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Abstract— Throughout the past decades, many different ver-
sions of the widely used first-order Cell-Transmission Model
(CTM) have been proposed for optimal traffic control. Highway
traffic management techniques such as Ramp Metering (RM)
are typically designed based on an optimization problem with
nonlinear constraints originating in the flow-density relation of
the Fundamental Diagram (FD). Most of the extended CTM
versions are based on the trapezoidal approximation of the
flow-density relation of the Fundamental Diagram (FD) in an
attempt to simplify the optimization problem. However, this
relation is naturally nonlinear, and crude approximations can
greatly impact the efficiency of the optimization solution. In
this study, we propose a class of extended CTMs that are
based on piecewise affine approximations of the flow-density
relation such that (a) the integrated squared error with respect
to the true relation is greatly reduced in comparison to the
trapezoidal approximation, and (b) the optimization problem
remains tractable for real-time application of ramp metering
optimal controllers. A two-step identification method is used to
approximate the FD with piecewise affine functions resulting
in what we refer to as PWA-CTMs. The proposed models are
evaluated by the performance of the optimal ramp metering
controllers, e.g. using the widely used PI-ALINEA approach, in
complex highway traffic networks. Simulation results show that
the optimization problems based on the PWA-CTMs require less
computation time compared to other CTM extensions while
achieving higher accuracy of the flow and density evolution.
Hence, the proposed PWA-CTMs constitute one of the best
approximation approaches for first-order traffic flow models
that can be used in more general and challenging modeling
and control applications.

I. INTRODUCTION

Optimal traffic control has been extensively studied since
the beginning of the twentieth century, and is still a topic of
ongoing research. Towards this direction, numerous traffic
flow models have been developed and used to understand,
describe, and predict traffic flow in different real-life scenar-
ios, ranging from bi-directional roads to multi-lane highways
with on-ramps [1], [2], [3].

Traffic flow models constitute dynamical models that
can be classified as micro-, meso- or macroscopic models,
depending on whether the model distinguishes the behavior
of each individual vehicle or makes use of mean-field limit
metrics [4]. In particular, the main advantage of macroscopic
traffic models over microscopic models is the significantly
lower computational costs due to lower complexity [5].
These models are typically described by the traffic density
(average number of vehicles per unit length of road) and flow
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Fig. 1: The original (non-linear) Fundamental Diagram (FD)
[11] (left) and its trapezoidal approximation [12] (right).

(average number of vehicles per time unit) and can be further
categorized with respect to the underlying model dynamics
into first order or second order models. The most frequently
used macroscopic traffic flow models are first order models,
such as the Lighthill-Whitham-Richards (LWR) model [6],
which is a continuous model, and the Cell-Transmission
Model (CTM) [7] which is a discretized version of the
LWR model. The simplicity and computational benefits of
the CTM has given rise to many CTM extensions, each one
proposed based on different criteria and the specific needs
of different applications. A review of the different CTM
extensions and versions proposed over the years can be found
in [8]. In [9], two of the mostly used CTM versions, namely
the linear relaxation of CTM [10] and the extended CTM
[8] are thoroughly evaluated. Throughout the manuscript, we
will refer to these models as the Relaxed and the Extended
CTM versions, respectively.

Many highway traffic management techniques, such as
autonomous traffic signal control (Ramp Metering) [1], [2],
are formulated as optimization problems with constraints
originating in this flow-density relation of the fundamental
diagram. However, in order to reduce the complexity of such
methods, most of the CTM versions are based on triangular
[13] or trapezoidal approximation [12] of the flow-density
relation of the fundamental diagram. The trapezoidal FD
is more commonly used in the literature and is shown in
Fig. 1. Due to the fact that the flow-density relation is
naturally a nonlinear relation (Fig. 1), crude approxima-
tions of the fundamental diagram can greatly impact the
efficiency of the optimization solution, and, as a result,
the performance of the traffic control methodology. On the
other hand, control algorithms that take into account the
original non-linear FD, are computationally expensive and
typically not suited for real-time application. In [9], it was
shown that optimization problems based on the Relaxed
CTM did indeed have computational advantages, while finite
horizon optimal control problems (FHOCPs) based on the
more complicated Extended CTM model showed better traffic
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control performance but reduced computational efficiency.
In other words, there exists a trade-off between performance
and complexity for the CTM-based traffic control algorithms,
which has its roots on the approximation accuracy of the
fundamental diagram.

