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 Abstract 

A literature review revealed that students learning computational thinking via 
Scratch often require substantial teacher support. We surveyed grade 6-9 teachers 
to learn their perceptions of student engagement with computational thinking (CT) 
and how well their needs are met by existing CT learning systems. The results led us 
to extend the trend of balancing Scratch’s agency with structure to better serve 
learners and reduce burden on teachers aiming to learn and teach CT. In this paper, 
we review architecture and implementation strategies developed to integrate 
Parsons Programming Puzzles (PPPs) with Scratch, and then analyze their effects on 
adults, who crucially influence the education of their children. The results from our 
pilot study suggest PPPs catalyze CT motivation, reduce extraneous cognitive load, 
and increase learning efficiency without jeopardizing performance on transfer tasks. 

Keywords: Computational Thinking, Parsons Programming Puzzles, Scratch, 
Motivation, Cognitive Load  

 

Introduction 

In response to a crisis in CS teacher certification and a deficit of student exposure to CS in 

grades K-12 (Wilson et al., 2010; Leyzberg et al., 2017), governments are enacting policies 

requiring CT in schools (Whitehouse.gov, 2016; The Royal Society, 2016; Tamatea, 2019). 

Additional argument (Wing, 2006, 2008) and evidence (Grover et al., 2013) provide 

rationale for ensuring children achieve CT competency during the formative cognitive and 

social development cycles throughout grades K-12. Parsons programming puzzles (PPPs), 

which enable learners to practice CT by assembling into correct order sets of mixed-up 

programming constructs that comprise samples of well-written code focused on individual 
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concepts, are one approach used to introduce CT efficiently (Parsons et al., 2006; Ericson 

et al., 2018). 

These scaffolded program construction tasks facilitate learning the syntax and semantics 

underlying a CT concept. As the learner solves carefully designed single-solution puzzles, 

she arranges constructs from a curated assortment in a cycle of deliberate practice that 

exposes and addresses misconceptions (Kaczmarczyk et al., 2010; Emerson et al., 2020). 

Among the correct code fragments, she might find distractors which provoke cognitive 

conflict that reinforces learning (Karavirta et al., 2012). The partial suboptimal path 

distractor type, for example, might tempt a learner toward faulty progress without enabling 

her to solve the problem fully, thereby triggering recognition of a misconception and 

productive backtracking toward the correct solution (Harms et al., 2016). Researchers have 

hypothesized distractors might be beneficial in PPP for reasons similar to those leading to 

their inclusion in multiple choice tests (Parsons & Haden, 2006; King, 2004), such as the 

illumination of conceptual misunderstanding, flawed reasoning, or inconsistent reasoning.  

Research indicates this structured approach to learning CT can lead to more efficient 

concept learning than alternatives such as learning by tutorial, or writing/fixing code 

(Harms et al., 2015; Ericson et al., 2017; Zhi et al., 2019). To measure efficiency, 

researchers often leverage cognitive load theory, which helps to distinguish between the 

complexity of the material, the instructional design, and the strategies used for knowledge 

construction. Since PPPs provide constrained problem spaces, they can induce lower 

cognitive load than that experienced when writing code with open-ended agency in a realm 

notoriously challenging for novices (Fabic et al., 2018). 

In the current study1, we seek further evidence of their efficiency by integrating PPPs 

into Scratch, a block-based environment initially designed for informal learning that invites 

exploration, collaboration, and knowledge construction through personally meaningful 

creation (Maloney et al., 2010). K-8 teachers use Scratch more than any other coding 

language internationally (Rich et al., 2019), resulting in an ecosystem with over 92 million 

registered users (MIT Media Lab, n.d.), and more research focus than any other 

environment in K-12 from 2012-2018 (McGill & Decker, 2020). However, historical 

findings indicate Scratchers infrequently demonstrate skill increases over time (Scaffidi et 

al., 2012), misconceive loops, variables, Booleans, nested conditionals, and procedures 

(Grover et al., 2017, 2018), and often adopt habits unaligned with accepted CS practice 

(Meerbaum-Salant et al., 2011). In a recent study of 74,830 Scratch projects, 45% 

contained at least one bug pattern (Frädrich et al., 2020). Instead of problem-solving 

algorithmically, Scratchers often engage in bricolage (Harel & Papert, 1991), which 

involves bottom-up tinkering that does not necessarily prove productive (Dong et al., 2019). 

To balance this agency with structure as recommended in (Brennan, 2013), and to 

encourage the development of desired habits when learning CT concepts without stifling 
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learner creativity, researchers have designed external Scratch curricula (Brennan et al., 

2014; Franklin et al., 2020), created introductory Scratch Microworlds with reduced 

functionality (Tsur & Rusk, 2018), and devised learning strategies based on the Use-

>Modify->Create pedagogy to scaffold instruction (Salac et al., 2020). We extend this 

trend by integrating with Scratch PPPs with explicit goals that offer gameful scoring targets 

and per-block feedback to disincentivize trial-and-error behavior and steer learners toward 

correct solutions. We reason that if learners initially can internalize CT concepts efficiently 

via PPPs, they can better deepen their understanding with heightened ownership and 

agency (Casanova et al., 2021) in less-restrictive interest-driven projects such as those 

described in (Kong et al., 2020) that embrace Scratch's roots in constructionism (Brennan 

et al., 2014). This strategy would enable the development of learning progressions through 

the cognitive, situated, and critical framings of CT documented in (Kafai et al., 2019), so 

that skill building leads to creative expression and participation in fostering equitable, 

ethical computing for all. 

