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Abstract—We consider a group of agents that estimate their
locations in an environment through sensor measurements and
aim to transmit a message signal to a client via collaborative
beamforming. Assuming that the localization error of each agent
follows a Gaussian distribution, we study the problem of forming
a reliable communication link between the agents and the client
that achieves a desired signal-to-noise ratio (SNR) at the client
with minimum variability. In particular, we develop a greedy
subset selection algorithm that chooses only a subset of the agents
to transmit the signal so that the variance of the received SNR is
minimized while the expected SNR exceeds a desired threshold.
We show the optimality of the proposed algorithm when the
agents’ localization errors satisfy certain sufficient conditions that
are characterized in terms of the carrier frequency.

I. INTRODUCTION

Collaborative beamforming is a communication technique in
which a group of agents, e.g., mobile robots each of which is
equipped with an antenna, transmit a common message signal
such that the transmitted signals superpose coherently at the
client, i.e., intended receiver [1]–[3]. In many scenarios the
agents are distributed in an environment, and they estimate
their positions using sensor measurements. For example, the
agents may be autonomous ground vehicles carrying out
a task in the environment and their localization algorithm
may result in an error associated with position [4]–[6]. The
localization error translates to a phasing error as the agents
form a beam, which results in an imperfect superposition
of the transmitted signals at the client. In such scenarios, it
is important to design beamforming algorithms that exploit
the statistical knowledge of the localization errors and satisfy
certain quality-of-service (QoS) requirements at the client.
Assuming that the localization error of each agent follows a
Gaussian distribution, this paper concerns the development of
a simple greedy algorithm which minimizes the variance of the
signal-to-noise ratio (SNR) received by the client subject to the
constraint that the expected SNR exceeds a desired threshold.

Traditionally, the design problem associated with collabo-
rative beamforming is to choose a complex scalar gain for
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each agent to multiply the transmitted signal so that the
resulting beampattern satisfies certain properties [7]. Ideally,
with no localization error, the geometry may be used to
derive the optimal beamformer, and we refer to this as the
perfect channel state information (CSI) case. When no CSI
is available, an iterative algorithm that updates the agents’
beamforming gains according to a feedback from the client
can be employed [8]. In the case of imperfect CSI, a number of
algorithms based on semi-definite programs (SDPs) have been
proposed to ensure that the SNR received by the client is above
a threshold with desired probability [9]–[11]. Similar conic
optimization-based formulations are common in the robust
beamforming literature [12]–[14]. While SDP formulations
provide a powerful technique to improve the QoS at the client
despite imperfect CSI, they are computationally expensive and
do not scale well with the number of agents.

In this paper, we approach the beampattern design problem
from a discrete optimization perspective and develop an al-
gorithm to choose a subset of agents to transmit the message
signal to the client. Given a group of agents with associated
localization errors, we seek a subset of agents to form a beam
which achieves the desired QoS requirements without requir-
ing feedback from the client. To the best of our knowledge,
this paper is the first one to employ discrete optimization
techniques for mitigating the effects of localization errors in
collaborative beamforming. In the proposed method, we first
fix the beamforming gain of each agent such that, for a given
subset of agents, the resulting beampattern maximizes the
expected SNR at the client. We then develop a sorting-based
greedy algorithm to choose a subset of agents that achieves an
SNR with minimum variance among the ones whose expected
SNR exceeds a desired threshold. We show that the greedy
algorithm globally minimizes the variance of the SNR at the
client when the agents’ localization errors are below a certain
threshold characterized in terms of the carrier frequency. In
numerical simulations, we illustrate that the greedy algorithm
synthesizes beamformers orders of magnitude faster than SDP-
based approaches and employs less number of agents to satisfy
the desired QoS requirements at the client.

II. SYSTEM MODEL

We consider a group of N agents each of which is equipped
with a single ideal isotropic antenna with a constant transmit
power P . The agents’ goal is to transmit a common message
signal m(t)∈R to a stationary client carrying a single antenna.
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A. Communication Channel

We assume that (i) the transmitted message m(t) propagates
in free space with no reflection or scattering, (ii) the client is
located in the far-field region, and (iii) there is no mutual
coupling between the agents’ antennas. We note that, in
addition to free space propagation, these assumptions may also
hold at longer wavelengths even when propagating through
a complex environment. As experimentally validated in [15],
significant signal penetration through obstacles is possible
at low-VHF frequencies. Moreover, in urban-type scenarios,
communication at low-VHF band yields improved penetration
and reduced multipath as experimentally validated in [16].

