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ABSTRACT

5G services and applications explicitly reserve compute and net-
work resources in today’s complex and dynamic infrastructure of
multi-tiered computing and cellular networking to ensure application-
specific service quality metrics, and the infrastructure providers
charge the 5G services for the resources reserved. A static, one-time
reservation of resources at service deployment typically results in
extended periods of under-utilization of reserved resources during
the lifetime of the service operation. This is due to a plethora of
reasons like changes in content from the IoT sensors (for example,
change in number of people in the field of view of a camera) or a
change in the environmental conditions around the IoT sensors (for
example, time of the day, rain or fog can affect data acquisition by
sensors). Under-utilization of a specific resource like compute can
also be due to temporary inadequate availability of another resource
like the network bandwidth in a dynamic 5G infrastructure. We
propose a novel Reinforcement Learning-based online method to
dynamically adjust an application’s compute and network resource
reservations to minimize under-utilization of requested resources,
while ensuring acceptable service quality metrics. We observe that
a complex application-specific coupling exists between the compute
and network usage of an application. Our proposed method learns
this coupling during the operation of the service, and dynamically
modulates the compute and network resource requests to mimimize
under-utilization of reserved resources. Through experimental eval-
uation using real-world video analytics application, we show that
our technique is able to capture complex compute-network cou-
pling relationship in an online manner i.e. while the application is
running, and dynamically adapts and saves upto 65% compute and
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93% network resources on average (over multiple runs), without
significantly impacting application accuracy.
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1 INTRODUCTION

The infrastructure on which applications run has seen a tremen-
dous change over the past decade. From single-tier e.g. on premise
or in the cloud, to now multi-tiered with compute capability at
the IoT devices, at the edge (MEC) or in the cloud, and these com-
puting tiers are connected with network with varying capacity
and guarantees e.g. 5G, LAN/VLAN, MAN, WAN, etc. as shown in
Fig. 1. Such a fabric came into existence, because next-generation
applications such as autonomous driving, smart manufacturing,
remote health, augmented or virtual reality (AR/VR), etc. have very
stringent performance requirements that can be met only through
such a tiered-fabric.

For applications to achieve specific performance requirements,
they need to reserve certain amount of resources such as network
and compute, and applications are charged by the infrastructure
providers depending on how much resources they reserve. Higher
the reservation more will be the cost. Therefore, applications have
to reserve only what they need and avoid unnecessary reserva-
tion of resources. During the lifetime of an application, neither
the infrastructure (compute and network) remains fixed nor the
environment in which the application is operating e.g. scene ob-
served by a camera, is fixed. This leads to variation in the amount
of network and compute required by the application and one-time,
fixed reservation does not work well, as it can get unnecessarily
too expensive due to over provisioning of resources. Moreover, for
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Figure 1: Multi-tiered edge-cloud environment

modern software architectures, which rely on microservices archi-
tecture for scalability and ease of maintenance of services [1], [9],
there is a non-linear coupling relationship between network and
compute resources which is studied in [2] in an offline manner. Such
offline profiling does provide some guidance regarding resource
reservation, but it is not scalable for different applications and for
different real-world scenarios.

Given this dynamic variation in resource requirement and non-
linear coupling relationships, the problem of optimally and econom-
ically deploying microservices-based applications in a heteroge-
neous and multi-tiered system becomes very challenging. The pres-
ence of various kinds of networking capabilities at different tiers (e.g.
5G connectivity between devices and edge servers, MAN between
distributed edge resources and WAN between edge and central
cloud) and the high variability in the compute (multi-tenancy, het-
erogeneity, etc.), and changing network (5G NR interference, link
congestion, packet loss, etc.) conditions makes this problem even
more challenging. Therefore, an online and dynamic solution that
takes into account the real-time state of different resources (e.g.
available network and compute) and environmental conditions (e.g.
scene observed by camera) is necessary to realize an efficient and
effective resource orchestration.