To test this reasoning, we ran a pilot study targeting adults, who comprise a general 

population that might not only benefit from learning CT, but who might most effectively 

mobilize the advancement of teaching and learning CT for all. The study separates 

participants into one of three training conditions: 1) PPPs; 2) PPPs with distractors (PPPDs); 

3) programming with access to all blocks and without feedback (limited-constraint-

feedback or LCF). Each successive condition offers the learner increasing agency by 

offering more block options from which to construct puzzle solutions. Condition 3, with 

block-move correctness feedback and scoring removed, most closely resembles the code 

writing experience native to Scratch. We investigated the following research questions: 

 

R1) what are the effects on motivation and cognitive load when training occurs via: PPPs; 

PPPDs; LCF?;  

R2) what are the effects on learning efficiency for training via PPP, PPPD, and LCF?   

 

Although the 75-participant sample limits the number of statistically significant results, 

findings indicate: 

 

F1) participants self-report higher motivation when training via PPPs and PPPDs, and 

less extraneous cognitive load when training via PPPs than via PPPDs or via LCF; 

F2) participants training via PPPs and PPPDs experience increased learning efficiency 

compared with those training via LCF. 
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We first review the background and required software development. We then document 

the study purpose, formative and summative evaluations, and results before previewing 

future work. 

Background 

Since PPPs emerged in the CS literature as a new form of program completion problem in 

2006, the community has investigated their strengths and weaknesses. Strengths include: 

scaffolded support of syntax and semantics learning; solvers with prior experience perform 

better and need less time (Harms et al., 2016); quicker grading and less grading variability 

than code writing problems (Ericson et al., 2017); easier detection of learning differences 

between students compared to code writing and code fixing problems (Morrison et al., 

2016); a moderate correlation between PPP proficiency and code writing proficiency in an 

exam setting (Denny et al., 2008); less completion time required than for code writing 

exercises with equivalent performance on transfer tasks (Ericson et al., 2017; Zhi et al., 

2019); higher enjoyment and less completion time required than for tutorial users with 

better performance on transfer tasks (Harms et al., 2016); and a lack of significant 

differences in performance across gender. Weaknesses include: constriction of puzzle-

design surface to maintain single-solution structure (not strictly required, but commonly 

enforced to maintain strengths); the invitation of trial-and-error behavior in PPPs with 

excessive corrective feedback (Helminen et al., 2013); and a potential ceiling effect when 

feedback guides most learners to solve PPPs correctly, resulting in the need to evaluate 

learner process in addition to product when assessing (Helminen et al., 2012; Villamor et 

al., 2020). 

The community also has explored differences in learning outcomes resulting from using 

different PPP elements. Evidence suggests that 2D puzzles, in which the student must not 

only correctly order programming constructs but also indent them correctly, are more 

difficult than 1D (Ihantola & Karavirta, 2011). Similarly, PPPs that conceal the number of 

lines of code needed for each solution section and those that include distractors are more 

difficult, require more time to complete, and produce higher cognitive load during training 

than those that specify section sizes and those without distractors (Garner, 2007; Harms et 

al., 2015). Learning differences continue to emerge when researchers vary these elements. 

For example, learners struggle more when distractors are randomly distributed among the 

correct code constructs than when they are paired with correct constructs (Denny et al., 

2008).  

To identify these strengths, weaknesses, and learning differences between PPP elements, 

researchers often leverage Cognitive Load Theory (CLT) (Sweller, 2010). According to 

CLT, the brain provides limited short-term memory and processing capability along with 

infinite long-term memory, and learning occurs via schema construction and elaboration 
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that leads to automation. Construction ensues by combining new, single elements into one 

larger element, and elaboration follows by adding new elements to an existing, larger 

element. Through intensive practice, individuals can automate their processing of these 

larger elements so that they execute without controlled processing. 

CLT helps distinguish characteristics of and between PPP systems by offering a 

framework with tools to measure the three types of cognitive load experienced: intrinsic, 

extraneous, and germane. The total number of interacting elements perceived by the learner 

determines intrinsic load (IL); the sometimes-impeding organization and presentation of 

the content determines extraneous load (EL); and the instructional features necessary for 

schema construction determine the germane load (GL). PPP designers aim to reduce 

extraneous load to free learners' capacity to contend with germane load when attempting 

to maximize learning efficiency. For example, the pairing of distractors with correct 

constructs might increase germane load by focusing student attention on the intended, 

misconception-revealing differences between two solution options, while also reducing 

extraneous load by eliminating the need to search for and identify the two relevant options 

amidst a random distribution of constructs. 

