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Abstract
Recent frameworks for image denoising have demonstrated that it can be more pro-

ductive to recover an image from a smoothed version of some geometric feature of the
image rather than denoise the image directly. Improvements can be found both with re-
spect to image quality metrics as well as the preservation of fine details. The challenge
in working with this data is that mathematically sound mechanisms developed for han-
dling natural image data do not necessarily apply, and this data itself can be quite ill
behaved. In this work we learn both ‘geometric’ or nonlinear higher order features and
corresponding regularizers. These approaches show improvement over recent model-
based deep learning (DL) image denoising methods both with respect to image quality
metrics as well as the preservation of fine features. Furthermore, the proposed approach
for enhancing DL architectures by incorporating geometrically-inspired features is moti-
vated by and has the potential to feed back into mathematically sound models for solving
a variety of problems in image processing.

1 Introduction
Image denoising models have been foundational in a broad range of image processing tasks,
including deblurring, superresolution, dejittering, and more. About a decade ago, image
denoising had become so powerful that researchers began to study optimal denoising bounds
[5, 16, 17], finding little room for improvement with respect to the root mean squared error
(RMSE) over deterministic, patch based models for denoising an image directly. However,
denoising results are still sub-optimal in applications where fine features must be preserved
without introducing false data. Over the last decade, powerful GPUs have enabled supervised
deep learning (DL) using massive amounts of data that have paved the way to outstanding
denoising performance, pushing past these optimality bounds e.g. [6, 14, 15, 31]. A key
challenge in working with learned approaches is the lack of predictability and interpretability
of the models.

In a different direction, several image denoising approaches have been proposed that at-
tempt to recover a denoised image from a smoothed version of some geometric feature of

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Chatterjee and Milanfar} 2010

Citation
Citation
{Levin and Nadler} 2011

Citation
Citation
{Levin, Nadler, Durand, and Freeman} 2012

Citation
Citation
{Chen and Pock} 2017

Citation
Citation
{Kobler, Klatzer, Hammernik, and Pock} 2017

Citation
Citation
{Kobler, Effland, Kunisch, and Pock} 2020

Citation
Citation
{Zhang, Zuo, Chen, Meng, and Zhang} 2017{}



2LEVINE, CECIL, BERTALMÍO: LEARNED REGULARIZERS & GEOMETRY FOR DENOISING

the image, including its unit normal vector field [18], level line curvature [3], or components
in an orthonormal moving frame that encodes geometric information about the image [9].
While these approaches consistently improved over denoising the image directly using com-
parable approaches, the challenge in working with higher order geometrically inspired data
is that mathematically sound mechanisms developed for handling natural image data do not
necessarily apply, and this data itself can be quite ill behaved.

The crux of this work is to combine the power of DL approaches with the mathemat-
ical structure of geometrically motivated model based approaches to propose new image
denoising models that take advantage of the best of both worlds. Specifically, the proposed
approach learns both the geometric/nonlinear higher order features as well as corresponding
regularizers that are motivated by and have the potential to feed back into mathematically
sound models for image denoising. Ultimately this approach has the potential to serve as a
feature preserving regularizer that can improve a variety of image processing problems either
directly or as in e.g. [26, 30].

The remainder of this paper is as follows. Section 2 contains a discussion of the mathe-
matical models and learning based algorithms that motivate the proposed approach, Section
3 introduces the proposed approach and includes analyses of the proposed architecture, Sec-
tion 4 contains numerical results, and Section 5 concludes the paper. An Appendix contains
details on the numerical implementation of the new approach.

2 Background
In the following, we will consider the degradation model of an image degraded by additive
white Gaussian noise (AWGN). That is, we observe a noisy image f = a+η , where a is the
true image and η ∼N (0,σ2), and aim to recover an approximation for a.

