PLOS BIOLOGY

Check for
updates

G OPEN ACCESS

Citation: Avecilla G, Chuong JN, Li F, Sherlock G,
Gresham D, Ram Y (2022) Neural networks enable
efficient and accurate simulation-based inference
of evolutionary parameters from adaptation
dynamics. PLoS Biol 20(5): €3001633. https:/doi.
org/10.1371/journal.phio.3001633

Academic Editor: J. Arjan G. M. de Visser,
Wageningen University, NETHERLANDS

Received: September 30, 2021
Accepted: April 14, 2022
Published: May 27, 2022

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles. The
editorial history of this article is available here:
https://doi.org/10.1371/journal.pbio.3001633

Copyright: © 2022 Avecilla et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All source code for
performing the analyses and reproducing the
figures is available at https:/github.com/graceave/

METHODS AND RESOURCES

Neural networks enable efficient and accurate
simulation-based inference of evolutionary
parameters from adaptation dynamics

Grace Avecilla® 2, Julie N. Chuong®'2, Fangfei Li%, Gavin Sherlock®,
David Gresham@®"2*, Yoav Ram®?*

1 Department of Biology, New York University, New York, New York, United States of America, 2 Center for
Genomics and Systems Biology, New York University, New York, New York, United States of America,

3 Department of Genetics, Stanford University, California, Stanford, United States of America, 4 School of
Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

* dgresham @nyu.edu (DG); yoav@yoavram.com (YR)

Abstract

The rate of adaptive evolution depends on the rate at which beneficial mutations are intro-
duced into a population and the fitness effects of those mutations. The rate of beneficial
mutations and their expected fitness effects is often difficult to empirically quantify. As these
2 parameters determine the pace of evolutionary change in a population, the dynamics of
adaptive evolution may enable inference of their values. Copy number variants (CNVs) are
a pervasive source of heritable variation that can facilitate rapid adaptive evolution. Previ-
ously, we developed a locus-specific fluorescent CNV reporter to quantify CNV dynamics in
evolving populations maintained in nutrient-limiting conditions using chemostats. Here, we
use CNV adaptation dynamics to estimate the rate at which beneficial CNVs are introduced
through de novo mutation and their fitness effects using simulation-based likelihood—free
inference approaches. We tested the suitability of 2 evolutionary models: a standard
Wright—-Fisher model and a chemostat model. We evaluated 2 likelihood-free inference
algorithms: the well-established Approximate Bayesian Computation with Sequential Monte
Carlo (ABC-SMC) algorithm, and the recently developed Neural Posterior Estimation (NPE)
algorithm, which applies an artificial neural network to directly estimate the posterior distribu-
tion. By systematically evaluating the suitability of different inference methods and models,
we show that NPE has several advantages over ABC-SMC and that a Wright—Fisher evolu-
tionary model suffices in most cases. Using our validated inference framework, we estimate
the CNV formation rate at the GAP1 locus in the yeast Saccharomyces cerevisiae to be
1077 to 10™* CNVs per cell division and a fitness coefficient of 0.04 to 0.1 per generation for
GAP1CNVs in glutamine-limited chemostats. We experimentally validated our inference-
based estimates using 2 distinct experimental methods—barcode lineage tracking and pair-
wise fithess assays—which provide independent confirmation of the accuracy of our
approach. Our results are consistent with a beneficial CNV supply rate that is 10-fold greater
than the estimated rates of beneficial single-nucleotide mutations, explaining the outsized
importance of CNVs in rapid adaptive evolution. More generally, our study demonstrates the
utility of novel neural network—based likelihood—free inference methods for inferring the
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rates and effects of evolutionary processes from empirical data with possible applications
ranging from tumor to viral evolution.

