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a b s t r a c t 

We consider a mobile multi-agent network in which the agents locate themselves in an environment 

through imperfect measurements and aim to transmit a message signal to a far-field base station via col- 

laborative beamforming. The agents imperfect measurements yield localization errors that degrade the 

quality of service at the base station due to unknown phase offsets in the channels. Assuming that the 

localization errors follow Gaussian distributions, we study the design of a one-shot (non-iterative) beam- 

forming strategy that ensures reliable communication between the agents and the base station despite 

the localization errors. We formulate a risk-sensitive discrete optimization problem to choose an agent 

subset for transmission so that the desired signal-to-interference-plus-noise ratio (SINR) at the base sta- 

tion is attained with minimum variance. We show that, when the localization errors have small variances 

characterized in terms of the carrier frequency, greedy algorithms globally minimize the variance of the 

received SINR. Moreover, when the localization errors have large variances, we show that the variance 

of the received SINR can be locally minimized by exploiting the supermodularity of the mean and vari- 

ance of the received SINR. Simulations demonstrate that the proposed algorithms synthesize beamform- 

ers orders of magnitude faster than convex optimization-based approaches while achieving comparable 

performance with fewer agents. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

A mobile multi-agent network is composed of a (possibly large) 

umber of agents, each of which has sensing, computation, com- 

unication, and mobility capabilities [1,2] . With the decreasing 

ize and cost of available hardware, e.g., drones [3] , batteries [4] , 

nd antennas [5] , the deployment of mobile networked agents is 

n attractive option for various applications such as environmental 

onitoring, tracking, and surveillance. 

For example, in mobile sensor networks, agents continuously 

raverse the environment to collect information, share the col- 

ected information with each other through low-cost short distance 

ommunications, and transmit a common information signal to a 
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ar-field base station through collaborative beamforming (CB) [6] . 

B is a wireless communication technique in which the agents par- 

icipating in beamforming adjust the phase and amplitude of the 

essage signal so that the transmitted signals add coherently at 

he base station. Compared to single agent transmission, CB has 

he potential to significantly increase the range and rate of com- 

unication, to improve the directivity of the beam pattern, and to 

ecrease the agents’ individual power consumption [7,8] . 

In many mobile applications, agents locate themselves through 

mperfect sensor measurements as they travel across the environ- 

ent [9] . These imperfect measurements cause localization errors 

hat translate into unknown phase offsets in the agents’ commu- 

ication channels, degrading the potential coherent gain [10] . To 

emedy the negative effects of localization errors, in this paper, we 

tudy the problem of collaborative beamforming under localization 

rrors and develop algorithms to establish a reliable communica- 

ion link with the base station despite the agents’ localization er- 

ors. 

We consider a setting in which the agents’ localization errors 

ollow Gaussian distributions and the channel between the agents 
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nd the base station has a strong direct-path component. In many 

pplications, the mean and variance of the location estimates can 

e measured through sampling techniques, and Gaussian distribu- 

ions can be used to approximate the localization errors [11,12] . 

he strong direct path channel occurs in free-space, and with 

trong Rician channels such as when one link is elevated. An ad- 

itional case of interest occurs at lower frequencies, such as the 

ower VHF and upper HF bands, where long wavelengths result in 

trong barrier penetration and low levels of scattering. We note 

hat VHF propagation studies in urban environments [13,14] show 

he applicability of a Rician model, even when there is no line-of- 

ight path. 

Localization errors are associated with the topology of the net- 

ork and translate to phasing errors in the transmission [6] . In 

he literature, the beam pattern characteristics for randomly gen- 

rated network topologies are analyzed using random array the- 

ry [6,15,16] . Specifically, the authors in [15] consider a setting in 

hich each agent’s location in the environment is sampled from 

he same Gaussian distribution. They prove that, in this setting, the 

ignal-to-noise ratio (SNR) received by the base station decays ex- 

onentially with a rate proportional to the variance of the Gaus- 

ian distribution. In [16] , the authors show that, when the agents 

ave fixed transmission powers and their phasing errors are iden- 

ically distributed, the expected SNR increases quadratically with 

he number of agents so long as the expected cosine of the phas- 

ng errors is close to one. However, in multi-agent self-localization 

cenarios, the agents’ position estimates follow non-identical dis- 

ributions, in which case the aforementioned results may not be 

pplicable. Accordingly, in this paper, we extend the existing re- 

ults on the analysis of localization errors in beamforming by con- 

idering a setting in which the agents’ localization errors follow 

aussian distributions with potentially different mean and covari- 

nce. 

From the algorithmic perspective, different approaches are pro- 

osed to synthesize beamformers that mitigate the undesired ef- 

ects of phasing errors in the transmission. The work [10] consid- 

rs a case in which the agents have no statistical information re- 

arding their localization errors and propose an iterative feedback 

lgorithm that maximizes the SNR at the base station. Although 

eedback-based approaches successfully improve the quality-of- 

ervice (QoS) at the base station, their convergence to desired QoS 

evels may, in general, require a considerable number of two-way 

ransmission iterations depending on network topology. When sta- 

istical channel information is available, algorithms based on semi- 

efinite programs (SDPs) are proposed to ensure that the received 

NR is above a threshold with a desired probability [17] . Similar 

onic optimization-based formulations are also common in the ro- 

ust beamforming literature [18,19] . While SDP formulations pro- 

ide a powerful method to improve the QoS at the base station, 

hey are computationally expensive and do not scale well with the 

umber of agents. 

In this paper, we approach the beamformer design problem 

rom a discrete optimization perspective. Specifically, given a net- 

ork of agents with associated non-identical Gaussian localiza- 

ion errors, we propose a one-shot (non-iterative) approach that 

eeks a subset of agents to form a beam that achieves the de- 

ired QoS requirements without base station feedback. By employ- 

ng only a subset of agents in beamforming, the proposed discrete 

ptimization-based approach not only mitigates the undesired ef- 

ects of localization errors but also increases the operational time 

f the agent network by consuming less energy. Moreover, our ap- 

roach can also be seen as providing a one-shot initialization for 

eedback-based approaches by utilizing the uncertainty informa- 

ion and may potentially help these approaches improve the QoS 

t the base station faster. 

