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Abstraci—In this letter, we investigate the problem of
actuator scheduling for networked control systems. Given
a stochastic linear system with a number of actuators, we
consider the case that one actuator is activated at each
time. This problem is combinatorial in nature and NP-Hard
to solve. We propose a convex relaxation to the actua-
tor scheduling problem, and use the relaxed solution as a
reference to design an algorithm for solving the original
scheduling problem. Using dynamic programming argu-
ments, we provide a suboptimality bound of our proposed
algorithm. Furthermore, we show that our framework can
be extended to incorporate multiple actuator scheduling
at each time and actuation costs. A simulation example is
provided, which shows that our proposed method outper-
forms a random selection approach and a greedy selection
approach.

Index Terms—Actuator scheduling, LQG control.

[. INTRODUCTION

I N RECENT years, networked control systems (NCSs) have
gained much interest in the controls community due to
the advancements in communication architecture, computer
technology, and network infrastructure that enable efficient
distributed sensing, estimation, and control [1]-[3]. Due to
potential constraints on the communication and computation
resources of NCSs, sensor scheduling and actuator scheduling
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are two important and challenging problems, and efficient
algorithms are sought for solving them.

The majority of the existing work focuses on sensor
scheduling problems and their variants. Several approaches
(e.g., stochastic selection [4], search tree pruning [5], greedy
selection [6], semidefinite programming based trajectory track-
ing [7]) have been proposed to solve such problems. In
contrast, the actuator scheduling problem has received much
lesser attention. While sensor scheduling problems focus on
minimizing (a function of) the estimation error, the actuator
scheduling directly affects the controllability and stability of
the system as well as the control performance. Therefore, a
significant portion of the work on actuator scheduling focuses
on studying the effects of actuator scheduling on the control-
lability and stability of the systems, e.g., [8]-[12] and others.
It is shown in [8]-[10] that several classes of energy related
metrics associated with the controllability Gramian have a
structural property (modularity) that allows for an approxi-
mation guarantee by using a simple greedy heuristic. These
problems are further investigated in [11], where a framework
of sparse actuator schedule design was developed that guaran-
tees performance bounds for a class of controllability metrics.
Except [12], these works assume a time invariant scheduling
problem, which is likely to be suboptimal and may impose
restrictions on controllability for large systems. Reference [12]
uses a round-robin scheme for selecting the actuators and show
that local stability is attained if the switching between the
actuators is fast enough. The efficacy of time-varying schedul-
ing over time-invariant ones for interconnected systems is
also demonstrated in [13]. However, how to find the optimal
time-varying schedules remains unanswered.

The efficacy of the abovementioned controllers on a system
with different performance criteria (e.g., quadratic cost) is
unknown and likely to be suboptimal since these works solely
focus on the controllability/stability aspect. In contrast to
those works, a few existing works [14]-[16] consider a linear-
quadratic optimal control problem for actuator scheduling.
However, the focus on these works is to decide at each time
whether to activate the only actuator available or not.

Motivated by the above, in this letter we study the actuator
scheduling problem for a finite horizon linear-quadratic control
system with a number of actuators. We consider the case that
a nonempty subset of the actuators is active at each time. The
performance of the actuator schedule is measured by a finite
horizon quadratic cost function of the system state and control
plus the cost of using each actuator (representing, e.g., energy
consumption). This problem is combinatorial in nature and is
NP-hard in general. Due to space limitations, we first restrict
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ourselves to the case that only one actuator is activated at each
time and that all actuators have equal actuation costs. We then
provide discussions and simulation results on the general cases
that multiple actuators are activated at each time and that the
actuators have different actuation costs.

The main contributions of this letter are the following: (i) We
propose a convex relaxation to the actuator scheduling problem,
and use its solution as a ‘reference’ to design an algorithm
for solving the original NP-hard scheduling problem. (ii) We
provide a suboptimality bound for the proposed algorithm.
(iii) We further show that our results can be extended to the
cases with multiple actuator scheduling and actuation costs.

