
Application-specific, Dynamic Reservation of 5G Compute and
Network Resources by using Reinforcement Learning
Anousheh Gholami

∗

University of Maryland

College Park, MD, USA

Kunal Rao

NEC Laboratories America, Inc.

Princeton, NJ, USA

Wang-Pin Hsiung

NEC Laboratories America, Inc.

San Jose, CA, USA

Oliver Po

NEC Laboratories America, Inc.

San Jose, CA, USA

Murugan Sankaradas

NEC Laboratories America, Inc.

Princeton, NJ, USA

John S. Baras

University of Maryland

College Park, MD, USA

Srimat Chakradhar

NEC Laboratories America, Inc.

Princeton, NJ, USA

ABSTRACT
5G services and applications explicitly reserve compute and net-

work resources in today’s complex and dynamic infrastructure of

multi-tiered computing and cellular networking to ensure application-

specific service quality metrics, and the infrastructure providers

charge the 5G services for the resources reserved. A static, one-time

reservation of resources at service deployment typically results in

extended periods of under-utilization of reserved resources during

the lifetime of the service operation. This is due to a plethora of

reasons like changes in content from the IoT sensors (for example,

change in number of people in the field of view of a camera) or a

change in the environmental conditions around the IoT sensors (for

example, time of the day, rain or fog can affect data acquisition by

sensors). Under-utilization of a specific resource like compute can

also be due to temporary inadequate availability of another resource

like the network bandwidth in a dynamic 5G infrastructure. We

propose a novel Reinforcement Learning-based online method to

dynamically adjust an application’s compute and network resource

reservations to minimize under-utilization of requested resources,

while ensuring acceptable service quality metrics. We observe that

a complex application-specific coupling exists between the compute

and network usage of an application. Our proposed method learns

this coupling during the operation of the service, and dynamically

modulates the compute and network resource requests to mimimize

under-utilization of reserved resources. Through experimental eval-

uation using real-world video analytics application, we show that

our technique is able to capture complex compute-network cou-

pling relationship in an online manner i.e. while the application is

running, and dynamically adapts and saves upto 65% compute and

∗
Work done as an intern at NEC Laboratories America, Inc.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

NAI ’22, August 22, 2022, Amsterdam, Netherlands
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9395-9/22/08. . . $15.00

https://doi.org/10.1145/3538401.3546598

93% network resources on average (over multiple runs), without

significantly impacting application accuracy.

CCS CONCEPTS
• Networks→ Cloud computing; Network management; Cloud
computing; Network management.

ACM Reference Format:
Anousheh Gholami, Kunal Rao, Wang-Pin Hsiung, Oliver Po, Murugan

Sankaradas, John S. Baras, and Srimat Chakradhar. 2022. Application-specific,

Dynamic Reservation of 5G Compute and Network Resources by using

Reinforcement Learning. In ACM SIGCOMM 2022 Workshop on Network-
Application Integration (NAI ’22), August 22, 2022, Amsterdam, Netherlands.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3538401.3546598

1 INTRODUCTION
The infrastructure on which applications run has seen a tremen-

dous change over the past decade. From single-tier e.g. on premise

or in the cloud, to now multi-tiered with compute capability at

the IoT devices, at the edge (MEC) or in the cloud, and these com-

puting tiers are connected with network with varying capacity

and guarantees e.g. 5G, LAN/VLAN, MAN, WAN, etc. as shown in

Fig. 1. Such a fabric came into existence, because next-generation

applications such as autonomous driving, smart manufacturing,

remote health, augmented or virtual reality (AR/VR), etc. have very

stringent performance requirements that can be met only through

such a tiered-fabric.