The main contributions of this paper are as follows: 
2 
• First, using the variance of the SINR at the base station as a risk 

measure, we formulate a risk-sensitive optimization problem to 

form a reliable communication link between the agents and the 

base station despite the agents’ non-identical Gaussian localiza- 

tion errors. Specifically, we aim to find a subset of agents to 

transmit the message signal such that the desired SINR level at 

the base station is achieved with minimum variability. 
• Second, we propose an efficient sorting-based algorithm, 

Greedy, to solve the formulated discrete optimization problem 

and prove sufficient conditions for its optimality. In particu- 

lar, we show that the proposed algorithm globally minimizes 

the variance of the received SINR when the agents’ localiza- 

tion errors are below a certain threshold which is a function 

of the carrier frequency. This result characterizes a fundamen- 

tal trade-off between the localization accuracy and the QoS at 

the base station as a function of the carrier frequency. Hence, it 

provides practitioners a guideline about the required localiza- 

tion accuracy for achieving desired QoS requirements at differ- 

ent frequencies. We also provide an extension of this algorithm, 

Double-Loop-Greedy (DLG), which improves the empirical per- 

formance. 
• Third, we develop an algorithm, Difference-of-Submodular 

(DoS), which exploits the supermodularity of the expected 

value and variance of the received SINR and always returns a 

subset that is locally optimal for a certain relaxation of the for- 

mulated optimization problem. The DoS algorithm ensures that 

the agents included in beamforming locally minimizes the vari- 

ance of the SINR at the base station even when their localiza- 

tion errors have high variances. This means that, for scenarios 

in which the localization accuracy required to globally mini- 

mize the variance of the received SINR cannot be achieved, the 

DoS algorithm can be used to provide local optimality guaran- 

tees on the QoS. 

We compare the performance of the proposed algorithms with 

n SDP-based beamformer and demonstrate that all three algo- 

ithms (Greedy, DLG, and DoS), exhibit similar performance to the 

DP-based beamformer while using significantly fewer beamform- 

ng agents. Moreover, for problem instances with a large number of 

gents, the Greedy and DLG algorithms compute the agent subset 

rders of magnitude faster than the SDP-based beamformer. 

Related work: A preliminary version of this paper appeared in 

20] , where we present the Greedy algorithm to solve the opti- 

ization problem formulated in this paper. In this paper we ex- 

end this as follows. First, we present the DLG algorithm which 

mproves the empirical performance over the Greedy algorithm on 

nstances that violate the sufficient condition for optimality. Sec- 

nd, we prove the supermodularity of the mean and variance of 

he received SINR as a function of the selected agent subsets, and 

resent the DoS algorithm to locally minimize the variance of the 

eceived SINR. Third, we provide numerical simulations to compare 

he performance of the proposed algorithms. Finally, we provide 

roof sketches for all technical results. Due to space restrictions, 

ull proofs are given in the supplementary material and the online 

ersion [21] . 

In addition to the aforementioned references, the subject of this 

aper is also related to beamformer design when the agents have 

nly local position information. Specifically, in [22,23] , the authors 

onsider a setting in which the global location information is not 

vailable at the agents and design an antenna array that approxi- 

ates the performance of a linear antenna array using only the in- 

ormation of exact inter-agent distances. Here, we consider a set- 

ing in which the statistics of the global location information are 

vailable at the agents, so the problem formulation and solution 

re significantly different. 
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The idea of beamforming using only a subset of available 

gents has been investigated for various purposes. In [15,24,25] , 

he authors choose a subset of sensor nodes to control the maxi- 

um sidelobe level. The work [26] develops a discete-optimization 

ased algorithm to design a sensor array for spatial sensing ap- 

lications. Finally, the reference Mehanna et al. [27] studies the 

ntenna selection problem in multicast beamforming. Unlike these 

orks, we consider the problem of achieving the desired SINR level 

t the base station with minimum variability despite localization 

rrors and design discrete optimization-based algorithms that have 

rovable performance guarantees. 

. System model 

We consider a group of N ∈ N agents that are distributed in an

nvironment. Each agent is equipped with a single ideal isotropic 

ntenna with a constant transmit power P > 0 . The agents’ objec- 

ive is to transmit a common message signal m (t) to a base station

quipped with a single antenna.The message m (t) may represent 

aw measurement data or a waveform encoded with digital data. 

.1. Communication channel 

We assume that the base station is located in the far-field re- 

ion, each agent i ∈ [ N] transmits the signal m (t) over a narrow-

and wireless channel h i ∈ C , and the channel between the agents 

nd the base station has a strong direct-path component. 

This arises in free-space and with strong Rician channels such 

s when one link is elevated, and also at lower frequencies (long 

avelengths). The lower frequency case is particularly of interest 

ecause the tolerable localization error scales with the wavelength. 

or example, as experimentally validated in [28] , significant sig- 

al penetration through obstacles is possible at low-VHF frequen- 

ies. Moreover, in dense urban scenarios, low-power low-VHF com- 

unication yields significantly improved penetration and reduced 

ulti-path [29] . Therefore, with sufficiently long wavelength the 

hannel may become direct-path dominated even in dense clutter. 

We also assume that the distances between the agents and the 

ase station is much larger than the inter-agent distances, and lo- 

al oscillators of all agents are time- and frequency-synchronized. 

istributed time and frequency synchronization in wireless ad-hoc 

etworks have been extensively studied in the literature [30,31] , 

.g., synchronization may be achieved using a short-range radio 

rotocol [16,32] . There are also available methods for addressing 

otential implementation challenges [33] . Small synchronization 

rrors can also result in phase errors, so these could be poten- 

ially folded into the approaches presented here, although we do 

ot consider this further in the paper. 

.2. Collaborative transmission model 

We consider a subset S ⊆ [ N] of agents that collectively trans- 

it the message signal m (t) to the base station. All agents modu- 

ate m (t) with the carrier signal Re { e j2 π f c t } , where f c is the car-

ier frequency. Our results are applicable for any f c , while not- 

ng that longer wavelengths demand less localization error, and we 

ill characterize this relationship explicitly. 