Introduction

Evolutionary dynamics are determined by the supply rate of beneficial mutations and their
associated fitness effect. As the combination of these 2 parameters determines the overall rate
of adaptive evolution, experimental methods are required for separately estimating them. The
fitness effects of beneficial mutations can be determined using competition assays [1,2], and
mutation rates are typically estimated using mutation accumulation or Luria-Delbriick fluctu-
ation assays [1,3]. An alternative approach to estimating both the rate and effect of beneficial
mutations entails quantifying the dynamics of adaptive evolution and using statistical infer-
ence methods to find parameter values that are consistent with the dynamics [4-7].
Approaches to measure the dynamics of adaptive evolution, quantified as changes in the fre-
quencies of beneficial alleles, have become increasingly accessible using either phenotypic
markers [8] or high-throughput DNA sequencing [9]. Thus, inference methods using adapta-
tion dynamics data hold great promise for determining the underlying evolutionary
parameters.

Fitness effects of beneficial mutations comprise a portion of a distribution of fitness effects
(DFE). Determining the parameters of the DFE in a given condition is a central goal of evolu-
tionary biology. Typically, beneficial mutations can occur at multiple loci and thus variance in
the DFE reflects genetic heterogeneity. However, in some scenarios, a single locus is the domi-
nant gene in which beneficial mutations occur, such as the case of mutations in the S-lactamase
gene underlying B-lactam antibiotic resistance or in rpoB underlying rifampicin resistance in
bacteria [10,11]. In this case, different mutations at the same locus confer differential beneficial
effects resulting in a locus-specific DFE. Typically, a DFE of beneficial mutations encompasses
both allelic and locus heterogeneity.

Copy number variants (CNVs) are defined as deletions or amplifications of genomic
sequences. Due to their high rate of formation and strong fitness effects, they can underlie
rapid adaptive evolution in diverse scenarios ranging from niche adaptation to speciation [12—
16]. In the short term, CN'Vs may provide immediate fitness benefits by altering gene dosage.
Over longer evolutionary timescales, CNVs can provide the raw material for the generation of
evolutionary novelty through diversification of different gene copies [17]. As a result, CNVs
are common in human populations [18-20], domesticated and wild populations of animals
and plants [21-23], pathogenic and nonpathogenic microbes [24-27], and viruses [28-30].
CNVs can be both a driver and a consequence of cancers (reviewed in [31]).

Although critically important to adaptive evolution, our understanding of the dynamics
and reproducibility of CNVs in adaptive evolution is poor. Specifically, key evolutionary prop-
erties of CNVs, including their rate of formation and fitness effects, are largely unknown. As
with other classes of genomic variation, CNV formation is a relatively rare event, occurring at
sufficiently low frequencies to make experimental measurement challenging. Estimates of de
novo CNV rates are derived from indirect and imprecise methods, and even when genome-
wide mutation rates are directly quantified by mutation accumulation studies and whole-
genome sequencing, estimates depend on both genotype and condition [3] and vary by orders
of magnitude [32-39].

Fitness effects of CN'Vs vary depending on gene content, genetic background, and the envi-
ronment. In evolution experiments in many systems, CNVs arise repeatedly in response to
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strong selection [40-47], consistent with strong beneficial fitness effects. Several of these stud-
ies measured fitness of clonal isolates containing CNV's and reported selection coefficients
ranging from —0.11 to 0.6 [40,47,48]. However, the fitness of lineages containing CNVs varies
between isolates even within studies, which could be due to additional heritable variation or to
differences in fitness between different types of CNVs (e.g., aneuploidy versus single-gene
amplification).

Due to the challenge of empirically measuring rates and effects of beneficial mutations
across many genetic backgrounds, conditions, and types of mutations, researchers have
attempted to infer these parameters from population-level data using evolutionary models and
Bayesian inference [5,6,49]. This approach has several advantages. First, model-based infer-
ence provides estimations of interpretable parameters and the opportunity to compare multi-
ple models. Second, the degree of uncertainty associated with a point estimate can be
quantified. Third, a posterior distribution over model parameters allows exploration of param-
eter combinations that are consistent with the observed data, and posterior distributions can
provide insight into certain relationships between parameters [50]. Fourth, posterior predic-
tions can be generated using the model and either compared to the data or used to predict the
outcome of differing scenarios.