The outline of this letter is as follows: In Section II, we
formulate the actuator scheduling problem, which is solved in
Section III. In Section IV, we provide discussions on multiple
actuator scheduling and actuation costs. Simulation results are
provided in Section V. Section VI concludes this letter.

Notation: We denote the set of real numbers and positive
real numbers by R and R, respectively. The set of n dimen-
sional vectors over R is denoted by R" and the set of real
n x m matrices by R™™™. The identity matrix is denoted by /.
For a given matrix A, its transpose and inverse (if exists) are
denoted by AT and A—!, respectively. For a symmetric matrix
P, we denote P > 0 (P > 0) if it is positive definite (posi-
tive semidefinite). The trace of a square matrix A is denoted
by tr(A) and the Frobenious norm by ||A|r. We use E[x] to
denote the expectation of a random variable x.

Il. PROBLEM FORMULATION
We consider a system with N actuators of the form

Xt ZArXr—i-ZBr(f)“r(f) + wy, (1)

Jjeoy

where A, € R™", B,(j) € R™™, g, € N = {1,2,..., N}
the set of selected actuators, x; € R”" the state, u,(j) € R™
the input from the j-th actuator, and w; € R” an independent
sequence of Gaussian random variables with w, ~ A (0, W).
The initial state is xg ~ A (0, W_1) and it is independent of
w; for all {. The matrix B,(j) describes how the control input,
u(j), of the j-th actuator enters the system at the time f. The
mapping o : [0, T—1] — 2N is called the scheduling function
that determines which actuators are active at any time.

We consider the actuator scheduling problem that at each
time only N; (1 < N; < N) out of the N actuators are used
to control the system (1) at time f. Consider a standard finite
horizon quadratic control cost function

T—1
Je=E| 3| 5 Qx+ ) w() " RG)w) | +x7 Orxr |, (2)
=0 JjEor

where O, O, R(j) > 0 for all ¢. In addition, consider also
an actuation cost function J, = 3;_01 Zjem ¢i(j), where
¢:(j) € Ry is the cost of using actuator j at time ¢. Note that
c:(i) and c;(j) are in general different for i # j and i,j € N,
which can be due to the fact that different actuators may have
different energy consumption or resource usage. The objective
of the actuator scheduling problem is then to find an actuator
schedule that minimize the joint cost J = J. + J,.

Due to space limitations, in the sequel we will restrict our-
selves to the case that N; = 1 and ¢,(j) = ¢; for all j and 1.
In other words, we consider the case that exactly one out of

the N actuators is used at each time and that each actuator has
the same actuation cost. The assumption ¢;(j) = ¢; leads to
J, being independent of the actuator schedule and therefore,
minimizing J is equivalent to minimizing J.. The discussions
on the cases with multiple actuators and actuation costs will
be provided afterwards in Section IV.

We assume that perfect state measurement is available to
the controllers. The information available at the controller at
time ¢ is denoted by Z;, with 7, = T, y | J{x;} for all t > 1
and Zy = {xp}. For any given schedule o, the controller for
the j-th actuator at time f is #,(j) = —L;(j, o )x;, and the cost
associated to this schedule o is

T
Je(o) =Y tr (Ki(0)Wi_1),

=0
where L;(j, o) and K;(o) satisfy the following equations

L, 0) = Si(j, )" Be(j) T Keg1(0)Ar, 3)

5t(, ) = B¢()) " Ke1(0)B:(j) + Re(j) @)
Ki(0) = @+ A Ki11(0)A; — Al Kpp 1 (0)

Bi(07)S:(01) "' Be(01) " Key1 (0)A, Q)

Kr(o) = Kr = Qr.

Notice that, for any f < T — 1, the matrix K;(o) depends on
the actuator schedule for the interval [f, T —1]. Thus, the gains
L;(j, o) associated with the j-th actuator depends on the future
schedule for the time interval [t 4 1, T — 1] and actuator j
through B,(j) and R,(j).