For applications to achieve specific performance requirements,

they need to reserve certain amount of resources such as network

and compute, and applications are charged by the infrastructure

providers depending on how much resources they reserve. Higher

the reservation more will be the cost. Therefore, applications have

to reserve only what they need and avoid unnecessary reserva-

tion of resources. During the lifetime of an application, neither

the infrastructure (compute and network) remains fixed nor the

environment in which the application is operating e.g. scene ob-

served by a camera, is fixed. This leads to variation in the amount

of network and compute required by the application and one-time,

fixed reservation does not work well, as it can get unnecessarily

too expensive due to over provisioning of resources. Moreover, for

19

https://doi.org/10.1145/3538401.3546598
https://doi.org/10.1145/3538401.3546598

NAI ’22, August 22, 2022, Amsterdam, Netherlands A. Gholami, et al.

Figure 1: Multi-tiered edge-cloud environment

modern software architectures, which rely on microservices archi-
tecture for scalability and ease of maintenance of services [1], [9],

there is a non-linear coupling relationship between network and

compute resources which is studied in [2] in an offline manner. Such

offline profiling does provide some guidance regarding resource

reservation, but it is not scalable for different applications and for

different real-world scenarios.

Given this dynamic variation in resource requirement and non-

linear coupling relationships, the problem of optimally and econom-

ically deploying microservices-based applications in a heteroge-

neous and multi-tiered system becomes very challenging. The pres-

ence of various kinds of networking capabilities at different tiers (e.g.

5G connectivity between devices and edge servers, MAN between

distributed edge resources and WAN between edge and central

cloud) and the high variability in the compute (multi-tenancy, het-

erogeneity, etc.), and changing network (5G NR interference, link

congestion, packet loss, etc.) conditions makes this problem even

more challenging. Therefore, an online and dynamic solution that

takes into account the real-time state of different resources (e.g.

available network and compute) and environmental conditions (e.g.

scene observed by camera) is necessary to realize an efficient and

effective resource orchestration.

Our goal is to optimize the resource requests (network and com-

pute) for different applications automatically. To this end, we in-

corporate SARSA reinforcement learning (RL) into the resource

orchestration framework for microservices-based 5G applications.

The main contributions of this paper are as follows:

• We show that the compute and network resources used by

an application vary considerably during the lifetime of oper-

ation, and the resource reservations made by the application

can be dynamically adjusted to minimize under-utilization

of reserved resources. This avoids payment for reserved re-

sources that are not utilized.

• We propose a novel application-specific, dynamic reserva-

tion of 5G compute and network resources by using rein-

forcement learning techniques. We automatically capture

the application-specific compute and network coupling re-

lationships in a reinforcement learning model, and enable

a principled consideration of resource allocation options to

significantly reduce under-utilization of reserved network

and compute resources.

• We implement a real-world video analytics application and

show that our RL-based technique can save upto 65% com-

pute and 93% network on average, without significantly im-

pacting application accuracy.

The paper is organized as follows. We provide the literature re-

view in section 2 and discuss motivation in 3. Section 4 describes the

system model. In section 5, we introduce our design and proposed

solution. Performance evaluation is presented in section 6. Finally,

in section 7, we highlight our conclusions.

2 RELATEDWORK
Resource management in cloud environments is a well-known re-

search problem which has already been addressed in the literature

[4]. The transition to microservices architecture introduces new

challenges that have not been addressed. One key challenge is to

manage multiple application components deployed across a large

number of geographically distributed servers in a dynamic manner.

In [5], the allocation policy of microservices to the physical hosts

in a cloud datacenter is modelled as a binary quadratic program-

ming problem with the objective of minimizing the interaction cost

(inter-node communications). They propose an interaction-aware

allocation policy to determine the mapping of microservice requests

to hosts. The microservices with frequent interactions are deployed

on the same host, resulting in response-time and throughput im-

provements.

A workload profiling framework [3] for cloud-native applica-

tions uses profiling results to deploy an application by using a

greedy algorithm with the goal of minimizing interactions. It is

shown profiling helps resource allocation methods to reduce the

application response time. The problem of application deployment

and migration has also been explored in MEC systems as well.