Standard Bayesian inference requires a likelihood function, which gives the probability of
obtaining the observed data given some values of the model parameters. However, for many
evolutionary models, such as the Wright-Fisher model, the likelihood function is analytically
and/or computationally intractable. Likelihood-free simulation-based Bayesian inference
methods that bypass the likelihood function, such as Approximate Bayesian Computation
(ABG; [51]), have been developed and used extensively in population genetics [52,53], ecology
and epidemiology [54,55], cosmology [56], as well as experimental evolution [4,6,57-59]. The
simplest form of likelihood-free inference is rejection ABC [60,61], in which model parameter
proposals are sampled from a prior distribution, simulations are generated based on those
parameter proposals, and simulated data are compared to empirical observations using sum-
mary statistics and a distance function. Proposals that generate simulated data with a distance
less than a defined tolerance threshold are considered samples from the posterior distribution
and can therefore be used for its estimation. Efficient sampling methods have been introduced,
namely Markov chain Monte Carlo [62] and Sequential Monte Carlo (SMC) [63], which itera-
tively select proposals based on previous parameters samples so that regions of the parameter
space with higher posterior density are explored more often. A shortcoming of ABC is that it
requires summary statistics and a distance function, which may be difficult to choose appro-
priately and compute efficiently, especially when using high-dimensional or multimodal data,
although methods have been developed to address this challenge [52,64,65].

Recently, new inference methods have been introduced that directly approximate the likeli-
hood or the posterior density function using deep neural density estimators—artificial neural
networks that approximate density functions. These methods, which have recently been used
in neuroscience [50], population genetics [66], and cosmology [67], forego the summary and
distance functions, can use data with higher dimensionality, and perform inference more effi-
ciently [50,67,68].

Despite being originally developed to analyze population genetic data, e.g., to infer parame-
ters of the coalescent model [60-63], likelihood-free methods have only been used in a small
number of experimental evolution studies. Hegreness and colleagues [5] estimated the rate
and mean fitness effect of beneficial mutations in Escherichia coli. They performed 72 repli-
cates of a serial dilution evolution experiment, starting with equal frequencies of 2 strains that
differ only in a fluorescent marker in a putatively neutral location and allowed them to evolve
over 300 generations. Following the marker frequencies, they estimated from each
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experimental replicate 2 summary statistics: the time when a beneficial mutation starts to
spread in the population and the rate at which its frequency increases. They then ran 500 simu-
lations of an evolutionary model using a grid of model parameters to produce a theoretical dis-
tribution of summary statistics. Finally, they used the one-dimensional Kolmogorov-Smirnov
distance between the empirical and theoretical summary statistic distributions to assess the
inferred parameters. Barrick and colleagues [6] also inferred the rate and mean fitness effect
from similar serial dilution experiments using a different evolutionary model implemented
with a t-leap stochastic simulation algorithm. They used the same summary statistics but
applied the two-dimensional Kolmogorov-Smirnov distance function to better account for
dependence between the summary statistics. de Sousa and colleagues [69] also focused on evo-
lutionary experiments with 2 neutral markers. Their model included 3 parameters: the benefi-
cial mutation rate and the 2 parameters of a Gamma distribution for the fitness effects of
beneficial mutations. They introduced a new summary statistic that uses both the marker fre-
quency trajectories and the population mean fitness trajectories (measured using competition
assays). They summarized these data by creating histograms of the frequency values and fitness
values for each of 6 time points. This resulted in 66 summary statistics necessitating the appli-
cation of a regression-based method to reduce the dimensionality of the summary statistics
and achieve greater efficiency [65,69]. A simpler approach was taken by Harari and colleagues
[49], who used a rejection ABC approach to estimate a single model parameter, the endoredu-
plication rate, from evolutionary experiments with yeast. They used the frequency dynamics of
3 genotypes (haploid and diploid homozygous and heterozygous at the MAT locus) without a
summary statistic. The distance between the empirical results and 100 simulations was com-
puted as the mean absolute error. Recently, Schenk and colleagues [69] inferred the mean
mutation rate and fitness effect for 3 classes of mutations from serial dilution experiments at 2
different population sizes, which they sequenced at the end of the experiment. They used a
Wright-Fisher model to simulate the frequency of fixed mutations in each class and used a
neural network approach to estimate the parameters that best fit their data. These prior studies
point to the potential of simulation-based inference.