Each agent i ∈ S adjusts the phase of the transmission with the 

omplex gain w i ∈ C where | w i | = 

√ 

P , where P is the transmit

ower. Then, the signal received by the base station is 

 S (t) := Re 

{
e j2 π f c t m (t) 

∑ 

i ∈S 
w i h i 

}
+ n (t) 

here n (t) denotes the interference-plus-noise. Without loss of 

enerality, we let w = 

√ 

P e jδi and h = a e jηi for each i ∈ [ N] . The
i i i 

3 
ngle δi ∈ [0 , 2 π) denotes the phase of the gain w i , and it is a de-

ign parameter. The magnitude a i > 0 and the phase ηi ∈ [0 , 2 π)

haracterize the channel h i between the base station and the agent 

 ∈ [ N] . Then, the phase offset ηi at the base station relative to a

ignal transmitted by an agent located at � r i ∈ R 
3 (in Cartesian co- 

rdinates) is [34] 

i = −2 π f c 

C 
〈 � r i , � r c 〉 . (1) 

n (1) , � r c ∈ R 
3 is the unit vector pointing in the known direction

f the base station, C is the speed of light, and 〈·, ·〉 is the vector
nner product. 

We assume that the local position � r i of each agent i ∈ [ N] sat-

sfies � r i ∼ N ( μi , �i ) where μi ∈ R 
3 and �i ∈ R 

3 ×3 are, respectively, 

he known mean and covariance of the Gaussian distribution. The 

rst and second order statistics of position estimates are typically 

asy to obtain in practice [35,36] . Moreover, the agents can utilize 

ariations of Kalman filtering approaches to maintain Gaussian dis- 

ributions for localization errors throughout their motion [37] . 

We also assume that � r i and � r j are independent for i, j ∈ [ N] such

hat i 	 = j. Note that the independence assumption holds in prac- 

ice, e.g., if the agents locate themselves in the environment based 

nly on their own sensor measurements and do not share infor- 

ation with each other to improve localization. 

For a given subset S ⊆ [ N] and the corresponding phase param- 

ters δi for each i ∈ S , let the array factor be 

 (S, δ) := 

∣∣∣∣∑ 

i ∈S 
e j(δi + ηi ) 

∣∣∣∣
here δ := [ δi | i ∈ S] is the vector of phase parameters. Assuming 

hat | h i | = | h j | for all i, j ∈ [ N] , the magnitude of the array fac-

or is proportional to the square root of the SINR received by the 

ase station [10] . We note that the assumption | h i | = | h j | is intro-
uced just to simplify the notation, and the results of this paper 

an be easily extended to cases in which | h i | 	 = | h j | . In practice, the
ssumption | h i | = | h j | may hold when the distance between the

gents and the base station is significantly larger than the inter- 

gent distances. Let the total phase be �i := δi + ηi . The square of 

he array factor yields the beamforming gain G (S, δ) that is propor- 
ional to the received SINR and given by 

 (S, δ) := F 2 (S, δ) = 

∑ 

i ∈S 

∑ 

j∈S 
cos 

(
�i − � j 

)
. (2) 

. Problem statement 

The beamforming gain G (S, δ) is a fundamental quantifier of 

he quality of a communication link with the base station as it 

s proportional to the received SINR. Hence, to establish a reliable 

ommunication link, we want the beamforming gain to be high 

ith minimum variability. 

In this paper, we focus on a scenario in which the agents’ ex- 

ct local positions { � r i : i ∈ [ N] } are not known. Each agent’s poten-

ial local positions are expressed with a Gaussian distribution � r i 
N ( μi , �i ) . As a result, G (S, δ) is a random variable. In such a

cenario, a reasonable objective might be to minimize the outage 

robability , i.e., the probability that the beamforming gain falls be- 

ow a certain threshold. However, there are two major difficulties 

nvolved in the optimization of the outage probability. First, due to 

he nonlinear structure of the beamforming gain G (S, δ) , deriving 
 closed form expression for the outage probability is not trivial. 

econd, as the agent subset S is a discrete variable and the vector 

of phase parameters is a continuous variable, joint optimization 

f G (S, δ) in the pair (S, δ) is computationally challenging. 
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When the closed form probability distribution is hard to ob- 

ain or has a multimodal structure, a common approach for op- 

imizing performance is to consider alternative risk-sensitive for- 

ulations [38,39] . Accordingly, in this paper, we consider a mean- 

ariance optimization framework which is a widely used approach 

n a number of domains, ranging from cognitive radio networks 

40] to finance [41] . 

We remedy the computational challenges involved in the joint 

ptimization of G (S, δ) in the pair (S, δ) as follows. In Section 4 ,

e show that, for any given agent subset S , one can maximize the 

xpected beamforming gain E [ G (S, δ)] by selecting the vector δ of 

hase parameters as δ = 
ˆ δ where ˆ δi := −E [ ηi ] for all i ∈ [ N] . This

esult implies that, for any given agent subset S , one can maxi- 

ize the expected SINR by aligning the agents’ total phases �i in 

xpectation. Therefore, we fix the phase paramater δi of each agent 
 ∈ [ N] to δi = 

ˆ δi and focus on selecting an agent subset that attains
 desired level of SINR with minimum variability. 

Finally, we provide the formal problem statement as follows. 

Problem 1: (Subset selection) For a constant � > 0 , and the 

xed vector of phase parameters δ = 
ˆ δ, find S � ⊆ [ N] such that 

 
� ∈ arg min 

S⊆[ N] 
Var 

(
G (S, ̂  δ) 

)
(3a) 

ubject to: E 

[ 
G (S, ̂  δ) 

] 
≥ �. (3b) 

. Statistical properties of the beamforming gain 

In this section, we first derive the explicit form of the expected 

eamforming gain E [ G (S, δ)] and show that, for any given subset

 ⊆ [ N] , we can maximize E [ G ( S , δ)] by setting δ = 
ˆ δ. We then

erive the explicit form of Var (G (S, ̂  δ)) . 
Consider the definition of G (S, δ) , given in (2) , and recall that,

or all i ∈ [ N] , �i = ηi + δi where ηi = 2 π f c 〈 � r i , � r c 〉 /C and � r i ∼
 ( μi , �i ) . Then, for a given vector δ ∈ [0 , 2 π) N of phase param-

ters, we have �i ∼ N (θi , γi ) where 

i := 

2 π f c 

C 

〈 
μi , � r c 

〉 
+ δi and γi := 

4 π2 f 2 c 
C 2 

〈 
� r c , �i � r c 

〉 
. (4) 

e refer to γi as the effective error variance in the localization of 

he i th agent. 