The communication between the agents and the client takes
place over a narrowband wireless channel which is represented
by a complex scalar gain hi:=aie

jηi where ai is the known
channel gain and ηi is the unknown channel phase due to
the relative positions of the agents and the client. Finally,
we assume that the local oscillators of all agents are time-
and frequency-synchronized. Frequency synchronization may
be achieved with a separate short-range radio protocol [17],
[18], and although we do not consider it further in this paper,
timing error may result in beamformer phasing error that could
be folded into our approach.

B. Collaborative Transmission Model

A subset S⊆[N ] of agents collectively form a distributed ar-
ray to transmit the message signal m(t) to the stationary client.
Each agent i∈S transmits the signal si(t):=

√
Pejδim(t)

where
√
P is the amplitude of the transmission, and δi is a

phase adjustment performed by the agent. Then, the signal
received by the client is

r(t|S) :=
√
P
∑
i∈S

aie
j(δi+ηi)m(t) + n(t) (1)

where n(t) is the additive white Gaussian noise. Assuming that
the local oscillators are time-synchronized, the phase offset ηi
of the signal m(t) at the location of the client relative to a
signal transmitted by an agent located at ~ri∈R3 (in Cartesian
coordinates) is [19]

ηi :=
2πfc
C
〈~ri, ~rc〉. (2)

In (2), ~rc∈R3 is the unit vector pointing in the known direction
of the client, fc is the carrier frequency, C is the speed of light,
and 〈·, ·〉 is the inner product of two vectors.

In this paper, we assume that the agents’ local positions
{~ri : i ∈ [N ]} are not exactly known. In particular, for a
given i∈[N ], we assume that ~ri∼N (µi,Σi) where µi∈R3 and
Σi∈R3×3 are, respectively, the known mean and the known
covariance of the Gaussian distribution. This assumption is
reasonable in practice because the first and second order
statistics of robotic pose estimates are typically easy to obtain,
e.g., using LIDAR scans. We also assume that ~ri and ~rj are
independent for i, j∈[N ] such that i 6=j.

For a given subset S⊆[N ] and phase adjustment parameters
δi for all i∈[N ], the array factor [3] is given by

F (S, δ) :=

∣∣∣∣∣∑
i∈S

ej(δi+ηi)

∣∣∣∣∣ (3)

where δ=[δi|i∈S] is the vector of phase adjustments. Under
the assumption that ai≈aj for all i, j∈[N ], the magnitude
of the array factor is proportional to the square root of the
SNR received by the client [8]. We note that, for free space
propagation, it holds that ai=aj for all i, j∈[N ] when the
distances between the agents and the client are equal to each
other. Let the total phase be Φi:=δi + ηi. The square of the
the array factor yields the beamforming gain G(S, δ) [3] that
is proportional to the received SNR and given by

G(S, δ) :=
∑
i∈S

∑
j∈S

cos
(

Φi − Φj

)
. (4)

The beamforming gain (4) is a fundamental quantifier of the
quality of a communication link, which we seek to optimize
as a function of the set of agents that transmit the message
signal.

III. PROBLEM STATEMENT

Since SNR is proportional to the beamforming gain (4),
when the relative phase offsets ηi are known, the agents
may form an optimal communication link with the client
by maximizing the beamforming gain, i.e., selecting a pair
(S?, δ?) such that

(S?, δ?) ∈ argmax
S⊆[N ],

δ∈[0,2π)N

G(S, δ). (5)

The beamforming gain can be maximized by choosing
S?=[N ] and setting δ?i =−ηi for all i∈S . To see this, recall
that the total phase Φi=δi + ηi, and note that

G(S, δ) =
∑
i∈S

∑
j∈S

cos
(

Φi − Φj

)
≤ N2. (6)

The upper bound in (6) is attained if and only if S=[N ] and
Φi=Φj for all i, j∈S , i.e., when the total phases are aligned.