Before proceeding, to maintain brevity in the subsequent
analysis, we define two matrix valued functions:

sy,
81, M) = M — MB,() (B.() "MB.)) + Ri () Bi()" M, (62)

hy(M) == Al MA; + O, (6b)

for all j € N. By defining a new variable Kj;+1 and
substituting (6) into (5), we obtain that, for any given o,

(7a)
(7b)

Kijr41(0) = gi(os, Ki1(0)).
Ki(0) = h(Kyr41(0)), Kr =0r.

In what follows, we will suppress the time subscript in oy
to maintain notation brevity. The optimal actuator scheduling
problem that we consider is then formulated as follows.

Problem 1 (Actuator  Scheduling  Problem):  Given
system (1) and N actuators, find a schedule o : [0, T—1] — N
that solves the following optimization problem:

T
min Y tr (K@) Wie1)
=0
subject to K1 1(0) = g(0, Ki11(0)),
Ki(o) = h:(Kr|t+l (), Kr=0r

with the variables o, K, K¢y 1.

Problem 1 is combinatorial in nature and NP-hard in gen-
eral [17]. We now propose an efficient solution to Problem 1
using a convex relaxation.

[1l. ACTUATOR SCHEDULING WITH SUBOPTIMALITY
GUARANTEES

In this section, we solve Problem 1 and provide a subop-
timal solution that is computationally inexpensive. We will
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propose a convex relaxation to the problem (see Problem 3)
and will use the solution of the relaxed problem as a ‘ref-
erence’ to find a solution to Problem 1. In Section III-A we
will propose a tracking algorithm that finds a solution which is
‘close’ to the reference solution found from solving the relaxed
convex optimization problem. The suboptimality bound of the
proposed algorithm is discussed using dynamic programming
type arguments in Section III-B.

Before proceeding, we first reformulate Problem 1 into a
form that is easier for the analysis afterwards According
to (6b) and (Tb) we have K;(o) = A Kyir1(0)Ar + @4,

t=0,1,...,T—1 and K7t = Q7. Subsequently, we obtain
71
Ztr (Ki(@)Wi—1) = ) tr (Kyep1(@) W) +1,  (8)
=0 =0

where r = Y7 tr (Q,W,_,) and W,_; = A,W,_jA]. Note
that r is independent of o, K;(0) and Ky 1(0).
Next, we define two matrices Py and Py as follows

P(o) =K;'(0), Pyy1(0) =Ky}, (0).

According to Woodbury matrix equality, we have
Piji+1(0) = Pr31(0) + Bi(©)R ' (@)B] (), (9)

where B; (o) is a shorthand notation for B,(o;). Using (8) and

the new variables Py (o). P;(o), Problem 1 can be rewritten
as Problem 2.
Problem 2: Given system (1) with N actuators, find a

schedule o : [0, 7 — 1] — N that solves the following:
T—1
min Y tr (K1 (0) W)
=0

subject to Kjjry1(0) = P,_|,]+1 (o),

Pyi1(0) = Pry1(0) + Bi(0)R (0)B] (o),
P (0) = h(Kyis1(0)), Pr= Q7'

with variables o, Kf, KfiH'] 3 Pf, PI]H—I i
Note that, although the constraints in Problem 1 and
Problem 2 appear differently, one can in fact verify that these
two problems are equivalent.
Let us denote Vi(o) = Bi(o)R; (O’)BT(O’) and the set
= {B:(j)R:(j)~ 1B,(,r)—'— j € N}. Therefore, we may rewrite
the constraints in Problem 2 to be K141 = PHSH, Py =
Piy1 + Vi, Vi € Vi, Py = ((Kyir))™', and Pr = Q7.
We have suppressed the arguments o in the variables to
maintain notational brevity. We can further relax the con-
straints in Problem 2 to their equivalent matrix inequality
Kijer1 > Py, and Py < (h,(Kﬂm)) 1. Using Schur com-

plement, one may write Kyry1 = Py, e +] as the Linear matrix

K1 1
I Py

tion of h.(-) from (6b), the Woodbury matrix inverse identity,
and Schur complement, we obtain the following problem from
Problem 2.