roposition 1. Let v i := exp (−γi ) . We have 

 

[ 
G (S , δ) 

] 
= 

∣∣S ∣∣ + 

∑ 

i ∈S 

∑ 

j∈S 
j 	 = i 

√ 

v i v j cos (θi − θ j ) . (5) 

Proof (sketch): We obtain the result by taking the expec- 

ation of both sides in (2) and using the linearity of expecta- 

ion, independence of � r i and � r j for all i 	 = j, and the fact that

 [ cos (X )] = e −σ 2 / 2 cos (μ) where X ∼ N (μ, σ 2 ) . �

roposition 2. For any given S ⊆ [ N] , δ ∈ max δ∈ [0 , 2 π) N E [ G ( S , δ)] if
nd only if, for all i, j ∈ S , we have 

( δi + E [ ηi ]) − ( δi + E [ ηi ]) 
)

mod 2 π = 0 . (6) 

roof. For any S ⊆ [ N] , E [ G ( S , δ)] , given in (5) , is maximized if and

nly if (θi - θ j ) mod 2 π = 0 because (i) cos (x ) ≤ 1 for any x ∈ R

nd (ii) cos (x ) = 1 if and only if x mod 2 π = 0. Recalling that

i = E [ ηi ] + δi , we conclude the result. �

The condition in (6) implies that, in order to maximize the 

xpected beamforming gain, the agents’ total phases should be 

ligned in expectation. Note that the vector ˆ δ, where ˆ δ = −E [ η ] 
i i 

4 
or all i ∈ [ N] , satisfies the condition in (6) . In the subset selection

roblem, we set δ = 
ˆ δ and aim to find a subset S ⊆ [ N] that solves

he risk-sensitive optimization problem given in (3a) - (3b) . 

When δ = 
ˆ δ, we have θi = θ j for all i, j ∈ [ N] , implying that 

 

[ 
G (S , ̂  δ) 

] 
= 

∣∣S ∣∣ + 

∑ 

i ∈S 

∑ 

j∈S 
j 	 = i 

√ 

v i v j . (7) 

ext, we derive the variance of G (S, ̂  δ) as follows. 

roposition 3. Let v i := exp (−γi ) . We have 

ar 

(
G (S, ̂  δ) 

)
= 

∑ 

i ∈S 

∑ 

j∈S 
j 	 = i 

(
1 − v i v j 

)
2 + 2 

∑ 

i ∈S 

∑ 

j∈S 
j 	 = i 

∑ 

k ∈S 
k 	 = i 
k 	 = j 

(
1 − v i 

)
2 
√ 

v j v k 

Proof (sketch): Note that Var (G (S, ̂  δ)) = E [ G (S, ̂  δ) 2 ] -

 [ G (S, ̂  δ)] 2 . We prove the result by utilizing the equivalence in

7) and deriving the explicit form of E [ G (S, ̂  δ) 2 ] using the iden- 

ity cos (2 x ) = 2 cos (x ) 2 - 1 for any x ∈ R , and the fact that

 [ cos (tX )] = e −t 2 σ 2 / 2 where X ∼ N (0 , σ 2 ) . �

. Agent selection under localization errors 

In this section, we propose three algorithms to solve the sub- 

et selection problem and analyze their optimality guarantees. 

hroughout this section, we assume that the problem in (3a) - (3b) 

as a feasible solution. For a given problem instance, the valid- 

ty of this assumption can be easily verified by checking whether 

 [ G ([ N] , ̂  δ)] ≥ � due to the following result. 

roposition 4. For any S ⊆ S ′ ⊆ [ N] , E [ G (S, ̂  δ)] ≤ E [ G (S ′ , ̂  δ)] . 

roof. The result follows from the fact that E [ G (S, ̂  δ)] is a sum
f nonnegative terms; hence, adding an element to the subset can 

nly increase the sum. �

.1. Greedy algorithm 

In this section, we consider a simple greedy algorithm to solve 

he subset selection problem and provide sufficient conditions for 

ts optimality. The Greedy algorithm, shown in Algorithm 1 , first 

lgorithm 1 Greedy. 

1: Input: γi for all i ∈ [ N] , � ∈ R . 

2: Sort γi such that γi 1 
≤ γi 2 

≤ . . . ≤ γi N 
. 

3: S := ∅ , k := 1 

4: while E [ G (S, ̂  δ)] < � do , S := S ∪ { i k } , k := k + 1 

5: end while 

6: return S . 

orts the agents’ effective error variances γi , defined in (4) , in as- 

ending order. We note that the sorting operation can be per- 

ormed in O(N log (N)) for an array of length N. Initializing the out- 

ut set S to the empty set, the algorithm then iteratively adds the 

gent with the next lowest effective error variance to the output 

et until the constraint E [ G (S, ̂  δ)] ≥ � is satisfied. 

We now present sufficient conditions on the set { γi : i ∈ [ N] }
or which the Greedy algorithm returns an optimal solution to the 

roblem in (3a) - (3b) . Let the total effective error variance of a subset

 ⊆ [ N] be measured by the function V : 2 [ N] → R where V (S) :=
 

i ∈S γi . Consider the problem of choosing a subset S ′ ⊆ [ N] that 

atisfies the constraint in (3b) and has the minimum total effective 

rror variance, i.e., 

 
′ ∈ arg min 

S⊆[ N] 
V (S) (8a) 
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Fig. 1. Maximum localization error variance σ 2 
max allowed for the optimality of the 

greedy algorithm as a function of the carrier frequency f c . Note that the localization 

error tolerance is relaxed at lower frequencies (longer wavelengths). 
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ubject to: E 

[ 
G (S, ̂  δ) 

] 
≥ �. (8b) 

The next result, together with Proposition 4 , implies that the 

reedy algorithm yields an optimal solution to the problem in 

8a) - (8b) . 

roposition 5. For any K ∈ N such that K ≤ N, we have 

rg min 
S⊆[ N]: 
|S| = K 

V (S) = arg max 
S⊆[ N]: 
|S| = K 

E 

[ 
G (S, ̂  δ) 

] 
. 