In this work, we propose a class of extended CTMs that
are based on piecewise affine approximations of the flow-
density relation of the fundamental diagram (FD) such that:
(i) the integrated squared error with respect to the true rela-

tion is greatly reduced in comparison to the trapezoidal
approximation, and

(ii) the optimization problem remains tractable for real-time
application of ramp metering optimal controllers.

A two-step identification method is used to approximate
the FD with piecewise affine functions resulting in new
extensions of the CTM that we will refer to as PWA-CTM
traffic flow models. The proposed models are evaluated in
the framework of finite horizon optimal control problems
using ramp metering controllers, e.g. the widely used PI-
ALINEA approach, in complex highway traffic networks.
Hence, the proposed PWA-CTM models constitute one of
the best approximation approaches for first-order traffic flow
models that can be used in any finite horizon optimal
control problem to enhance its performance regarding the
computational time and the convergence to the equilibrium
state.

The paper is organized as follows: The CTM traffic flow
model, different flow-density relations of the FD, and the
ramp metering control scheme used in this study are briefly
defined in Section II. In Section III, a two-step piecewise
affine identification of nonlinear systems is described and
applied to the nonlinear flow-density relation of the FD to
find its PWA approximation. Also, the new CTM extensions
based on this approximation of the FD are proposed in
this section. The formulation of the FHOCPs are explained
in Section IV and in Section V the simulation results are
reported and analysed in detail. Finally, some conclusive
remarks are drawn in Section VI.

II. PRELIMINARIES

In this section, we briefly introduce the Cell-Transmission
Model (CTM), illustrate the importance of the fundamen-
tal relation between flow and density that constitutes the
Fundamental Diagram (FD), and define a broadly used
Ramp Metering (RM) control method to be used in our
experiments.

A. The CTM model

The Cell Transmission Model (CTM) is a popular nu-
merical method originally proposed by Carlos Daganzo [7],
[13] to solve the kinematic wave equation. CTM models
can be used to predict the macroscopic traffic behavior on
a given road lane, by evaluating the traffic flow ϕi and
density ρi at a finite number of intermediate points that
result from dividing the lane into homogeneous sections
i ∈ [1, 2, . . . , N ] (hereafter called cells), as shown in Fig.
2. All notations used in this work, including all the model

Fig. 2: Sketch of a freeway stretch in the CTM [8].

variables and parameters, are explained in table I and the
schematic of Fig. 2. Detailed explanation about the notation
can be found in [8] and [9].

Initial and boundary conditions are appropriately defined
to iteratively evaluate the values of the quantities at each
cell. The flow across the cells is determined based on ϕi

and ρi, which are the two monotonic functions that uniquely
define the fundamental diagram (FD) as shown in Fig. 1.
The update equations are given by:

ρi(k + 1) = ρi(k) +
T

L
(Φ+

i (k)− Φ−
i (k)) (1)

Φ+
i (k) = ϕi(k) + ri(k) (2)

Φ−
i (k) = ϕi+1(k) + si(k) (3)

si(k) =
βi(k)

1− βi(k)
ϕi+1(k) (4)

li(k + 1) = li(k) + T (di(k)− ri(k)) (5)

For uncontrolled on-ramps:

ri(k) = di(k), 0 ≤ ri(k) (6)

and, for controlled on-ramps:

ri(k) ≤ li(k) + di(k), 0 ≤ ri(k) ≤ rC,max
i (7)

The boundary conditions are given by:

0 ≤ ρi(k) ≤ ρmax
i (k) (8)

0 ≤ ϕi(k) ≤ qmax
i (k) (9)

0 ≤ li(k) ≤ lmax
i (10)

The flow variable ϕi = f(ρi) is given by the fundamental
diagram (FD) which will be described in the next section.
For a detailed overview of the model, the readers are referred
to [8].