Due to the distribution of MEC servers across the geographical

area, users’ services may need to be migrated as users move. In

[11], an MDP formulation is proposed for the dynamic service mi-

gration problem in the MEC which captures general cost models

and provides a mathematical framework to design optimal service

migration policies. Moreover, a new algorithm and a numerical

technique for computing the optimal solution is proposed, which

is shown to be significantly faster than traditional methods based

on the standard value or policy iteration. Authors in [7] design a

proactive scheme for placement and migration of an already placed

microservice in the MEC setup. In contrast to a conservative policy

leading to wasteful resource allocation and a reactive on-demand

policy causing high latency, the main objective of this paper is to

learn and synthesize the optimal proactive prefetch, deployment

and migration schedule by utilizing the user mobility. An RL-based

approach based on Dyna-Q algorithm is proposed to solve the prob-

lem and it is compared against an on-demand invocation policy

and a heuristic algorithm based on an iterative matching process

followed by a local search phase in which the solution quality is

improved.

While the above works study the response time minimization

and dynamic function migration problem for cloud-native appli-

cations, they ignore the joint optimization of different resources

(compute and network resources, for example) and the impact of

20

Application-specific, Dynamic Reservation of 5G Compute and Network Resources by using Reinforcement Learning NAI ’22, August 22, 2022, Amsterdam, Netherlands

Figure 2: Intelligent transportation systems: object detec-
tion application

such joint optimization on the overall performance of an applica-

tion. Authors in [2] first introduce such coupling functions and

illustrate that by considering the coupling relationships into the

resource orchestration framework, it is possible to save on network

and compute resources without sacrificing the target application’s

performance. The proposed framework, ROMA, solves the joint

problem of function placement, and network and compute resource

allocations, all modelled as a mixed integer linear program (MILP).

The resource coupling relationships are derived empirically by pro-

filing different applications, and then incorporated into the problem

formulation. The performance of ROMA is evaluated on two real-

world applications i.e. surveillance (watchlist) and transportation

application (person and car detection) and benchmarked against a

static resource provisioning framework that ignores resource cou-

plings. The coupling functions are assumed to be linear so that the

resulting optimization problem is a MILP or an LP (in the case of

only resource allocation).

In contrast to prior work, we (a) make no assumptions about the

specific coupling between compute and network resource usage

(in our experiments, we observed that the coupling relationship

is application-specific, and non-linear), (b) learn the application-

specific coupling relationship while the application is in operation,

and (c) jointly optimize the two resources by using a reinforcement

learning approach. The complex coupling relationship is captured

in a reinforcement learning model, and it is used to make decisions

about network and compute allocations in real-time.

3 MOTIVATION
In this section, we discuss the motivation behind dynamic resource

reservation for microservices-based video analytics applications.

Fig. 2 shows the object (person) detection analytics pipeline that

is part of a larger Intelligent Transportation Systems (ITS) applica-

tion. Fig. 3a and Fig. 3b show the required compute and network

resources for the object detection pipeline for a real-world video

that has a varying number of objects (traffic participants like ve-

hicles, pedestrians etc.) in different video frames. We also show

the number of cores allocated to the object detection pipeline, and

the network bandwidth required to stream the video. We denote

the strategy of one-time fixed resource reservation (assuming in-

frastructure is able to support this) as "static" in the rest of the

paper.

(a) Network resource requirement

(b) Compute resource requirement

Figure 3: Impact of environment and stream content on re-
sources required

3.1 Impact of environment and stream content
on resources required

Fig. 3a shows that the required network bandwidth (in Mbps) for

the transportation video stream varies over time. Typically, when

the video stream does not have much variation across frames, the

network bitrate drops, while if there is significant variation in the

video stream from one frame to another, then the bitrate is high. For

example, at night time condition, when there is not much activity

going on, the bitrate drops, while for the same camera, during the

day time when lots of people are walking around, the network

bitrate goes high. This is an artifact of the way network cameras

encode, compress and stream videos. Such variation in the net-

work bitrate can be leveraged in appropriately reserving network

resources. Instead of one time, fixed network reservation, we can

adjust the network resources dynamically as the environment and

stream content i.e. scene in front of the camera changes.