To measure relative learning efficiency quantitatively across conditions, researchers 

calculate instructional and performance efficiency (van Gog & Paas, 2008). These 

calculations account for learners who compensate for an increase in mental load by 

committing more mental effort, thereby maintaining constant performance while load 

varies. The data recorded often include empirical estimates of mental effort during 

instruction (EI) and transfer (ET) tasks and the performance (P) on transfer tasks. The EI 

and P calculation measures the instructional efficiency of the learning process, while the 

ET and P calculation measures the performance efficiency of the learning outcome. For 

example, in a study that included interactive puzzles in the transfer phase, results indicate 

PPPs with randomly distributed distractors decrease performance efficiency (Harms et al., 

2016). In our study, we measure instructional efficiency with a focus on learning process 

economy. 

Software Development 

To investigate our research questions, we modified Scratch to facilitate the design, play, 

and assessment of PPPs. Aligned with the gamification strategy described in (Tahir, 

Mitrovic, & Sotardi, 2020), in which the game elements were added to SQL-Tutor, and 

similar to recent iSnap integrations offering progress panels and adaptive messages (Zhi et 

al., 2019; Marwan et al., 2020), we augmented Scratch to influence the behavior of learners. 

As shown in Figure 1, we first established a design mode which enables content developers 

to assign points to individual blocks and select blocks for inclusion in a new PPP palette. 
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Equipped with this functionality, teachers can assign higher point values to blocks relevant 

to the CT concept studied and can isolate in a single palette blocks pertinent to the puzzle. 

 

 

Fig. 1 PPP palette and block configuration in design mode in Scratch 

 

As presented in Figure 2, we next established a play mode which enables students to load 

PPPs in a manner that displays the designed animated elements in the Scratch stage, but 

none of the blocks in the scripts pane authored as the solution. Technical detail is reported 

in (Sulaiman, et al., 2019), but relevant to this study is an assessment system that includes 

a gameful scoring algorithm intended to encourage deliberate practice and discourage trial-

and-error behavior. Our early development attempts involved calculating the Manhattan 

distance of each block placed from its correct position and multiplying that by the points 



Author Research and Practice in Technology Enhanced Learning   (202X) Vol:Article Page 7 of 24 

assigned to each block and the length of the sequence, combined with subtractions for 

special cases such as multiple disconnected sequences of blocks in the learner solution. 

During testing, however, this strategy proved insufficient, as scores could confusingly 

decrease when a block placed incorrectly in a long sequence was moved to the correct place 

in a shorter sequence. The longest common subsequence feedback algorithm described in 

(Karavirta et al., 2012) ultimately inspired our final approach; ours differs in that we 

leverage block points, use them and subsequence length as multipliers, and sum the 

multiples from all subsequences matching the single correct solution while also deducting 

for incorrectness in absolute position. The closer the participant is to the solution, the higher 

the score. 

 

 

Fig. 2 Puzzle play and assessment functionality integrated via PPP in Scratch 

 

To reduce complexity in the scoring algorithm but still discourage trial-and-error 

behavior, we simultaneously track a count we name meaningful moves, which increments 

when the learner drags a block from the palette to the scripts pane, connects existing 

sequences together, or disconnects a sequence into two. Other less significant block actions, 

such as the repositioning of a block or sequence within the scripts pane are discarded. Since 

we display this count (11) next to the score (27) and remaining time (3m 10s) as shown in 

Figure 2, we can encourage learners to achieve the highest score in the fewest moves and 

shortest time. 

Additionally, we built auto-initialization and auto-execution functionality to reflect 

progress visually after each block placement during puzzle play. These mechanisms enable 

the display of gameful animations while an avatar presents per-block correctness feedback, 

while concurrently disabling Scratch features that might otherwise distract from CT 
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learning, such as sprite editing controls. According to the feedback classification in 

(Raubenheimer, 2021), this immediate correct-incorrect-distractor feedback is 

constructivist since it is problem- and instance-oriented, which as been correlated with 

significantly lower student failure rates than alternative types such as those solution- and 

instance-oriented. The auto-execution functionality also calculates completion progress so 

that the learner receives appropriate responses when she correctly solves the puzzle or the 

allotted time expires. 

To help teachers and content developers organize learning, we wrapped these new 

features in Scratch within custom-built learning management tooling that facilitates the 

ingestion of class rosters, the structuring of learning paths in which games comprise quests 

which comprise missions, and the saving and loading of game/quest/mission progress. We 

intend this playful framing to further gamify the learning experience and nudge learners 

toward increased motivation as described in (Bovermann & Bastiaens, 2020). For the 

motivation to sustain beyond this learning experience, however, further progress in 

standardizing interoperability protocols between learning systems is necessary throughout 

the CS education community, similar to the one proposed in (Brusilovsky et al., 2018). The 

reference architecture we present in (Sulaiman, et al., 2019) is intended as one small step 

forward in that direction. 

Study Purpose 

This extended functionality positioned us to fill gaps in existing research. One study 

purpose was to explore the adult-use of CT learning system functionality primarily 

designed for children. Recent research has: 1) found significant correlation of motivation 

and previous programming experience with self-efficacy and inclination toward a CS 

career in elementary students (Aivaloglou & Hermans, 2019); 2) indicated drag-and-drop 

programming can increase three CS motivational factors in middle school (Bush et al., 

2020); 3) suggested computing experiences prior to university can affect the world-image 

of computing habits, perceptions, and attitudes which enable or inhibit pathways into CS 

(Schulte et al., 2007); 4) identified a parental role framework to enable adults to choose 

productive strategies to promote and foster children’s CT (Ohland et al., 2019); and 5) 

illuminated benefits of community commitment and a CS/CT focused ecosystem inclusive 

of the home and community (Cao et al., 2020; DeLyser, 2018). Since demographic factors 

can drive communal values, and perceptions of how computing fulfills those values can 

affect sense of belonging and student retention (Lewis et al., 2019), we measure adult 

motivation and cognitive load while probing for attitudinal change that might influence the 

CT inclination for participants’ children. 