Previously, we developed a fluorescent CNV reporter system in the budding yeast, Saccha-
romyces cerevisiae, to quantify the dynamics of de novo CNVs during adaptive evolution [48].
Using this system, we quantified CNV dynamics at the GAPI locus, which encodes a general
amino acid permease, in nitrogen-limited chemostats for over 250 generations in multiple
populations. We found that GAP1 CNVs reproducibly arise early and sweep through the popu-
lation. By combining the GAPI CNV reporter with barcode lineage tracking and whole-
genome sequencing, we found that 10” to 10* independent CN'V-containing lineages compris-
ing diverse structures compete within populations.

In this study, we estimate the formation rate and fitness effect of GAPI CNVs. We tested
both ABC-SMC [70] and a neural density estimation method, Neural Posterior Estimation
(NPE) [71], using a classical Wright-Fisher model [72] and a chemostat model [73]. Using
simulated data, we tested the utility of the different evolutionary models and inference meth-
ods. We find that NPE has better performance than ABC-SMC. Although a more complex
model has improved performance, the simpler and more computationally efficient Wright-
Fisher model is appropriate in most scenarios. We validated our approach by comparison to 2
different experimental methods: lineage tracking and pairwise fitness assays. We estimate that
in glutamine-limited chemostats, beneficial GAPI CNVs are introduced at a rate of 10™*7 to
10~ per cell division and have a selection coefficient of 0.04 to 0.1 per generation. NPE is likely
to be a useful method for inferring evolutionary parameters across a variety of scenarios,
including tumor and viral evolution, providing a powerful approach for combining experi-
mental and computational methods.
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Results

In a previous experimental evolution study, we quantified the dynamics of de novo CNVsin 9
populations using a prototrophic yeast strain containing a fluorescent GAPI CNV reporter.
[48]. Populations were maintained in glutamine-limited chemostats for over 250 generations
and sampled every 8 to 20 generations (25 time points in total) to determine the proportion of
cells containing a GAPI CNV using flow cytometry (populations gln_01-gln_09 in Fig 1A). In
the same study, we also performed 2 replicate evolution experiments using the fluorescent
GAPI CNV reporter and lineage-tracking barcodes quantifying the proportion of the popula-
tion with a GAPI CNV at 32 time points (populations bc01-bc02 in Fig 1A) [48]. We used
interpolation to match time points between these 2 experiments (S1 Fig) resulting in a dataset
comprising the proportion of the population with a GAPI CNV at 25 time points in 11
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Fig 1. Empirical data and evolutionary models. (A) Estimates of the proportion of cells with GAPI CNV:s for 11 S. cerevisiae populations containing either a
fluorescent GAP1 CNV reporter (gln_01 to gln_09) or a fluorescent GAPI CNV reporter and lineage tracking barcodes (bc01 and bc02) evolving in glutamine-
limited chemostats, from [48]. (B) In our models, cells with the ancestral genotype (X4) can give rise to cells with a GAP1 CNV (X¢) or other beneficial mutation
(Xp) at rates 8¢ and Jp, respectively. (C) The WF model has discrete, nonoverlapping generations and a constant population size. Allele frequencies in the next
generation change from the previous generation due to mutation, selection, and drift. (D) In the chemostat model, medium containing a defined concentration of a
growth-limiting nutrient (Sy) is added to the culture at a constant rate. The culture, containing cells and medium, is removed by continuous dilution at rate D. Upon
inoculation, the number of cells in the growth vessel increases and the limiting-nutrient concentration decreases until a steady state is reached (red and blue curves
in inset). Within the growth vessel, cells grow in continuous, overlapping generations undergoing mutation, selection, and drift. Data and code required to generate
A can be found at https://doi.org/10.17605/OSF.IO/E9D5X. CNV, copy number variant; WF, Wright-Fisher.

https://doi.org/10.1371/journal.pbio.3001633.g001
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replicate evolution experiments. In this study, we tested whether the observed dynamics of
CNV-mediated evolution provide a means of inferring the underlying evolutionary
parameters.

