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We consider a mobile multi-agent network in which the agents locate themselves in an environment
through imperfect measurements and aim to transmit a message signal to a far-field base station via col-
laborative beamforming. The agents imperfect measurements yield localization errors that degrade the
quality of service at the base station due to unknown phase offsets in the channels. Assuming that the
localization errors follow Gaussian distributions, we study the design of a one-shot (non-iterative) beam-
forming strategy that ensures reliable communication between the agents and the base station despite
the localization errors. We formulate a risk-sensitive discrete optimization problem to choose an agent
subset for transmission so that the desired signal-to-interference-plus-noise ratio (SINR) at the base sta-
tion is attained with minimum variance. We show that, when the localization errors have small variances
characterized in terms of the carrier frequency, greedy algorithms globally minimize the variance of the
received SINR. Moreover, when the localization errors have large variances, we show that the variance
of the received SINR can be locally minimized by exploiting the supermodularity of the mean and vari-
ance of the received SINR. Simulations demonstrate that the proposed algorithms synthesize beamform-
ers orders of magnitude faster than convex optimization-based approaches while achieving comparable
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performance with fewer agents.
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1. Introduction

A mobile multi-agent network is composed of a (possibly large)
number of agents, each of which has sensing, computation, com-
munication, and mobility capabilities [1,2]. With the decreasing
size and cost of available hardware, e.g., drones [3], batteries [4],
and antennas [5], the deployment of mobile networked agents is
an attractive option for various applications such as environmental
monitoring, tracking, and surveillance.

For example, in mobile sensor networks, agents continuously
traverse the environment to collect information, share the col-
lected information with each other through low-cost short distance
communications, and transmit a common information signal to a
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far-field base station through collaborative beamforming (CB) [6].
CB is a wireless communication technique in which the agents par-
ticipating in beamforming adjust the phase and amplitude of the
message signal so that the transmitted signals add coherently at
the base station. Compared to single agent transmission, CB has
the potential to significantly increase the range and rate of com-
munication, to improve the directivity of the beam pattern, and to
decrease the agents’ individual power consumption [7,8].

In many mobile applications, agents locate themselves through
imperfect sensor measurements as they travel across the environ-
ment [9]. These imperfect measurements cause localization errors
that translate into unknown phase offsets in the agents’ commu-
nication channels, degrading the potential coherent gain [10]. To
remedy the negative effects of localization errors, in this paper, we
study the problem of collaborative beamforming under localization
errors and develop algorithms to establish a reliable communica-
tion link with the base station despite the agents’ localization er-
rors.

We consider a setting in which the agents’ localization errors
follow Gaussian distributions and the channel between the agents
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and the base station has a strong direct-path component. In many
applications, the mean and variance of the location estimates can
be measured through sampling techniques, and Gaussian distribu-
tions can be used to approximate the localization errors [11,12].
The strong direct path channel occurs in free-space, and with
strong Rician channels such as when one link is elevated. An ad-
ditional case of interest occurs at lower frequencies, such as the
lower VHF and upper HF bands, where long wavelengths result in
strong barrier penetration and low levels of scattering. We note
that VHF propagation studies in urban environments [13,14] show
the applicability of a Rician model, even when there is no line-of-
sight path.

Localization errors are associated with the topology of the net-
work and translate to phasing errors in the transmission [6]. In
the literature, the beam pattern characteristics for randomly gen-
erated network topologies are analyzed using random array the-
ory [6,15,16]. Specifically, the authors in [15] consider a setting in
which each agent’s location in the environment is sampled from
the same Gaussian distribution. They prove that, in this setting, the
signal-to-noise ratio (SNR) received by the base station decays ex-
ponentially with a rate proportional to the variance of the Gaus-
sian distribution. In [16], the authors show that, when the agents
have fixed transmission powers and their phasing errors are iden-
tically distributed, the expected SNR increases quadratically with
the number of agents so long as the expected cosine of the phas-
ing errors is close to one. However, in multi-agent self-localization
scenarios, the agents’ position estimates follow non-identical dis-
tributions, in which case the aforementioned results may not be
applicable. Accordingly, in this paper, we extend the existing re-
sults on the analysis of localization errors in beamforming by con-
sidering a setting in which the agents’ localization errors follow
Gaussian distributions with potentially different mean and covari-
ance.

From the algorithmic perspective, different approaches are pro-
posed to synthesize beamformers that mitigate the undesired ef-
fects of phasing errors in the transmission. The work [10] consid-
ers a case in which the agents have no statistical information re-
garding their localization errors and propose an iterative feedback
algorithm that maximizes the SNR at the base station. Although
feedback-based approaches successfully improve the quality-of-
service (QoS) at the base station, their convergence to desired QoS
levels may, in general, require a considerable number of two-way
transmission iterations depending on network topology. When sta-
tistical channel information is available, algorithms based on semi-
definite programs (SDPs) are proposed to ensure that the received
SNR is above a threshold with a desired probability [17]. Similar
conic optimization-based formulations are also common in the ro-
bust beamforming literature [18,19]. While SDP formulations pro-
vide a powerful method to improve the QoS at the base station,
they are computationally expensive and do not scale well with the
number of agents.