B. Fundamental Diagram and the Trapezoidal Approxima-
tion

A key feature of the CTM is the assumption that there is
some fundamental relation between the density and the flow
variables, i.e.,

ϕi = f(ρi) (11)

This relation is known as the Fundamental Diagram (FD).
Three families of this functional form have been proposed
throughout the past decades: 1) Linear forms first proposed
by Greenshields [14], 2) Nonlinear forms using logarithmic
[15] or exponential form [11], [16], and 3) Multi-regime
forms which use rather simple functional forms, e.g. linear or
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TABLE I: Model Variables and Parameters

Symbol Description/Unit (Range)
N Number of cells / int
i Cell index / i = {1, ..., N}
T Sampling period / (h)
K Time Horizon / int
k Time index / k = {0, ...,K − 1}
Li Length of each cell / (km)
vfi Free-flow speed of cell i / (km/h)
wi Congestion wave speed / (km/h)
ai A parameter to be estimated from empirical data
qmax
i Cell capacity / (veh/h)
λi Lane numbers / int
ρi(k) Traffic density / (veh/km)
ρcri Critical density / (veh/km)
ρmax
i Jam density / (veh/km)

ϕi(k) Mainstream flow / (veh/h)
Φ+

i (k) Total flow entering cell i / (veh/h)
Φ−

i (k) Total flow exiting cell i/ (veh/h)
li(k) Queue length in the on-ramp /(veh)
lmax
i Maximum on-ramp queue length / (veh)
ri(k) Flow entering mainline from the on-ramp / (veh/h)
rCi (k) Ramp metering control variable / (veh/h)
rC,max
i Maximum metering rate / (veh/h)
r∗i Ramp metering set point / (veh/h)
di(k) Demand flow accessing the on-ramp / (veh/h)
si(k) Flow exiting mainline through the off-ramp / (veh/h)
βi(k) Split ratio / ∈ [0, 1]
KR Integral regulator gain
KP Proportional regulator gain

quadratic functions, for intervals of density [17], [18]. The
interested reader can find a precise review of FDs in [12]
and [19]. Equation (12) reads the exponential flow-density
relation (Fig. 1).

ϕi(k) = ρi(k) ∗ vfi exp[− 1

ai
(
ρi(k)

ρcri
)ai ]; (12)

In some models, a different steady-state relation is considered
for each cell i. The trapezoidal FD (Fig. 1) belongs to the
third family of FD models and is described by eq. (13).

ϕi(k) = min{vfi−1(ρi−1(k) + ri−1(k)), q
max
i−1 ,

wi(ρ
max
i − ρi(k)− ri(k))}

(13)

In this study, the goal is to find a linear approximation of
the FD which would have closer behavior to the nonlinear
relation (12) but would make the constraints of optimization-
based problems linear as the trapezoidal approximation (13)
does.

C. Ramp Metering Control

Ramp metering (RM) is achieved by placing traffic signals
at on-ramps to control the flow rate at which vehicles enter
the freeway. The ramp metering controller computes the
metering rate to be applied. PI-ALINEA is a feedback local
ramp metering strategy proposed by [20] and it is indeed
a proportional-integral feedback control algorithm, in which
the metering rate is given by

rCi (k) = rCi (k−1)+KR[ρ
∗
i −ρi(k)]−KP [ρi(k)−ρi(k−1)]

(14)
where the flow that can enter section i of a freeway from
the on-ramp of cell i during time interval [kT, (k + 1)T )

is represented by rCi (k). In case the main objective of the
traffic controller is to reduce congestion and to maximize the
throughput (see Section IV), a good choice for the set-point
is ρ∗i = ρcri .

III. TWO-STEP PIECE-WISE AFFINE IDENTIFICATION OF
NONLINEAR SYSTEMS

In this section we consider a nonlinear function f : Ω −→
R, Ω ⊆ R, and describe a two-step optimization-based
approach to find a piece-wise affine (PWA) function:

f̃ =
M∑
i=1

1[x∈Ri](aix+ ci) (15)

such that the approximation error e = ∥f−f̃∥2 is minimized.
Here, the regions {Ri}Mi=1 define a partition of Ω, 1[·]
represents the indicator function, and ∥f∥2 =

∫
Ω
|f(x)|2dx

denotes the L2 norm. The optimal parameters {ai}Mi=1,
{ci}Mi=1, and {Ri}Mi=1, are the output of the optimization
process that minimize the approximation error e.