A second purpose was to further identify PPP elements that optimize learning efficiency, 

since the behavior of programming environments can affect novices’ learning (Karvelas & 
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Becker, 2020). While many researchers have hypothesized (Denny et al., 2008) and less 

often produced evidence (Ericson et al., 2018) that PPPs can result in more efficient 

learning than alternatives such as writing or fixing code, recently some have attempted to 

measure the contributions of various PPP elements (Kumar, 2017, 2019a, 2019b; Sirkia, 

2016), including the effect of displaying the number of lines of code in puzzle solutions 

(no effect on pre-post improvement, more time spent), of pairing distractors with related 

variants (effective in the longer of two studied puzzles), of using single-character or 

mnemonic variable names (no significant differences), and of presenting program 

visualizations alongside PPPs (visualizations were used most by novices who sought 

feedback the most via multiple submissions). We measure PPP learning efficiency with 

and without distractors, while offering a comparison to programming with LCF. Derived 

from the literature, our hypotheses were:  

 

H1) PPP and PPPD training increase motivation and reduce extraneous cognitive load 

compared to training via programming with LCF; 

H2) PPP training yields highest learning efficiency. 

Formative Evaluation 

As an early step in a roadmap of studies intended to explore the efficacy of adding 

intelligent and gameful systems to novice programming environments, and with an aim to 

reinforce construct validity, we engaged in a formative evaluation with grade 6-9 educators. 

Through design thinking activities (Razzouk & Shute, 2012) including iterative surveys, 

interviews, and prototyping, we advanced our learning design technique, similar to the 

approach described in (Kashmira & Mason, 2020), which illuminates design thinking as a 

strategy useful for exploration, managing uncertainity, learning from failures, and 

empathizing with the needs of the learner when connecting learning objectives to learning 

design. Our goals included: 1) identifying the CT concepts receiving focus; 2) eliciting the 

pedagogical needs of practicing teachers; 3) and refining puzzle and feedback systems. We 

focus discussion here on goal 1. 

Participants 

The participants included 21 teachers from learning organizations such as Girls Who Code 

(Girls Who Code, n.d.) and codeHER (CodeHER, n.d.), and 17 from U.S. schools. 11% 

had taught with Scratch for at least 2-4 years, 63% for 6-18 months, and 26% had instructed 

with Scratch for less than 6 months. 92% taught CS with Scratch, but 16% also or 

alternatively taught math, and 16% taught science, language arts, or applied arts with 

Scratch. 34% of the teachers used Scratch for at least 51% of their curriculum, 29% used 

it for 26-50%, and 29% used Scratch for at least 11-15%. 
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CT Concept Engagement 

(Ihantola et al., 2016) highlights the concerning status quo in which most studies in the 

field focus on a single institution and a single course, without validation by subsequent 

replicating research, leading to limited understanding of the reasons results occur. To 

contribute replication results, and to identify the CT concepts receiving focus, we 

distributed a survey that included a question from a survey previously distributed to K-9 

teachers in five European countries (Mannila et al., 2014). This question asks teachers to 

respond with their perceptions of student engagement in nine facets of CT. Since we 

targeted a narrower set of teachers in the U.S., it is perhaps unsurprising that the results do 

not match the earlier international study, in which teachers reported their students most 

frequently use CT concepts related to data (e.g. analysis). However, we present this finding 

to reinforce the replication concerns raised, and to underscore the challenges the 

community faces when attempting to disseminate CT globally. 

 

 

Fig. 3 How a small sample of U.S. teachers perceive student engagement in CT concepts 

 

Our findings in Figure 3 indicate teachers perceive their students engage in data CT 

concepts less than others such as abstraction and algorithms. Aside from the differences in 

population samples, and the associated threat to internal validity due to implicit differences 

in curricula ((Barendsen et al., 2015) notes a low ratio of data knowledge in K-9 U.S. CSTA 

materials, 2%, compared with the English national curriculum, 14%, English Computing 

at School, 16%, and Italian guidelines, 25%), an extra explanation for this contrast could 

be related to the respondent recruitment process, as we specifically targeted Scratch 

teachers, whereas the earlier study did not. Since the small sample introduces a threat to 

external validity, future studies could try to replicate these results while controlling for 
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technology and teacher pedagogical content knowledge (PCK) utilizing a Content 

Representation approach like the one described in (Grgurina et al., 2014), in which 

researchers elicited via interview then charted teachers PCK across eight categories. 

Regardless, the lack of student engagement with data warrants investigation, as it is an 

alarming result for an increasingly data-driven society. 