2.1 Model based approaches for image denoising
In 1990, Perona and Malik [22] proposed denoising an image degraded by AWGN using the
seminal edge-preserving anisotropic diffusion equation where g(·)∼ 0 near likely edges,

∂u
∂ t

= div(g(|∇u|)∇u) , u(t = 0) = f . (1)

Around the same time, Rudin, Osher and Fatemi [27] proposed the equally pioneering de-
noising approach that seeks the solution of the minimization problem in the functions of
bounded variation (BV)

min
u∈BV

∫
|∇u|+ λ

2

∫
( f −u)2. (2)

The flow of the Euler-Lagrange equation associated with the above minimization problem is
the well-posed edge-preserving anisotropic diffusion equation which is closely related to (1)

∂u
∂ t

= div
(

∇u
|∇u|

)
+λ ( f −u), u(t = 0) = f . (3)

Both (1) and (3) pair the linear divergence, div, and gradient ∇ operators, both of which
can be discretized as convolution operators. These models also connect these linear opera-
tors through a nonlinear function g(∇u). Interestingly, these are typical building blocks for
convolutional neural networks (CNNs), discussed further in Section 2.3.
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Both (1) and (3) were groundbreaking for their time in their ability to preserve sharp
object boundaries throughout the noise removal process. On the flip side, when applied
to images directly, these approaches suffer from artifacts arising in what should be smooth
regions (this is often observed as ‘staircasing,’ where a noisy smooth region is mapped to
a piecewise constant solution) and their inability to preserve fine scaled textures. However,
they are still particularly appealing and still used as the basis for many new models for image
processing given the wide reaching theory that enables their mathematical predictability.

2.2 Denoising framework using ‘filtered’ geometric features
In 2004, Lysaker, Osher and Tai proposed the following approach to image denoising. In-
stead of solving (2), to avoid staircasing, one can process the image surface more directly.
Specifically, denoise the unit normal field, −→η ( f ) = ∇ f

|∇ f | , of the noisy image, f , by solving

a constrained vectorial version of (2) to obtain F(−→η ). Then the denoised image can be ob-
tained via the following minimization problem which matches the orientation of the denoised
unit normal vector field F(−→η ) to the unit normal vector field of the denoised image, ∇u

|∇u| ,

argmin
u∈BV

∫ (
|∇u|−F(−→η ) ·∇u

)
+λ

∫
( f −u)2. (4)

This model is related to earlier inpainting work by Ballester et.al. 2002 [2], and notably led to
Bregman iterations of Osher et.al. 2005 [21]. Alternate mathematically sound formulations
for denoising the unit tangent vector field have also been proposed [11, 24].

In 2014, Bertalmío and Levine [3] proposed a general approach in which any image
denoising method F intended for an observed noisy image f is instead applied to the noisy
level line curvature, κ( f ) = div(∇ f/|∇ f |). Then a smoothed version of the curvature κF =
F(κ( f )) is used to reconstruct a new image f̂κF whose curvature matches that of κF and
whose average value along level lines matches that of f .

A simple, mathematically sound method for constructing the denoised image from its
denoised curvature κF and a noisy observation f = a+η is

du
dt

= κ(u)−κF︸ ︷︷ ︸
preserves image ‘geometry′

+ λ ( f −u)︸ ︷︷ ︸
preserves contrast along level lines

, u(t = 0) = fin (5)

where λ > 0 depends only on the noise variance. As t→ ∞, du
dt → 0, so κF becomes a good

approximation for the curvature of the solution κ(u) for which contrast is preserved along
level lines. If one sets fin = F( f ), (5) leads to a kind of boosting algorithm [20, 25], where
a denoised image F( f ) is enhanced with a good approximation of the clean curvature, κF .
This is particularly appealing when F is a non-parametric approach which provides state
of the art results with respect to image quality metrics, but does not naturally incorporate
geometry, potentially resulting in loss of detail. Note also the close relationship between (3)
and (5), the former of which can be written as

du
dt

= κ(u)+λ ( f −u), u(t = 0) = f . (6)

Thus κ(u) has a unique interpretation both as a diffusion based regularizer as well as encod-
ing critical geometry.
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The approaches in (4) and (5) are reasonable from several perspectives. An image can be
reconstructed from its level sets (sets of pixels with the same intensity value), similar to how a
three dimensional representation of surface altitude can be reconstructed from a topographic
map, up to a change in contrast. Level sets are also useful for representing images, since
the most important features within an image are the boundaries between objects which are
typically level sets of the surface intensity. Furthermore, information describing contours, in
this case level curves, is most concentrated at locations of highest curvature [1].

