3b)

From Kalman filtering theory, we obtain that, for all t ,

Pt (σ ) = gt (σ (t), Pt|t−1(σ )), (4a)

Pt|t−1(σ ) = ht (Pt−1(σ )), P0|−1 = Σ0. (4b)

The optimal sensor scheduling problem is as follows.

Problem 1 (Sensor Scheduling Problem). Given a system (1)–

(2), find a schedule σ : [0, T ] → N that solves the following

optimization problem:

min

T∑
t=0

tr(Pt (σ ))

subject to Pt (σ ) = gt (σ (t), Pt|t−1(σ )),

Pt|t−1(σ ) = ht (Pt−1(σ )), P0|−1 = Σ0,

with variables σ , Pt , Pt|t−1.

Problem 1 is combinatorial in nature due to the discrete map-

ping of the scheduling function σ (·), and generally, it is NP-hard,

see e.g., Tzoumas et al. (2016). Majority of the prior works rely

on integer programming or relaxations to solve Problem 1. In this

work, we propose an efficient sub-optimal solution that studies

the problem from the perspective of sensor-design rather than

sensor scheduling.

3. Optimal sensor schedule

In order to solve Problem 1, we will construct a computation-

ally inexpensive simplified problem that provides a sub-optimal

solution to Problem 1. In this section, instead of looking for a

schedule σ (·), we focus on a seemingly different problem that

seeks to design sensors to be used over the horizon [0, T ].
Before starting our discussion on the sensor design problem

and its relation with the scheduling problem of Problem 1, let

us define two matrices Qt and Qt|t−1 (information matrices for

Kalman filtering) as follows

Qt (σ ) � P−1
t (σ ), Qt|t−1(σ ) � P−1

t|t−1(σ ).

2
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Therefore, from (3a) and (4a), we may write:

Q−1
t (σ ) = Q−1

t|t−1(σ )

− Q−1
t|t−1(σ )Ct

T(σ )S−1
t (σ )Ct (σ )Q−1

t|t−1(σ ),

where St (σ ) � Ct (σ )Pt|t−1(σ )Ct (σ )T + Vt (σ ) and Ct (σ ) � C
σ (t)
t ,

Vt (σ ) � Vσ (t). Using Woodbury equality1, one may equivalently

write

Qt (σ ) = Qt|t−1(σ ) + Ct
T(σ )V−1

t (σ )Ct (σ ). (5)

Using the new variables Qt (σ ) and Qt|t−1(σ ), Problem 1 is

rewritten as Problem 2.

Problem 2. Given a system (1)–(2), find a schedule σ : [0, T ] →
N that solves the following problem:

min

T∑
t=0

tr(Pt (σ ))

subject to Pt (σ ) = Q−1
t (σ ), Pt|t−1(σ ) = h(Pt−1(σ )),

Qt (σ ) = Qt|t−1(σ ) + Ct
T(σ )V−1

t (σ )Ct (σ ),

Qt|t−1(σ ) = P−1
t|t−1(σ ), Q0|−1 = Σ−1

0 ,

with variables σ , Pt , Pt|t−1,Qt ,Qt|t−1.

Although, the formulations in Problem 1 and Problem 2 may

appear different as their constraints are different, one can verify

that these two problems are equivalent, and thus, by solving

one, we can recover the solution for the other. Next, we show

the advantage of using Problem 2 over Problem 1 for solving

the sensor scheduling problem by discussing a sensor design

problem.

3.1. Sensor design problem

In this section, we focus on solving a sensor design problem

which is closely related to the sensor scheduling problem and

provides a reasonable heuristic for solving the latter problem.

To that end, a related sensor design problem is presented in

Problem 3.

Problem 3. Given a system (1), and the sets Ct and Vt , design

a linear sensor Yt = CtXt + Vt where Vt ∼ N (0,Vt ), to solve the

following problem:

min

T∑
t=0

tr(Pt )

subject to Pt = Q−1
t , Qt = Qt|t−1 + Rt ,

Qt|t−1 = (ht (Pt−1))
−1 , Q0|−1 = Σ−1

0 ,

Rt = Ct
TV−1

t Ct , Ct ∈ Ct , Vt ∈ Vt ,

with variables Pt ,Qt ,Qt|t−1, Rt , Ct ,Vt .