In this paper, we approach the beamformer design problem
from a discrete optimization perspective. Specifically, given a net-
work of agents with associated non-identical Gaussian localiza-
tion errors, we propose a one-shot (non-iterative) approach that
seeks a subset of agents to form a beam that achieves the de-
sired QoS requirements without base station feedback. By employ-
ing only a subset of agents in beamforming, the proposed discrete
optimization-based approach not only mitigates the undesired ef-
fects of localization errors but also increases the operational time
of the agent network by consuming less energy. Moreover, our ap-
proach can also be seen as providing a one-shot initialization for
feedback-based approaches by utilizing the uncertainty informa-
tion and may potentially help these approaches improve the QoS
at the base station faster.

The main contributions of this paper are as follows:
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« First, using the variance of the SINR at the base station as a risk
measure, we formulate a risk-sensitive optimization problem to
form a reliable communication link between the agents and the
base station despite the agents’ non-identical Gaussian localiza-
tion errors. Specifically, we aim to find a subset of agents to
transmit the message signal such that the desired SINR level at
the base station is achieved with minimum variability.

Second, we propose an efficient sorting-based algorithm,
Greedy, to solve the formulated discrete optimization problem
and prove sufficient conditions for its optimality. In particu-
lar, we show that the proposed algorithm globally minimizes
the variance of the received SINR when the agents’ localiza-
tion errors are below a certain threshold which is a function
of the carrier frequency. This result characterizes a fundamen-
tal trade-off between the localization accuracy and the QoS at
the base station as a function of the carrier frequency. Hence, it
provides practitioners a guideline about the required localiza-
tion accuracy for achieving desired QoS requirements at differ-
ent frequencies. We also provide an extension of this algorithm,
Double-Loop-Greedy (DLG), which improves the empirical per-
formance.

Third, we develop an algorithm, Difference-of-Submodular
(DoS), which exploits the supermodularity of the expected
value and variance of the received SINR and always returns a
subset that is locally optimal for a certain relaxation of the for-
mulated optimization problem. The DoS algorithm ensures that
the agents included in beamforming locally minimizes the vari-
ance of the SINR at the base station even when their localiza-
tion errors have high variances. This means that, for scenarios
in which the localization accuracy required to globally mini-
mize the variance of the received SINR cannot be achieved, the
DoS algorithm can be used to provide local optimality guaran-
tees on the QoS.

We compare the performance of the proposed algorithms with
an SDP-based beamformer and demonstrate that all three algo-
rithms (Greedy, DLG, and DoS), exhibit similar performance to the
SDP-based beamformer while using significantly fewer beamform-
ing agents. Moreover, for problem instances with a large number of
agents, the Greedy and DLG algorithms compute the agent subset
orders of magnitude faster than the SDP-based beamformer.

Related work: A preliminary version of this paper appeared in
[20], where we present the Greedy algorithm to solve the opti-
mization problem formulated in this paper. In this paper we ex-
tend this as follows. First, we present the DLG algorithm which
improves the empirical performance over the Greedy algorithm on
instances that violate the sufficient condition for optimality. Sec-
ond, we prove the supermodularity of the mean and variance of
the received SINR as a function of the selected agent subsets, and
present the DoS algorithm to locally minimize the variance of the
received SINR. Third, we provide numerical simulations to compare
the performance of the proposed algorithms. Finally, we provide
proof sketches for all technical results. Due to space restrictions,
full proofs are given in the supplementary material and the online
version [21].

In addition to the aforementioned references, the subject of this
paper is also related to beamformer design when the agents have
only local position information. Specifically, in [22,23], the authors
consider a setting in which the global location information is not
available at the agents and design an antenna array that approxi-
mates the performance of a linear antenna array using only the in-
formation of exact inter-agent distances. Here, we consider a set-
ting in which the statistics of the global location information are
available at the agents, so the problem formulation and solution
are significantly different.
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The idea of beamforming using only a subset of available
agents has been investigated for various purposes. In [15,24,25],
the authors choose a subset of sensor nodes to control the maxi-
mum sidelobe level. The work [26] develops a discete-optimization
based algorithm to design a sensor array for spatial sensing ap-
plications. Finally, the reference Mehanna et al. [27] studies the
antenna selection problem in multicast beamforming. Unlike these
works, we consider the problem of achieving the desired SINR level
at the base station with minimum variability despite localization
errors and design discrete optimization-based algorithms that have
provable performance guarantees.

2. System model

We consider a group of N € N agents that are distributed in an
environment. Each agent is equipped with a single ideal isotropic
antenna with a constant transmit power P > 0. The agents’ objec-
tive is to transmit a common message signal m(t) to a base station
equipped with a single antenna.The message m(t) may represent
raw measurement data or a waveform encoded with digital data.

2.1. Communication channel

We assume that the base station is located in the far-field re-
gion, each agent i € [N] transmits the signal m(t) over a narrow-
band wireless channel h; € C, and the channel between the agents
and the base station has a strong direct-path component.

This arises in free-space and with strong Rician channels such
as when one link is elevated, and also at lower frequencies (long
wavelengths). The lower frequency case is particularly of interest
because the tolerable localization error scales with the wavelength.
For example, as experimentally validated in [28], significant sig-
nal penetration through obstacles is possible at low-VHF frequen-
cies. Moreover, in dense urban scenarios, low-power low-VHF com-
munication yields significantly improved penetration and reduced
multi-path [29]. Therefore, with sufficiently long wavelength the
channel may become direct-path dominated even in dense clutter.

We also assume that the distances between the agents and the
base station is much larger than the inter-agent distances, and lo-
cal oscillators of all agents are time- and frequency-synchronized.
Distributed time and frequency synchronization in wireless ad-hoc
networks have been extensively studied in the literature [30,31],
e.g., synchronization may be achieved using a short-range radio
protocol [16,32]. There are also available methods for addressing
potential implementation challenges [33]. Small synchronization
errors can also result in phase errors, so these could be poten-
tially folded into the approaches presented here, although we do
not consider this further in the paper.