Proof (sketch): We prove the result by showing that the deriva- 

ive of E [ G (S, ̂  δ)] with respect to γi , where i ∈ S , is always nega-

ive. Therefore, a subset S of fixed size K maximizes the expected 

eamforming gain if and only if the subset has the minimum total 

ffective error variance V (S) among all subsets of size K. �
It can be shown that the problems in (3a) - (3b) and (8a) - (8b)

re not equivalent in general. Hence, the greedy approach is, in 

eneral, not optimal to solve the subset selection problem. How- 

ver, there are certain sufficient conditions, which are formalized 

elow, under which such an approach becomes optimal. 

heorem 1. For a given set { γi : i ∈ [ N] } of effective error variances,
et γi 1 

≤ γi 2 
≤ . . . ≤ γi N 

where i k ∈ [ N] . A solution to the problem in 

8a) - (8b) is also a solution to the problem in (3a) - (3b) if either one

f the following conditions hold: 

1) E [ G (S, ̂  δ)] ≥ � where S = { i 1 , i 2 } , 
2) γi N 

≤ 0 . 83 . 

Proof (sketch): The main idea in the proof is to show that 

he derivative of Var (G (S, ̂  δ)) with respect to max i ∈S γi is positive. 

ondition (C1) follows from the fact that, when |S| ≤ 2 , the deriva- 

ive is always positive. Condition (C2) follows from the fact that, 

hen γi N 
≤ 0 . 83 , the derivative is positive regardless of the size of

he set S . For such γi N 
, the subset with minimum V (S) is the one

hat minimizes Var (G (S, ̂  δ)) ; hence, the problems in (8a) - (8b) and

3a) - (3b) become equivalent when (C1) or (C2) holds. �
Theorem 1 states that if all the agents have “small” effective 

rror variances, then the Greedy algorithm returns an optimal so- 

ution to the subset selection problem. In particular, it follows from 

heorem 1 that a sufficient condition for optimality characterized 

y the carrier frequency is 

ax 
i ∈ [ N] 

〈 
� r c , �i � r c 

〉 
≤ 0 . 83 C 2 

4 π2 f 2 c 
. 

For example, suppose that �i = σ 2 
i 
I 3 ×3 , where I 3 ×3 is the iden- 

ity matrix, and let σ 2 
max := max i σ

2 
i 
. Then, we have σ 2 

max ≤ 0 . 83 C 2 

4 π2 f 2 c 
s the sufficient condition (C2). In Fig. 1 , we plot the trade-off be- 

ween the carrier frequency f c and the maximum variance σ 2 
max 

nder which the Greedy algorithm is optimal. As f c decreases (re- 

ulting in longer wavelength), condition (C2) allows larger posi- 

ion error variance. For example, below 50 MHz in the lower VHF, 

gents are allowed to have localization error variance approaching 

ne square meter or more. This can be relatively easily achieved 

ith, for example, global navigation sensors [42] and employing 

xisting localization algorithms [43,44] . 

Although the Greedy algorithm provides an optimal solution to 

he subset selection problem under the sufficient conditions given 

n Theorem 1 , we may have scenarios where the localization er- 

or variance ranges from small to large and (C2) does not hold for 

ll agents. In the Appendix, we present a simple extension of the 

reedy algorithm, which we refer to as the Double-Loop-Greedy 
5 
DLG) algorithm. Although the DLG algorithm has the same theo- 

etical guarantees with the Greedy algorithm, it improves the em- 

irical performance when the conditions given in Theorem 1 are 

iolated, as shown in numerical examples. 

.2. Difference-of-Submodular (DoS) algorithm 

The Greedy algorithm is guaranteed to return optimal solutions 

o the subset selection problem under the sufficient conditions 

tated in Theorem 1 . In this section, we propose a second approach 

o solve the subset selection problem, which always returns a lo- 

ally optimal solution to a certain relaxation of the subset selec- 

ion problem. Although the proposed approach is computationally 

ore demanding, its local optimality guarantee is independent of 

he carrier frequency unlike the Greedy algorithm. 

Before presenting the Difference-of-Submodular (DoS) algo- 

ithm, we first provide a definition of submodularity and show that 

oth the expected value and the variance of the beamforming gain 

re supermodular set functions. 

efinition 1. A set function f : 2 � → R is submodular if for ev-

ry X, Y ⊆ � with X ⊆ Y and every e ∈ �\ Y , we have f (X ∪ { e } ) −
f (X ) ≥ f (Y ∪ { e } ) − f (Y ) . 

A set function f : 2 � → R is supermodular if the set function − f

s submodular. 

heorem 2. Both E [ G (S, ̂  δ)] and Var (G (S, ̂  δ)) are supermodular set 

unctions. 

Proof (sketch): For notational simplicity, let G (S) := G (S, ̂  δ) . 
or X, Y ⊆ [ N] such that X ⊆ Y , let X ′ = X ∪ { e } and Y ′ = Y ∪ { e }
here e ∈ [ N] \ Y . We have, 

 diff := E [ G (X ′ )] − E [ G (X )] = 1 + 2 
√ 

v e 
∑ 

i ∈ X 

√ 

v i , 

Y diff := E [ G (Y ′ )] − E [ G (Y )] = 1 + 2 
√ 

v e 
∑ 

i ∈ Y 

√ 

v i . 

sing v i ≥ 0 and X ⊆ Y , we obtain X diff − Y diff = 

2 
√ 

v e 
∑ 

i ∈ Y \ X 
√ v i ≤ 0 . Hence, we conclude that E [ G (S, ̂  δ)] is 

upermodular. 

To show the supermodularity of Var (G (S, ̂  δ)) , we define X diff := 

ar ( G (X ′ )) − Var ( G (X )) and Y diff := Var ( G (Y ′ )) − Var ( G (Y )) . Then,

e show that X diff − Y diff ≤ 0 by using the fact that v i ≥ 0 and X ⊆
 . �
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Next, we formalize the notion of local optimality for discrete 

ptimization problems and introduce the DoS algorithm which uti- 

izes the results of [45] . 

efinition 2. [45] For a set function φ : 2 � → R , a sequence { S t ⊆
: t ∈ N } is said to converge to a local minimum if there exists a

onstant M ∈ N such that φ(S m ) = φ(S n ) for all m, n ≥ M, and for

ny k ∈ N , φ(S k ) ≤ φ(S l ) for all l ≤ k . 