Overview of evolutionary models

We tested 2 models of evolution: the classical Wright-Fisher model [72] and a specialized che-
mostat model [73]. Previously, it has been shown that a single effective selection coefficient
may be sufficient to model evolutionary dynamics in populations undergoing adaptation [5].
Therefore, we focus on beneficial mutations and assume a single selection coefficient for each
class of mutation. In both models, we start with an isogenic population in which GAP1 CNV
mutations occur at a rate 8¢ and other beneficial mutations occur at rate 8y (Fig 1B). In our
simulations, cells can acquire only a single beneficial mutation, either a CNV at GAPI or some
other beneficial mutation (i.e., single nucleotide variant, transposition, diploidization, or CNV
at another locus). In all simulations (except for sensitivity analysis, see the “Inference from
empirical evolutionary dynamics” section), the formation rate of beneficial mutations other
than GAP1 CNVs was fixed at 8 = 107> per genome per cell division, and the selection coeffi-
cient was fixed at sz = 0.001, based on estimates from previous experiments using yeast in sev-
eral conditions [74-76]. Our goal was to infer the GAPI CNV formation rate, 8¢, and GAPI
CNV selection coefficient, sc.

The 2 evolutionary models have several unique features. In the Wright-Fisher model, the
population size is constant, and each generation is discrete. Therefore, genetic drift is effi-
ciently modeled using multinomial sampling (Fig 1C). In the chemostat model [73], fresh
medium is added to the growth vessel at a constant rate and medium, and cells are removed
from the growth vessel at the same rate resulting in continuous dilution of the culture (Fig
1D). Individuals are randomly removed from the population through the dilution process,
regardless of fitness, in a manner analogous to genetic drift. In the chemostat model, we start
with a small initial population size and a high initial concentration of the growth-limiting
nutrient. Following inoculation, the population size increases and the growth-limiting nutrient
concentration decreases until a steady state is attained that persists throughout the experiment.
As generations are continuous and overlapping in the chemostat model, we use the Gillespie
algorithm with t-leaping [77] to simulate the population dynamics. Growth parameters in the
chemostat are based on experimental conditions during the evolution experiments [48] or
taken from the literature (Table 1).

Table 1. Chemostat parameters.

Parameter Value Source
ka=kg=kc 0.103 mM Airoldi and colleagues (2016) https://doi.org/10.1091/
mbc.E14-05-1013
Ya=Yp=Y¢ 32,445,000 cells/mL/mM Airoldi and colleagues (2016) https://doi.org/10.1091/
nitrogen mbc.E14-05-1013

Expected S at steady state Approximately 0.08 mM Airoldi and colleagues (2016) https://doi.org/10.1091/
mbc.E14-05-1013

Urnax 0.35 hour™! Cooper TG (1982) Nitrogen metabolism in S. cerevisiae

D 0.12 hour™ Lauer and colleagues (2018) https://doi.org/10.1371/
journal.pbio.3000069

So 0.8 mM Lauer and colleagues (2018) https://doi.org/10.1371/
journal.pbio.3000069

Expected cell density at Approximately 2.5 x 107 Lauer and colleagues (2018) https://doi.org/10.1371/

steady state cells/mL journal.pbio.3000069

Doubling time 5.8 hours Lauer and colleagues (2018) https://doi.org/10.1371/

journal.pbio.3000069
https://doi.org/10.1371/journal.pbio.3001633.t001
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Overview of inference strategies

We tested 2 likelihood-free Bayesian methods for joint inference of the GAP1 CNV formation
rate and the GAPI CNV fitness effect: Approximate Bayesian Computation with Sequential
Monte Carlo (ABC-SMC) [63] and NPE [78-80]. We used the proportion of the population
with a GAPI CNV at 25 time points as the observed data (Fig 1A). For both methods, we
defined a log-uniform prior distribution for the CNV formation rate ranging from 10™'* to
10~ and a log-uniform prior distribution for the selection coefficient ranging from 10~* to 0.4.

