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ABSTRACT
With the explosion of intelligent and latency-sensitive applications
such as AR/VR, remote health and autonomous driving, mobile
edge computing (MEC) has emerged as a promising solution to
mitigate the high end-to-end latency of mobile cloud computing
(MCC). However, the edge servers have significantly less computing
capability compared to the resourceful central cloud. Therefore, a
collaborative cloud-edge-local offloading scheme is necessary to
accommodate both computationally intensive and latency-sensitive
mobile applications. The coexistence of central cloud, edge servers
and the mobile device (MD), forming a multi-tiered heterogeneous
architecture, makes the optimal application deployment very chal-
lenging especially for multi-component applications with compo-
nent dependencies. This paper addresses the problem of energy and
latency efficient application offloading in a collaborative cloud-edge-
local environment. We formulate a multi-objective mixed integer
linear program (MILP) with the goal of minimizing the system-
wide energy consumption and application end-to-end latency. An
approximation algorithm based on LP relaxation and rounding is
proposed to address the time complexity. We demonstrate that our
approach outperforms existing strategies in terms of application
request acceptance ratio, latency and system energy consumption.

CCS CONCEPTS
• Networks→ Network resources allocation; Cloud comput-
ing.
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Figure 1: An example of a multi-component application de-
ployment in a collaborative cloud-edge-local environment

1 INTRODUCTION
In recent years, mobile edge computing (MEC) has become a key
technology to realize latency-sensitive applications by pushing
different resources from remote cloud to network edge in close
proximity to mobile users, where data is generated. Prior to MEC,
mobile cloud computing (MCC), as an integration of cloud comput-
ing and mobile computing, empowered mobile devices with storage,
computing, and energy resources provided by the centralized cloud.
However, the capability of utilizing a vast amount of idle compu-
tation power and storage space distributed at the network edge
and the low-latency requirements of modern applications such as
autonomous driving, AR/VR, remote health, online gaming, etc.,
resulted in a shift in computing paradigm, namely MEC [11]. On
the other hand, MEC has significantly lower computing and storage
capacity compared to the centralized cloud and it easily becomes
overloaded. Therefore, it is usually not feasible to offload the compu-
tation load of all requested applications to the edge resources and a
collaborative cloud-local-edge architecture can potentially enhance
users’ quality of experience (QoE) [5, 6]. Although the problem of
application deployment in a two-tiered computing environment
(cloud-local or edge-local) has been extensively explored in the
literature, there exist less considerable works on the collaborative
cloud-edge-local domain. Moreover, a majority of research have
addressed offloading strategies for single tasks in the cloud or edge
computing systems [10, 17]. Considering the recent paradigm shift
in the application provisioning model from a monolithic service to
the microserives architecture, most of the existing solutions need to
be re-examined [16] to address the deployment of multi-component
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applications which consist of multiple components with arbitrary
component dependencies. An instance of such applications and
its deployment in a collaborative cloud-edge-local environment is
shown in Fig. 1. In this example, components {0, 1, 11}, {2, 4, 5, 6, 9}
and {3, 7, 8, 10} are executed locally, at edge server, and at the cen-
tral cloud respectively. In addition to the component assignment,
network resources should be provisioned for the transmission of
the data between two interacting components in multi-component
applications. For instance, network bandwidth across a path from
MD to the central cloud is reserved in the example of Fig. 1 to
accommodate the data communication between components 0 and
3. Hence a key technical contribution of this paper is proposing a
mathematical formulation for multi-component application deploy-
ment across a heterogeneous multi-tiered infrastructure.

Furthermore, the energy demand of the communications indus-
try is projected to increase from 200-300 𝑇𝑊ℎ in 2017 to 1200 or
even 3000 𝑇𝑊ℎ by 2025 [2] and the global network electricity bill
is growing rapidly by 10% each year. Today’s network devices are
often powered 24/7 for a high availability guarantee of network
services. While energy efficiency in cloud data centers and from
the MD perspective has been broadly explored, it is largely left
uninvestigated in multi-tiered computing environments due to the
complicated interactions between MDs, edge servers, and the cen-
tralized cloud [7]. In this work, we focus on answering the following
questions in a realistic online setting where arrival and service time
of applications are not known in advance:

• Which components of an application are computed locally,
offloaded to the edge or to the central cloud in order to
better utilize available computing, storage and networking
resources and achieve higher level of QoS?

• How the above decisions are optimized such that the total
compute and network energy consumption is minimized
under capacity constraints and MD energy budget?