Our goal is to optimize the resource requests (network and com-
pute) for different applications automatically. To this end, we in-
corporate SARSA reinforcement learning (RL) into the resource
orchestration framework for microservices-based 5G applications.
The main contributions of this paper are as follows:

o We show that the compute and network resources used by
an application vary considerably during the lifetime of oper-
ation, and the resource reservations made by the application
can be dynamically adjusted to minimize under-utilization
of reserved resources. This avoids payment for reserved re-
sources that are not utilized.

e We propose a novel application-specific, dynamic reserva-
tion of 5G compute and network resources by using rein-
forcement learning techniques. We automatically capture
the application-specific compute and network coupling re-
lationships in a reinforcement learning model, and enable
a principled consideration of resource allocation options to
significantly reduce under-utilization of reserved network
and compute resources.
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e We implement a real-world video analytics application and
show that our RL-based technique can save upto 65% com-
pute and 93% network on average, without significantly im-
pacting application accuracy.

The paper is organized as follows. We provide the literature re-
view in section 2 and discuss motivation in 3. Section 4 describes the
system model. In section 5, we introduce our design and proposed
solution. Performance evaluation is presented in section 6. Finally,
in section 7, we highlight our conclusions.

2 RELATED WORK

Resource management in cloud environments is a well-known re-
search problem which has already been addressed in the literature
[4]. The transition to microservices architecture introduces new
challenges that have not been addressed. One key challenge is to
manage multiple application components deployed across a large
number of geographically distributed servers in a dynamic manner.
In [5], the allocation policy of microservices to the physical hosts
in a cloud datacenter is modelled as a binary quadratic program-
ming problem with the objective of minimizing the interaction cost
(inter-node communications). They propose an interaction-aware
allocation policy to determine the mapping of microservice requests
to hosts. The microservices with frequent interactions are deployed
on the same host, resulting in response-time and throughput im-
provements.

A workload profiling framework [3] for cloud-native applica-
tions uses profiling results to deploy an application by using a
greedy algorithm with the goal of minimizing interactions. It is
shown profiling helps resource allocation methods to reduce the
application response time. The problem of application deployment
and migration has also been explored in MEC systems as well.
Due to the distribution of MEC servers across the geographical
area, users’ services may need to be migrated as users move. In
[11], an MDP formulation is proposed for the dynamic service mi-
gration problem in the MEC which captures general cost models
and provides a mathematical framework to design optimal service
migration policies. Moreover, a new algorithm and a numerical
technique for computing the optimal solution is proposed, which
is shown to be significantly faster than traditional methods based
on the standard value or policy iteration. Authors in [7] design a
proactive scheme for placement and migration of an already placed
microservice in the MEC setup. In contrast to a conservative policy
leading to wasteful resource allocation and a reactive on-demand
policy causing high latency, the main objective of this paper is to
learn and synthesize the optimal proactive prefetch, deployment
and migration schedule by utilizing the user mobility. An RL-based
approach based on Dyna-Q algorithm is proposed to solve the prob-
lem and it is compared against an on-demand invocation policy
and a heuristic algorithm based on an iterative matching process
followed by a local search phase in which the solution quality is
improved.

While the above works study the response time minimization
and dynamic function migration problem for cloud-native appli-
cations, they ignore the joint optimization of different resources
(compute and network resources, for example) and the impact of
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Figure 2: Intelligent transportation systems: object detec-
tion application

such joint optimization on the overall performance of an applica-
tion. Authors in [2] first introduce such coupling functions and
illustrate that by considering the coupling relationships into the
resource orchestration framework, it is possible to save on network
and compute resources without sacrificing the target application’s
performance. The proposed framework, ROMA, solves the joint
problem of function placement, and network and compute resource
allocations, all modelled as a mixed integer linear program (MILP).
The resource coupling relationships are derived empirically by pro-
filing different applications, and then incorporated into the problem
formulation. The performance of ROMA is evaluated on two real-
world applications i.e. surveillance (watchlist) and transportation
application (person and car detection) and benchmarked against a
static resource provisioning framework that ignores resource cou-
plings. The coupling functions are assumed to be linear so that the
resulting optimization problem is a MILP or an LP (in the case of
only resource allocation).