Let f : 2 � → R and g : 2 � → R be submodular set functions.

n [45] , the authors present an algorithm, called Submodular- 

upermodular-Procedure (SSP), that returns a locally optimal so- 

ution to the following problem 

in 
S⊆�

f (S) − g(S) . (9) 

The DoS algorithm, shown in Algorithm 2 , utilizes the SSP as a 

lgorithm 2 Difference-of-Submodular (DoS). 

1: Input: γi for all i ∈ [ N] , � ∈ R , λ0 > 0 , α > 1 . 

2: S := ∅ , k := 0 . 

3: while E [ G (S, ̂  δ)] < � do 

4: f (·) := −λk E [ G (·, ̂  δ)] , g(·) := −Var (G (·, ̂  δ)) 
5: S := SSP ( f (·) , g(·)) 
6: k := k + 1 , λk := αλk −1 . 

7: end while 

8: return S . 

ubprocedure to return a locally optimal solution to a certain re- 

axation of the subset selection problem. In particular, it takes two 

arameters λ0 > 0 and α > 1 as inputs as well as the agents’ effec-

ive localization error variances γi and the expected gain threshold 

. At the k th iteration, where k ∈ N , using the SSP as a subpro-

edure, the DoS algorithm finds a locally optimal solution to the 

ollowing problem 

min 
⊆[ N] 

Var 

(
G (S, ̂  δ) 

)
− λk E 

[ 
G (S, ̂  δ) 

] 
(10) 

here λk is iteratively defined as λk = αλk −1 . The algorithm termi- 

ates when the solution returned by the SSP satisfies E [ G (S, ̂  δ)] ≥
. 

Convergence of the DoS algorithm: For the DoS algorithm to 

erminate, the subprocedure SSP should output a subset S ⊆ [ N] 

uch that E [ G (S, ̂  δ)] ≥ �. At the k th iteration, the SSP finds a lo-

ally optimal solution to the problem in (10) by computing suc- 

essive modular approximations of the function Var (G (S, ̂  δ)) and 
nding a globally optimal solution to each of the resulting approx- 

mation problems. Since λ0 > 0 and α > 1 , the parameter λk in- 

reases at each iteration. Hence, in terms of the objective value, 

he globally optimal solution of the approximate problems become 

loser to the globally optimal solution of max S E [ G (S, ̂  δ)] , which is

= [ N] . Since we assumed at the beginning that there exists a fea-

ible solution to the subset selection problem, the DoS algorithm is 

uaranteed to terminate for some finite k ∈ N . 

Optimality of the DoS algorithm: As mentioned earlier, at each 

teration, the DoS algorithm computes a locally optimal solution to 

he problem in (10) . Hence, the subset returned by the DoS algo- 

ithm is a locally optimal solution to the following relaxation of 

he subset selection problem 

min 
⊆[ N] 

Var 

(
G (S, ̂  δ) 

)
− λk � E 

[ 
G (S, ̂  δ) 

] 
(11) 

here k � is the number of iterations until the convergence of the 

oS algorithm. We also note that the above problem formulation 

s sometimes referred to as a “regularized version” of the original 

onstrained optimization problem [46] . 
6 
. Numerical experiments 

In this section, we present numerical simulation results that 

emonstrate the performance of the proposed algorithms. All com- 

utations are run on a 3.1-GHz desktop with 32 GB RAM using the 

oolbox [47] for the implementation of the SSP (step 5 in the DoS 

lgorithm). 

.1. Suboptimality ratio on small-scale instances 

A typical measure to assess the empirical performance of an op- 

imization algorithm is its suboptimality ratio on randomly gener- 

ted instances. For the purposes of this paper, the suboptimality 

atio demonstrates how much the variance of the received SINR is 

arger than the minimum achievable one when the agents employ 

he proposed algorithms to transmit the message. 

We compare the suboptimality of the proposed algorithms 

s a function of three problem parameters: the total number N

f agents, the maximum localization error γmax := min { γ : γ ≥
i , for all i ∈ [ N] } , and the expected beamforming gain threshold 

= β�max where 0 < β ≤ 1 and �max := E [ G ([ N] , ̂  δ)] is the max-

mum expected beamforming gain that can be achieved by the 

gents. 

For a given problem instance, we measure the performance of 

n algorithm by the suboptimality ratio (SR) of its output. Specif- 

cally, let S � be an optimal solution to the given problem instance 

3a) - (3b) , which, for small N, can be computed by considering all

ubsets S ⊆ [ N] . Moreover, let S be the (possibly suboptimal) out- 

ut of a given algorithm. We define the SR of the algorithm on the 

iven instance as 

R := 

Var 

(
G ( S , ̂  δ) 

)

Var 

(
G (S � , ̂  δ) 

) . 

ll proposed algorithms, i.e., Greedy, DLG, and DoS, have SR ≥ 1 

ince their output S satisfies E [ G ( S , ̂  δ)] ≥ �. 

In the first set of experiments, we investigate the relationship 

etween the algorithms’ SR, the total number N of agents, and 

he bound γmax on the agents’ effective localization error vari- 

nces. For a given N and γmax , a problem instance consists of { γi : 

 ∈ [ N] } where each γi is uniformly randomly selected from the in-

erval (0 , γmax ) . We set the expected beamforming gain threshold 

s � = 0 . 6�max to allow the algorithms to output subsets of dif- 

erent sizes if it is optimal to do so. Furthermore, we set λ0 = 1

nd α = 2 for the DoS algorithm. Recall that the DoS algorithm 

as only local optimality guarantees. Hence, the SR of the algo- 

ithm’s output depends on the initialization of the SSP. Accordingly, 

or each problem instance, we run the DoS algorithm 10 times us- 

ng different initializations and report the performance of the best 

utput. 