We design a multi-objective MILP with the objective of minimizing
the total consumed energy and end-to-end latency. We also propose
an efficient approximation algorithm based on LP relaxation and
rounding (LPRR) to solve the problem in polynomial time. Our
proposed approach can be used for any multi-component applica-
tion with arbitrary component dependencies modeled as a directed
acyclic graph (DAG).

The paper is organized as follows. We provide an overview of
the related works in section 2. Section 3 describes system model,
problem formulation and the proposed solution. Performance eval-
uation is presented in section 4. We highlight our conclusions in
section 5.

2 RELATED WORKS
The related research on the MEC computation offloading can be di-
vided into two categories, full offloading and partial offloading. Full
offloading has been considered extensively in the literature such as
in [10]. Partial offloading which traditionally deals with partition-
ing the considered task into two subtasks, one running locally and
the other one remotely, has also been investigated in the existing
works such as [17]. Recently, authors in [3] consider partitioning
computation tasks into multiple subtasks each executed locally,
at the edge or central cloud and model the latency minimization

problem as a MILP with dual decomposition and matching-based
algorithms proposed to derive near-optimal solutions. However,
the the proposed solution is not applicable to general subtask de-
pendency. In the context of multi-component application which
potentially extends partial offloading to arbitrary decomposition
of applications, authors in [9] design an integer particle swarm
optimization-based algorithm followed by a heuristic for the de-
ployment of code-partitioned and MEC-enabled AR services. In [1],
the problem of multi-component application placement in MEC
systems is addressed considering the users mobility and network
capabilities. The computation offloading problem in a collaborative
environment has also been studied in the literature. Authors in
[15] study computation offloading in a fog computing network,
where the end users offload part of their tasks to a fog node and
the fog node further offloads the task to neighboring fog nodes or
a remote cloud server. An efficient collaborative task offloading
scheme is proposed in [6] in which the MEC server collaborate
with MDs and a remote cloud to provide better QoS. In contrast
to the existing works targeting single task offloading in collabo-
rative cloud-edge-local domains or multi-component application
deployment in edge-local or cloud-local systems, we study the prob-
lem of multi-component application deployment in a collaborative
multi-tiered environment.

3 SYSTEM MODEL AND PROBLEM
FORMULATION

In the sequel we first present the considered system model and then
formulate an optimization problem.

3.1 System Model
We assume a collaborative cloud-edge-local environment where
the components of a mobile application can be computed locally, in
the edge servers or in the central cloud. The proposed scheme is ap-
plicable to multi-component applications which according to [20],
can be classified into the following three major categories of data-
partitioned-oriented, code-partitioned-oriented, and continuous-
execution applications. From practical point of view, two settings
can be assumed: (i) offline scheme in which all application requests
are known in advance, and (ii) online scheme where the applica-
tions arrive and depart the system over time and the requests are
processed upon arrival [19]. We consider an online setting which is
more realistic and challenging. An edge cloud is defined as a pool of
virtualized computing resources, usually co-located with a cellular
base station (BS) or a WiFi access point. We consider a cellular
system where the edge servers are co-located with BSs and MDs
within the coverage of a BS communicate with the corresponding
BS (edge server). Moreover, edge servers are connected to a central
cloud via multi-hop paths. Let 𝑉𝑁 and 𝑉𝑀 = {0, ..., 𝑀} respectively
denote the set of backbone network devices and infrastructure com-
pute nodes, where the indices 0, {1, ..., 𝑀 − 1} and𝑀 stand for the
MD, the edge servers, and the central cloud respectively.

3.2 Definitions
Substrate Graph: We model the physical infrastructure as a directed
graph 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 ) where 𝑉𝑆 = 𝑉𝑀 ∪ 𝑉𝑁 and 𝐸𝑆 denotes the
substrate links. For each server 𝑢 ∈ 𝑉𝑀 , let 𝑓𝑢 and𝑊 𝑆𝑇𝑂

𝑢 denote its
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computation and residual storage capacity. Moreover, the data rate
(in bit/sec) of the link 𝑙 ∈ 𝐸𝑆 is represented by 𝑅𝑙 .
Application Graph: We model the mobile application as a DAG,
𝐺𝐴 = (𝑉𝐴, 𝐸𝐴), where the vertices in 𝑉𝐴 denote the application
components and an edge 𝑒 ∈ 𝐸𝐴 represents the data dependency
between two components. The required workload and storage of
the node 𝑖 ∈ 𝑉𝐴 and the data size (in bit) requirement of an edge 𝑒 ∈
𝐸𝐴 are denoted by 𝐷𝐶𝑃𝑈

𝑖
, 𝐷𝑆𝑇𝑂

𝑖
, 𝐷𝑒 , respectively. The application

deployment process is considered as mapping the application graph
𝐺𝐴 to the substrate graph 𝐺𝑆 and it consists of two mappings: (i)
node mapping which determines the assignment of the application
components to substrate nodes, and (ii) path mapping that entails
the assignment of the application edges to the substrate paths.