Remark 1. By replacing the constraints Ct ∈ Ct ,Vt ∈ Vt with

(Ct ,Vt ) ∈ {(Ci
t ,V i)}i∈N in Problem 3, we recover Problem 2.

We may further relax the constraints in Problem 3 to their

equivalent linear matrix inequalities (LMIs) to obtain a relaxed

problem. By using Pt � Q−1
t and Qt|t−1 	 (ht (Pt−1))

−1, and after

some simplifications via using Schur Complement, we obtain the

following relaxed problem.

1 (A + UCV )−1 � A−1 − A−1U(C−1 + VA−1U)−1VA−1.

Problem 4. For the given dynamical system (1), design a sensor
of the form Yt = CtXt + Vt , where Vt ∼ N (0,Vt ), to solve the
following problem:

min

T∑
t=0

tr(Pt )

subject to Qt = Qt|t−1 + Rt ,[
Pt I
I Qt

]
� 0,

[
W−1 − Qt|t−1 W−1At−1

AT
t−1W−1 Qt−1 + AT

t−1W−1At−1

]
� 0,

Rt ∈ Rt , Q0|−1 = Σ−1
0 ,

with variables Pt ,Qt ,Qt|t−1, Rt , where Rt = {Ct
TV−1

t Ct | Ct ∈
Ct , Vt ∈ Vt} is a given set of positive semidefinite matrices which
is constructed from the sets Ct and Vt .

Note that the constraint Rt ∈ Rt in Problem 4 is an equivalent
representation of the constraints Rt = Ct

TV−1
t Ct , Ct ∈ Ct , Vt ∈

Vt in Problem 3. Once {Rt}Tt=0 is found by solving Problem 4,

{Ct ,Vt}Tt=0 can be found by solving

Ct
TV−1

t Ct = Rt ,

for all t = 0, . . . , T . While Problem 4 is a relaxation of Prob-
lem 3, the following theorem states that an optimal solution of
Problem 4 is also an optimal solution for Problem 3.

Theorem 1. An optimal solution of the relaxed problem (Problem 4)
is also an optimal solution of the original problem (Problem 3), and
vice-versa.

Proof. Firstly, due to the relaxations, any feasible solution of
Problem 3 is a feasible solution for Problem 4, and hence the
optimal solution of Problem 3 is a feasible solution for Problem 4.
The theorem is proved once we show that for every feasible
solution of Problem 4 there exists a feasible solution for Prob-
lem 3 that produces the same, if not a lesser, objective value.
In order to prove this, let us consider {Pt ,Qt ,Qt|t−1} to denote
a feasible solution of Problem 4 and let us construct a new tuple
{P̄t , Q̄t , Q̄t|t−1}, for all t , as follows:

Q̄0|−1 = Q0|−1 R̄t = Qt − Qt|t−1, P̄t = Q̄−1
t ,

Q̄t = Q̄t|t−1 + R̄t , Q̄t+1|t = (
ht+1(P̄t )

)−1
.

(6)

Based on this construction of {P̄t , Q̄t , Q̄t|t−1}, one can verify using

mathematical induction that P̄t 	 Pt , Q̄t � Qt and Q̄t|t−1 �
Qt|t−1 for all t . Matrix R̄t , as defined in (6), satisfies R̄t ∈ Rt .

Therefore, based on (6), one can conclude that {P̄t , Q̄t , Q̄t|t−1} is a
feasible solution of Problem 3 since they satisfy all the constraints
of Problem 3. Furthermore, since P̄t 	 Pt , it then follows that∑T

t=0 tr(P̄t ) ≤ ∑T
t=0 tr(Pt ). Thus, an optimal solution of Problem 4

is a feasible solution of Problem 3, and vice-versa. This completes
the proof. �

Due to Theorem 1, the LMI-based relaxations introduced in
Problem 4 do not affect the optimality since an optimal solution
of the relaxed problem is also optimal for the original problem.
This is a key advantage of this approach over existing methods.
It is noteworthy that the LMI-based relaxations retain the opti-
mality of a sensor-design problem. Furthermore, Problem 4 is a
mixed integer semidefinite program and one could use efficient
numerical techniques, e.g., Gally et al. (2018) to solve it directly.