In this paper, we focus on a scenario where the exact
value of the relative phase offsets ηi are not known due to
the agents’ localization errors. We are interested in finding a
subset of agents that, with high probability, forms a reliable
communication link with the client through beamforming. The
formal problem statement is as follows.
Problem 1: (Subset selection) For a constant Γ∈R, and the
fixed phase adjustment parameters δ=δ̃ where, for all i∈[N ],
δ̃i:=−E[ηi], find a subset S? such that

S? ∈ argmin
S⊆[N ]

Var
(
G(S, δ̃)

)
(7a)

subject to: E
[
G(S, δ̃)

]
≥ Γ. (7b)

Note that the vector δ=[δi|i∈S] of phase adjustment parame-
ters is not a design variable in the subset selection problem.
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The rationale behind the choice of δ is that for any given
subset S⊆[N ], E[G(S, δ)] is maximized by choosing δ=δ̃. We
also remark that each agent i∈[N ] needs only its own local
position information, i.e., distribution of ηi, to set δ=δ̃; hence,
each agent can individually adjust its beamforming phase.
Finally, since δ is not a variable in the considered problem,
for simplicity, we define G(S):=G(S, δ̃).
Remark: One can argue that, when G(S, δ) is a random
variable, a reasonable objective may be to maximize the
expected beamforming gain, i.e., selecting a pair (S, δ) such
that

(S, δ) ∈ argmax
S⊆[N ],

δ∈[0,2π)N

E
[
G(S, δ)

]
. (8)

It can be shown that E[G(S, δ)] is maximized by choosing
S=[N ] and δ=δ̃. Although including all the agents in the
beamforming maximizes the expected gain, due to the random
phase errors, this approach may actually decrease the proba-
bility that the beamforming gain exceeds a certain threshold,
which in turn reduces the reliability of the communication
link. In the subset selection problem, considering the variance
of the beamforming gain as a risk measure, we aim to find
a subset of agents that achieves a desired level of gain while
increasing the reliability of the link. Such a formulation is
widely used in risk-sensitive optimization models [20], [21].

IV. STATISTICAL PROPERTIES OF THE BEAMFORMING
GAIN

In this section, we derive the explicit forms of the ex-
pected value E[G(S)] and the variance Var(G(S)) of the
beamforming gain G(S). Recall that, in the subset selection
problem, we fix the phase adjustment parameters δi by setting
δi=−E[ηi]. Hence, we have Φi=ηi−E[ηi]. Recall also that
ηi=2πfc 〈~ri, ~rc〉/C and ~ri∼N (µi,Σi). Consequently, we
have Φi∼N (0, γi) where

γi :=
4π2f2c
C2

〈
~rc,Σi~rc

〉
. (9)

We refer to γi as the effective error variance in the localization
of the ith agent. Note that γi can be also interpreted as the
variance of the phase for a Gaussian distributed CSI.
Lemma 1: Let vi:=exp(−γi). The expected value and the
variance of the beamforming gain G(S) are, respectively,

E
[
G(S)

]
=|S|+

∑
i∈S

∑
j∈S
j 6=i

√
vivj , (10)

Var
(
G(S)

)
=
∑
i∈S

∑
j∈S
j 6=i

(
1− vivj

)2

+ 2
∑
i∈S

∑
j∈S
j 6=i

∑
k∈S
k 6=i
k 6=j

(
1− vi

)2√
vjvk. (11)

We provide a proof for the above result in [22, Lemma
1]. The proof exploits the equivalence E[exp(tX)]=exp(tµ−

σ2t2/2) where X∼N (µ, σ) and the independence of ~ri and
~rj for i 6=j to obtain the explicit forms.

V. AGENT SELECTION UNDER LOCALIZATION ERRORS

In this section, we propose a greedy algorithm to solve
the subset selection problem and provide sufficient conditions
for its optimality. We assume that the problem in (7a)-(7b)
has a feasible solution. For a given instance, the validity of
this assumption can be easily verified by checking whether
E[G([N ])]≥Γ due to the following result.
Proposition 1: For any S⊆S ′⊆[N ], we have
E[G(S)]≤E[G(S ′)].

The above result follows immediately from the fact that
E[G(S)] is a sum of nonnegative terms; hence, adding an
element to the subset can only increase the sum.