3.3 Computation Model
Let 𝑡𝑖𝑢 and 𝐸𝑖𝑢 denote the processing time and energy consumption
of component 𝑖 running on 𝑢 ∈ 𝑉𝑀 . Given the required workload
of procedure 𝑖 , 𝑡𝑖𝑢 is expressed as:

𝑡𝑖𝑢 =
𝐷𝐶𝑃𝑈
𝑖

𝑓𝑢
, 𝑢 ∈ {0, 1, ..., 𝑀 − 1} 𝑖 ∈ 𝑉𝐴 (1)

In addition to the CPU processing time, the queuing delay should
also be accounted for the substrate nodes with partially smaller
computation capacity. Therefore, a more holistic model addressing
the queuing delay is be stated as:

𝑡
𝑖,𝑘
𝑢 =

∑︁
𝑗≤𝑘

𝐷𝐶𝑃𝑈
𝑗,𝑘

𝑓𝑢
, 𝑢 ∈ {1, ..., 𝑀 − 1} 𝑖 ∈ 𝑉𝐴 (2)

where 𝑘 stands for the processing order (based on FCFS) for applica-
tion graphs components. For a component offloaded to the central
cloud, the processing time can be ignored since the computation
power of the cloud data center is relatively big compared to the local
or edge servers, i.e 𝑓0 << 𝑓𝑢 << 𝑓𝑀 , 𝑢 ∈ {1, ..., 𝑀 − 1}. Following
the model in [13], the energy consumption corresponding to the
component 𝑖 running on the substrate node 𝑢 is expressed as:

𝐸𝑖𝑢 = 𝜅𝐷𝐶𝑃𝑈
𝑖 𝑓 2𝑢 𝑡

𝑖
𝑢 (3)

where 𝜅𝑓 2𝑢 𝑡𝑖𝑢 is the energy consumption per CPU cycle and 𝜅 is a
constant arising from the hardware architecture.

3.4 Communication Model
In this section, we introduce the communication model. Let 𝑡𝑒

𝑙
denote the transmission latency corresponding to mapping 𝑒 ∈ 𝐸𝐴
to the substrate link 𝑙 ∈ 𝐸𝑆 , expressed as:

𝑡𝑒
𝑙
=
𝐷𝑒

𝑅𝑙
, ∀𝑒 ∈ 𝐸𝐴, 𝑙 ∈ 𝐸𝑆 (4)

We assume that frequency division duplex (FDD) is used as the
transmissionmode and𝑊𝐷 and𝑊𝑈 denote the uplink and downlink
channel bandwidths respectively. Hence according to the Shannon
formula, the achievable data rate of the uplink/downlink (U/D)
wireless links can be expressed as:

𝑅
𝐷/𝑈
𝑙

=𝑊𝐷/𝑈 𝑙𝑜𝑔2 (1 +
𝑃𝑇𝑋
𝑠 (𝑙)𝑑

−𝜈 |ℎ𝐷/𝑈 |2

𝑁0
) (5)

where 𝑃𝑇𝑋
𝑠 (𝑙) is the transmission power of the transmitter of link 𝑙 ,

and the uplink and downlink channels are assumed to be frequency-
flat block-fading Rayleigh channels with a block length larger than
the maximum latency requirement of the application. Throughout
the paper, we refer to the transmitter and receiver of the link 𝑙 as
𝑠 (𝑙), 𝑑 (𝑙). The pathloss between MDs and BSs is modeled as 𝑑−𝜈
where 𝑑 and 𝜈 are the corresponding distance and the pathloss ex-
ponent respectively. Furthermore, the uplink and downlink channel
fading coefficients are denoted by ℎ𝑈 and ℎ𝐷 modeled as circularly
symmetric complex gaussian random variables.