Following the two-step identification process described in
[21], we split the search for the PWA function f̃ into two
steps. In the first stage we will approximate the function f
with an analytic function f̂ : Ω −→ R of known form and
lower complexity, by minimizing the error ê = ∥f − f̂∥2.
In the second step, an optimization-based procedure will be
applied to derive an optimal PWA approximation f̃ such
that the approximation error ẽ = ∥f̂ − f̃∥2 is minimized.
Assuming that Ω = [k, k̄], the partition {Ri}Mi=1 of M non-
overlapping parts is described by the regions R1 = [k, r1],
R2 = [r1, r2], . . ., RM = [rM−1, k̄], with

⋃
i Ri = [k, k̄].

Then, the problem reduces to finding the slopes ai ∈ R,
offsets ci ∈ R and breakpoints ri ∈ R such that the
approximation error ẽ is minimized, i.e.

min
{ai,ci,ri}

M∑
i=1

(∫ ri

ri−1

(f(x)− (aix+ ci))
2dx

)
(16)

s.t.
k ≤ r1 ≤ . . . ≤ rM−1 ≤ k̄ (17)

airi + ci = ai+1ri+1 + ci+1, i = 1, . . . ,M − 1 (18)

To implement the first step, the exponential flow-density
function ϕi = f(ρi) is approximated by a polynomial
function of different degrees n ∈ {3, . . . , 6}. Considering the
trade-off between the complexity of the resulting polynomi-
als and the mean squared error (MSE) of the approximation,
the optimal polynomial degree was chosen as n = 5 for this
step. For reproducibility and future reference, we provide
the coefficients of the polynomial approximation in eq. (19)
below:

ϕi(k) = f̂p5(ρi(k)) =
∑5

j=0 cjρi(k)
j (19)

where {cj}5j=0 = {373.77, 1249.24, 1110.26, 95.83, 436.69,
118.43}. The approximation function f̂ is compared against
the flow-density relation f in Fig. 3, as well, where we
have set Ω = [0, 180].

For the second step, the optimization problem in (16),
(17), (18) was solved, and the optimal, in terms of MSE,
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Fig. 3: 5th-degree polynomial approximation of the FD.

number of pieces M ∈ {5, 6, 7} was chosen. The MSE of the
approximations of the flow-density function are provided in
table II. Interestingly, in this problem, increasing the number
of pieces does not necessarily translate to a similar decrease
in the MSE (see table II). The approximation with M = 6
pieces showed higher MSE. As a result, for this phase,
the approximations with M = 5 and M = 7 pieces will
be considered in the experimental section that follows to
develop new CTMs. Figure 4 shows the comparison between
these PWA functions and the true fundamental diagram.
Also, for reproducibility, the coefficients {ai}Mi=1, {ci}Mi=1,
and {ri}M−1

i=1 of the functions ϕi = f̃5(ρi), and ϕi = f̃7(ρi)
are provided in equations (20) and (21), respectively.

Remark 1: We note that PWA functions with M > 7
number of pieces were also investigated but are omitted since
the marginal benefit in the performance (resulting MSE) is
insignificant compared to the increase in the complexity of
the method (and, therefore, the computation time).

TABLE II: MSE of different PWA approximations.

Piece Number MSE
M=5 6433.14
M=6 7007.30
M=7 4375.17

f̃5(ρi) =



85.00 ∗ ρi, 0 ≤ ρi ≤ 23.00

19.78 ∗ ρi + 1499.98, 23.00 ≤ ρi ≤ 35.45

−36.66 ∗ ρi + 3501.06, 35.45 ≤ ρi ≤ 87.12

−13.12 ∗ ρi + 1450.00, 87.12 ≤ ρi ≤ 110.50

0, otherwise
(20)

f̃7(ρi) =



84.99 ∗ ρi, 0 ≤ ρi ≤ 23.00

19.99 ∗ ρi + 1490.00, 23.00 ≤ ρi ≤ 35.00

−20.00 ∗ ρi + 2890.00, 35.00 ≤ ρi ≤ 45.00

−37.99 ∗ ρi + 3700.00, 45.00 ≤ ρi ≤ 93.57

−13.90 ∗ ρi + 1450.00, 93.57 ≤ ρi ≤ 100.00

−2.40 ∗ ρi + 300.00, 100.00 ≤ ρi ≤ 124.00

0, otherwise
(21)

Fig. 4: 5- and 7-Piece PWA approximation of the FD.