In contrast to prior work, we (a) make no assumptions about the
specific coupling between compute and network resource usage
(in our experiments, we observed that the coupling relationship
is application-specific, and non-linear), (b) learn the application-
specific coupling relationship while the application is in operation,
and (c) jointly optimize the two resources by using a reinforcement
learning approach. The complex coupling relationship is captured
in a reinforcement learning model, and it is used to make decisions
about network and compute allocations in real-time.

3 MOTIVATION

In this section, we discuss the motivation behind dynamic resource
reservation for microservices-based video analytics applications.
Fig. 2 shows the object (person) detection analytics pipeline that
is part of a larger Intelligent Transportation Systems (ITS) applica-
tion. Fig. 3a and Fig. 3b show the required compute and network
resources for the object detection pipeline for a real-world video
that has a varying number of objects (traffic participants like ve-
hicles, pedestrians etc.) in different video frames. We also show
the number of cores allocated to the object detection pipeline, and
the network bandwidth required to stream the video. We denote
the strategy of one-time fixed resource reservation (assuming in-
frastructure is able to support this) as "static” in the rest of the

paper.
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Figure 3: Impact of environment and stream content on re-
sources required

3.1 Impact of environment and stream content
on resources required

Fig. 3a shows that the required network bandwidth (in Mbps) for
the transportation video stream varies over time. Typically, when
the video stream does not have much variation across frames, the
network bitrate drops, while if there is significant variation in the
video stream from one frame to another, then the bitrate is high. For
example, at night time condition, when there is not much activity
going on, the bitrate drops, while for the same camera, during the
day time when lots of people are walking around, the network
bitrate goes high. This is an artifact of the way network cameras
encode, compress and stream videos. Such variation in the net-
work bitrate can be leveraged in appropriately reserving network
resources. Instead of one time, fixed network reservation, we can
adjust the network resources dynamically as the environment and
stream content i.e. scene in front of the camera changes.

As the network bandwidth usage varies, we also observe a varia-
tion in the compute resources required to process the video stream.
Fig. 3b shows the minimum amount of compute resources required
to achieve similar accuracy as over-provisioned, fixed amount of
compute resources. We observe that there is an opportunity to save
on compute, without impacting application accuracy. For example,
at about 150 seconds into the video stream, the network bitrate
drops and at that time, the amount of required compute also goes
down. It does not benefit the application to reserve more com-
pute resources because there is not much content to process. Thus,
we can save on compute resources in reaction to changes in the
environment and stream content, without impacting application
accuracy.
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Figure 4: Impact of dynamic infrastructure on resources re-
quired

3.2 Impact of dynamic infrastructure on
resources required

In section 3.1, we studied the impact of environment and stream
content on the resources required by an application by assuming
that the infrastructure can adequately satisfy the resource requests
at all times. However, in practice, this may not be the case always.
Since the infrastructure is common and is shared across multiple
applications, it is not always possible for the infrastructure to satisfy
all resource requests. In this section, we study the impact of changes
in infrastructure conditions on resource requests by an application.

In Fig. 4a and 4b, we show the case when infrastructure is not
abundant for network as well as compute resources. This infras-
tructure condition is depicted as “Available", which is the maxi-
mum network or compute infrastructure available (shown in light
green color in Fig. 4a and 4b). Now, the application can only re-
serve within these infrastructure limits. The amount of resources
required by application (within the “Available” resources) is denoted
as “Proposed". We observe that changes in infrastructure conditions
directly impacts the reservations that an application can make. For
example, at around 120 seconds, when the available network from
the infrastructure drops and even though application would have
desired to have higher network reservation, infrastructure is not
able to provide it, then there is no point in reserving high compute,
even though the infrastructure can provide it. Here we see that the
“Proposed” compute resource goes down. Thus in these scenarios,
reserving lower compute than what the infrastructure can provide,
will save on the compute resource reservation. This is true vice
versa as well i.e. if the compute that the infrastructure can provide
drops, even though the application would have desired to be higher,
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Figure 5: System Design

then there is no point in reserving high network because there isn’t
enough compute available to process the additional content. Thus,
we see that infrastructure conditions do impact required resources
and we can save on compute and/or network in reaction to changes
in infrastructure conditions.