Let P𝑆 denote the set of 𝐾-shortest paths between any pair of
nodes𝑢, 𝑣 ∈ 𝑉𝑀 , 𝑢 ≠ 𝑣 , i.e.P𝑆 contains all𝐾-shortest paths between
MD and edge servers, MD and central cloud, and edge servers and
central cloud.We also represent the total energy consumption corre-
sponding to mapping the edge 𝑒 ∈ 𝐸𝐴 to the substrate path 𝑝𝑠 ∈ P𝑆

as 𝐸𝑒𝑝𝑠 . 𝐸
𝑒
𝑝𝑠

comprises of the energy consumption for application
components processing and data transmission between two compo-
nents. Assuming that 𝑃𝑙 = 𝑃𝑇𝑋𝑠 (𝑙) +𝑃

𝑅𝑋
𝑑 (𝑙) is the total consumed power

of link 𝑙 ’s transmitter and receiver, 𝐸𝑒𝑝𝑠 is computed as follows:

𝐸𝑒𝑝𝑠 =
∑︁
𝑙 ∈𝑝𝑠

𝑃𝑙 𝑡
𝑒
𝑙
+

∑︁
𝑢∈𝑝𝑠

𝑃𝑜𝑛 𝑓 (𝑢) (6)

where 𝑓 (𝑢) is an indicator function representing the required power
𝑃𝑜𝑛 to turn on a network node that has been idle. Thus,

𝑓 (𝑢) =
{
0 𝑢 ∈ 𝑉𝑆 is active
1 𝑢 ∈ 𝑉𝑆 is idle

}
(7)

3.5 Optimization Problem
In this section, we present the problem formulation. Given 𝐺𝐴 ,𝐺𝑆

and P𝑆 , we define the following decision variables for the problem
formulation:

• A set of binary decision variables 𝒙 , where 𝑥𝑖𝑢 equals 1 if
the application node 𝑖 ∈ 𝑉𝐴 is mapped to the substrate node
𝑢 ∈ 𝑉𝑀 .

• A set of binary decision variables 𝒚, where 𝑦𝑒𝑝𝑠 is 1 if the
application edge 𝑒 ∈ 𝐸𝐴 is mapped to the substrate path
𝑝𝑠 ∈ P𝑆 .

The system total consumed energy is computed as:

𝐸 (𝒙,𝒚) =
∑︁
𝑖∈𝑉𝐴

∑︁
𝑢∈𝑉𝑀

𝐸𝑖𝑢𝑥
𝑖
𝑢 +

∑︁
𝑒∈𝐸𝐴

∑︁
𝑝𝑠 ∈P𝑆

𝐸𝑒𝑝𝑠𝑦
𝑒
𝑝𝑠

(8)

Let P𝐴 denote the set of all directed paths in𝐺𝐴 and 𝑝𝐴 ∈ P𝐴 . The
overall latency of 𝑝𝐴 denoted by 𝐿𝑝𝐴 (𝒙,𝒚) equals the summation of
its nodes (components) processing times and the data transmission
delay of its edges, i.e.:

𝐿𝑝𝐴 (𝒙,𝒚) =
∑︁
𝑒∈𝑝𝐴

(
∑︁

𝑝𝑠 ∈P𝑆

𝑡𝑒𝑝𝑠𝑦
𝑒
𝑝𝑠
) +

∑︁
𝑖∈𝑝𝐴

(
∑︁

𝑢∈𝑉𝑀

𝑡𝑖𝑢𝑥
𝑖
𝑢 ) (9)

where 𝑡𝑒𝑝𝑠 =
∑
𝑙 ∈𝑝𝑠 𝑡

𝑒
𝑙
+ 𝑡𝑝𝑟𝑜𝑝

𝑙
is the overall latency of mapping

the edge 𝑒 ∈ 𝐸𝐴 to the substrate path 𝑝𝑠 ∈ P𝑆 , and 𝑡
𝑝𝑟𝑜𝑝

𝑙
is the

propagation delay of link 𝑙 ∈ 𝐸𝑆 . Given P𝐴 , we define the critical
path to be the path inducing the maximum latency among all paths
of the application. It is important to note that since the latency
incurred by an application component or edge is a function of
the available resources of the selected substrate node and path for
mapping, it is not trivial to determine the critical path in advance.
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Therefore, the overall latency of an application (the latency of its
critical path) is given as:

𝐿(𝒙,𝒚) =𝑚𝑎𝑥𝑝𝐴∈P𝐴
𝐿𝑝𝐴 (𝒙,𝒚) (10)

The constraints defining the feasible region of our optimization
problem are defined below. Startingwith themapping constraints,
we have: ∑︁