2.2. Collaborative transmission model

We consider a subset S € [N] of agents that collectively trans-
mit the message signal m(t) to the base station. All agents modu-
late m(t) with the carrier signal Re{e/27fct}, where f; is the car-
rier frequency. Our results are applicable for any f., while not-
ing that longer wavelengths demand less localization error, and we
will characterize this relationship explicitly.

Each agent i € S adjusts the phase of the transmission with the
complex gain w; e C where |w;| = +/P, where P is the transmit
power. Then, the signal received by the base station is

ys(t) :=Re {ejz”fffm(t) Zwihi} +n(t)

ieS
where n(t) denotes the inperference—plus—poise. Without loss of
generality, we let w; = +/Pe/di and h; = a;e/ for each i € [N]. The

Signal Processing 200 (2022) 108647

angle §; € [0, 2r) denotes the phase of the gain w;, and it is a de-
sign parameter. The magnitude a; > 0 and the phase n; € [0, 27)
characterize the channel h; between the base station and the agent
i € [N]. Then, the phase offset n; at the base station relative to a
signal transmitted by an agent located at 7; € R3 (in Cartesian co-
ordinates) is [34]

21w
-

In (1), 7 € R3 is the unit vector pointing in the known direction
of the base station, C is the speed of light, and (., -) is the vector
inner product.

We assume that the local position 7; of each agent i € [N] sat-
isfies 7; ~ N'(i;, X;) where p; € R? and X; € R3*3 are, respectively,
the known mean and covariance of the Gaussian distribution. The
first and second order statistics of position estimates are typically
easy to obtain in practice [35,36]. Moreover, the agents can utilize
variations of Kalman filtering approaches to maintain Gaussian dis-
tributions for localization errors throughout their motion [37].

We also assume that ; and 7} are independent for i, j € [N] such
that i # j. Note that the independence assumption holds in prac-
tice, e.g., if the agents locate themselves in the environment based
only on their own sensor measurements and do not share infor-
mation with each other to improve localization.

For a given subset S € [N] and the corresponding phase param-
eters §; for each i € S, let the array factor be

3 el

ieS

(T, 7e). (1)

F(S,0) :=

where § :=[§;]i € S] is the vector of phase parameters. Assuming
that || = |h;| for all i, j € [N], the magnitude of the array fac-
tor is proportional to the square root of the SINR received by the
base station [10]. We note that the assumption |h;| = |h;] is intro-
duced just to simplify the notation, and the results of this paper
can be easily extended to cases in which |h;| # |h;|. In practice, the
assumption [h;| = |h;| may hold when the distance between the
agents and the base station is significantly larger than the inter-
agent distances. Let the total phase be ®; := §; + n;. The square of
the array factor yields the beamforming gain G(S, 8) that is propor-
tional to the received SINR and given by

G(S,8) :=F*(5,8) = 3 Y cos (dDi—CIDj). )

ieS jeS

3. Problem statement

The beamforming gain G(S,§) is a fundamental quantifier of
the quality of a communication link with the base station as it
is proportional to the received SINR. Hence, to establish a reliable
communication link, we want the beamforming gain to be high
with minimum variability.

In this paper, we focus on a scenario in which the agents’ ex-
act local positions {f; : i € [N]} are not known. Each agent’s poten-
tial local positions are expressed with a Gaussian distribution f;
~ N(m;, X;). As a result, G(S, §) is a random variable. In such a
scenario, a reasonable objective might be to minimize the outage
probability, i.e., the probability that the beamforming gain falls be-
low a certain threshold. However, there are two major difficulties
involved in the optimization of the outage probability. First, due to
the nonlinear structure of the beamforming gain G(S, 8), deriving
a closed form expression for the outage probability is not trivial.
Second, as the agent subset S is a discrete variable and the vector
& of phase parameters is a continuous variable, joint optimization
of G(S, §) in the pair (S, §) is computationally challenging.
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When the closed form probability distribution is hard to ob-
tain or has a multimodal structure, a common approach for op-
timizing performance is to consider alternative risk-sensitive for-
mulations [38,39]. Accordingly, in this paper, we consider a mean-
variance optimization framework which is a widely used approach
in a number of domains, ranging from cognitive radio networks
[40] to finance [41].

We remedy the computational challenges involved in the joint
optimization of G(S,d) in the pair (S, §) as follows. In Section 4,
we show that, for any given agent subset S, one can maximize the
expected beamforming gam E[G(S, 6)] by selecting the vector § of
phase parameters as § = 8 where §; := —E[;] for all i e [N]. This
result implies that, for any given agent subset S, one can maxi-
mize the expected SINR by aligning the agents’ total phases ®; in
expectation. Therefore, we fix the phase paramater §; of each agent
ie[N]tod; = 5, and focus on selecting an agent subset that attains
a desired level of SINR with minimum variability.

Finally, we provide the formal problem statement as follows.

Problem 1: (Subset selection) For a constant I" > 0, and the
fixed vector of phase parameters § = 4, find S* < [N] such that

S*e arg?g[ill\}] Var(G(S, 3)) (33)

subject to: IE[G(S, 3)] >T. (3b)

4. Statistical properties of the beamforming gain

In this section, we first derive the explicit form of the expected
beamforming gain E[G(S, 8)] and show that, for any given subset
S C [N], we can maximize E[G(S,8)] by setting § = 8. We then
derive the explicit form of Var(G(S, S)).