Summative Evaluation 

Study Design 

 

Fig. 4 Summative evaluation protocol 

 

The formative evaluation helped us roadmap implementations, craft learning materials, and 

plan an initial summative evaluation. To produce evidence supporting answers to R1-2, we 

organized a 10-step between-subjects study via Amazon Mechanical Turk (Amazon 

Mechanical Turk, 2021) with the CT concept sequences operating as the learning objective. 

As depicted in Figure 4 and detailed in Table 1, the steps involved: 1) creation of 

credentials in the learning system and assignment to 1 of 3 conditions characterized in 

Table 2; 2) a background survey; 3) review of a 6-minute video tutorial on the UI and CT 

concept sequences delivered via Panopto (Panopto, n.d.); 4) a pretest; 5) pretest feedback; 

6) familiarization and training varied by condition; 7) training feedback; 8) an isomorphic 

posttest; 9) posttest feedback; 10) study feedback. These steps required responses to the 

validated CS cognitive load component survey (CS CLCS) (Morrison, et al., 2014), to a 

programming attitude Likert scale survey derived from categorized text-based responses 
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by adult learners in (Charters, et al., 2014), and to the intrinsic motivation Task Evaluation 

Questionnaire (TEQ) (SDT), which is a validated 22-item Likert scale measurement 

designed to reflect participant experience on four subscales: interest/enjoyment, perceived 

competence, perceived choice, and pressure/tension. In step 6, participants followed 

written instructions to guide their solving of four puzzles; instructions for the first puzzle 

included a graphical representation of the correct solution and an explanation of the 

behavior of each block used for the purpose of familiarization. Each puzzle auto-submitted 

upon correct completion or after 500 seconds if the participant had not previously 

submitted an incorrect solution. We advised participants to complete steps 4, 6, and 8 

without interruption and required completion of all steps within two hours. Protocol 

materials are publicly available in (Integrating Parsons Puzzles with Scratch, 2021). 

 

Table 1 Study protocol & measurements 

# Activity Content Tools Data Collected 

1 Registration Credentials 
creation & 
condition 
assignment 

Custom Scratch 
extension 

Username & 
password 

2 Background info Demographics Qualtrics Age, gender, 
education, 
country, 
programming 
experience & 
attitude, CT 
perceptions 

3 Tutorial 6-minute video 
on the learning 
system & 
sequences 

Panopto N/A 

4 Pretest 
(isomorphic) 

10 multiple-
choice sequences 
questions 

Qualtrics Pretest 
responses & 
score 

5 CS CLCS 10 CL questions 
with 0-10 scaled 
responses 

Qualtrics Pretest CL & 
IL/EL/GL 
components 

6 Puzzles 4 puzzles on 
sequences 

Custom Scratch 
extension 

Per-puzzle 
time spent, 
time-stamped 
block moves 
and score, 
correctness, 
distractor 
usage, 
generated 
feedback 

7 CS CLCS 10 CL questions 
with 0-10 scaled 
responses 

Qualtrics Puzzle CL & 
IL/EL/GL 
components 

8 Posttest 
(isomorphic) 

10 multiple-
choice sequences 
questions 

Qualtrics Posttest 
responses & 
score 
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9 CS CLCS 10 CL questions 
with 0-10 scaled 
responses 

Qualtrics Posttest CL & 
IL/EL/GL 
components 

10 Concluding 
measurements 

Motivation, 
programming 
attitude, CT 
perceptions 

Qualtrics TEQ score, 
programming 
attitude, CT 
perceptions 

 

We randomly assigned participants to one of three conditions operating as the 

independent variable: 1) PPP training (PPP); 2) PPP with distractors training (PPPD); 3) 

training by solving puzzles with access to all blocks and without move correctness or score 

feedback (LCF). The dependent variables included time spent and performance on the 

pretests and posttests, time spent and block moves made in puzzles, and the cognitive load, 

programming attitude, and TEQ results. 

 

Table 2 Training and participant characteristics across three study conditions 

Cond. Presentation # 
Distractors 

Feedback # 
Participants 

Avg. 
Prog. 
Exp. 
0-10 

Gender Country 

PPP 1-palette 0 Correctness 31 3.3 65%M 
35%F 

PPP 

PPPD 1-palette 2-4 Correctness 
& distractor 
notification 

22 4.7 50%M 
50%F 

PPPD 

LCF All palettes All Scratch 
blocks 

None 22 3.7 68%M 
32%F 

LCF 

 

Study Design 

 

Fig. 5 Example sequences PPP solution and instructions 
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Following guidance in (Harms et al., 2015), we aimed to design motivating scenarios with 

memorable segments while providing a challenge without being tricky and leaving the 

participants with a positive impression. To familiarize them, we included in the instructions 

for the first puzzle the solution and block-use descriptions. We also included more detailed 

instructions than typically found in PPPs, effectively resulting in a hybridization of the 

tutorial and PPP approaches described in (Harms et al., 2016). We thought this approach 

might best minimize ambiguity and highly scaffold early learning of new CT concepts in 

the absence of an instructor. An example puzzle solution and the associated instructions 

are shown in Figure 5. 