𝑢∈𝑉𝑀

𝑥𝑖𝑢 = 1, ∀𝑖 ∈ 𝑉𝐴 (11)

𝑥10 = 1, 𝑥
|𝑉𝐴 |
0 = 1 (12)

∑︁
𝑣∈𝑉𝑀

𝑝𝑠 (𝑢→𝑣)∈P𝑆

𝑦
𝑒 (𝑖→𝑗 )
𝑝𝑠 (𝑢→𝑣) − 𝑦

𝑒 (𝑖→𝑗 )
𝑝𝑠 (𝑣→𝑢) = 𝑥𝑖𝑢 − 𝑥

𝑗
𝑢 ∀𝑒 ∈ 𝐸𝐴,𝑢 ∈ 𝑉𝑀 (13)

Constraints (11) ensure that each application node is assigned
to one substrate server. In (12), we enforce that the first and last
components are computed locally. Constraints (13) guarantee the
assignment of paths to the application edges for data communica-
tion between interacting components which are mapped to two
different substrate nodes. TheMD energy budget constraint is
defined as follows:∑︁

𝑖∈𝑉𝐴
𝐸𝑖0𝑥

𝑖
0 +

∑︁
𝑣∈𝑉𝑀

∑︁
𝑒∈𝐸𝐴

𝑃𝑇𝑋0 𝑡𝑒
𝑙
𝑦
𝑒 (𝑖→𝑗)
𝑝𝑠 (0→𝑣)+∑︁

𝑣∈𝑉𝑀

∑︁
𝑒∈𝐸𝐴

𝑃𝑅𝑋0 𝑡𝑒𝑝𝑠𝑦
𝑒 ( 𝑗→𝑖)
𝑝 (𝑣→0) ≤ 𝑅𝐸0 (14)

where 𝑅𝐸0 is the MD’s residual energy. The capacity constrains
are given below:∑︁

𝑖∈𝑉𝐴
𝐷𝑆𝑇𝑂
𝑖 𝑥𝑖𝑢 ≤𝑊 𝑆𝑇𝑂

𝑢 , ∀𝑢 ∈ 𝑉𝑀 (15)

Finally, the domain constrains are given as:

𝑥𝑖𝑢 , 𝑦
𝑒
𝑝𝑠

∈ {0, 1}, ∀𝑖 ∈ 𝑉𝐴, 𝑒 ∈ 𝐸𝐴, 𝑢 ∈ 𝑉𝑀 , 𝑝𝑠 ∈ P𝑆 (16)

The objective is to minimize the weighted summation of the total
consumed energy and application end-to-end latency. The problem
formulation is as follows:

[𝑃] minimize𝒙,𝒚 𝜆
𝐸 (𝒙,𝒚)
𝐸0

+ (1 − 𝜆) 𝐿(𝒙,𝒚)
𝐿0

(17)

s.t. (11) − (16)

where 𝐸0 and 𝐿0 are the total consumed energy and application
latency when all application components are executed locally and
are used to balance the two objective terms. 𝜆 is a non-negative
constant that determines the tradeoff between energy and latency.
In order to linearize (17), we use an auxiliary continuous variable
𝑧. It is straightforward to observe that [𝑃] is equivalent to the
following MILP:

[𝑃 ′] minimize𝒙,𝒚 𝜆
𝐸 (𝒙,𝒚)
𝐸0

+ (1 − 𝜆) 𝑧
𝐿0

(18)

s.t.
𝐿𝑝𝐴 (𝒙,𝒚) ≤ 𝑧,∀𝑝𝐴 ∈ P𝐴 (19)
(11) − (16)

Table 1: Default Simulation Parameters

parameter value
MD uplink/downlink BW 10𝑀𝐻𝑧

MD uplink/downlink power 50, 60𝑑𝐵𝑚
𝑁0, 𝜈 , 𝜅, 𝐾 −147𝑑𝐵𝑚/𝐻𝑧, 2, 10−11, 2

𝑓0, edge server 𝑓𝑢 1 × 109,𝑈 (5, 10) × 109𝑐𝑦𝑐𝑙𝑒𝑠/𝑠
𝑊 𝑆𝑇𝑂

0 ,𝑊 𝑆𝑇𝑂
𝑢 U(20, 40), U(1, 2) × 104

𝑅𝑙 10𝑀𝑏𝑝𝑠 for wired links

3.6 Proposed Solution
Since the MILP model is known to be NP-hard, we propose an ap-
proximation algorithm, namely LPRR, to efficiently solve [𝑃 ′] for
large networks, whereby the optimal fractional mapping solutions
for 𝒙,𝒚 are obtained from the LP relaxation. Then we adopt a round-
ing algorithm proposed in [4], and [18] to find integer solutions of
𝒙 . The integer solutions of 𝒚 are obtained automatically from the
last solved LP.