Problem 3: Given V; == {B,()R:(j)"'B,(j)" : j € N}, solve
the following optimization problem

inequality > 0. Similarly, using the defini-

T—1
> otr (K1 Wie)

=0

min

Subject to P;|;+1 = PH-1 + Vt, Vt = Vt, P‘f = Q;l,

K I
=0
[ I Pyepr| =
[QT'—]P: o-'A] ]H)
AQp Py + A Qp AT

with variables K41, Pysp1, Py, and V.

Notice that the constraint V; € V; is sufficient to enforce
the scheduling constraint o : [0, 7 — 1] — N.

‘While Problem 3 is a relaxation of Problem 2, we now show
a key result that an optimal solution to Problem 3 is also an
optimal solution to Problem 2.

Theorem 1: An optimal solution of the relaxed problem
(Problem 3) is also an optimal solution of the original problem
(Problem 2), and vice-versa.

Proof: The proof of this theorem is along the lines of
[7, Th. 1]. First, note that, due to the relaxations, any feasi-
ble solution of Problem 2 is a feasible solution for Problem 3,
and hence the optimal solution of Problem 2 is a feasible solu-
tion for Problem 3. The theorem is proved once we show that
for every feasible solution of Problem 3 there exists a feasi-
ble solution for Problem 2 that produces the same, if not a
smaller, objective value.

In order to show that, let the tuple {Kjjsy1, Pyey1, Pt} denote
a feasible solution of Problem 3. Let us construct a new tuple
{K,]H_] P,|,+1 P,} as follows

Py= (h.r(Kﬂf—i—l))_!

el
Kijr41 = Pr|r+]=

I_Jr|:+1 =P+ Vi

Vi = Pyt — Pry, Pr=Pr. (10
It then follows from (10) that P,|,+1 > Py, K,|,+1 = Kije1
and P,+| > Pgy for all £. Note also that the matrix V; in (10)
satisfies ¥, ¢ V,. Since the tuple {K,|,+1 P,|,+1 P,} satis-
fies all the constraints of Problem 2, this implies that it is

a feasible solution of Problem 2. Next, note that Kf|,+1 <
K,|;+1 for all £, this then implies that Z‘,_O tr(Kf|f+| W) <
Z,=G tr(Kyjr41 W;_1). Therefore, for any feasible solution of
Problem 3 we can construct a feasible solution for Problem 2
that produces the same, if not less, cost. This completes the
proof. |

Remark 1: Theorem 1 shows that the LMI-based relax-
ations introduced in Problem 3 do not affect the optimality,
since an optimal solution to the relaxed problem is also optimal
for the original problem. This is a key advantage of this
approach, as the LMI-based relaxations retain the optimality.
Moreover, since Problem 3 is a mixed integer semidefinite
program, one may attempt to directly solve it using available
numerical techniques [18].

Next, note that Problem 3 is convex if V; is a convex set
for all . When V; is not convex, one could take the convex
hull of the set V; to make Problem 3 convex. In our case,
since V, is a collectl{m of N matrices {V;(1), ..., V;(N)} where
Vi(j) = B:(HR:(j)~ B,(J) for all 1, we replace the constraint
V; € V; with the constraints V, = Z,_ B‘V,(ﬂ 9* € [0, 1] and
Z;l 6] = 1. In this case, Problem 3 can be further simplified
to Problem 4.

Problem 4:
f |
min Z tr (Kyjer1Wea1)
=0

N
+Y_6viGi), Pr=0r',

i=1

subject to Pyey1 = Pry
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Algorithm 1 Reference Tracking Algorithm

Il'lpl.lt {K |f+l}f—0 . Kr=0r

fort=T—-1:0do
M; (i) < g, Kr+1),
o; <— arg min; || K¢ 41
Kije41 < ge(or, Key1)
K: < hy(Kyje41)

end for

Output o

ieN
—M;(D)Fr

b M

N
; . Kipia 1
Y gi=1 08 =1 ["‘+ ]»0
? CHEE By t ) I P —
s te+1

[Qr‘ — P,
AQ;!
with variables 6}, Kye11, Pyes1, Pr-

At this point we have a convex optimization problem
(semidefinite program) in Problem 4 which is much easier to
solve compared to the mixed integer semidefinite program in
Problem 3. If the optimal #/ is binary-valued then the optimal
schedule to Problem 1 is found by setting o, = j such that
6! = 1. However, in general the optimal # are not binary-
valued and we need to design an algorithm to find a schedule o
from the solution to Problem 4.