The greedy algorithm, shown in Algorithm 1, first sorts the
agents’ effective error variances γi, defined in (9), in ascending
order. Initializing the output set S to the empty set, it then
iteratively adds the agent with the next lowest effective error
to the output set until the constraint E[G(S)]≥Γ is satisfied.
The sorting operation can be performed in O(N log(N)) for
an array of length N [23].

Algorithm 1 Greedy subset selection

1: Input: γi for all i∈[N ], Γ∈R.
2: Sort γi such that γi1≤γi2≤. . .≤γiN .
3: S:=∅, k:=1
4: while E[G(S)]<Γ do
5: S:=S ∪ {ik}, k:=k + 1

6: return S .

We now present the main result of this paper, sufficient con-
ditions on the set {γi : i∈[N ]} for which the greedy algorithm
returns an optimal solution to the problem in (7a)-(7b). Let the
total effective error variance of a subset S⊆[N ] be measured
by the function V :2[N ]→R where V (S):=

∑
i∈S γi. Consider

the problem of choosing a subset S ′⊆[N ] that satisfies the
constraint in (7b) and has the minimum total effective error
variance, i.e.,

S ′ ∈ arg min
S⊆[N ]

V (S) (12a)

subject to: E
[
G(S)

]
≥ Γ. (12b)

The next result, together with Proposition 1, implies that the
greedy algorithm yields an optimal solution to the problem in
(12a)-(12b).
Proposition 2: For any K∈N such that K≤N , we have

arg min
S⊆[N ]:
|S|=K

V (S) = arg max
S⊆[N ]:
|S|=K

E
[
G(S)

]
.

The above result follows from the fact that the derivative
of the expected beamforming gain E[G(S)] with respect to
γi, where i∈S , is always negative. It can be shown that
the optimization problems in (7a)-(7b) and (12a)-(12b) are
not equivalent in general. Hence, including the agents with
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Fig. 1: Maximum localization error variance σ2
max allowed

for the optimality of the greedy algorithm as a function of the
carrier frequency fc. Note that the localization error tolerance
is relaxed at lower frequencies (longer wavelengths).

minimum total effective error variance in beamforming is, in
general, not optimal to solve the subset selection problem.
However, there are certain sufficient conditions, which are for-
malized below, under which such a strategy becomes optimal.
Theorem 1: For a given set {γi : i∈[N ]} of effective error
variances, let γi1≤γi2≤...≤γiN where ik∈[N ]. A solution to
the problem in (12a)-(12b) is also a solution to the problem
in (7a)-(7b) if either one of the following conditions hold:

(C1) E[G(S)]≥Γ where S={i1, i2},
(C2) γiN≤0.83.
We provide a proof for the above result in [22, Theorem 1].

The main idea in the proof is to show that the derivative of
Var(G(S)) with respect to maxi∈S γi is positive. Condition
(C1) follows from the fact that, when |S|≤2, the derivative
is always positive. Condition (C2) follows from the fact that,
when γiN≤0.83, the derivative is positive regardless of the
size of the set S . For such γiN , the subset with minimum total
effective error variance is the one that minimizes the variance
of the beamforming gain; hence, the problems in (12a)-(12b)
and (7a)-(7b) become equivalent when (C2) holds.

Theorem 1 states that if all the agents have “small” effective
error variances, then the greedy algorithm returns an optimal
solution to the subset selection problem. In particular, it fol-
lows from Theorem 1 that a sufficient condition for optimality
characterized by the carrier frequency is

max
i∈[N ]

〈
~rc,Σi~rc

〉
≤ 0.83C2

4π2f2c
.

For example, suppose that Σi=σ
2
i I3×3, where I3×3 is

the identity matrix, and let σ2
max:=maxi σ

2
i . Then, we have

σ2
max≤ 0.83C2

4π2f2
c

as the sufficient condition (C2). In Figure 1,
we graphically illustrate the trade-off between the carrier
frequency fc and the maximum variance σ2

max under which
the greedy algorithm is optimal. Note that as fc increases
(resulting in shorter wavelength), condition (C2) requires
smaller position error variance, whereas longer wavelengths
increase the error tolerance. For example, at lower VHF fre-
quencies, e.g., fc=40 MHz for which the effective wavelength
is λc=C/fc≈7.5 meters, the agents are allowed to have

localization error variance up to 1 square meter. Hence, for
this frequency range, the position error tolerance can easily
be achieved with existing localization algorithms [4], [24].