4 SYSTEM MODEL

In this section, we present our system model. Given a multi-tiered
infrastructure consisting of computing nodes at different tiers (edge,
and central cloud), the reservation of the resources to different
applications is realized through slicing. Let M and 7 denote the
set of compute nodes and the set of different resource types on each
node respectively. Each node m € M is specified by (g,,,, tierm),
where g,,, = [gl,.t € T] is the vector of available resources, and
tier,, denotes the associated tier.

We model an application as a set of functions or microservices
and interconnections that represent the data dependency between
functions. Let G = (V,E) be the graph representing the appli-
cation, where V denotes the set of functions in the application
and E represents the interconnections (data dependency) between
functions. Furthermore, Ry = (wq, Cy) denotes function v’s require-
ments, where w, and Cy = (coremin,o, tiery) are the networking
and computing requirements. Our goal is to optimize the resource
reservation for different functions and interconnections between
them such that the overall application performance is maximized
with a minimum amount of total resources.

5 SYSTEM DESIGN AND PROPOSED
SOLUTION
Since the demands for different resources fluctuate over time as

discussed in Section 3, a dynamic resource allocation approach
is necessary to address the adjustments in the resource usage or
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placement decisions, taking into account the resource coupling
relationships. We propose an RL based orchestration system that
automatically derives the resource coupling relationship and selects
the best action periodically. We compared Q-learning and SARSA
[12] algorithms and found that the learned model by SARSA has
better performance. We assume that the available amount of re-
source ¢ on node m is quantized into L levels, denoted by the set
Gt = {gfn’l, - gﬁn,L}. Let y!, ,, denote the amount of resource
t € 7 of node m € M allocated to function v € V. A valid resource
allocation solution must satisfy node capacity constraints given by:

1
We formulate the resource allocation problem as an episodic RL al-
gorithm, so that the infrastructure nodes’ capacities are not violated.
Our system design is shown in Fig. 5. We formulate the decision
making process as an MDP, denoted by the tuple < o, a, r >, which
are detailed as follows:

Yom <ghy VteT,veV,meM

o State representation The state of the system at time step
i is represented by the tuple 0; = ({gi;f eGl.me Mte
T3, {yf,’f;n,v € V,m e M,t € T7}). In this paper, we assume
that the function placement decisions are given according
to heuristic solutions such as [6], and focus on the resource
allocation problem. As a result, the size of state space is also
reduced.

e Action representation An action is a valid resource reser-
vation that determines the amount of resources which an
infrastructure node hosting an application microservice con-
sume. We define the action set to include A = 5|V| actions
capturing the five possible actions for each function: (a) in-
crease/decrease the allocated network/compute resources,
or (b) not change compute and network reservations.

e Reward function In RL, the learning agent improves its
performance by constantly receiving reward from the en-
vironment. To increase the probability of good actions, a
positive reward is returned for valid actions. To this end, we

define d; = — 2P _ Pi___ where p; is the per-
! Zt,v,m ﬁt yfi;:r:zl Zt,v,m ﬁt yz[;,m pl p
formance metric of the target application (object detection

score defined in Section 6 for an object detection applica-
tion). The parameters « and f;’s are used for the tradeoff
between compute, network and performance metric. d; has
a positive value only if the difference between the fraction
of performance over total used resources from step i to i + 1
is positive. The RL reward function is defined as follows:

4 if (1)

-H ow

ri = (0, ai, di41) = {

where H is a large positive number. In other words, the
agent receives a penalty if it reserves resources such that the
capacity constraint for infrastructure nodes is violated.

6 EVALUATION

In this section, we present the experimental setup and benchmark
the RL resource orchestration solution, against a static resource
reservation scheme, which ignores the coupling between resources
and environmental changes. We also compare the performance of
RL solution with ROMA [2] in an offline setting. Furthermore, we
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show the effectiveness of our technique in an online setting on a
real-world video analytics application.

6.1 Experimental Setup

In our experimental setup, Kubernetes [8] cluster is setup on our
MEC servers where intelligent transportation systems (object detec-
tion application) run within pods in Kubernetes. Each function runs
as a separate pod and multiple replicas of these pods are created,
as necessary. We stream videos over 5G from video server using
ffmpeg [10] and they are processed in MEC servers on a Kubernetes
cluster, within pods.