As the network bandwidth usage varies, we also observe a varia-

tion in the compute resources required to process the video stream.

Fig. 3b shows the minimum amount of compute resources required

to achieve similar accuracy as over-provisioned, fixed amount of

compute resources. We observe that there is an opportunity to save

on compute, without impacting application accuracy. For example,

at about 150 seconds into the video stream, the network bitrate

drops and at that time, the amount of required compute also goes

down. It does not benefit the application to reserve more com-

pute resources because there is not much content to process. Thus,

we can save on compute resources in reaction to changes in the

environment and stream content, without impacting application

accuracy.

21

NAI ’22, August 22, 2022, Amsterdam, Netherlands A. Gholami, et al.

(a) Network resources required vs. resources made avail-
able by infrastructure

(b) Compute resources required

Figure 4: Impact of dynamic infrastructure on resources re-
quired

3.2 Impact of dynamic infrastructure on
resources required

In section 3.1, we studied the impact of environment and stream

content on the resources required by an application by assuming

that the infrastructure can adequately satisfy the resource requests

at all times. However, in practice, this may not be the case always.

Since the infrastructure is common and is shared across multiple

applications, it is not always possible for the infrastructure to satisfy

all resource requests. In this section, we study the impact of changes

in infrastructure conditions on resource requests by an application.

In Fig. 4a and 4b, we show the case when infrastructure is not

abundant for network as well as compute resources. This infras-

tructure condition is depicted as “Available", which is the maxi-

mum network or compute infrastructure available (shown in light

green color in Fig. 4a and 4b). Now, the application can only re-

serve within these infrastructure limits. The amount of resources

required by application (within the “Available" resources) is denoted

as “Proposed". We observe that changes in infrastructure conditions

directly impacts the reservations that an application can make. For

example, at around 120 seconds, when the available network from

the infrastructure drops and even though application would have

desired to have higher network reservation, infrastructure is not

able to provide it, then there is no point in reserving high compute,

even though the infrastructure can provide it. Here we see that the

“Proposed" compute resource goes down. Thus in these scenarios,

reserving lower compute than what the infrastructure can provide,

will save on the compute resource reservation. This is true vice

versa as well i.e. if the compute that the infrastructure can provide

drops, even though the application would have desired to be higher,

Figure 5: System Design

then there is no point in reserving high network because there isn’t

enough compute available to process the additional content. Thus,

we see that infrastructure conditions do impact required resources

and we can save on compute and/or network in reaction to changes

in infrastructure conditions.

4 SYSTEM MODEL
In this section, we present our system model. Given a multi-tiered

infrastructure consisting of computing nodes at different tiers (edge,

and central cloud), the reservation of the resources to different

applications is realized through slicing. Let M and T denote the

set of compute nodes and the set of different resource types on each

node respectively. Each node𝑚 ∈ M is specified by (𝒈𝑚, 𝑡𝑖𝑒𝑟𝑚),
where 𝒈𝑚 = [𝑔𝑡𝑚, 𝑡 ∈ T] is the vector of available resources, and
𝑡𝑖𝑒𝑟𝑚 denotes the associated tier.

We model an application as a set of functions or microservices

and interconnections that represent the data dependency between

functions. Let 𝐺 = (𝑉 , 𝐸) be the graph representing the appli-

cation, where 𝑉 denotes the set of functions in the application

and 𝐸 represents the interconnections (data dependency) between

functions. Furthermore, R𝑣 = (𝜔𝑣, C𝑣) denotes function 𝑣 ’s require-
ments, where 𝜔𝑣 and C𝑣 = (𝑐𝑜𝑟𝑒𝑚𝑖𝑛,𝑣, 𝑡𝑖𝑒𝑟𝑣) are the networking
and computing requirements. Our goal is to optimize the resource

reservation for different functions and interconnections between

them such that the overall application performance is maximized

with a minimum amount of total resources.