VI. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to demon-
strate the performance of the proposed greedy algorithm.
We generate 100 subset selection problem instances each of
which consists of N=50 agents. We set fc=40 MHz and
Σi=σ

2
i I3×3 for all i∈[N ], and generate the variances σ2

i

uniformly randomly from the interval σ2
i ∈[0, 0.8C2/(4π2f2c )]

so that the condition (C2) is satisfied.
We compare the performance of the beamformer syntesized

by the greedy algorithm with a beamformer w?∈CN where

w? ∈ arg min
w∈CN

‖w‖22 (13a)

subject to: E[wHHw] ≥ Γ (13b)

∀i ∈ [N ], |w(i)|2 ≤ 1. (13c)

The matrix H∈CN×N is H=hhH where
hH=[h1, h2, . . . , hN ], and w(i) is the ith element of
w. The constraint in (13c) ensures that w(i)=

√
Pejδi

for some P≤1. One can solve the problem in (13a)-(13c)
exactly by solving its corresponding semi-definite program
(SDP) [7], [14]. Note that the beamformer w? minimizes
the total power of the antenna array while ensuring that the
expected beamforming gain exceeds the desired threshold
Γ. Therefore, it represents a solution to a convex relaxation
of the problem minS⊆[N ]|S| subject to E[G(S)]≥Γ, which
is a risk-neutral version of the subset selection problem.
For given w?, we let the corresponding optimal subset be
S?={i∈[N ] : |w?(i)| > ε} where ε=10−2.

Figure 2 illustrates the performance comparison of the
beamformer synthesized by the greedy algorithm, i.e., greedy
beamformer, and the SDP-based beamformer w?. For both
beamformers, Figure 2 (left) shows the normalized variance
of the beamforming gain, i.e., Var(G(S?))/Var(G([N ])), ver-
sus the expected beamforming gain threshold Γ=kE[G([N ])]
where k∈[0, 1]. As can be seen from the figure, simple greedy
beamformer achieves a similar performance to the complex
SDP-based beamformer. Note that the variance of the SDP-
based beamformer is smaller than the variance of the greedy
beamformer for some values of Γ. We observe such a result
since the problem in (13a)-(13c) is a convex relaxation of
the subset selection problem. In general, a beamformer w?

may attain a variance value that is strictly smaller than
the optimal value of the subset selection problem. Figure 2
(middle) demonstrates the trade-off between the normalized
beamforming gain threshold Γ and the size of the optimal
subset S?. As can be seen from the figure, for k<1, the greedy
beamformer employs strict subsets of the agent group [N ]
where N=50, whereas the SDP-based beamformer includes
all the agents to the beamforming for all k>0. Hence, in a
sense, the greedy algorithm improves the capabilities of the
agent group since it allows the utilization of the agents that
are not part of beamforming for other purposes in general.
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Fig. 2: Performance comparison of the greedy beamformer with an SDP-based beamformer. For a given expected gain threshold
Γ, beamforming gains of both beamformers have similar variability (left). However, the greedy beamformer achieves its
performance by employing strict subsets of the agent group when possible (middle) and is synthesized orders of magnitude
faster than the SDP-based beamformer.

Finally, Figure 2 (right) demonstrates that one can synthesize
the greedy beamformer orders of magnitude faster than the
SDP-based beamformer.

VII. CONCLUSIONS

We considered a group of agents with localization errors that
aim to transmit a message signal to a client via beamforming.
To ensure the reliability of the communication link despite the
agents’ localization errors, we developed a greedy algorithm
that chooses only a subset of agents to transmit the signal. We
derived a bound on the maximum localization error variance
allowed for the optimality of the greedy algorithm and showed
that the bound becomes stricter as the carrier frequency
increases. We showed that for lower VHF frequencies, e.g.,
around 40 MHz, if the agents’ localization error variances
are less than 1 square meter, then the subset returned by
the greedy algorithm globally minimizes the variance of the
SNR received by the client. Future research will focus on
developing algorithms that either locally or globally minimizes
the variance of the SNR received by the client for all carrier
frequencies.
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