We applied ABC-SMC (Fig 2A), implemented in the Python package pyABC [70]. We used
an adaptively weighted Euclidean distance function to compare simulated data to observed
data. Thus, the distance function adapts over the course of the inference process based on the
amount of variance at each time point [81]. The number of samples drawn from the proposal
distribution (and therefore number of simulations) is changed at each iteration of the
ABC-SMC algorithm using the adaptive population strategy, which is based on the shape of
the current posterior distribution [82]. We applied bounds on the maximum number of sam-
ples used to approximate the posterior in each iteration; however, the total number of samples
(simulations) used in each iteration is greater because not all simulations are accepted for pos-
terior estimation (see Methods). For each observation, we performed ABC-SMC with multiple
iterations until either the acceptance threshold (e = 0.002) was reached or until 10 iterations
had been completed. We performed inference on each observation independently 3 times.
Although we refer to different observations belonging to the same “training set,” a different
ABC-SMC procedure must be performed for each observation.

We applied NPE (Fig 2B), implemented in the Python package sbi [71], and tested 2 spe-
cialized normalizing flows as density estimators: a masked autoregressive flow (MAF) [83] and
a neural spline flow (NSF) [84]. The normalizing flow is used as a density estimator to “learn”
an amortized posterior distribution, which can then be evaluated for specific observations.
Thus, amortization allows for evaluation of the posterior for each new observation without the
need to retrain the neural network. To test the sensitivity of our inference results on the set of
simulations used to learn the amortized posterior, we trained 3 independent amortized net-
works with different sets of simulations generated from the prior distribution and compared
our resulting posterior distributions for each observation. We refer to inferences made with
the same amortized network as having the same “training set.”

NPE outperforms ABC-SMC

To test the performance of each inference method and evolutionary model, we generated 20
simulated synthetic observations for each model (Wright-Fisher or chemostat) over 4 combi-
nations of CNV formation rates and selection coefficients, resulting in 40 synthetic observa-
tions (i.e., 5 simulated observations per combination of model, 8¢, and s¢). We refer to the
parameters that generated the synthetic observation as the “true” parameters. For each syn-
thetic observation, we performed inference using each method 3 times. Inference was per-
formed using the same evolutionary model as that used to generate the observation. We found
that NPE using NSF as the density estimator was superior to NPE using MAF, and, therefore,
we report results using NSF in the main text (results using MAF are in S2 Fig).