5 SYSTEM DESIGN AND PROPOSED
SOLUTION

Since the demands for different resources fluctuate over time as

discussed in Section 3, a dynamic resource allocation approach

is necessary to address the adjustments in the resource usage or

22

Application-specific, Dynamic Reservation of 5G Compute and Network Resources by using Reinforcement Learning NAI ’22, August 22, 2022, Amsterdam, Netherlands

placement decisions, taking into account the resource coupling

relationships. We propose an RL based orchestration system that

automatically derives the resource coupling relationship and selects

the best action periodically. We compared Q-learning and SARSA

[12] algorithms and found that the learned model by SARSA has

better performance. We assume that the available amount of re-

source 𝑡 on node𝑚 is quantized into 𝐿 levels, denoted by the set

G𝑡
𝑚 = {𝑔𝑡

𝑚,1
, ..., 𝑔𝑡

𝑚,𝐿
}. Let 𝑦𝑡𝑣,𝑚 denote the amount of resource

𝑡 ∈ T of node𝑚 ∈ M allocated to function 𝑣 ∈ 𝑉 . A valid resource

allocation solution must satisfy node capacity constraints given by:

𝑦𝑡𝑣,𝑚 ≤ 𝑔𝑡𝑚, ∀𝑡 ∈ T , 𝑣 ∈ 𝑉 ,𝑚 ∈ M (1)

We formulate the resource allocation problem as an episodic RL al-

gorithm, so that the infrastructure nodes’ capacities are not violated.

Our system design is shown in Fig. 5. We formulate the decision

making process as an MDP, denoted by the tuple < 𝑜, 𝑎, 𝑟 >, which

are detailed as follows:

• State representation The state of the system at time step

𝑖 is represented by the tuple 𝑜𝑖 = ({𝑔𝑡,𝑖𝑚 ∈ G𝑡
𝑚,𝑚 ∈ M, 𝑡 ∈

T }, {𝑦𝑡,𝑖𝑣,𝑚, 𝑣 ∈ 𝑉 ,𝑚 ∈ M, 𝑡 ∈ T }). In this paper, we assume

that the function placement decisions are given according

to heuristic solutions such as [6], and focus on the resource

allocation problem. As a result, the size of state space is also

reduced.

• Action representation An action is a valid resource reser-

vation that determines the amount of resources which an

infrastructure node hosting an application microservice con-

sume. We define the action set to include 𝐴 = 5|𝑉 | actions
capturing the five possible actions for each function: (a) in-

crease/decrease the allocated network/compute resources,

or (b) not change compute and network reservations.

• Reward function In RL, the learning agent improves its

performance by constantly receiving reward from the en-

vironment. To increase the probability of good actions, a

positive reward is returned for valid actions. To this end, we

define 𝑑𝑖 =
𝛼𝑝𝑖+1∑

𝑡,𝑣,𝑚 𝛽𝑡 𝑦
𝑡,𝑖+1
𝑣,𝑚

− 𝛼𝑝𝑖∑
𝑡,𝑣,𝑚 𝛽𝑡 𝑦

𝑡,𝑖
𝑣,𝑚

where 𝑝𝑖 is the per-

formance metric of the target application (object detection

score defined in Section 6 for an object detection applica-

tion). The parameters 𝛼 and 𝛽𝑡 ’s are used for the tradeoff

between compute, network and performance metric. 𝑑𝑖 has

a positive value only if the difference between the fraction

of performance over total used resources from step 𝑖 to 𝑖 + 1

is positive. The RL reward function is defined as follows:

𝑟𝑖 = 𝑟 (𝑜𝑖 , 𝑎𝑖 , 𝑎𝑖+1) =
{
𝑑𝑖 if (1)

-H ow

where 𝐻 is a large positive number. In other words, the

agent receives a penalty if it reserves resources such that the

capacity constraint for infrastructure nodes is violated.

6 EVALUATION
In this section, we present the experimental setup and benchmark

the RL resource orchestration solution, against a static resource

reservation scheme, which ignores the coupling between resources

and environmental changes. We also compare the performance of

RL solution with ROMA [2] in an offline setting. Furthermore, we

show the effectiveness of our technique in an online setting on a

real-world video analytics application.