Note that Problem 4 is convex when Rt is a convex set for all t .
Moreover, if Rt is a convex hull of a set of � matrices {R1

t , . . . , R
�
t }

for all t , then we can replace the constraint Rt ∈ Rt with the

constraints Rt = ∑�

i=1 θ i
t R

i
t , θ i

t ∈ [0, 1] and
∑�

i=1 θ i
t = 1. In this

case, Problem 4 can be further simplified to Problem 5.

3
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Problem 5. For the given dynamical system (1), design a sensor
of the form Yt = CtXt + Vt , where Vt ∼ N (0,Vt ), to solve the
following problem:

min

T∑
t=0

tr(Pt )

subject to Qt = Qt|t−1 +
�∑

i=1

θ i
t R

i
t , Q0|−1 = Σ−1

0

[
Pt I
I Qt

]
� 0,

[
W−1 − Qt|t−1 W−1At−1

AT
t−1W−1 Qt−1 + AT

t−1W−1At−1

]
� 0,

�∑
i=1

θ i
t = 1, 0 ≤ θ i

t ≤ 1.

with variables θt , Pt ,Qt ,Qt|t−1.

At this point, we are ready to address the sensor scheduling
problem and its connection to Problems 3–5.

3.2. Sensor scheduling problem

The sensor scheduling problem can be viewed as a sensor
design problem if we restrict the design variables (Ct ,Vt ) to
be one of the elements in the set {(Ci

t ,V i)}i∈N as mentioned in
Remark 1. Equivalently, if we restrict Rt = {Ri

t}i∈N in Problem 4,

where Ri
t = Ci

t
TV i−1

Ci
t , then we recover a solution to Problem 1.

However, solving Problem 4 with the non-convex constraint Rt ∈
{Ri

t}i∈N is computationally expensive despite the availability of
efficient numerical techniques, e.g., Gally et al. (2018). There-
fore, we relax the constraint Rt ∈ {Ri

t}i∈N as Rt ∈ co
({Ri

t}i∈N

)
where co(·) denotes the convex hull operation. With this convex
hull relaxation approach, the relaxed sensor scheduling problem
becomes exactly the same as Problem 5.

By solving a relaxation of Problem 1, as presented in Prob-
lem 5, one obtains the variables {{θ i

t

o}i∈N}Tt=0, or equivalently Ro
t =∑N

i=1 θ i
t

o
Ri
t and the associated Po

t ,Q
o
t and Qo

t|t−1. If, θ i
t

o ∈ {0,1}
for all i and t , then this relaxed optimal solution {{θ i

t

o}i∈N}Tt=0

is an optimal schedule for Problem 1. However, in general, the
obtained θ i

t

o
are not binary-valued, and hence the solution of

Problem 5 may not readily be useful as a solution to Problem 1.
Therefore, we propose a tracking-based algorithm to use the so-
lution of Problem 5 as a guide to construct a sub-optimal solution
to Problem 1.

Algorithm 1 Covariance Tracking Algorithm

Input ← {Po
t }Tt=0, P0|−1 = Σ0,

for t = 0 : T
Mt (i) ← gt (i, Pt|t−1), i ∈ N,
σ (t) ← argmini ‖Po

t − Mt (i)‖F

Pt ← gt (σ (t), Pt|t−1),
Pt+1|t ← ht (Pt ),

end
Output ← σ .

Algorithm 1 takes the solution {Po
t }Tt=0 obtained from solving

Problem 5 as an initial guess, and initiates P0|−1 at Σ0 as required
by (4b). The notation ‖·‖F in Algorithm 1 represents the Frobenius
norm. The algorithm produces a covariance trajectory {Pt}Tt=0 that

is close to the reference trajectory {Po
t }Tt=0 in Frobenius norm.

The reasoning behind the construction of Algorithm 1 is to
keep the error covariance Pt (σ ) close to Po

t , since Po
t is the best

covariance one could possibly obtain given the set of sensors. The

algorithm is reminiscent of a trajectory-tracking problem where

Po
t serves as the reference trajectory. In the following we formally

provide technical justifications of using such a heuristic method

and its merits using dynamic programming based arguments.