4 PERFORMANCE EVALUATION
In this section, we first describe the simulation environment and
then proceed with evaluation results. We implemented our simula-
tions in Java, using IBM ILOG CPLEX commercial solver to solve
the MILP model with branch-and-bound method. Our tests are car-
ried out on a server with an Intel i5 CPU at 2.3 GHz and 8 GB of
memory. We evaluate the performance of our collaborative cloud-
edge-local (CEL) deployment approach on Digex network topology
available at the Topology Zoo [8]. A cloud data center is assumed to
be located at San Francisco and edge servers are connected to BSs
at Philadelphia, Boston, Miami and Charlotte. We adopt an imple-
mentation of Yen’s algorithm presented in [14] for K-shortest path
generation. 100 MDs are randomly distributed in a 1000𝑚 × 1000𝑚
region around each BS where the BS is located at the center of
the square region. The application requests arrive according to a
Poisson process with an average rate of 3 requests per 100 time
units. The lifetime of requests has exponential distribution with
an average of 1000 time units. Remaining simulation parameters
are given in Table I. We run the simulation for 200 applications
requested by randomly MDs. The number of application compo-
nents is uniformly distributed in [4, 10]. The dependency type of
the application requested by each MD is randomly selected from
(i) sequential, (ii) parallel, and (iii) layer-by-layer structures given
in [12]. 𝐷𝐶𝑃𝑈

𝑖
and 𝐷𝑆𝑇𝑂

𝑖
for the first and last components have

distributionsU(0.01, 0.03) × 109 cycles/s andU(1, 10) respectively.
For the rest of the components, the values for CPU and storage are
sampled according to U(0.1, 0.5) × 109 and U(10, 30). Moreover,
𝐷𝑒 ∼ U(50 − 100)𝐾𝑏. The performance of the proposed optimal
CEL solution (CEL-CPLEX) and its approximation (CEL-LPRR) is
compared with the following schemes and their approximations:

• Edge-local execution (EL): only edge servers are considered
for offloading.

• Cloud-local execution (CL): only the central cloud is consid-
ered for offloading.

Fig. 2 illustrates the acceptance ratio for CEL-CPLEX, CEL-LPRR,
EL-LPRR and CL-LPRR. It is observed that the proposed CEL scheme
outperforms the EL and CL strategies significantly, as it admits up
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Figure 2: Applications
acceptance ratio

Figure 3: Objective value
of [𝑃 ′]

Figure 4: Average application
latency

Figure 5: Average total
energy

to 23% and 29%more requests than EL-LPRR and CL-LPRR solutions
respectively. Moreover, the maximum deviation of CEL-LPRR from
CEL-CPLEX is 1.3%. Fig. 3 depicts the box plots corresponding to the
objective function values for CEL-CPLEX, EL-CPLEX, CL-CPLEX
and their LPRR solutions for the set of accepted requests in each case.
It is observed that CEL results in lower objective values compared
to EL and CL approaches as expected. Moreover, CEL-LPRR is able
to generate near-optimal solutions. It is important to note that CL-
LPRR and EL-LPRR schemes have lower average objective values
(denoted by green triangles) than CL-CPLEX and EL-CPLEX respec-
tively, since the optimal solutions found by CPLEX solver admits
more requests than LPRR algorithm resulting in higher cost (energy
and latency) per request. In Fig. 4 and 5, the average overall latency
and total energy consumption of CEL is benchmarked against EL
and CL solutions. It is observed that the proposed CEL scheme has
lower average latency and energy consumption. The four figures
together prove the efficiency of the CEL-LPRR approach.

5 CONCLUSION
In this paper, we investigated the optimal computation offloading
for multi-component applications in the collaborative cloud-edge-
local systems. Our proposed scheme aims at minimizing the total
consumed energy and the application end-to-end latency and is ap-
plicable to multi-component applications with arbitrary component
dependencies. We formulated the problem as a MILP and applied
the LP relaxation and rounding technique to generate near-optimal
solutions. The simulation results show the superior performance
of our proposed solution in terms of acceptance ratio, consumed
energy and end-to-end latency compared to two edge-local and
central-local offloading baselines.
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