Consider the definition of G(S, d), given in (2), and recall that,
for all ie[N], ®; = n; + § where n; = 2n fe (7, 7c)/C and 7; ~
N (i, ;). Then, for a given vector 8 € [0, 27r)N of phase param-
eters, we have ®; ~ N (6;, y;) where

2 fF2
ijfc<u,-, Fc>+8,» and y;:= 4ncf <rC,ErC> (4)

We refer to y; as the effective error variance in the localization of
the ith agent.

9,‘ =

Proposition 1. Let v; := exp(—y;). We have

]E[G(S,S)] =[S[+>°>" /vivjcos(6; - 6)). (5)
ieS jeS
J#

Proof (sketch): We obtain the result by taking the expec-
tation of both sides in (2) and using the linearity of expecta-
tion, independence of 7; and 7; for all i# j, and the fact that
E[cos(X)] = e=°%/2 cos(i1) where X ~ N (i, 02). O

Proposition 2. For any given S € [N], & e MaXg (0 27)N E[G(S, 8)] if
and only if, for all i, j € S, we have

((Siﬂa[m]) - (&+1€[m1>) mod 2 = 0. (6)

Proof. For any S C [N], E[G(S, d)], given in (5), is maximized if and
only if (6; - 8;) mod 2w = 0 because (i) cos(x) <1 for any x € R
and (ii) cos(x) = 1 if and only if x mod 27 = 0. Recalling that
0; = E[n;] + 8;, we conclude the result. O

The condition in (6) implies that, in order to maximize the
expected beamforming gain, the agents’ total phases should be
aligned in expectation. Note that the vector §, where 8§ = —E[n;]
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for all i € [N], satisfies the condition in (6). In the subset selection
problem, we set § = 8 and aim to find a subset S © [N] that solves
the risk-sensitive optimization problem given in (3a)-(3b).

When & = §, we have 0; = 0; for all i, j € [N], implying that

E[cs. 8] =|s[+ L ¥ o (7)
ieS jeS
J#
Next, we derive the variance of G(S, 3) as follows.

Proposition 3. Let v; := exp(—y;). We have

Var(6s.8)) =33 (1- vy )+ 2 Y3 (1- )2 ik

ieS jeS ieS jeS keS
J#i j#i k#
k+#j

Proof (sketch): Note that Var(G(S, 3)) = E[G(S, 3)2] -
E[G(S, 8)]2. We prove the result by utilizing the equivalence in
(7) and deriving the explicit form of E[G(S, 3)2] using the iden-
tity cos(2x) = 2cos(x)2 - 1 for any x e R, and the fact that
E[cos(tX)] = e*7*/2 where X ~ N(0,02). O

5. Agent selection under localization errors

In this section, we propose three algorithms to solve the sub-
set selection problem and analyze their optimality guarantees.
Throughout this section, we assume that the problem in (3a)-(3b)
has a feasible solution. For a given problem instance, the valid-
ity of this assumption can be easily verified by checking whether
E[G([N], 8)] > T due to the following result.

Proposition 4. For any S € &' < [N], E[G(S, 3)] < E[G(S/, 3)].

Proof. The result follows from the fact that E[G(S, 8)] is a sum
of nonnegative terms; hence, adding an element to the subset can
only increase the sum. O

5.1. Greedy algorithm
In this section, we consider a simple greedy algorithm to solve

the subset selection problem and provide sufficient conditions for
its optimality. The Greedy algorithm, shown in Algorithm 1, first

Algorithm 1 Greedy.
1: Input: y; forallie [N], [ e R.

2: Sort y; such that y;, <y, <... < ¥,

3: S =90, k::lA

4: while E[G(S,0)] < do, S:=SU{i}, k:=k+1
5: end while

6: return S.

sorts the agents’ effective error variances y;, defined in (4), in as-
cending order. We note that the sorting operation can be per-
formed in O(Nlog(N)) for an array of length N. Initializing the out-
put set S to the empty set, the algorithm then iteratively adds the
agent with the next lowest effective error variance to the output
set until the constraint E[G(S, 3)] > I is satisfied.

We now present sufficient conditions on the set {y; :ie[N]}
for which the Greedy algorithm returns an optimal solution to the
problem in (3a)-(3b). Let the total effective error variance of a subset
S < [N] be measured by the function V : 2[Nl - R where V(S) :=
Y ics Vi- Consider the problem of choosing a subset S’ < [N] that
satisfies the constraint in (3b) and has the minimum total effective
error variance, i.e.,

S e argmin  V(S) (8a)
SSIN]
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subject to: E[G(S, 3)] >T. (8b)

The next result, together with Proposition 4, implies that the
Greedy algorithm yields an optimal solution to the problem in
(8a)-(8b).

Proposition 5. For any K € N such that K < N, we have

arg min V(S) = arg max IE[G(S, 3)].
ScIN]: ScN]:

|S|=K |S|=K

Proof (sketch): We prove the result by showing that the deriva-
tive of E[G(S, 3)] with respect to y;, where i € S, is always nega-
tive. Therefore, a subset S of fixed size K maximizes the expected
beamforming gain if and only if the subset has the minimum total
effective error variance V(S) among all subsets of size K. 0

It can be shown that the problems in (3a)-(3b) and (8a)-(8b)
are not equivalent in general. Hence, the greedy approach is, in
general, not optimal to solve the subset selection problem. How-
ever, there are certain sufficient conditions, which are formalized
below, under which such an approach becomes optimal.