Remark 2: In the first step, the exponential flow-density
function ϕi(k) can be approximated by any smooth regres-
sion function, e.g. a polynomial function or a feed-forward
neural network. It is important to note that this step can be
implemented as a data-based optimization algorithm, where
actual traffic flow data are used to estimate the optimal
fundamental diagram for the road and application at hand.
This leads to learning-based traffic control approaches, which
lie beyond the scope of this paper.

A. The Piecewise Affine Cell-Transmission Models (PWA-
CTMs)

Depending on the PWA approximation of the FD used,
the CTM described in Section II-A can be extended to the
models PWA5-CTM and PWA7-CTM, each using a PWA
approximation with M = 5 and M = 7 pieces, respectively.
The fundamental flow-rate relation ϕi = f(ρi), is now
approximated by eq. (20) for the PWA5-CTM, and by eq.
(21) for the PWA7-CTM model.

IV. FINITE HORIZON OPTIMAL CONTROL FORMULATION

In this section, four Finite Horizon Optimal Control Prob-
lems (FHOCPs) with different underlying traffic flow models
are formulated to investigate the evolution of traffic flow in
each case. The traffic flow models used here define four
different versions of the CTM. Two of the versions used
are the Extended CTM [8] and the Relaxed CTM [10]. A
thorough assessment on these two models is presented in [9].
The other two CTM versions are the PWA-CTMs proposed in
the previous section. The traffic control strategy applied here
is the PI-ALINEA ramp metering controller, and the analysis
is performed by simulation for a hypothetical network of
freeways with stationary demand patterns using the unique
equilibrium state of each pattern.

Before developing the formulations of the FHOCPs, first
the definitions of two objective functions will be provided.
In the formulation of FHOCPs presented in this section, a
linear combination of these cost functions will make the final
objective of each problem. The most widely used objective
in traffic management is to minimize the total time that all
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vehicles spend in the network (i.e., the Total Time Spent or
TTS). Basically, the TTS is the time spent by all vehicles
in the network (i.e., the total travel time or TTT ), including
the waiting time experienced at origins (i.e., the total waiting
time or TWT ).

J1 = JTTS = T
K−1∑
k=0

[
N∑
i=1

ρi(k)Liλi +
N∑
i=1

li(k)] (22)

The second objective function applied here is to maximize
the sum of the traffic flows going through all sections and
on-ramps. This objective function is also called the Total
Travel Distance (TTD) since it is the total distance (veh mi)
covered by all the vehicles in the considered time horizon.

J2 = JTTD = T
K−1∑
k=0

[
N∑
i=1

ϕi(k)Li +
N∑
i=1

ri(k)Li] (23)

A linear combination of these two objective functions is
used as the objective function to express their priorities, i.e.

min
rCi

α1J1 − α2J2 (24)

Here, α1 > α2 as minimizing the travel time is the main
objective. Also, the αi values are the same for all four
problems.

The different FHOCP problems are defined by op-
timization problem (24), the controller (14), the con-
straints (1)-(10), and different flow-density relationship
{ϕi = fj(ρi)}4j=1 given by:

FHOCP 1: ϕi = f1(ρi) ∼ Extended CTM [8], [9];
FHOCP 2: ϕi = f2(ρi) ∼ Relaxed CTM [9], [10];
FHOCP 3: ϕi = f3(ρi) ∼ (20); and
FHOCP 4: ϕi = f4(ρi) ∼ (21).

V. SIMULATION RESULTS

In this section, we evaluate the performance and complex-
ity of the proposed methodology on a complex simulation
environment.

A. Case study and model parameters

Fig. 5: Complex highway network under consideration.

Simulation is performed for the network shown in Fig.
5 with two origins (o1 and o2), two controlled on-ramps
(o3 and o4), 12 mainline links (m1 through m12) and two
destinations (d1 and d2). One assumption about the network
is that the proportion of turns at every junction, i.e. the split
ratios βi(k), are fixed and known in advance. Also, it is
assumed that the behavior of all the links can be described
by parameters shown in table III adopted from [9], [22] and
converted to SI units for this study:

TABLE III: Model Parameters.