In addition to these geometric considerations, theoretical analyses [3] demonstrated that
at likely edges, the point signal-to-noise ratio (PSNR) of these geometric features satisfy
PSNR(κ( f ),κ(a)) > PSNR(−→η ( f ),−→η (a)) > PSNR( f ,a), indicating that these geometric
features might be more productive to denoise than the original image. Experimental results
in [3] confirmed this, consistently showing an increase in PSNR and structured similarity
index (SSIM) over denoising the image directly for both variational and discriminative de-
noisers F such as [4, 8, 11, 21, 27]. It is interesting to note that this framework falls outside
of the ones studied in the most recent denoising optimality bounds [16, 17].

However, while the PSNR of κ( f ) is higher than that of f at locations where |∇ f | is suf-
ficiently large, that is, locations that likely contain image detail such as edges and textures
[3], finding an appropriate regularizer/denoiser intended directly for κ( f ) is not so straight-
forward. The underlying probability distribution for curvature patches is unknown, and it
is not clear there is a good ‘smoothness’ space to work in. Thus at the moment, Bayesian
approaches are guesstimates at best. Still, many denoising algorithms intended for natural
image data carried over quite nicely to the unit normal and tangent vector fields as well as
curvature data, with good results, so the potential for improvement is great if a more tai-
lored regularizer could be used. Furthermore, with the powerful learning frameworks that
have exploded in recent years, there is the potential to further learn this nonlinear geometric
information that can aid in better reconstructions.

2.3 Mathematically motivated learning based approach for image
denoising

The last five years have seen the emergence of deep learning (DL) architectures for solving
inverse problems in imaging [19], including denoising, deblurring, super resolution, and
related problems. One of the first such approaches, proposed by Chen and Pock [6], was
a DL image denoising model based on successful reaction-diffusion equations which are
inherently related to (1) and (6). They proposed the Trainable Nonlinear Reaction Diffusion
(TNRD) model whose learned diffusion process (in the case of the AWGN) is

ut = ut−1−

 Gt
L(ut−1)︸ ︷︷ ︸

diffusion term

+λ
t(ut−1− f )︸ ︷︷ ︸
reaction term

 , u0 = f , t = 1, ..,T (7)

with

Gt
L(·) =

Nk

∑
i=1

k
t
i ∗φ

t
i (k

t
i ∗ (·)) (8)

Here, kt
i are learned kernels of some fixed size m×m, k

t
i is the rotation of ki by 180 degrees,

Nk = m2− 1 is the number of filters at each iteration, φ t
i are learned nonlinear functions

parametrized by their coefficients in an appropriately defined basis (the authors in [6] used
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64 radial basis functions), λ t > 0, and T is a predetermined number of iterations. The
parameters Θ = (kt

i ,φ
t
i ,λ

t)T
t=1 are learned from pairs of clean and noisy images (as, f s) and

updated by minimizing the loss function

L(Θ) =
S

∑
i=1

1
2
||us

T (Θ)−as||22 (9)

where us
T (Θ) is the solution of (7) with initial data f s = as +ηs for each s = 1, ..,S.

The reaction-diffusion equation (7) is similar to the forward problem in a typical convo-
lutional neural network (CNN), but they are not precisely the same. CNNs do not typically
pair k and k as in (7), which is more typical of partial differential equations. They also
do not incorporate a reaction term unless it is a recurrent network [10], and the influence
functions, φ , are typically fixed rather than learned. The solution of (7) is not a minimizer
of an energy functional as it is intentionally run for a fixed number of iterations, T , which
makes the problem tractable. The fixed iterations is not a problem since (7) is balanced with
minimizing the loss function (9). The reaction term, λ t(ut−1− f ), is a smooth data fidelity
term, also found in (6), which can readily handle the case of Gaussian denoising. The rela-
tionship of the forward problem (7) with nonlinear reaction-diffusion equations, particularly
interpreted as a discrete generalized version of (1) and (3), makes this approach appealing
from a mathematical perspective as the learning is both physically, mathematically, and ge-
ometrically motivated. The novelty in this approach is that it incorporates the power of DL,
while potentially opening the door to establishing theoretical foundations as well as physical
and geometric interpretations.