Theorem 1. For a given set {y; : i € [N]} of effective error variances,
let y;, <y, <... <V, where iy € [N]. A solution to the problem in
(8a)-(8b) is also a solution to the problem in (3a)-(3b) if either one
of the following conditions hold:

(C1) E[G(S.8)] = T where S = {iy. iy},
(C2) y;, = 0.83.

Proof (sketch): The main idea in the proof is to show that
the derivative of Var(G(S, 3)) with respect to max;cs ¥; iS positive.
Condition (C1) follows from the fact that, when |S| < 2, the deriva-
tive is always positive. Condition (C2) follows from the fact that,
when y;, < 0.83, the derivative is positive regardless of the size of
the set S. For such y;,, the subset with minimum V(S) is the one

that minimizes Var(G(S, 3)); hence, the problems in (8a)-(8b) and
(3a)-(3b) become equivalent when (C1) or (C2) holds. O

Theorem 1 states that if all the agents have “small” effective
error variances, then the Greedy algorithm returns an optimal so-
lution to the subset selection problem. In particular, it follows from
Theorem 1 that a sufficient condition for optimality characterized
by the carrier frequency is

0.83(C2
an?f?’

max <r}, Z,-FC> <
ie[N]
For example, suppose that ¥; = a,.213x3, where I3,3 is the iden-

. . 2
tity matrix, and let 02,, := max;o2. Then, we have 62, < 253?2
c

as the sufficient condition (C2). In Fig. 1, we plot the trade-off be-
tween the carrier frequency fe and the maximum variance o2,
under which the Greedy algorithm is optimal. As f. decreases (re-
sulting in longer wavelength), condition (C2) allows larger posi-
tion error variance. For example, below 50 MHz in the lower VHF,
agents are allowed to have localization error variance approaching
one square meter or more. This can be relatively easily achieved
with, for example, global navigation sensors [42] and employing
existing localization algorithms [43,44].

Although the Greedy algorithm provides an optimal solution to
the subset selection problem under the sufficient conditions given
in Theorem 1, we may have scenarios where the localization er-
ror variance ranges from small to large and (C2) does not hold for
all agents. In the Appendix, we present a simple extension of the
Greedy algorithm, which we refer to as the Double-Loop-Greedy
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Fig. 1. Maximum localization error variance o2,, allowed for the optimality of the
greedy algorithm as a function of the carrier frequency f.. Note that the localization
error tolerance is relaxed at lower frequencies (longer wavelengths).

(DLG) algorithm. Although the DLG algorithm has the same theo-
retical guarantees with the Greedy algorithm, it improves the em-
pirical performance when the conditions given in Theorem 1 are
violated, as shown in numerical examples.

5.2. Difference-of-Submodular (DoS) algorithm

The Greedy algorithm is guaranteed to return optimal solutions
to the subset selection problem under the sufficient conditions
stated in Theorem 1. In this section, we propose a second approach
to solve the subset selection problem, which always returns a lo-
cally optimal solution to a certain relaxation of the subset selec-
tion problem. Although the proposed approach is computationally
more demanding, its local optimality guarantee is independent of
the carrier frequency unlike the Greedy algorithm.

Before presenting the Difference-of-Submodular (DoS) algo-
rithm, we first provide a definition of submodularity and show that
both the expected value and the variance of the beamforming gain
are supermodular set functions.

Definition 1. A set function f:2% — R is submodular if for ev-
ery X,Y € Q with X CY and every e € Q\Y, we have f(XU {e}) —
fE&) = fYufeh) - f(Y).

A set function f : 2 — R is supermodular if the set function — f
is submodular.

Theorem 2. Both E[G(S, 3)] and Var(G(S, S)) are supermodular set
functions.

Proof (sketch): For notational simplicity, let G(S) := G(S, 3).

For X,Y C [N] such that X €Y, let X’ = XU{e} and Y/ = Y U {e}
where e € [N]\Y. We have,

Xairr 1= E[GX)] = E[CX)] =1+ 2VVe ) VUi,

ieX
Yaier 1= E[G(Y)] = E[G(Y)] = 1+ 2V Y _ V.
ieY
Using 1,20 and XCY, we obtain Xy — Yairr =

—2Ve Yiey\x VVi < 0. Hence, we conclude that E[G(S,d)] is
supermodular.

To show the supermodularity of Var(G(S, 8)), we define X gir 1=
Var(G(X")) — Var(G(X)) and Y := Var(G(Y")) — Var(G(Y)). Then,
we show that Xy — Yqire < O by using the fact that v; > 0 and X <
Y. O
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Next, we formalize the notion of local optimality for discrete
optimization problems and introduce the DoS algorithm which uti-
lizes the results of [45].

Definition 2. [45] For a set function ¢ : 2% — R, a sequence {S; <
Q :t e N} is said to converge to a local minimum if there exists a
constant M € N such that ¢(Sm) = ¢(Sy) for all m,n > M, and for
any ke N, ¢(S,) <@ (Sp) for all I <k.

Let f:22 5> R and g:2% - R be submodular set functions.
In [45], the authors present an algorithm, called Submodular-
Supermodular-Procedure (SSP), that returns a locally optimal so-
lution to the following problem

min - f(S) - (). (9)

The DoS algorithm, shown in Algorithm 2, utilizes the SSP as a

Algorithm 2 Difference-of-Submodular (DoS).
1: Input: y; forallie [N, ' eR, 4o >0, o > 1.
2:8:=0k:=0.