We tested and refined our materials in collaboration with a high school teacher, 16 of her 

freshman physics students with little prior exposure to CT, and eight undergraduates with 

diverse majors. Tests included trials of the surveys and puzzles, and think-alouds in which 

the participant would interact with puzzles while verbalizing her thoughts. Although we 

did not further formally assess validity and reliability, these results led to refinements such 

as puzzle theme modification, normalization of pre/posttest difficulty, and simplification 

of language used in survey questions. 

Participants 

In alignment with Wing's mobilizing declaration that CT is a "fundamental skill for 

everyone, not just for computer scientists" (Wing, 2006), and with the interventionist spirit 

of design-based research (Barab, 2014), we sought a learner population inclusive of those 

who might not otherwise encounter an opportunity to engage purposefully with CT but 

regardless might influence its trajectory in the lives of children. The learning objective of 

the CT concept sequences is suitable for this largely novice set of participants, as teachers 

often present this concept first in a CT curriculum (e.g. Brennan et al., 2014). By presenting 

our study as a Human Intelligence Task on Amazon Mechanical Turk, we recruited from a 

general population of over 100K individuals (Difallaha, et al., 2018) 75 adults with varying 

educational experience (24% graduated high school, 60% earned an undergraduate degree, 

16% earned a graduate degree) and the variety of self-reported programming experience 

presented in Figure 6. 46 men and 29 women comprise the sample population sourced from 

eight countries including the U.S. (60%), India (20%), and Brazil (11%). As presented in 

Table 2, the backgrounds and self-reported programming experience of participants across 

conditions are largely homogenous, with slightly higher average programming experience 

on a 0-10 scale reported for the PPPD condition (4.7) than LCF (3.7) and PPP (3.3), higher 

female participation in the PPPD condition (50%) than in PPP (35%) and LCF (32%), and 

lower U.S. representation in the LCF condition (50%), than in PPP (65%) and PPPD (67%). 

Additional participant demographic detail and all summative evaluation data are available 

in (Integrating Parsons Puzzles with Scratch., 2021). 
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Fig. 6 Participant self-reported programming experience at the start of the study 

 

Analysis & Results 

Data Collection & Processing 

We created seven surveys in Qualtrics (Qualtrics, n.d.) to capture data not directly collected 

by our CT learning system. For the pretest and posttest, we recorded time elapsed, and to 

grade the multiple-choice responses, we wrote a Python script. To help measure 

performance and efficiency, we added instrumentation to: 1) record time from puzzle start 

until submission; 2) trace each block moved; and 3) calculate score via the algorithm 

dependent on block position and points described in section “Software Development”. In 

the following subsections we analyze the collected and processed data. Since they did not 

exhibit Shapiro-Wilk normality (p<0.05), we used non-parametric statistics, including 

Kruskal-Wallis H, Mann-Whitney U, and Spearman r tests between-subjects, and 

Wilcoxon tests within-subjects, to address skewness and kurtosis. Due to sample-size 

limitations, we report both significant findings and those non-significant that appear to 

have the highest potential to reach significance in post-pilot studies with hundreds of 

participants. 

Cognitive Load 

We did not find significant differences in overall cognitive load during training between 

conditions (H(2)=.506, p=.776), nor in the subtypes. Upon closer review, we found no 

notable differences in intrinsic and germane load, but moderate non-significant differences 

in extraneous load (PPP: M=3.12; PPPD: M=3.55; LCF: M=3.90). This result signals weak 

support for H1, as PPP participants self-reported lower extraneous load than PPPD 

participants, while LCF participants reported the highest. Since the LCF condition 
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presented far more block choices (548 across 4 puzzles) than the PPPD condition (55), 

which in turn presented more choices than the PPP condition (41, rank correlation r(1)=1.0, 

p<.01), this result indicates reducing impediments to block identification frees capacity for 

intrinsic and germane load. The higher extraneous cognitive load for training via PPPDs 

than with PPPs aligns with the findings in (Harms et al., 2016), which reported no 

significant difference for intrinsic and germane load, but one for extraneous load with the 

highest mean in the distractor condition, in a study comparing PPPs with and without 

distractors. Pedagogically, distractors present an opportunity for the instructor and/or 

learning system to intentionally challenge the learner to address potential misconceptions. 

We recommend further study to track cognitive load as agency increases, since 

misconceptions not addressed during structured learning could amplify in open-ended 

environments, resulting in higher cognitive load if measured in sum across a longitudinal 

span. Incremental addition of blocks options, and the associated incremental EL, could help 

learners prepare for future learning as they advance. 

Performance 

Though we did not find significant training performance differences across conditions 

(H(2)=.853, p=.653), participants in the PPP and PPPD conditions interacted with the 

blocks significantly more (H(2)=21.141, p<0.001, ε2=0.29). Using a Bonferroni-adjusted 

alpha of .017 (.05/3), we found significant differences between conditions PPP (M=52.2) 

and LCF (M=32.1), p=0.001, and PPPD (M=57.9) and LCF, p<0.001. The fewer block 

moves made by participants in the LCF condition indicates some may have perceived the 

task as sufficiently overwhelming to decrease the probability of exploratory programming 

behavior. 