Remark 2: At first glance, it may seem that selecting the
actuator with the maximum value of 6/ at each time will lead
to the smallest value of tr (K,|,+1Wf_1). However, it is not
necessarily the case (see simulation in Section V). In the next

section we propose a more efficient algorithm and discuss its
suboptimality bound.

o'al
. ! = t 07
Pt|:+] +ArQ: At

A. Actuator Scheduling Algorithm

By solving the convex relaxation in Problern 4, we obtain
{{6i°};en} =), or equivalently V2 = YN | 6/°Vi and the asso-
ciated Kj,, |, Py, and P7. In this sectlon we propose an
algorithm that uses this solution of Problem 4 as a reference to
obtain a suboptimal solution for Problem 1. The corresponding
algorithm is presented in Algorithm 1. Note that this algorithm
depends linearly on the number of the actuators

Algorithm 1 takes the solution {Kj, +l}r—0 obtained from
solving Problem 4 as an initial guess and initializes the
terminal condition K7 at Q. The algorithm produces a tra-
jectory {K,|t+1}3r__01 that is close to the reference trajectory
{K§ e+ }3_0] in Frobenius norm. The reasoning behind the con-
struction of Algorithm 1 is to keep the matrices Ky (o) close
to Kro|: 1, and subsequently, to keep Z;r:_ol tr(K,|f+1(a)W,_1)

T-1 ; T—1 = :
close to Y-,y tr(Kp,,Wi1), since Y,y te(Kf, Wi 1) is

the lowest one that could possibly be achieved given the set
of actuators. The algorithm can be regarded as a frajectory-
tracking problem in the space of positive definite matrices
where {K7 e+ 4 1)1=0 serves as the reference trajectory.

Although Algorithm 1 is heuristic in nature, we may
use dynamic programming type arguments to analyze its
performance. To this end, we denote the value function
associated to Problem 2 as

U(K) = min ZU(KklkH(O')Wk D,

{o (k)}kzﬂ =0

(an

given K;y1 = K for some K > 0. Likewise, we denote the
value function associated with Problem 4, which is the SDP
relaxation of Problem 1, to be

U(K)= min Zu(mmw)m D-
{{Bk}reN};( =0 =0

(12)

It in fact can be shown that

Ui(K) < oy + U7 (K}, 1) i mm [I1Ksjesr1(o) — |;+1 IIF,
where K; = A;quH—]At + O, c1 = |[WieillF + c||A;|E12; and
o; > 0 depends on t but not K or o. Thus, optimizing
ming || Kyjey1(0) — mH ||F in Algorithm 1 in fact minimizes
an upper bound of the value function U;, or equivalently, an
upper bound of Z, —0 tr(K,|,+1M 1). Therefore, in essence,
Algorithm 1 performs an approximate dynamic programming
type optimization by minimizing an upper bound of U;.

The reader is referred to [19] for detailed derivations.

B. Suboptimality Guarantees

The following theorem provides a suboptimality bound of
Algorithm 1.

Theorem 2: Let o, c* and 8* denote the schedule obtained
from Algorithm 1, the true optimal schedule of Problem 1,
and the solution to Problem 4, respectively. Then, we have

T T
> Ki(@)Wimy) < Y te(Ki(aM)Wiy) + €,

(13)
=0 =0
where
A |
— )Lt+1 -~
€ =W ||F(Z ﬁﬂr
- T—1
+ Z | Kje41(0%) — Kijeg1 (6*)IIF) (14)
t=0

with A, = lAes 1121 He(o*, Kep1 @M% B =
llg: (o, Kiy1(6*)) — Kijr41(6™)||F and

Hy(0*, Kip1(6%)) 21— K111(0")Bi(c™)
i |
x (Bio™) Kiy1(0)Bi(0™) + Ri(@™)  Bi(a™).
Proof: First, let us recall (8) and we then have
T T
D (K (@)Wi—y) — Y tr(Ki(a*)Wi)