Figure 1: Left: Noisy image f with σ = 25; Middle: so-
lution of (7), TNRD( f ), with u(t = 0) = f , PSNR=29.64,
SSIM=0.8496, Right: solution of (5) with λ = 0, an oracle
κF = κ(a) and fin = T NRD( f ), PSNR=33.69, SSIM=0.9289.

TNRD benefitted from
allowing the parameters to
change over time making
it different than a typical
diffusion equation. The
performance showed great
promise for image denois-
ing and it generalized to
handle a range of image
degradation tasks. Re-
lated model based DL ap-
proaches, including varia-
tional networks [14] and
the Total Deep Variation
model [15], produce even
higher quality numerical
results as well as provide

additional interpretable mathematical structure. Should a good estimate for the image geom-
etry such as level line curvature be attainable, the potential for improvement in combining
one of these model based DL approaches with (5) is great. Fig. 1 contains an example of a
noisy image and a TNRD [6] denoised image, the first and second images in the sequence.
Using u(t = 0) = T NRD( f ) (the denoised output of (7)) as an initial condition for (5), if the
true clean level line curvature κ(a) were accessible, the image is recovered almost perfectly,
the result residing in the third image in the sequence. While an oracle κ(a) is unattainable, a
learned denoiser FL might allow us to minimize the difference between κ(a) and FL(κ( f )),
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Table 1: PSNR comparing TNRD with the GF-TNRD

σ = 15 σ = 25 σ = 50
stage 3 GL 3x3 GL 5x5 GL 7x7 GL 9x9 GL 3x3 GL 5x5 GL 7x7 GL 9x9 GL 3x3 GL 5x5 GL 7x7 GL 9x9
TNRD 30.8 31.2 31.35 31.44 28.19 28.65 28.83 28.93 25.21 25.66 25.86 25.98
FL3x3 30.85 31.24 31.33 31.41 28.32 28.7 28.85 28.92 25.29 25.74 25.9 26.01
FL5x5 31.02 31.28 31.39 31.35 28.54 28.73 28.88 28.92 25.49 25.74 25.91 26.03
FL7x7 31.24 31.33 31.43 31.47 28.74 28.75 28.89 28.95 25.7 25.78 25.92 26.02
FL9x9 31.32 31.37 31.45 31.44 28.83 28.84 28.91 28.99 25.82 25.93 25.96 26.02
stage 5 GL 3x3 GL 5x5 GL 7x7 GL 9x9 GL 3x3 GL 5x5 GL 7x7 GL 9x9 GL 3x3 GL 5x5 GL 7x7 GL 9x9
TNRD 30.92 31.29 31.42 31.5 28.36 28.75 28.92 29 25.42 25.77 25.97 26.05
FL3x3 31 31.33 31.45 31.52 28.44 28.8 28.95 28.99 25.47 25.83 26.01 26.11
FL5x5 31.16 31.35 31.47 31.5 28.62 28.82 28.97 29.04 25.65 25.85 26.02 26.08
FL7x7 31.29 31.42 31.5 31.5 28.75 28.89 28.98 29.04 25.78 25.92 26.02 26.1
FL9x9 31.39 31.45 31.5 31.54 28.87 28.92 29.02 29.05 25.93 26 26.03 26.1
stage 8 GL 3x3 GL 5x5 GL 7x7 GL 9x9 GL 3x3 GL 5x5 GL 7x7 GL 9x9 GL 3x3 GL 5x5 GL 7x7 GL 9x9
TNRD 31.02 31.35 31.47 31.54 28.49 28.83 28.97 29.04 25.54 25.86 26.03 26.13
FL3x3 31.11 31.39 31.5 31.54 28.55 28.87 29.01 29.08 25.6 25.93 26.06 26.15
FL5x5 31.24 31.41 31.52 31.51 28.69 28.89 29.03 29.07 25.68 25.93 26.08 26.16
FL7x7 31.34 31.46 31.54 31.57 28.83 28.94 29.03 29.1 25.82 25.98 26.09 26.16
FL9x9 31.44 31.5 31.56 31.55 28.91 28.99 29.06 29.1 25.93 26.05 26.09 26.16

Table 2: Performance Comparison with State of the Art Models from [15]