Although participants in each condition solved more posttest than pretest questions 

correctly (PPP: M=0.65, PPPD: M=0.82, LCF: M=0.32), with those in the PPPD condition 

yielding the highest increase, there is no significant difference in performance gain across 

conditions (H(2)=1.335, p=0.513). This lack of transfer performance disparity between 

PPP and PPPD conditions ostensibly replicates findings in (Harms et al., 2016), which 

found no significant difference in performance on transfer tasks for those training via PPPs 

and PPPDs. It is also similar to findings on PPP inter-problem and intra-problem adaptation 

in (Ericson et al., 2018), in which no significant differences in learning gains occurred from 

pretest to immediate posttest across three conditions involving PPPDs and one involving 

code writing, which is similar to the LCF condition in our study. 

Efficiency 

To measure efficiency, we analyzed training and transfer task time across conditions. 

During training, participants in the LCF condition, despite making fewer block moves, 
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required significantly more time than those in the PPP and PPPD conditions (H(2)=6.203, 

p=0.045, ε2=0.08). After the Bonferroni adjustment, significance moderated slightly: PPP 

(M=9.3m) vs. LCF (M=11.3m): p=0.090; PPPD (M=9.6m) vs. LCF: p=0.063). Since 

transfer task performance did not vary significantly across conditions, this result suggests 

training via PPPs and PPPDs enables more efficient CT learning, per the EI and P 

instructional efficiency calculation introduced earlier. We did not, however, find a 

significant difference in the transfer task time (H(2)=0.883, p=0.643). 

To emphasize the opportunity for efficient CT learning, we calculated instructional 

efficiency, using pre/posttest improvement to measure transfer performance and both time 

and cognitive load as measurements of mental effort during training, as recommend in 

(Paas & Merrienboer, 1993). Figure 7 presents areas of high and low effectiveness 

separated by the effort line E=0. The chart depicts higher instructional efficiency for 

training with PPPs and PPPDs than with LCF. However, this result does not support H2, 

as the PPPD condition yielded the highest instructional efficiency. This result contrasts 

with findings in (Harms et al., 2016), which found evidence of decreased learning 

efficiency from PPPDs when compared to PPPs, but it aligns with hypotheses regarding 

distractor learning benefits in (Parsons et al., 2006; Karavirta et al., 2012) that propose 

distractors can facilitate the highlighting of both subtle and complex principles as well as 

edge cases and common misconceptions. 
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Fig. 7 Instructional efficiency (E) for each of the three conditions 

 

Motivation 

To analyze motivation quantitatively, we scored the TEQ and calculated the within-subject 

change in programming attitude that occurred between the start and end of the study. 

Although there was no significant difference in TEQ results across conditions, for the 

perceived competence subscale (H(2)=.156, p=.925), participants who trained with PPPs 

(M=4.89) and PPPDs (M=4.91) scored marginally higher than those who trained with LCF 

(M=4.53). Those who trained via LCF (M=4.06) reported marginally higher 

pressure/tension (H(2)=2.626, p=.269) than those training via PPPs (3.42) and PPPDs 

(3.45), which suggests that a smaller block option set and correctness feedback after every 

move can decrease the experience of pressure when solving a timed parsons puzzle. 

We also found significant positive attitude changes from the start to end of the study. PPP 

participants’ attitude shifted most by: perceiving programming as more fun (z=2.392, 

p=0.017, r=0.07), more enjoyable (z=2.428, p=0.015, r=0.28), easier to start (z=3.038, 

p=0.002, r=0.55), less difficult to understand (z=-3.343, p=0.01, r=-0.6), and less of a 

foreign concept (z=-3.074, p=0.002, r=0.55). PPPD participants’ attitudes also shifted 

positively by: perceiving programming as easier to start (z=2.514, p=0.012, r=0.54). LCF 

participants shifted least by: perceive programming as more enjoyable (z=2.514, p=0.012, 

r=0.46). When including only those with little prior programming experience, PPP 

participants reported programming more as something they want to learn (z=1.997, 

p=0.046, r=0.48) and less boring (z=-1.961, p=0.050, r=0.48) in addition to the attitude 

shifts described above. Although these results indicate attitude improvement and signal 

support for H1, the lack of longitudinal data poses a threat to internal validity, as we cannot 

claim change at study conclusion persists. The small sample also prevented the finding of 

significant differences when comparing between conditions. For example, participants 

training via PPPs reported a notable but non-significant decrease in their perception that 

programming is a foreign concept compared to PPPD and LCF participants (H(2)=4.369, 

p=.113, PPP vs. PPD: p=.309, PPP vs. LCF: p=.186). Related mean changes and within-

subject results are included in Table 3. 

 

Table 3 Within-subject attitude change. Positive shifts (p), negative shifts (n). *p<0.05, **p<0.01 

Programming is… PPP PPP-distractor limited-constraint-feedback 

something I've wanted to 
learn (p) 

M=0.19, 
SD=1.40 

M=0.27, 
SD=1.31 

M=0.00, SD=1.19 

fun (p) 
M=0.74, 
SD=1.67* 

M=0.40, 
SD=1.74 

M=0.36, SD=1.43 
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enjoyable (p) 
M=0.90, 
SD=1.83* 

M=-0.05, 
SD=1.68 

M=0.68, SD=1.76* 

important to know (p) 
M=0.25, 
SD=1.48 

M=-0.05, 
SD=1.17 

M=0.09, SD=1.19 

easy to start (p) 
M=1.35, 
SD=2.29* 

M=0.68, 
SD=1.13* 

M=0.45, SD=1.71 

something that takes 
practice (p) 