Symbol Value Unit/Range
Period T 0.5 min
Length Li 1 km
vi 1 length/period
wi 0.33 length/period
n̄i 180 veh/length
nc
i 40 veh/length

f̄i 20 veh/period

B. Simulation and Numerical Results

The results of the simulation of the four FHOCPs proposed
in section IV are provided in this section. The FHOCPs
were solved with Yalmip, the modeling and optimization
language offered by [23], and the GURUBI non-commercial
optimization solver via the interface of MATLAB. The
simulation horizon of 1 hour is considered by choosing the
time horizon of K = 120 time steps and the simulation period
of T = 0.5 minute (K ∗ T = 60 minute). For the simulation
phase of this study, the following stationary demand vector
was applied for origin links o1 and o2 and also on-ramp links
o3 and o4: d(k) = (8, 9, 7, 3) veh/0.5 min. According to [22],
for each stationary demand vector d(k) = (d0, ..., dM ), there
exists a unique equilibrium flow rate ϕ(k) = (q0, ..., qN ) and
density vector ρ(k) = (ρ0, ..., ρN ). Detailed explanation on
the calculation of these vectors is explained in [22]. Table IV
shows the theoretical equilibrium flow vector for the mainline
links of this network based on the chosen stationary demand.
Adding all these values together, the network flow rate at
the equilibrium state should be equal to 113.37 veh/0.5 min.
Knowing this theoretical flow vector and having the overall
value of the network flow rate provide an insight on what is
expected to see in the simulation phase.

TABLE IV: Theoretical equilibrium flow rate (veh/0.5 min)
vector.

Link Number 1 2 3 4 5 6
Flow rate 4.8 11.8 15.46 9.27 9 12.2
Link Number 7 8 9 10 11 12
Flow rate 8.54 11.54 17.72 3.2 3.66 6.18

Figure 6 shows the comparison of the network flow rate,
i.e. the summation of the flow rate of all the links, in all
four FHOCPs during the 1-hour simulation horizon. In all
problems, the network flow rate is showing convergence
to the value of the theoretical equilibrium equal to 113.37
veh/0.5 min. However, the FHOCPs based on the PWA-
CTM are showing faster convergence with much less error
at the beginning of the simulation. The interesting result is
that the network flow rate of the last two problems look
to be the completely the same. To have a closer look at
this comparison, the boxplot of the difference between the
network flow rate of these two problems is provided in Fig. 7.
It is clear that this difference is so small that can be neglected
without any loss of generality.

Another factors used to evaluate the performance of these
problems is the computation time and the number of iter-

1063

Authorized licensed use limited to: John S Baras. Downloaded on November 20,2022 at 06:24:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6: Comparison of the network flow rate in all four
problems.

Fig. 7: Boxplot comparison of the network flow rate in
problems based on the PWA-CTMs.

ations needed to solve each of the four problems. Table V
shows the numerical value of these two factors. The value of
these factor for the problem based on the Extended CTM is
highly greater than those of the other problems. The reason
is the large number of the nonlinear min function constraints
in this model [9]. Also, considering the computation time
of the other three problems, it can be seen that they almost
have similar values, however, still the number of iterations
needed to find a solution for the problems based on the
PWA-CTM is much less and indicates that these optimization
problems remain more tractable for real-time application of
ramp metering optimal controllers.

TABLE V: Comparison of the Computation Times and
Iteration Numbers.

Problem Computation Time (sec) Iterations
FHOCP 1 245.88 618713
FHOCP 2 1.53 4212
FHOCP 3 1.62 746
FHOCP 4 1.64 749

The evolution of the ramp metering variables are also
investigated here. Fundamentally, the expectation is that the
control applied to the on-ramps can satisfy the requirements
of the network while considering the external demand of
the on-ramps by not imposing too much waiting time to the
vehicles on the on-ramps. As a result, a proper RM variable
basically should replicate the overall demand pattern of that
on-ramp. As an example, Fig. 8 shows the RM variable
of on-ramp o3. In all four problems, the control variable
is trying to converge to the value of the external demand
applied (a constant demand of 7 veh/0.5 min). However, the
RM variable in problems based on PWA-CTM have smoother
and faster convergence with much less fluctuations while the
control variable in the problem based on the Extended CTM
never actually converges and in the problem based on the
Relaxed CTM, a big overshoot happens before it starts to
converge.

Fig. 8: Evolution of the RM control variable of on-ramp o3.