For each N ∈ { 6 , 8 , 10 } and each γmax ∈ { 1 , 2 , . . . , 20 } , we gen-

rate 100 problem instances and illustrate the average SRs of all 

lgorithms in Fig. 2 (top). As can be seen from the figure, all algo-

ithms show near-optimal performance (SR ≤ 1 . 3 ) for all ( N, γmax )

airs. Recall from Theorem 1 that, when γmax ≤ 0 . 83 , both the 

reedy and DLG algorithms are guaranteed to have SR = 1. More- 

ver, the DLG algorithm is always guaranteed to have smaller SR 

han the Greedy algorithm. The results shown in Fig. 2 (top) em- 

irically witness these theoretical guarantees. Moreover, as can be 

een from the figure, both the Greedy and DLG algorithms per- 

orm well (SR ≤ 1 . 1 ) even when the sufficient optimality condi- 

ion, γmax ≤ 0 . 83 is violated. The DoS algorithm shows compara- 

le performance to that of the Greedy and DLG algorithms when 

max ≥ 10 . However, for small effective localization error variances, 

he Greedy and DLG algorithms perform significantly better than 
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Fig. 2. Suboptimality ratios (SRs) of the proposed algorithms averaged over 100 randomly generated subset selection problem instances. (Top) SRs when the total number 

of agents is N ∈ { 6 , 8 , 10 } and the effective localization error variances { γi : i ∈ [ N] } are generated randomly from the interval (0 , γmax ) . (Bottom) SRs when the total number 

of agents is N ∈ { 6 , 8 , 10 } and the expected beamforming gain threshold is � = β�max . 
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he DoS algorithm. Finally, note that the SR of the DoS algorithm 

ncreases with increasing total number N of agents in general. On 

he other hand, the SR of the Greedy and DLG algorithms, in gen- 

ral, remain at the same level despite the increasing total number 

f agents. 

In the second set of experiments, we investigate the relation- 

hip between the algorithms’ SRs, the total number N of agents, 

nd the normalized threshold β = �/ �max . For given N and β , a 

roblem instance consists of { γi : i ∈ [ N] } where each γi is selected

niformly randomly from the interval (0,10), i.e., γmax = 10. Finally, 

e set λ0 = 1 and α = 2, and run the DoS algorithm with 10 ran-

om initializations. 

For each N ∈ { 4 , 6 , 8 } and each β ∈ { 0 . 1 , 0 . 2 , . . . , 1 } , we gener-

te 100 problem instances. The average SRs of the algorithms over 

he generated instances are shown in Fig. 2 (bottom). As can be 

een from the figure, all algorithms have average SR less than 1.6 

or each (N, β) pair. Recall from Theorem 1 that, for instances 

n which the threshold � can be attained using two agents, the 

reedy and DLG algorithms have SR = 1. For small β values, we 

bserve that the Greedy and DLG algorithms achieve SR = 1 since, 

n most problem instances, the threshold is attained by using two 

gents. Similar to the first set of experiments ( Fig. 2 (top)), we ob-

erve that the SR of the DoS algorithm increases with increasing 

in general. Moreover, the performance of the DoS algorithm, in 

eneral, improves with increasing β values. 

The empirical performance evaluation of the proposed algo- 

ithms on small-scale instances show that all three algorithms, 

reedy, DLG, and DoS, achieve near-optimal performance (SR ≤ 1 . 6 ) 

or a range of N, β , and γmax values. Although the Greedy and DLG 

lgorithms have theoretical optimality guarantees only for small 

max and β values, they perform well (SR ≤ 1 . 1 ) even for large γmax 

nd β values. On the other hand, although the local optimality 

uarantee of the DoS algorithm is independent of the problem pa- 

ameters, the performance of the algorithm is, in general, compa- 

able (SR ≤ 1 . 1 ) to that of the Greedy and DLG algorithms only for

arge γmax and β values. 
s

7 
.2. Performance comparison with an SDP-based beamformer 

We compare the performance of the proposed algorithms with 

 semi-definite programming-based (SDP-based) beamforming al- 

orithm. SDP-based methods are widely used in robust beamform- 

ng to mitigate the degrading effects of uncertain parameters on 

he beam pattern [18,48] . Accordingly, for comparison, we synthe- 

ize a beamforming vector w 
� ∈ C 

N where 

 
� ∈ arg min 

w ∈ C N 
‖ w ‖ 

2 
2 (12a) 

ubject to: E [ w 
H Hw ] ≥ � (12b) 

 i ∈ [ N] , | w i | 2 ≤ 1 . (12c) 

Here, H ∈ C 
N×N is H = hh 

H where h 
H = [ h 1 , h 2 , . . . , h N ] ,

nd w 
H = [ w 1 , w 2 , . . . , w N ] . The constraint in (12c) ensures that

 i = 

√ 

P e jδi for some P ≤ 1 . 

A solution to the problem in (12a) –(12c) is a beamformer w 
� 

hat attains the desired threshold � with minimum total power 

hile respecting the individual power constraints in (12c) . It can 

e shown that a solution to the problem in (12a) –(12c) can be 

omputed exactly by solving an SDP [19,48] . To synthesize the 

eamformer w 
� , we utilized the SDP solver of the CVX toolbox 

49] with its nominal parameters. Note that the beamformer w 
� 

inimizes the total transmit power of the antenna array while en- 

uring that the expected beamforming gain exceeds the desired 

hreshold �. Therefore, it represents a solution to a convex relax- 

tion of the problem 

min 
S⊆[ N] , δ∈ C N 

|S| 
ubject to E [ G (S, δ)] ≥ �

hich is a risk-neutral version of the subset selection problem. For 

iven w 
� = [ w 

� 
1 , w 

� 
2 , . . . , w 

� 
N ] , we let the corresponding optimal sub-

et be S � = { i ∈ [ N] : | w 
� 
i 
| > ε} where ε = 10 −1 . 
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Fig. 3. Performance comparison of the proposed algorithms with an SDP-based beamformer. (Left) For a given threshold � = β�max , the normalized variances of the 

beamforming gains are similar for all approaches. (Middle) Proposed algorithms achieve the same performance by employing strict subsets of the agent group when possible. 

(Right) Greedy and DLG algorithms synthesize beamformers orders of magnitudes faster than the SDP-based approach. 
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We generate 100 subset selection problem instances by setting 

= 40 and selecting the error variances { γi : i ∈ [ N] } uniformly

andomly from the interval (0,10), i.e., γmax = 10. For the DoS al- 

orithm, we set λ0 = 1 and α = 2, and run the algorithm with 10

andom initializations. We compare the performance with respect 

o three metrics: the average variance of the beamforming gain, 

he average size of the selected subset, and the average computa- 

ion time. 