=0 =0
T

= tr ((Kr|r+1 (o)

_Kr|r+1(ﬁ*))Wr—l)

“"n‘
—_—

< Y IKyes1(0) — K1 @) | F I Wa—t [l
=0

Next, for all ¢, it holds that
1Ksjer1(0) — Kijesn (0MlF < IKsjer1(0) —
+ IKeje+1(0*) — Keje1 (@) IFs

where Kjry1(o) is the obtained matrix when schedule o is
used from time T — 1 backwards to f. Similarly, we define
K;(0™) and K;(#*). Furthermore, according to the definition

Keje10%)|IF
(15)
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of #*, we have K;41(6*) = K :|r y1e Next, note that, due to the
design of our algorithm (line 4 in Algorithm 1), it holds
IKeje+1(0) — Kjer1 (017
= mfjn llg: (i, Key1(0)) — Kyjet1 (0%) I F

< |lge(oy s Ker1(0) — Kepep1 (0 || 7
< g0y, Key1(0)) — gi(o7', Ke1 @) IF
+ llge(o), Kex1(6™)) — Keje1(0F)|IF.
It then follows from [19, Lem. 4] and the concavity of g;(i, -)
that
llg:(of, Kip1(0)) — gi(o), Kep1 B*)IF
< |Hy(o}, K1 @*DIP1|A1 112
X ||Ket1je42(0)) — Keg1je420%) || F-
By defining 1, £ IKtet1(0) — K1 (0%)||lF. As —
lA1 121 He (o, Kt @D, B = llge(o, Keg1(0%) —
Kije41(6%)||F, we obtain
N <A1+ B, t=0,1,...,T =2, nr_1 < Br_1, (16)

where A = max, A, This further gives us that n <
S AT-t=igr ; for t = 0,1,...,T — 1. 1t then follows
from (15), (16) and the deﬁmuon of n; that

T-1
> IKes1(0) — Ky (0 I
=0
T-1 T-1
<Y e+ D IKget1(0*) — K1 (0 I
r—o t=0
A‘“ oo T-1
= Z —B+ Z 1Ksje41(0%) — Kpjeg1 () 7.
t=0
This implies that
| T—1
Y rKigep1 (@) Wie1) = Y tr(Kiep1 (0 Wi) <,
t=0 t=0
where € is given in (14). This completes the proof. |

Remark 3: Note that equation (13) in Theorem 2 provides
a suboptimality bound on Algorithm 1. According to the def-
inition of B, it can be seen that the value of € depends on
the mismatch between the schedules 6* and o*. Clearly, if
the solution to Problem 4 is already integer in nature (i.e.,
6 € {0, 1}) for all £, then B; = 0 for all ¢, and consequently
we obtain € = 0.

V. DiscussiON ON MULTIPLE ACTUATOR
SCHEDULING AND ACTUATION COSTS

In this section, we will provide brief discussions on the
cases of multiple actuator scheduling and actuation costs.

1) Multiple Actuator Scheduling: In Section III, we consid-
ered the problem for the case where exactly one actuator is
used at each time. In practice, one may encounter a situation
that multiple actuators (e.g., N; out of N) are scheduled at
the same time. Such a problem can be solved in several ways
using our method. Here we discuss two of them.

As a first approach, one may construct (N) virtual actuators,
each of these is a group of N; actuators. Thus selecting N; out
of N actuators is equivalent to selecting one out of these (N)

NG

Fig 1. Network model for simulation example.

virtual actuators. However, complexity of such an approach
Srows factonally A less computationally expensive approach
is to use Z; 1 9f = N; in Problem 4, along with a modification
in Algorithm 1, in which case the N; actuators that give the
smallest values of || K7 f-+1 — M, (i)||F are the actuators selected
at time f. This mod1ﬁcat10n in Problem 4 does not introduce
any extra computational complexity. Computational require-
ments for Algorithm 1 slightly increases. However, given the
simplicity of Algorithm 1, this is practically inconsequential.