6.1 Experimental Setup
In our experimental setup, Kubernetes [8] cluster is setup on our

MEC servers where intelligent transportation systems (object detec-

tion application) run within pods in Kubernetes. Each function runs

as a separate pod and multiple replicas of these pods are created,

as necessary. We stream videos over 5G from video server using

ffmpeg [10] and they are processed in MEC servers on a Kubernetes

cluster, within pods.

6.2 Numerical Results
We present our results for the ITS use case. The goal is to detect

vehicles or pedestrians in the video streams.

6.2.1 Performance comparison: Available, ROMA and SARSA. We

implement the proposed RL-based resource reservation approach

(denoted as SARSA) for a car detection application and evaluate

its capability to capture the non-linear resource coupling relation-

ships and save on resource reservation. For application accuracy

metric, we define a weighted object detection score (different from

confidence score) as 𝑜𝑏 𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =
∑

𝑓 ∈𝐹𝑅𝐴𝑀𝐸 𝑤 𝑓
𝑇𝑃𝑓

𝐺𝑇𝑓
,

where 𝑓 is the frame index, 𝐹𝑅𝐴𝑀𝐸 is the set of processed frames,

𝑇𝑃𝑓 is the number of true positive objects and𝐺𝑇𝑓 is the number of

objects in ground truth in frame 𝑓 . For TP classification, we use in-

tersection over union (IoU) metric to measure the overlap between

detected and ground truth objects and detections with IoU over

0.5 are considered as TP. We consider two different experiments

and in each experiment, we consider several scenarios with given

available compute and network resources.

Experiment 1: In this experiment, we consider 8 scenarios in

which the available compute is fixed and the available network

is reduced gradually (network becomes bottleneck). Fig. 6a, 6b and

6c illustrate the compute and network reservation and the object

detection score respectively. We see that across all scenarios, the

object detection score (shown in Fig. 6c) for SARSA is comparable

or slightly lower than “Available", which is when available compute

and network is used. Now, for such good application accuracy, we

see that SARSA reserves significantly less network resource (shown

in Fig. 6b) than maximum available and when the available net-

work is really low, SARSA also brings down the compute (scenario

7 in Fig. 6a) reservation. Compared to ROMA, SARSA has better

accuracy, saves a lot on network but looses slightly on compute.

Thus, we see that for similar or slightly lower application accuracy

compared to “Available”, SARSA is able to save a lot on compute

and network resource reservation.

Experiment 2: In this experiment, we consider 4 scenarios in

which we fix the available network resources and gradually reduce

the available compute resources (compute becomes bottleneck). Fig.

6d, 6e and 6f illustrate the compute and network reservation and

the object detection score respectively. Again, we see that SARSA

has comparable or slightly lower object detection score (shown in

Fig. 6f) than “Available". SARSA achieves this similar application

accuracy at significantly lower network reservation (shown in Fig.

6e). The compute reservation by SARSA (and ROMA) is same as

23

NAI ’22, August 22, 2022, Amsterdam, Netherlands A. Gholami, et al.

(a) Exp 1: Compute resource reservation (b) Exp 1: Network resource reservation (c) Exp 1: Object detection score

(d) Exp 2: Compute resource reservation (e) Exp 2: Network resource reservation (f) Exp2: Object detection score

Figure 6: Performance of object (car) detection application: SARSA vs. ROMA

(a) Compute resource reservation (b) Network resource reservation (c) Object detection score

Figure 7: Performance of SARSA for object (person) detection application

the “Available". Compared to ROMA, SARSA saves a lot on network

resource reservation and most of the time gives better application

accuracy, while compute reservation is the same. Thus, we see

that for similar or slightly lower application accuracy compared to

“Available", SARSA is able to save significant network reservation.