M=0.065, 
SD=1.09 

M=0.05, 
SD=1.29 

M=-0.32, SD=1.17 

too difficult to 
understand (n) 

M=-1.48, 
SD=2.03** 

M=-0.77, 
SD=1.77 

M=-0.64, SD=1.89 

boring (n) 
M=-0.41, 
SD=1.6 

M=-0.32, 
SD=1.17 

M=-0.54, SD=1.90 

a foreign concept (n) 
M=-1.13, 
SD=1.83* 

M=-0.27, 
SD=1.55 

M=0.00, SD=2.07 

too time consuming (n) 
M=-0.35, 
SD=2.09 

M=-0.09, 
SD=1.27 

M=-0.09, SD=2.44 

 

To supplement the quantitative results, we sought qualitative feedback by requesting that 

participants describe their attitude or view toward programming after the learning 

experience. For both those who self-reported low and high prior programming experience, 

we recorded more hesitant responses from those who trained via limited constraint and 

feedback than those who trained via PPPs and PPPDs. One LCF participant who selected 

“have tried programming activities, but have not taken a class” in the demographic survey, 

reflected on sustained struggle: “I still feel like programming is insanely complex. When I 

was in college I dropped out of computer science as soon as we started python. I just 

couldn't understand what we were doing, and maybe I could understand it if I really tried. 

It just seems to be better geared towards certain people.” A second LCF participant with 

the same prior programming experience selection revealed marginal incremental 

motivational change: “I have already begun to study programming but have not stayed 

consistent with my studies. This has encouraged me to give more attention to the subject.” 

A third LCF participant who selected “have tried programming activities, but not taken a 

class” alluded to seeking external supports: “I hope to translate what I have gained today 

to my studies in coding. It is a bit tedious, and there is a lot to know, but I think that many 

basic codes can be written with the help of a search engine or some material.” 

In contrast, PPP and PPPD participants reflected more direct positive attitudinal change. 

One PPP participant whose prior programming experience selection was “never attempted 

to program before” noted that she “definitely enjoyed the puzzles and feel[s] more 

knowledgeable in terms of programming. It made me much more interested in learning to 

program.” A second PPP participant who recorded the same prior programming experience 

discovered possibility in her capability: “I feel like it's not as complicated as I thought it 

was. i could learn a lot through practicing more of it.” A third PPP participant who selected 
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“have tried programming activities, but have not taken a class” demonstrated confidence 

in his ability as well as opportunity for novices: “[T]his activity was somewhat easy but 

programming is really much harder than this. [B]ut this is a good way for a kid to start 

learning.” Aligned with this viewpoint was one PPPD participant who selected “never 

attempted to program before” and revealed potential for future pursuit of CT: “I would love 

to learn more about programming and encourage my son to start learning programming 

early.” A second PPPD participant who selected “have tried programming activities, but 

not taken a class” focused on the puzzle approach to learning in his response: “I think it is 

a skill that can be learned through practice. It was nice to look at programming as a series 

of puzzles rather than a complex language.” These results support H1 and those in 

(Charters, Lee, Ko, & Loksa, 2014), which found significant attitude improvement 

regardless of gender and education level after a brief online programming experience. 

Motivation 

We conclude the analysis by summarizing findings for each varied PPP element in Table 

4. 

 

Table 4 General summary of findings across conditions 

Cond. Extraneous Cognitive Load Instructional Efficiency Motivation/ Attitude 

PPP 1-palette 0 Correctness 
PPPD 1-palette 2-4 Correctness & 

distractor notification 

LCF All palettes All Scratch blocks None 

 

Conclusion & Future Work 

Our survey of grade 6-9 teachers exposed teacher perceptions of limited student 

engagement with data concepts central to CT. These results led us to extend the trend of 

balancing Scratch’s agency with structure to better serve learners and reduce burden on 

teachers. A small pilot study of an adult population using a learning system that integrates 

PPPs with Scratch yielded results indicating the structure provided by PPPs catalyzes 

motivation for CT, reduces extraneous cognitive load, and increases learning efficiency 

without sacrificing performance on transfer tasks. 

While these results reveal opportunities to advance the teaching and learning of CT via 

augmentations to block-based programming environments, we remain cautious due to 

external validity limitations: the single CT concept, sequences, and small summative 

evaluation population (75 adults), threaten generalizability. In future work, we intend to 

study additional CT concepts, such as conditionals and looping, functionality variation, 

such as offering increasing agency through the introduction of teacher-defined, objective-
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driven feedback, the fading of correctness feedback, and the configurable integration of 

multiple Scratch palettes for each puzzle, and participants, including online studies with 

over 500 adults as well as smaller, middle school classroom studies. These conditions 

should facilitate the study of CT learning beyond that of the beginners under focus in this 

study by offering tooling to apply incremental cognitive load, deepen CT concept uptake, 

and transition learners toward interest-driven projects that sustain motivation. With 

continued investigation, we aim to identify factors supportive of reliably efficient, effective, 

and equitable CT learning that build bridges between cognitive, situated, and critical CT. 
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