2) Actuation Costs: The results in Section IIl are derived
by considering all actuators to have equal actuation costs
(ie., ¢(i) = c¢; for all i). One possible way_ to mcorporatc
the actuation costs is to include the term 0 c,(i)G’
in the objective function of (4). Notlce that ihe term

TSN ()] is linear in the optimization variable 6,
and hence the convexity of the problem is retained. In the
simulation we adopt this approach to include actuation costs.

V. SIMULATION

We consider a networked system with 6 nodes as shown in
Fig. 1. The i-th node follows the dynamics

6
X1 () =) () + u(i) + wi(i),
j=1
where a; > 0 denotes the weight on the link between
nodes i and j and a; = 1 — Z?zu#ia,-j. If there is no
link present between node i and j, then a; = 0. Each node

has an actuator associated with it through which one can
du’ectly control the state of that node. The overall system state

= [x(1), . .1\7,(6)]T follows the dynamics
6
X1 = Ax + ) B (i) +wi,

i=1

where B(i) € R® is i-th canonical basis vector in R® and
wr = [we(1), ..., W 6)]T. We consider a cost function of the
form (2) with Oy = 51, Ry({) = [ forallt < T—1and QOr =1.
Furthermore, we assume xg ~ N (0, %D and w; ~ N (0, ;]f!).
The actuation costs are ¢;(i) =1 fori=1,...,4, c;(5) = 1.5,
and ¢;(6) = 2. The costs for ¢;(5) and ¢;(6) are chosen to be
higher because the system is fully controllable only with B(5)
and B(6). For a horizon of T = 30, the schedule obtained
from our algorithm is shown in Fig. 2, and the corresponding
optimal cost is 101.0006.

mtcrestingly, from the solution to Problem 4 shown in
Fig. 3, we notice that the actuator of the 1-st node is hardly
used since the values of 9‘ ’s are in orders of magnitude smaller
than that for the rest of the nodes for all f. This is in con-
trast with the schedule we found in Fig. 2 where actuator 1 is
scheduled for several time instances (~ 17% of the time) by
Algorithm 1. Actuator 2 is used the least by Algorithm 1 in
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V1. CONCLUSION

In this letter, we have studied the problem of actuator
scheduling for stochastic linear NCSs. In particular, we have
considered the case that only one actuator is active at each
time. We have proposed a convex relaxation and used its
solution as a reference for obtaining a suboptimal track-
ing algorithm for solving the actuator scheduling problem.
Suboptimality guarantees for the proposed algorithm have
been provided using dynamic programming arguments. We
have also discussed the extensions on the cases with multiple
actuator scheduling and actuation costs.
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Fig. 4 x-axis: Cost (J), y-axis: Percentage of the randomly generated
trials which produced a cost less than or equal to the value on the x-axis.

Fig. 2, however, in Fig. 3 we notice that 9} is not the least
among all 6;’s. While one might be tempted to only use actua-
tors 3 and 4 since the corresponding 9;' values are the highest
ones in Fig. 3, however, such restriction leads to a cost of
108.5531, which is higher than what our method found. This
indeed validates our statements in Remark 2.

Next, we compare the performance of our approach
with randomly generated schedules and a greedy selection
approach.! We randomly selected 50,000 schedules and com-
puted the cost corresponding to these schedules. The resulting
cost distribution from the schedules are plotted in Fig. 4 and
the minimum cost out of these 50,000 trials is 102.0693.

Evaluation of the 50,000 random trials took 34.65 seconds
whereas our approach (convex optimization plus trajectory
tracking) took 2.5 seconds, which is an order of magnitude
less time. For the greedy approach, at each time instance we
greedily selected the actuator that provides the minimum cost
for that time stage. This approach is fast (< 1 sec) but the
performance is the worst (see Fig. 4).

IS(:he;duling problems generally has a supermodularity structure which
ensures a level of optimality guarantee for the greedy approach.
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