6.2.2 Performance of SARSA in an online setup. In this section, we

evaluate performance of SARSA in an online setup where available

compute and network varies over time based on a discrete uniform

distribution on compute and network space. We run 15 experiments

and observed that on average, SARSA reserves upto 93% less net-

work and 65% less compute resources than “Available" compute and

network resources. Fig. 7a, 7b, and 7c illustrate the compute and

network reservation and the object detection score respectively for

a single run. We see that for almost same object detection score

(shown in Fig. 7c), SARSA saves on network and compute resource

upto 50% and 95%, respectively. Thus, in real-world deployment, we

show that our Reinforcement Learning-based online technique is

quite effective in capturing the compute and network coupling re-

lationship and is able to significantly reduce network and compute

resource reservation.

7 CONCLUSION
In today’s deployment of microservices-based 5G applications,

infrastructure providers charge based on the compute and net-

work resource reservations. In this paper, we show that compute

and network resources used by an application vary depending on

the environment and stream content, and also depending on the

changes in infrastructure conditions. With this insight, we propose

an application-specific, novel online Reinforcement Learning-based

technique to dynamically adjust compute and network resources for

an application. Our experiments show that for a real-world video

analytics application, our technique saves upto 65% compute and

93% network resources on average, without significantly impacting

application accuracy.

REFERENCES
[1] Balalaie, A., Heydarnoori, A., and Jamshidi, P. Microservices architecture

enables devops: Migration to a cloud-native architecture. Ieee Software 33, 3
(2016), 42–52.

[2] Gholami, A., Rao, K., Hsiung, W.-P., Po, O., Sankaradas, M., and Chakradhar,

S. Roma: Resource orchestration for microservices-based 5g applications. arXiv
preprint arXiv:2201.11067 (2022).

[3] Han, J., Hong, Y., and Kim, J. Refining microservices placement employing

workload profiling over multiple kubernetes clusters. IEEE Access 8 (2020),

192543–192556.

[4] Jennings, B., and Stadler, R. Resource management in clouds: Survey and

24

Application-specific, Dynamic Reservation of 5G Compute and Network Resources by using Reinforcement Learning NAI ’22, August 22, 2022, Amsterdam, Netherlands

research challenges. Journal of Network and Systems Management 23, 3 (2015),
567–619.

[5] Joseph, C. T., and Chandrasekaran, K. Intma: Dynamic interaction-aware re-

source allocation for containerized microservices in cloud environments. Journal
of Systems Architecture 111 (2020), 101785.

[6] Rao, K., Coviello, G., Hsiung, W.-P., and T. Chakradhar, S. ECO: Edge-Cloud

Optimization of 5G applications. In The 21st IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGrid 2021), Melbourne, Victoria,
Australia (2021), pp. 649–659.

[7] Ray, K., Banerjee, A., and Narendra, N. C. Proactive microservice placement

and migration for mobile edge computing. In 2020 IEEE/ACM Symposium on Edge
Computing (SEC) (2020), IEEE, pp. 28–41.

[8] Rensin, D. K. Kubernetes - Scheduling the Future at Cloud Scale. 1005 Gravenstein
Highway North Sebastopol, CA 95472, 2015.

[9] Taibi, D., Lenarduzzi, V., and Pahl, C. Processes, motivations, and issues for

migrating to microservices architectures: An empirical investigation. IEEE Cloud
Computing 4, 5 (2017), 22–32.

[10] Tomar, S. Converting video formats with ffmpeg. Linux J. 2006, 146 (jun 2006),

10.

[11] Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., and Leung, K. K. Dynamic

service migration in mobile edge computing based on markov decision process.

IEEE/ACM Transactions on Networking 27, 3 (2019), 1272–1288.
[12] Wiering, M., and Schmidhuber, J. Fast online q (𝜆). Machine Learning 33, 1

(1998), 105–115.

25

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	3.1 Impact of environment and stream content on resources required
	3.2 Impact of dynamic infrastructure on resources required

	4 System Model
	5 System Design and Proposed Solution
	6 Evaluation
	6.1 Experimental Setup
	6.2 Numerical Results

	7 Conclusion
	References