Data Set σ BM3D [8] TNRD from [15] GF-TNRD (10) DnCNN [31] FFDNet [32] N3Net [23] FOCNet [12] TDV3 [15]

Set 12
15 32.37 32.50 32.64 32.86 32.75 - 33.07 33.01
25 29.97 30.05 30.21 30.44 30.43 30.55 30.73 30.66
50 26.72 26.82 27.03 27.18 27.32 27.43 27.68 27.59

BSDS68
15 31.08 31.42 31.54 31.73 31.63 - 31.83 31.82
25 28.57 28.92 29.05 29.23 29.19 29.30 29.38 29.37
50 25.60 25.97 26.11 26.23 26.29 26.39 26.50 26.45

Urban100
15 32.34 31.98 32.22 32.67 32.43 - 33.15 32.87
25 29.70 29.29 29.50 29.97 29.92 30.19 30.64 30.38
50 25.94 25.71 25.97 26.28 26.52 26.82 27.40 27.04

# of parameters 26,645 89,605 555,200 484,800 705,895 53,513,120 427,330

more-so than model based approaches that were designed to handle natural image data. This
is a key piece of the motivation for the work proposed in Section 3.

3 Structured learned denoisers and higher order features
In this work we propose a new approach for image denoising which combines the power
of DL with the preservation of fine features that can be attained when incorporating image
geometry. Specifically, we infuse learned denoisers and learned ’geometry’ into (5). For the
purpose of consistency and simplicity, we employ the Trainable Nonlinear Reaction Diffu-
sion (TNRD) model of Chen and Pock [6] as a basis for comparison as well as a basic build-
ing block, given its innate connections to anisotropic diffusion (1) and (6) as well as more
general reaction-diffusion equations. The intention is to conceptually demonstrate how this
novel use of image geometry combined with the outstanding performance of learned models
for directly denoising an image has the potential to give the best of both worlds.

To this end, as a natural extension of the curvature denoising in (5), we propose min-
imizing the loss function (9) to learn parameters for the diffusion model (10), which for
simplicity we will call GF -TNRD, written as

ut = ut−1−
(
Gt

L(ut−1)−F t
L(Gt

L( f ))+λ
t(ut−1− f )

)
, u0 = f , t = 1, ..,T. (10)

Note that (10) not only learns a geometrically inspired regularizer Gt
L (8), but it also learns a

denoiser F t
L for Gt

L( f ), where

F t
L(·) =

Na

∑
j=1

at
j ∗ϕ

t
j(a

t
j ∗ (·)). (11)

Citation
Citation
{Kobler, Effland, Kunisch, and Pock} 2020

Citation
Citation
{Dabov, Foi, Katkovnik, and Egiazarian} 2007

Citation
Citation
{Kobler, Effland, Kunisch, and Pock} 2020

Citation
Citation
{Zhang, Zuo, Chen, Meng, and Zhang} 2017{}

Citation
Citation
{Zhang, Zuo, and Zhang} 2017{}

Citation
Citation
{Pl{ö}tz and Roth} 2018

Citation
Citation
{Jia, Liu, Feng, and Zhang} 2019

Citation
Citation
{Kobler, Effland, Kunisch, and Pock} 2020

Citation
Citation
{Chen and Pock} 2017



LEVINE, CECIL, BERTALMÍO: LEARNED REGULARIZERS & GEOMETRY FOR DENOISING7

Figure 2: Row 1: Gt
L(a) for t = 1,2,3,4,5. Parameters learned for (10) with T = 5 and 80

9× 9 filters for both GL and FL. Row 2: clean image a followed by its level line curvature
κ(a). The last three images are the noisy geometry in stage 1, G1

L( f ), the denoised geometry
in stage 1, F1

L(G1
L( f )), and the residual, GL( f )−F1

L(G1
L( f ))

Thus, similar to κ in (5), Gt
L has a unique interpretation as both a diffusion based regularizer

as well as encoding geometry. In fact, a discretized version of (5) can be considered a special
case of (10) withF = TV , kt

i = at
i =∇, k

t
i = at

j =−div and φ = ϕ = ρ ′ with ρ(z) = |z|. In [3]
it was shown that this approach improved over total variation based denoising [27], Bregman
iterations [21] and denoising unit normals [18] both with respect to image quality metrics as
well as the preservation of fine features, thus optimizing these operators has the potential for
further improvement. This should also serve to enhance a DL model such as TNRD since it
ensures that higher order features, Gt

L( f ), learned directly from f , are preserved; in a sense,
this adds to the usual data fidelity term (modeling the additive noise degradation model) a
second fidelity to the higher order, nonlinear, potentially geometric, image information.