Fig. 3 (left) shows the normalized variance of the beamform- 

ng gain, i.e., κ = Var (G (S � , δ)) / Var (G ([ N] , ̂  δ)) , versus the normal-

zed threshold β = �/ �max . In the figure, we do not plot the re-

ults of the DLG algorithm since it is almost exactly the same as 

he Greedy algorithm. As can be seen from the figure, the pro- 

osed discrete-optimization-based algorithms achieve similar per- 

ormance to that of the SDP-based beamformer. The variance of the 

DP-based beamformer is, in general, smaller than the variance of 

he proposed algorithms since the problem in (12a) –(12c) is a con- 

ex relaxation of the subset selection problem. 

Fig. 3 (middle) demonstrates the trade-off between the normal- 

zed threshold β and the average size of the optimal subset S � . The 
lot for the DLG algorithm is omitted since the average size of the 

ubsets selected by the DLG algorithm is almost exactly the same 

s the Greedy algorithm. As can be seen from the figure, for β < 1 ,

he proposed algorithms employ strict subsets of the agent net- 

ork [ N] where N = 40. On the other hand, the SDP-based beam- 

ormer includes all the agents to beamforming for all β > 0 . Com- 

ined with the results shown in Fig. 3 (left), this result suggests 

hat the proposed algorithms achieve similar performance to that 

f the SDP-based approach using fewer agents. This saves resources 

verall and allows unallocated agents to take on other tasks. 

Finally, Fig. 3 (right) shows the computation times for all algo- 

ithms. The Greedy and DLG algorithms run orders of magnitude 

aster than the SDP-based beamformer. On the other hand, the DoS 

lgorithm takes longer than the SDP-based beamformer to select a 

ubset in general. The long computation time is partially due to 

he fact that we run the DoS algorithm with 10 random initializa- 

ions to improve its performance. We observe in our experiments 

hat the variance of the beamforming gain for the subset selected 

y the DoS algorithm decreases considerably as the number of ran- 

om initializations used in the DoS algorithm increases. Therefore, 

here is a trade-off between the computation time of the DoS al- 

orithm and the quality of the beamformer. 

The empirical evaluations presented above suggests that the 

roposed discrete optimization-based approaches have the poten- 

ial to synthesize beamformers with similar performance to that 

f the convex optimization-based beamformers using significantly 

ess number of agents. Furthermore, when the Greedy and DLG al- 

orithms are employed to synthesize beamformers, the required 

omputation time for the synthesis can be significantly reduced 

ith respect to SDP-based approaches. 
q

8

. Conclusions 

We considered a mobile multi-agent network in which the sen- 

or nodes locate themselves in an environment through imperfect 

easurements and aim to transmit a message signal to a base 

tation. Under the assumption that the agents have Gaussian lo- 

alization errors, we developed three one-shot (non-iterative) al- 

orithms, Greedy, Double-Loop-Greedy (DLG), and Difference-of- 

ubmodular (DoS), each of which chooses a subset of agents to op- 

imize the quality-of-service without requiring feedback from the 

ase station. 

When the localization errors for all agents are below a certain 

hreshold, the Greedy algorithm globally minimizes the variance 

f the SINR received by the base station while guaranteeing that 

he expected SINR is above a desired threshold. The DLG algorithm 

mproves the empirical performance over the Greedy algorithm. Fi- 

ally, the DoS algorithm enables the agents to locally optimize the 

eliability of the communication link even when the localization 

rrors are large. We empirically showed that the proposed algo- 

ithms achieve similar performance with a convex optimization- 

ased algorithm while using significantly fewer agents. Moreover, 

he Greedy and DLG algorithms run orders of magnitude faster 

han the convex optimization-based approach. 

Although the DoS algorithm achieves comparable performances 

o that of the convex optimization-based algorithm with fewer 

gents, its computational requirements may hinder its applicability 

o scenarios in which the size of the agent network is large. In- 

eresting future directions include developing algorithms for large 

cale systems that are both fast and have performance guarantees, 

s well as utilizing our algorithms to initialize some further beam- 

orming refinement such as using base station feedback. 
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ppendix A 

In this appendix, we present the Double-Loop-Greedy (DLG) 

lgorithm, shown in Algorithm 3 , which is an extension of the 

lgorithm 3 Double-Loop-Greedy (DLG). 

1: Input: γi for all i ∈ [ N] , � ∈ R . 

2: Sort γi such that γi 1 
≤ γi 2 

≤ . . . ≤ γi N 
. 

3: S 1 := ∅ , S 2 := ∅ , k := 1 , l := N 

4: while E [ G (S 1 , ̂  δ)] < � do , S 1 := S 1 ∪ { i k } , k := k + 1 

5: end while 

6: while E [ G (S 2 , ̂  δ)] < � do , S 2 := S 2 ∪ { i l } , l := l − 1 

7: end while 

8: if Var (G (S 1 , ̂  δ)) < Var (G (S 2 , ̂  δ)) then S := S 1 
9: else S := S 2 
0: end if 

11: return S . 

reedy algorithm. The idea is to form two solutions and then 

hoose the best one. Set S 1 is developed as the Greedy algorithm, 

hile set S 2 is formed in a similar way but starting from the worst 

ase error. First, the DLG algorithm sorts the agents’ effective error 

ariances γi in ascending order. Sets S 1 and S 2 are initially empty. 

tarting from the agent with the lowest effective error variance, 

he agent with the next lowest effective error variance is iteratively 

dded to the set S 1 until the constraint E [ G (S 1 , ̂  δ)] > � is satisfied.

his is the same procedure as the Greedy algorithm. 

To form S 2 we proceed as follows. Starting from the agent with 

he highest effective error variance, the agent with the next high- 

st effective error variance is iteratively added to the set S 2 un- 
il the constraint E [ G (S 2 , ̂  δ)] > � is satisfied. Finally, the DLG algo-

ithm compares the variance of the beamforming gain for S 1 and 
 2 , and outputs the one with smaller value. We note that the time 

omplexity of the DLG algorithm is the same as the Greedy algo- 

ithm. 

For a given problem instance, the subset S ⊆ [ N] returned 

y the DLG algorithm satisfies Var (G (S, ̂  δ)) ≤ Var (G (S ′ , ̂  δ)) where 

 
′ ⊆ [ N] is the subset returned by the Greedy algorithm. Hence, 

LG provides an optimal solution to the problem in (8a) - (8b) un- 

er the sufficient conditions stated in Theorem 1 . 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.sigpro.2022.108647 . 
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