3: while E[G(S, )] <T do

4 f() = —ME[GC, 8)], g(-) := —Var(G(-, d))
5. 8:=SSP(f(-),8(")
6
7
8

ki=k+1, Ay := aAp_q.
. end while
. return S.

subprocedure to return a locally optimal solution to a certain re-
laxation of the subset selection problem. In particular, it takes two
parameters Ag > 0 and « > 1 as inputs as well as the agents’ effec-
tive localization error variances y; and the expected gain threshold
I". At the kth iteration, where k € N, using the SSP as a subpro-
cedure, the DoS algorithm finds a locally optimal solution to the
following problem

min Var(G(S, S)) - Akn«:[c(s, S)] (10)

ScIN]

where X, is iteratively defined as A, = aAj_;. The algorithm termi-
nates when the solution returned by the SSP satisfies E[G(S, 8)] >
r.

Convergence of the DoS algorithm: For the DoS algorithm to
terminate, the subprocedure SSP should output a subset S C [N]
such that E[G(S, 3)] > I'. At the kth iteration, the SSP finds a lo-
cally optimal solution to the problem in (10) by computing suc-
cessive modular approximations of the function Var(G(S, 3)) and
finding a globally optimal solution to each of the resulting approx-
imation problems. Since Ay > 0 and « > 1, the parameter A; in-
creases at each iteration. Hence, in terms of the objective value,
the globally optimal solution of the approximate problems become
closer to the globally optimal solution of maxs E[G(S, 3)], which is
S = [N]. Since we assumed at the beginning that there exists a fea-
sible solution to the subset selection problem, the DoS algorithm is
guaranteed to terminate for some finite k € N.

Optimality of the DoS algorithm: As mentioned earlier, at each
iteration, the DoS algorithm computes a locally optimal solution to
the problem in (10). Hence, the subset returned by the DoS algo-
rithm is a locally optimal solution to the following relaxation of
the subset selection problem

min Var(G(S, S)) - )L,(,IE[G(S, 8)] (11)
SSIN]

where k* is the number of iterations until the convergence of the
DoS algorithm. We also note that the above problem formulation
is sometimes referred to as a “regularized version” of the original
constrained optimization problem [46].
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6. Numerical experiments

In this section, we present numerical simulation results that
demonstrate the performance of the proposed algorithms. All com-
putations are run on a 3.1-GHz desktop with 32 GB RAM using the
toolbox [47] for the implementation of the SSP (step 5 in the DoS
algorithm).

6.1. Suboptimality ratio on small-scale instances

A typical measure to assess the empirical performance of an op-
timization algorithm is its suboptimality ratio on randomly gener-
ated instances. For the purposes of this paper, the suboptimality
ratio demonstrates how much the variance of the received SINR is
larger than the minimum achievable one when the agents employ
the proposed algorithms to transmit the message.

We compare the suboptimality of the proposed algorithms
as a function of three problem parameters: the total number N
of agents, the maximum localization error ymax := min{y :y >
y;, for all i e [N]}, and the expected beamforming gain threshold
I' = Blmax where 0 < 8 <1 and Mmax := E[G([N], 3)] is the max-
imum expected beamforming gain that can be achieved by the
agents.

For a given problem instance, we measure the performance of
an algorithm by the suboptimality ratio (SR) of its output. Specif-
ically, let S* be an optimal solution to the given problem instance
(3a)-(3b), which, for small N, can be computed by considering all
subsets S C [N]. Moreover, let S be the (possibly suboptimal) out-
put of a given algorithm. We define the SR of the algorithm on the
given instance as

. Var(G(E, S)) |
Var(G(S*, S))

All proposed algorithms, i.e., Greedy, DLG, and DoS, have SR > 1
since their output S satisfies E[G(S, 8)] > I'.

In the first set of experiments, we investigate the relationship
between the algorithms’ SR, the total number N of agents, and
the bound ymax on the agents’ effective localization error vari-
ances. For a given N and ymax, a problem instance consists of {y; :
i € [N]} where each y; is uniformly randomly selected from the in-
terval (0, ymax). We set the expected beamforming gain threshold
as I' = 0.6I'max to allow the algorithms to output subsets of dif-
ferent sizes if it is optimal to do so. Furthermore, we set A9 = 1
and o = 2 for the DoS algorithm. Recall that the DoS algorithm
has only local optimality guarantees. Hence, the SR of the algo-
rithm’s output depends on the initialization of the SSP. Accordingly,
for each problem instance, we run the DoS algorithm 10 times us-
ing different initializations and report the performance of the best
output.

For each N € {6, 8,10} and each ymax € {1,2,...,20}, we gen-
erate 100 problem instances and illustrate the average SRs of all
algorithms in Fig. 2 (top). As can be seen from the figure, all algo-
rithms show near-optimal performance (SR< 1.3) for all (N, ¥max)
pairs. Recall from Theorem 1 that, when ymax < 0.83, both the
Greedy and DLG algorithms are guaranteed to have SR=1. More-
over, the DLG algorithm is always guaranteed to have smaller SR
than the Greedy algorithm. The results shown in Fig. 2 (top) em-
pirically witness these theoretical guarantees. Moreover, as can be
seen from the figure, both the Greedy and DLG algorithms per-
form well (SR <1.1) even when the sufficient optimality condi-
tion, ¥max < 0.83 is violated. The DoS algorithm shows compara-
ble performance to that of the Greedy and DLG algorithms when
¥Ymax > 10. However, for small effective localization error variances,
the Greedy and DLG algorithms perform significantly better than
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N=6, T=0.6Tmax