3.3. Dynamic programming and optimality guarantees

Let us denote the value function associated with Problem 1 to

be Ut , which is given as follows

Ut (P) = min
Pt|t−1=P, {σ (k)}T

k=t

T∑
k=t

tr(Pk(σ )), (7)

where P is a positive semidefinite matrix. Similarly, we denote

the value function associated with the SDP relaxation of Prob-

lem 1 (equivalent to Problem 5 with � = N and Ri
t = Ci

t
TV i−1

Ci
t )

by Uo
t :

Uo
t (P) = min

Pt|t−1=P, {{θ i
k
}i∈N}T

k=t

T∑
k=t

tr(Pk(σ )). (8)

The difference between Ut and Uo
t is that the feasible choice of a

sensor at time t for Ut has to be one of the {Ri
t}i∈N (or equivalently

{Ci
t ,V i

t}i∈N), whereas the feasible choice of a sensor for Uo
t is any

of the sensors that lie within the convex hull of {Ri
t}i∈N. Therefore,

Uo
t (P) ≤ Ut (P) for all symmetric P � 0. In what follows, we will

suppress the Pt|t−1 = P constraint in the definitions of the value

function to maintain notational brevity.

From dynamic programming, one may write

Ut (P) =min
σ (t)

(
tr(Pt (σ )) + Ut+1(Pt+1|t (σ ))

)

= min
σ (t)

(
tr

(
gt (σ (t), P)

) + Ut+1

(
ht+1

(
gt (σ (t), P)

)))
,

UT (P) =min
σ

tr
(
gT (σ , P)

)
.

In the following we will exploit some of the properties of Ut and

the solutions obtained from solving the SDP relaxation (Po
t ,Q

o
t

and Po
t|t−1) to solve for an approximate value function associated

with (7).

Before proceeding, let us present some useful properties of the

map gt (·, ·) defined in (3) which will assist us in our subsequent

analyses. With a slight variation to Lemma 1-e from Sinopoli

et al. (2004), one can prove that, for any fixed i ∈ N, gt (i,M) is

concave in M . Furthermore, we can characterize the derivative of

the function gi(i, ·) by the following lemma.

Lemma 2 (Vitus et al., 2012). For each i ∈ N and for any positive

semi-definite matrices M, L, it follows that

dgt (i,M + εL)

dε

∣∣∣
ε=0

= Ht (i,M)LHt (i,M)T, (9)

where Ht (i,M) = (I − MCi
t
T(Ci

tMCi
t
T + V i)−1Ci

t ).

Proof. Let us define g̃t (i,M) = (Ci
tMCi

t
T + V i)−1, and therefore,

dg̃t (i,M + εL)

dε
= −g̃t (i,M + εL)Ci

t LC
i
t
Tg̃t (i,M + εL).

Using (3a) and after some simplifications, we obtain

dgt (i,M + εL)

dε

∣∣∣
ε=0

= Ht (i,M)LHt (i,M)T. �

The following proposition shows that the value function Uo
t is

locally Lipschitz, which is an important component in construct-

ing Algorithm 1.

4
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Proposition 3. For any two symmetric positive semidefinite matri-

ces P and Q with bounded Frobenius norms, and for all t = 0, . . . , T ,

there exists a constant K > 0, such that

‖Uo
t (P) − Uo

t (Q )‖ ≤ K‖P − Q‖F . (10)

Proof. We prove this in an inductive way. Let us first consider

t = T , and hence,

Uo
T (P) − Uo

T (Q ) = min
{θ i}i∈N

tr
(
gT (θ, P)

) −min
{θ i}i∈N

tr
(
gT (θ,Q )

)
(a)≤tr

(
gT (θ

∗, P) − gT (θ
∗,Q )

)
(b)≤tr(HT (θ

∗,Q )(P − Q )HT
T(θ∗,Q ))

≤‖P − Q‖F‖HT
T(θ∗,Q )HT (θ

∗,Q )‖F

where θ∗ = [θ1∗, . . . , θN∗] in (a) is a minimizer of tr(gT (θ,Q )),

and (b) follows from the concavity property of the function

gT (θ, ·) along with Lemma 2. From the expression of HT (θ
∗,Q )

in Lemma 2, along with the fact that Q has a bounded Frobenius

norm, one can verify that there exists a finite K > 0 such that

‖HT
T(θ∗,Q )HT (θ

∗,Q )‖F ≤ K . Therefore,

Uo
T (P) − Uo

T (Q ) ≤ K‖P − Q‖F .

The inductive hypothesis can be proven in a similar way which

we omit due to page limitation. �

The following proposition states that an upper bound on Ut is

found from Uo
t .