Denoising effect of F t
L: The first row of Figure 2 contains learned ‘geometric’ regularizers

Gt
L(a) for t = 1, ..,5 applied to a clean image a obtained from (10). Similarities and com-

plementary details with the level line curvature κ(a), the second image in row 2, can be
observed. To visualize the denoising effect of F , the last three images in row 2 contain the
noisy G1

L( f ) followed by the denoisedF1
L(G1

L( f )) and finally the residual G1
L( f )−F1

L(G1
L( f ))

which appears like random noise, indicating that F does in fact act as a denoiser. We tested
this hypothesis over different test images using a range of model parameters and found that
particularly after the first stage, the root mean squared error (RMSE) generally decreased
after applying F ; that is, RMSE(F t

L(Gt
L( f )),Gt

L(a)) < RMSE(Gt
L( f ),Gt

L(a)) for t ≥ 2.

F t
L filters -vs- Gt

L filters: It is interesting to visualize the learned filters for the geomet-
ric regularizers/geometries Gt

L and their denoisers F t
L, as they provide further insights into

the proposed GF -TNRD framework. Specifically, Gt
L filters often appear to be computing

derivatives, which aligns with the idea that the Gt
L filters approximate features that are akin to

curvature. On the other hand, many F t
L filters appear to be computing averages along edges,

in the center, or around the perimeter of the patch, operators which indicate denoising. Fig.
3 shows some example Gt

L filters in the top row and F t
L filters in the bottom.
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Figure 3: Row 1: sample Gt
L filters appear to compute derivatives, indicating curvature ap-

proximation. Row 2: sample F t
L filters appear to compute local averages, indicating denois-

ing.

Figure 4: Solutions of (7) and (10) with σ = 15. (L to R): result of (7), result of (10) which
retains more details in the windows and the water reflection with less artifacts in the sky,
close up of (7) result, close up of (10) result, close up of the true image. Results for both (7)
and (10) use Nk = 80 with 9×9 filters in (8) for GL and Na = 8 with 3×3 filters for FL.

4 Numerical Results
In what follows we compare GF-TNRD with TNRD as an example of how geometric fea-
tures can be carefully incorporated into a learned model for image denoising. Table 1 con-
tains the average PSNR values of the GF-TNRD model applied to the standard im68 database
[28] for various filter sizes for both GL and FL computed for stages T=3,5,8. Ten noise sam-
ples were added to each image and the average output PSNR value for each image was
computed. The PSNR reported in Table 1 is the average across the im68 database.

Note that for any given fixed filter size used for GL in (7), a denoiser using a filter size
k× k equal to or greater than k× k for FL in GF-TNRD always yields improved results over
TNRD. The jump in PSNR begins modestly on the order of 0.05-0.1 but is much higher in
the case of smaller filters for G. In fact, for all models that showed any increase in PSNR,
this increase was consistent across the entire database. Conducting a one-sided paired t-test
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Figure 5: Row 1: Left: result of (7), Right: result of (10) which better preserves details on
the plane body and tail with fewer artifacts in the sky. Row 2: close up of (7) result, close
up of (10) result, close up of the true image. Same model parameters as Fig. 4 with σ = 25.

indicated that the increase in PSNR(GF -TNRD( f )) over PSNR(TNRD( f )) across the im68
database is statistically significant. SSIM showed similar trends.

It should also be noted that this increase in PSNR is not due simply to an increased
number of parameters. In fact, note that filters of size 3×3 for FL paired with 9×9 for GL in
GF-TNRD consistently show a significant improvement over the reverse, 9×9 for FL paired
with 3×3 for GL (see Table 1).