N=8, I'=0.6 pmax
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Fig. 2. Suboptimality ratios (SRs) of the proposed algorithms averaged over 100 randomly generated subset selection problem instances. (Top) SRs when the total number
of agents is N € {6, 8, 10} and the effective localization error variances {y; : i € [N]} are generated randomly from the interval (0, ymax). (Bottom) SRs when the total number

of agents is N € {6, 8, 10} and the expected beamforming gain threshold is I' = BI'max.

the DoS algorithm. Finally, note that the SR of the DoS algorithm
increases with increasing total number N of agents in general. On
the other hand, the SR of the Greedy and DLG algorithms, in gen-
eral, remain at the same level despite the increasing total number
of agents.

In the second set of experiments, we investigate the relation-
ship between the algorithms’ SRs, the total number N of agents,
and the normalized threshold 8 = I'/I'max. For given N and 8, a
problem instance consists of {y; : i € [N]} where each y; is selected
uniformly randomly from the interval (0,10), i.e., Ymax = 10. Finally,
we set Ag = 1 and o = 2, and run the DoS algorithm with 10 ran-
dom initializations.

For each N € {4,6,8} and each 8 <{0.1,0.2,...,1}, we gener-
ate 100 problem instances. The average SRs of the algorithms over
the generated instances are shown in Fig. 2 (bottom). As can be
seen from the figure, all algorithms have average SR less than 1.6
for each (N, ) pair. Recall from Theorem 1 that, for instances
in which the threshold I' can be attained using two agents, the
Greedy and DLG algorithms have SR = 1. For small 8 values, we
observe that the Greedy and DLG algorithms achieve SR = 1 since,
in most problem instances, the threshold is attained by using two
agents. Similar to the first set of experiments (Fig. 2 (top)), we ob-
serve that the SR of the DoS algorithm increases with increasing
N in general. Moreover, the performance of the DoS algorithm, in
general, improves with increasing 8 values.

The empirical performance evaluation of the proposed algo-
rithms on small-scale instances show that all three algorithms,
Greedy, DLG, and DoS, achieve near-optimal performance (SR< 1.6)
for a range of N, 8, and ymax values. Although the Greedy and DLG
algorithms have theoretical optimality guarantees only for small
Ymax and B values, they perform well (SR< 1.1) even for large Ymax
and B values. On the other hand, although the local optimality
guarantee of the DoS algorithm is independent of the problem pa-
rameters, the performance of the algorithm is, in general, compa-
rable (SR < 1.1) to that of the Greedy and DLG algorithms only for
large ymax and B values.

6.2. Performance comparison with an SDP-based beamformer

We compare the performance of the proposed algorithms with
a semi-definite programming-based (SDP-based) beamforming al-
gorithm. SDP-based methods are widely used in robust beamform-
ing to mitigate the degrading effects of uncertain parameters on
the beam pattern [18,48]. Accordingly, for comparison, we synthe-
size a beamforming vector w* € CN where

w* € argmin ||w]3 (12a)
weCN

subject to: E[wHw]>T (12b)

Vie[N], |wi*=<1. (120)

Here, He CN*N is H = hh" where h" = [hy hy,..., hy],

and w = [wy,wy, ..., wy]. The constraint in (12c) ensures that
w; = +/Peddi for some P < 1.

A solution to the problem in (12a)-(12c) is a beamformer w*
that attains the desired threshold I' with minimum total power
while respecting the individual power constraints in (12c). It can
be shown that a solution to the problem in (12a)-(12c) can be
computed exactly by solving an SDP [19,48]. To synthesize the
beamformer w*, we utilized the SDP solver of the CVX toolbox
[49] with its nominal parameters. Note that the beamformer w*
minimizes the total transmit power of the antenna array while en-
suring that the expected beamforming gain exceeds the desired
threshold I'. Therefore, it represents a solution to a convex relax-
ation of the problem

min |S|

SC[N],8eCN
subject to E[G(S,8)]>T
which is a risk-neutral version of the subset selection problem. For
given w* = [wy, w5, ..., wy ], we let the corresponding optimal sub-
set be $* = {i e [N] : [wf| > €} where € = 10-1.
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Fig. 3. Performance comparison of the proposed algorithms with an SDP-based beamformer. (Left) For a given threshold I' = BT'ma, the normalized variances of the
beamforming gains are similar for all approaches. (Middle) Proposed algorithms achieve the same performance by employing strict subsets of the agent group when possible.
(Right) Greedy and DLG algorithms synthesize beamformers orders of magnitudes faster than the SDP-based approach.

We generate 100 subset selection problem instances by setting
N = 40 and selecting the error variances {y; :i e [N]} uniformly
randomly from the interval (0,10), i.e., ¥max = 10. For the DoS al-
gorithm, we set Ay = 1 and « = 2, and run the algorithm with 10
random initializations. We compare the performance with respect
to three metrics: the average variance of the beamforming gain,
the average size of the selected subset, and the average computa-
tion time.

Fig. 3 (left) shows the normalized variance of the beamform-
ing gain, i.e., k = Var(G(S*, §))/Var(G([N], 8)), versus the normal-
ized threshold 8 = I'/T'max. In the figure, we do not plot the re-
sults of the DLG algorithm since it is almost exactly the same as
the Greedy algorithm. As can be seen from the figure, the pro-
posed discrete-optimization-based algorithms achieve similar per-
formance to that of the SDP-based beamformer. The variance of the
SDP-based beamformer is, in general, smaller than the variance of
the proposed algorithms since the problem in (12a)-(12c) is a con-
vex relaxation of the subset selection problem.