6.2 Numerical Results

We present our results for the ITS use case. The goal is to detect
vehicles or pedestrians in the video streams.

6.2.1 Performance comparison: Available, ROMA and SARSA. We
implement the proposed RL-based resource reservation approach
(denoted as SARSA) for a car detection application and evaluate
its capability to capture the non-linear resource coupling relation-
ships and save on resource reservation. For application accuracy

metric, we define a weighted object detection score (different from

TP
confidence score) as ob ject detection score = 3, feFRAME WfG—TJ;,

where f is the frame index, FRAME is the set of processed frames,
TPy is the number of true positive objects and GT is the number of
objects in ground truth in frame f. For TP classification, we use in-
tersection over union (IoU) metric to measure the overlap between
detected and ground truth objects and detections with IoU over
0.5 are considered as TP. We consider two different experiments
and in each experiment, we consider several scenarios with given
available compute and network resources.

Experiment 1: In this experiment, we consider 8 scenarios in
which the available compute is fixed and the available network
is reduced gradually (network becomes bottleneck). Fig. 6a, 6b and
6c illustrate the compute and network reservation and the object
detection score respectively. We see that across all scenarios, the
object detection score (shown in Fig. 6c) for SARSA is comparable
or slightly lower than “Available", which is when available compute
and network is used. Now, for such good application accuracy, we
see that SARSA reserves significantly less network resource (shown
in Fig. 6b) than maximum available and when the available net-
work is really low, SARSA also brings down the compute (scenario
7 in Fig. 6a) reservation. Compared to ROMA, SARSA has better
accuracy, saves a lot on network but looses slightly on compute.
Thus, we see that for similar or slightly lower application accuracy
compared to “Available”, SARSA is able to save a lot on compute
and network resource reservation.

Experiment 2: In this experiment, we consider 4 scenarios in
which we fix the available network resources and gradually reduce
the available compute resources (compute becomes bottleneck). Fig.
6d, 6e and 6f illustrate the compute and network reservation and
the object detection score respectively. Again, we see that SARSA
has comparable or slightly lower object detection score (shown in
Fig. 6f) than “Available”. SARSA achieves this similar application
accuracy at significantly lower network reservation (shown in Fig.
6e). The compute reservation by SARSA (and ROMA) is same as
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Figure 6: Performance of object (car) detection application: SARSA vs. ROMA
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the “Available". Compared to ROMA, SARSA saves a lot on network
resource reservation and most of the time gives better application
accuracy, while compute reservation is the same. Thus, we see
that for similar or slightly lower application accuracy compared to
“Available”, SARSA is able to save significant network reservation.

6.2.2  Performance of SARSA in an online setup. In this section, we
evaluate performance of SARSA in an online setup where available
compute and network varies over time based on a discrete uniform
distribution on compute and network space. We run 15 experiments
and observed that on average, SARSA reserves upto 93% less net-
work and 65% less compute resources than “Available” compute and
network resources. Fig. 7a, 7b, and 7c illustrate the compute and
network reservation and the object detection score respectively for
a single run. We see that for almost same object detection score
(shown in Fig. 7c), SARSA saves on network and compute resource
upto 50% and 95%, respectively. Thus, in real-world deployment, we
show that our Reinforcement Learning-based online technique is
quite effective in capturing the compute and network coupling re-
lationship and is able to significantly reduce network and compute
resource reservation.
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7 CONCLUSION

In today’s deployment of microservices-based 5G applications,
infrastructure providers charge based on the compute and net-
work resource reservations. In this paper, we show that compute
and network resources used by an application vary depending on
the environment and stream content, and also depending on the
changes in infrastructure conditions. With this insight, we propose
an application-specific, novel online Reinforcement Learning-based
technique to dynamically adjust compute and network resources for
an application. Our experiments show that for a real-world video
analytics application, our technique saves upto 65% compute and
93% network resources on average, without significantly impacting
application accuracy.
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