In addition to the increase in image quality metrics, the preservation of fine features can
be observed in Figures 4 and 5. Specifically, the solution of GF-TNRD (10) for the castle
image retains more details in the windows and the water reflection, with less artifacts in the
sky. The details on the body and the tail of the plane are also better preserved with (10) with
fewer background artifacts (both of these examples used 9×9 filters for GL).

Table 2 compares the GF-TNRD model with state of the art denoisers as reported in
[15], including the number of parameters for each model. The GF-TNRD model included
in the chart uses T = 5 stages with 80 9× 9 filters for both GL and FL, with the number of
parameters computed by T ∗ (1+31∗80+92 ∗80+31∗80+92 ∗80). In evaluating this ta-
ble, we note that the intent of the proposed approach is to demonstrate how model based DL
denoising can be improved both with respect to image quality metrics as well as the preser-
vation of fine details by including a mechanism for enhancing local geometry/higher order
features, such as the cascaded term FL(GL( f )) in (10). A similar term could be included in
the frameworks in the state of the art approaches in [14] and [15] which we expect would fur-
ther improve performance; this is the topic of future work. Still, the improvement is notable
given the number of parameters required to obtain this improvement over TNRD is approx-
imately fourfold, whereas the model parameters generally increase 20-40 times to achieve
state of the art performance. The results are competitive with and almost uniformly show
significant improvement over BM3D, which is still one of the top model-based approaches.

5 Conclusion
The purpose of this work is to demonstrate the value added by carefully incorporating de-
noised, geometrically-inspired features into model-based DL image denoising approaches.
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The results show promise, as demonstrated by the performance of the GF-TNRD model
compared to TNRD, both with respect to image quality metrics as well as its ability to pre-
serve fine features. The TNRD model was used as a prototype for this type of approach given
the connections with (6) paired with the success of the curvature-based denoising (5). The
mathematical basis for this added structure makes this type of approach ripe for physical and
mathematical interpretation. In future work we will extend this general framework of incor-
porating geometry into more state of the art, model based DL denoising approaches, enabling
a more in-depth analysis. Given denoising is a foundational tool in most image processing
operations, including de-blurring, super-resolution, deblocking and others, this work will be
further extended to handle more general inverse problems in imaging, including those with
different types of noise as well as those with linear degradations.
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Appendix: Training Details

Implementation: The results reported here for both TNRD and GF-TNRD were generated
using Keras-Tensorflow [7] with a CUDA implementation of radial basis functions written
for the denoising variational network in [14]. Both the TNRD and GF-TNRD models were
trained on 40x40 patches that were sampled, cropped, and transformed from the Train400
dataset used in [6, 28, 31]. The test metric performance did not show significant improve-
ment with a sample complexity of more than 400 training pairs. Similar to [6, 14], the
kernels were constrained to have zero mean and L2 norm bounded by 1. Kernel weights
were initialized using an ’orthogonal’ initialization, the weights for the radial basis functions
were initialized linearly, and all other scalar weights were initialized as 0.1. A batch size of
128 and the Adam optimizer [13] with an initial learning rate of 0.001 and Keras’s Expo-
nential Decay Scheduler were used to update the weights during training. Training TNRD
for 16 epochs was found to achieve performance on par with the original implementations
in [6, 14]. GF-TNRD was trained for 32 epochs, and then for an additional 4 epochs using a
cyclical learning rate [29] to further adjust the weights.

Training and Inference Times: Using an Nvidia RTX 3090 with Keras-Tensorflow, the
training times for GF -TNRD with T = 5 iterations ranged from 1068 seconds when using 8
3×3 filters for both G and F to 14501 seconds when training the model with 80 9×9 filters
for both G and F . In contrast, training for our implementation of the TNRD model ranged
from 197 seconds for 8 3×3 filters for G to 2182 seconds for 80 9×9 filters for G.

Once trained, the inference times of both models are comparable. The GF -TNRD model
with T = 5 stages and both G andF using 8 3×3 filters, 24 5×5 filters, 48 7×7 filters, and 80
9×9 filters has CPU inference times for a single image of 1.68, 4.60, 9.98, and 19.26 seconds
respectively. The same parameters for TNRD processes a single image in 1.33, 3.67, 7.95
and 15.62 seconds. On the RTX 3090, all inference times for both models across all filter
sizes range between 1.85-1.99 seconds.
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