Proposition 4. For any time t and P � 0 with bounded Frobenius

norm, there exists a finite α > 0 such that Ut (P) ≤ Uo
t (P) + α.

Based on these propositions, we are now ready to perform an

approximate dynamic programming with the value function Ut (P)

to design a sub-optimal solution as follows. Recall that the value

function Ut (P) satisfies

Ut (P) = min
σ (t)

(
tr(Pt (σ )) + Ut+1(Pt+1|t (σ ))

)
,

which can be re-written as

Ut (P) ≤ α + min
σ (t)

(
tr(Pt (σ )) + Uo

t+1(Pt+1|t (σ ))
)
,

≤ α + Uo
t (P

o
t|t−1)

+ min
σ (t)

(
tr(Pt (σ )) + Uo

t+1(Pt+1|t (σ )) − Uo
t (P

o
t|t−1)

)
,

where Po
t|t−1 is obtained from the SDP relaxation. More specifi-

cally, by solving the SDP relaxation one obtains {Po
t ,Q

o
t|t−1,Q

o
t }Tt=0

and from these one can construct Po
t|t−1 = Qo−1

t|t−1. Thus, we have

that Uo
t (P

o
t|t−1) = tr(Po

t ) + Uo
t+1(P

o
t+1|t ), and therefore,

Ut (P) ≤ α + Uo
t (P

o
t|t−1)

+ min
σ

(
tr(Pt (σ ) − Po

t ) + Uo
t+1(Pt+1|t (σ )) − Uo

t+1(P
o
t+1|t )

)
≤ α + Uo

t (P
o
t|t−1)

+ min
σ

(
tr(Pt (σ ) − Po

t ) + K‖Pt+1|t (σ ) − Po
t+1|t‖F

)
≤ α + Uo

t (P
o
t|t−1)

+ min
σ

(
tr(Pt (σ ) − Po

t ) + K‖At‖2‖Pt (σ ) − Po
t ‖F

)
≤ α + Uo

t (P
o
t|t−1) + K1 min

σ
‖Pt (σ ) − Po

t ‖F , (11)

where K1 = K‖At‖2 + √
n and we have used Proposition 3 and

the fact that for any X ∈ R
n×n, tr(X) ≤ √

n‖X‖F .

Thus, performing the optimization minσ ‖Pt (σ ) − Po
t ‖F es-

sentially minimizes an upper bound of the value function Ut ,

or equivalently, an upper bound of
∑T

t=0 tr(Pt ). Therefore, in

essence, Algorithm 1 performs an approximate dynamic program-

ming type optimization by minimizing an upper bound of the

value function Ut . The following lemma provides a sub-optimality

bound of Algorithm 1.

Lemma 5. Let σ , σ ∗ and θ∗ denote the schedule obtained from

Algorithm 1, the true optimal schedule of Problem 1, and the solution

to Problem 5, respectively. Then,

T∑
t=0

tr(Pt (σ )) ≤
T∑

t=0

tr(Pt (σ
∗)) + ε (12)

where ε �
√
n
∑T

t=0
1−λT+1−t

1−λ
βt+√

n
∑T

t=0 ‖Pt (θ∗)−Pt (σ
∗)‖F , βt �

‖gt (σ ∗(t), Pt|t−1(θ
∗)) − Pt (θ

∗)‖F and λ � maxt
‖At−1H(σ ∗(t), Pt|t−1(θ

∗))‖2.

Proof. The proof of this lemma is omitted due to page limitation

and can be found in Maity et al. (2021). �

From the definition of βt , we notice that ε captures the co-

variance mismatch between the schedules θ∗ and σ ∗, and conse-

quently, portraying the effects of the relaxed sensor design prob-

lem on the overall optimality of the approach. If the optimal co-

variance {Pt (σ ∗)}Tt=0 is ‘‘close" to the covariance from the relaxed

optimization {Pt (θ∗)}Tt=0 then the suboptimality bound decreases,

which is expected. Furthermore, the bound ε depends on the

system dimension n and degrades with the system’s dimension.

4. Numerical evaluations

We empirically evaluate the performance of our algorithm by

applying it on a wide range of (randomly generated) scenarios

and comparing it to (suitable modifications of) Tzoumas et al.

(2016) and Gupta et al. (2006) and a random search algorithm.