Fig. 3 (middle) demonstrates the trade-off between the normal-
ized threshold B and the average size of the optimal subset S*. The
plot for the DLG algorithm is omitted since the average size of the
subsets selected by the DLG algorithm is almost exactly the same
as the Greedy algorithm. As can be seen from the figure, for 8 < 1,
the proposed algorithms employ strict subsets of the agent net-
work [N] where N = 40. On the other hand, the SDP-based beam-
former includes all the agents to beamforming for all 8 > 0. Com-
bined with the results shown in Fig. 3 (left), this result suggests
that the proposed algorithms achieve similar performance to that
of the SDP-based approach using fewer agents. This saves resources
overall and allows unallocated agents to take on other tasks.

Finally, Fig. 3 (right) shows the computation times for all algo-
rithms. The Greedy and DLG algorithms run orders of magnitude
faster than the SDP-based beamformer. On the other hand, the DoS
algorithm takes longer than the SDP-based beamformer to select a
subset in general. The long computation time is partially due to
the fact that we run the DoS algorithm with 10 random initializa-
tions to improve its performance. We observe in our experiments
that the variance of the beamforming gain for the subset selected
by the DoS algorithm decreases considerably as the number of ran-
dom initializations used in the DoS algorithm increases. Therefore,
there is a trade-off between the computation time of the DoS al-
gorithm and the quality of the beamformer.

The empirical evaluations presented above suggests that the
proposed discrete optimization-based approaches have the poten-
tial to synthesize beamformers with similar performance to that
of the convex optimization-based beamformers using significantly
less number of agents. Furthermore, when the Greedy and DLG al-
gorithms are employed to synthesize beamformers, the required
computation time for the synthesis can be significantly reduced
with respect to SDP-based approaches.

7. Conclusions

We considered a mobile multi-agent network in which the sen-
sor nodes locate themselves in an environment through imperfect
measurements and aim to transmit a message signal to a base
station. Under the assumption that the agents have Gaussian lo-
calization errors, we developed three one-shot (non-iterative) al-
gorithms, Greedy, Double-Loop-Greedy (DLG), and Difference-of-
Submodular (DoS), each of which chooses a subset of agents to op-
timize the quality-of-service without requiring feedback from the
base station.

When the localization errors for all agents are below a certain
threshold, the Greedy algorithm globally minimizes the variance
of the SINR received by the base station while guaranteeing that
the expected SINR is above a desired threshold. The DLG algorithm
improves the empirical performance over the Greedy algorithm. Fi-
nally, the DoS algorithm enables the agents to locally optimize the
reliability of the communication link even when the localization
errors are large. We empirically showed that the proposed algo-
rithms achieve similar performance with a convex optimization-
based algorithm while using significantly fewer agents. Moreover,
the Greedy and DLG algorithms run orders of magnitude faster
than the convex optimization-based approach.

Although the DoS algorithm achieves comparable performances
to that of the convex optimization-based algorithm with fewer
agents, its computational requirements may hinder its applicability
to scenarios in which the size of the agent network is large. In-
teresting future directions include developing algorithms for large
scale systems that are both fast and have performance guarantees,
as well as utilizing our algorithms to initialize some further beam-
forming refinement such as using base station feedback.
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Appendix A

In this appendix, we present the Double-Loop-Greedy (DLG)
algorithm, shown in Algorithm 3, which is an extension of the

Algorithm 3 Double-Loop-Greedy (DLG).
1: Input: y; forallie [N], T e R.

2: Sort y; such that y;, < ¥, < ... < V-
3:81:=0,8:=0k:=1,1:=N

4: while E[G(S;.8)] <T do, S; := S U{i}, k:=k+1
5: end while .

6: while E[G(Sz, 8)] <I'do, S, : =85 U {il}v l:=1-1
7. end while ~

8: if Var(G(S;,8)) < Var(G(S,, 8)) then S := S;

9: else S :=S,

10: end if

11: return S.

Greedy algorithm. The idea is to form two solutions and then
choose the best one. Set S; is developed as the Greedy algorithm,
while set S, is formed in a similar way but starting from the worst
case error. First, the DLG algorithm sorts the agents’ effective error
variances y; in ascending order. Sets S§; and S, are initially empty.
Starting from the agent with the lowest effective error variance,
the agent with the next lowest effective error variance is iteratively
added to the set S; until the constraint E[G(S7, 3)] > [ is satisfied.
This is the same procedure as the Greedy algorithm.

To form S, we proceed as follows. Starting from the agent with
the highest effective error variance, the agent with the next high-
est effective error variance is iteratively added to the set S, un-
til the constraint E[G(S,, S)] > I' is satisfied. Finally, the DLG algo-
rithm compares the variance of the beamforming gain for S; and
S, and outputs the one with smaller value. We note that the time
complexity of the DLG algorithm is the same as the Greedy algo-
rithm.

For a given problem instance, the subset S C[N] returned
by the DLG algorithm satisfies Var(G(S, 8)) < Var(G(S’, 8)) where
8§’ € [N] is the subset returned by the Greedy algorithm. Hence,
DLG provides an optimal solution to the problem in (8a)-(8b) un-
der the sufficient conditions stated in Theorem 1.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.sigpro.2022.108647.
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