Last but not least, the MSE between the network flow
rate and density of the problems is compared with that of
the equilibrium state. The results are provided in Fig. 9.
The problem based on the Relaxed CTM has the highest
MSE for both the flow rate and density of the network. It is
because of the crude simplifications made in this version of
the CTM [9]. Comparing the MSE of the problem based on
the Extended CTM and the performance of the problems
based on the PWA-CTM, the results show less MSE for
the last two FHOCPs. It indicate the FHOCPs based on
the PWA-CTM have less error comparing to the equilibrium
values of the flow rate and density.

VI. CONCLUSION

In this study, two enhanced CTM versions are proposed
which constitute the PWA approximations of the flow-density
relation of the FD. Most of the other extensions of CTM
are based on the trapezoidal approximation of this relation
in order to simplify optimization problems based on them.
However, the flow-density relation is naturally nonlinear,
and primitive approximations highly affect the efficiency of
the optimization solution. The PWA approximation proposed
here is computed based on a two-step identification method
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Fig. 9: Bar plot comparison of the MSE of the network flow
rate and density.

to minimize the integrated squared error with respect to
the true relation. The so-called PWA-CTM versions are
evaluated in the framework of FHOCPs for a hypothetical
highway network using the PI-ALINEA RM strategy. Also,
for better evaluation, the performance of these models are
compared with that of two other widely used versions of
the CTM in the same optimization framework. Simulation
results of these FHOCPs show that the problems based on the
PWA-CTM models require less computation time and less
iteration numbers compared to other problems. In addition,
the problems based on the PWA-CTM models indicate higher
accuracy of the flow and density evolution in comparison
with the theoretical equilibrium state of the network. Also,
the optimization problems based on the PWA-CTMs remains
tractable for real-time application of ramp metering optimal
controllers. Hence, the proposed PWA-CTMs constitute one
of the best approximation approaches for first-order traffic
flow models suitable for more challenging modeling and
control applications. In future, authors intend to compare
and evaluate the performance of the PWA-CTMs with the
”Simulation of Urban MObility” (SUMO) traffic simulator
for larger-scale highway networks.

REFERENCES

[1] R. C. Carlson, I. Papamichail, M. Papageorgiou, and A. Messmer,
“Optimal motorway traffic flow control involving variable speed limits
and ramp metering,” Transportation science, vol. 44, no. 2, pp. 238–
253, 2010.

[2] Z. Liu, Y. Wu, S. Cao, L. Zhu, and G. Shen, “A ramp metering method
based on congestion status in the urban freeway,” IEEE Access, vol. 8,
pp. 76 823–76 831, 2020.

[3] Y. Bie, M. Seraj, C. Zhang, and T. Z. Qiu, “Improving traffic state
prediction model for variable speed limit control by introducing
stochastic supply and demand,” Journal of Advanced Transportation,
vol. 2018, 2018.

[4] F. van Wageningen-Kessels, H. Van Lint, K. Vuik, and S. Hoogen-
doorn, “Genealogy of traffic flow models,” EURO Journal on Trans-
portation and Logistics, vol. 4, no. 4, pp. 445–473, 2015.

[5] J. Hueper, G. Dervisoglu, A. Muralidharan, G. Gomes, R. Horowitz,
and P. Varaiya, “Macroscopic modeling and simulation of freeway
traffic flow,” IFAC Proceedings Volumes, vol. 42, no. 15, pp. 112–
116, 2009.

[6] M. J. Lighthill and G. B. Whitham, “On kinematic waves i. flood
movement in long rivers,” Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences, vol. 229, no. 1178, pp.
281–316, 1955.

[7] C. Daganzo, “The cell transmission model part i: a simple dynamic
representation of higheay traffic,” PATH Report, 93-0409, vol. 3, 1993.

[8] A. Ferrara, S. Sacone, and S. Siri, Freeway traffic modelling and
control. Springer, 2018.

[9] F. Alimardani and J. S. Baras, “Performance assessment of different
cell-transmission models for ramp-metered highway networks,” IFAC-
PapersOnLine, vol. 54, no. 2, pp. 114–120, 2021.

[10] G. Gomes and R. Horowitz, “Optimal freeway ramp metering using the
asymmetric cell transmission model,” Transportation Research Part C:
Emerging Technologies, vol. 14, no. 4, pp. 244–262, 2006.

[11] R. T. Underwood, “Speed, volume, and density relationships,” 1960.
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