The random search algorithm randomly generates 2000 schedules

and reports the best among these schedules. It is noteworthy that

the algorithm proposed by Gupta et al. (2006) is for an infinite

horizon steady-state estimation problem and here we adopt this

algorithm to our finite horizon problems.

We conduct several experiments by varying the dimensions

of the system. Four sets of experiments were conducted for four

different dimensions of A ∈ R
n×n for n = 4, 6, 8, and 10. For

each dimension n, we generate thirty scenarios by randomly gen-

erating thirty A matrices with eigenvalues in the range [1, 1.5].
For each scenario, we consider four randomly chosen sensors

with different numbers of dimensions (i.e., different number of

rows for matrices Ci). Noise Wt is chosen to have zero mean and

unit variance, i.e., Wt ∼ N (0, I). The measurement noises are

V i
t ∼ N (0, V i) where V i is a diagonal covariance matrix whose

diagonal elements are chosen randomly between 0 and 1. We

consider a time horizon of T = 100.

In Fig. 1 (left), we illustrate the performance of our algorithm

compared to the others. The x-axis represents the dimension of

the system and the y-axis represents the cost averaged over the

randomly generated scenarios. As can be seen, our algorithm

performs better than the other algorithms in terms of the cost∑T
t=0 tr(Pt ). We also compare the run-time of these algorithms in

Fig. 1 (right). While the run-times for random search and Gupta

et al. (2006) are slightly smaller than ours, their performances

are significantly worse than ours. On the other hand, while the

performance of Tzoumas et al. (2016) is comparable to ours, their

run-time is significantly higher compared to ours. In this way

the proposed method provides a balanced trade-off between the

computation-time and the objective value.

5
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Fig. 1. Plot of the cost
∑T

t=0 tr(Pt (σ )) and computation times for our algo-

rithm, Tzoumas et al. (2016), Gupta et al. (2006), and a random schedule

algorithm.

Fig. 2. Plot of total costs for all permutation of schedules. The gray line

corresponds to the cost by using the schedule resulting from our tracking

algorithm.

It is worth mentioning that during our study of sensor schedul-
ing problems, we have noticed that the optimal schedule con-
verge to a periodic scheduling scheme after a disproportionately
shorter transient period. Similar observation has also been wit-
nessed in other works, e.g., Jawaid and Smith (2015) and the
optimality of such periodic behaviors is proven in Orihuela et al.
(2014). The periodicity of the optimal policy can be further
exploited in our framework to generate optimal scheduling for in-
finite horizon problems and to further reduce the computational
complexity for finite horizon problems.

4.1. Near-optimal performance

While in the last set of experiments we illustrated that our
algorithm outperforms the other algorithms, in this section we
quantitatively demonstrate how close to the true optimum our
solution can be. To compute the optimal schedule, we need to
resort to exhaustive searches, and hence, we reduce the time
horizon to T = 9 in order to maintain tractability of the ex-
haustive search methods. We randomly pick one of the thirty
10-dimensional scenarios that were used in the previous exper-
iment. We have four available sensors to be scheduled for the

interval [0, 9], and hence, the total number of possible schedules

are 410. We compare the performances of all permutations of

schedules (410 of them) to the performance resulting from our

algorithm by plotting a histogram in Fig. 2. In Fig. 2, the x-axis

represents the cost (
∑T

t=0 tr(Pt )) and the y-axis represents how

many schedules (out of the 410 possible ones) can achieve that

cost.2 Such a histogram represents how likely it is to find a

random schedule that will produce a given cost. For this example,

our algorithm finds the optimal schedule, whereas the other

algorithms fail to find the optimal solution.

5. Conclusion

In this paper, we reformulated the sensor scheduling problem

as a sensor design problem whose convex relaxation is solved by

a semidefinite programming approach. While such a relaxation

does not readily produce a solution to the scheduling problem, we

presented a covariance-tracking algorithm to construct a sensor

schedule from the solution of the sensor design problem. The

foundation of our algorithm is justified by using an approximate

dynamic programming based argument where we show that the

tracking based algorithm indeed minimizes an upper bound of

the optimal cost (value function). A sub-optimality bound of our

proposed algorithm is also derived and discussed. Performance

of our algorithm is demonstrated on several examples and com-

pared with several existing methods to show the merit of our

framework.
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