For each inference method, we plotted the joint posterior distribution with the 50% and
95% highest density regions (HDR) [85] demarcated (Fig 2C, S1 Data in https://doi.org/10.
17605/OSF.IO/E9D5X). The true parameters are expected to be covered by these HDRs at
least 50% and 95% of the time, respectively. We also computed the marginal 95% highest den-
sity intervals (HDIs) [85] using the marginal posterior distributions for the GAP1 CNV selec-
tion coefficient and GAPI CNV formation rate. We found that the true parameters were
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Fig 2. Inference methods and performance assessment. (A) When using ABC-SMG, in the first iteration, a proposal for the parameters c (GAPI CNV
formation rate) and sc (GAPI CNV selection coefficient) is sampled from the prior distribution. Simulated data are generated using either a WF or chemostat
model and the current parameter proposal. The distance between the simulated data and the observed data is computed, and the proposed parameters are
weighted by this distance. These weighted parameters are used to sample the proposed parameters in the next iteration. Over many iterations, the weighted
parameter proposals provide an increasingly better approximation of the posterior distribution of 8¢ and sc (adapted from [68]). (B) In NPE, simulated data
are generated using parameters sampled from the prior distribution. From the simulated data and parameters, a density-estimating neural network learns the
joint density of the model parameters and simulated data (the “amortized posterior”). The network then evaluates the conditional density of model parameters
given the observed data, thus providing an approximation of the posterior distribution of 8¢ and s¢ (adapted from [50,68].) (C) Assessment of inference
performance. The 50% and 95% HDRs are shown on the joint posterior distribution with the true parameters and the MAP parameter estimates. We compare
the true parameters to the estimates by their log ratio. We also generate posterior predictions (sampling 50 parameters from the joint posterior distribution and
using them to simulate frequency trajectories, p;), which we compare to the observation, o;, using the RMSE and the correlation coefficient. ABC-SMC,
Approximate Bayesian Computation with Sequential Monte Carlo; CNV, copy number variant; HDR, highest density region; MAP, maximum a posteriori;
NPE, Neural Posterior Estimation; RMSE, root mean square error; WF, Wright-Fisher.

https://doi.org/10.1371/journal.pbio.3001633.9002

within the 50% HDR in half or more of the tests (averaged over 3 training sets) across a range
of parameter values with the exception of ABC-SMC applied to the Wright-Fisher model
when the GAPI CNV formation rate (8c = 1077) and selection coefficient (sc = 0.001) were
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both low (Fig 3A). The true parameters were within the 95% HDR in 100% of tests (S1 Data
in https://doi.org/10.17605/OSF.IO/E9D5X). The width of the HDI is informative about the
degree of uncertainty associated with the parameter estimation. The HDIs for both fitness
effect and formation rate tend to be smaller when inferring with NPE compared to ABC-SMC,
and this advantage of NPE is more pronounced when the CNV formation rate is high (§¢ =
10™°) (Fig 3B and 3C).

B C
0.251

3.01 £ Chemo NPE
£3 WF NPE
E3 Chemo ABC-SMC

£ WF ABC-SMC

0.20 1

0.15

50%

in 50% HDR

25%1

Percent of true parameters

Training set
0.31 o 1

&=

s 95% HDI width

%

@ &

-

8 95% HDI width, log10

2
- e )

sc=0.001, sg = 0.001, sc=0.1,

sc=01,

8¢ =1e-5 8¢ =1e-7 8; =1e-5 8; =1e-7

D

sc=0.001, sg = 0.001, sc=0.1,

sc=01,

d¢c =1e-5 §¢ =1e-7 3¢ =1e-5 3¢ =1e-7

5c=0.001, 5o =0.001, sc=0.1,

d¢c =1e-5 3¢ =1e-7 3¢ =1e-5 3¢ =1e-7

sc=0.1,

s¢=0.001,

s¢ =0.001,
8¢ =1e-7

s¢=04,
8¢ =1e-5

s¢=0.1,
8¢ =1e-7

8¢ =1e-5

0.251
0.2

=1s I N )

0.0

0.51

0.0 -0.251 y

—-0.50 1
-0.51

—0.751

3¢ Sc 8¢ 8¢ Sc

log10 ( MAP parameter / true parameter )

0.06 1

0.03 : iig ‘ o IV
. | ‘ | i M‘ st ¥ g

oo M ¢ '
? 4 | r " 0
e SRR

o e e 3

0.001

Posterior predictive check
root mean square error

sc=0.1,
8¢ =1e-7

Sc=0.001,
8¢ =1e-5

S =0.001,
8¢ =1e-7

sc=0.1,
8¢ =1e-5

Fig 3. Performance assessment of inference methods using simulated synthetic observations. The figure shows the results of inference on 5 simulated synthetic
observations using either the WF or chemostat (Chemo) model per combination of fitness effect sc and formation rate 8. Simulations and inference were performed
using the same model. For NPE, each training set corresponds to an independently amortized posterior distribution trained on a different set of 100,000 simulations, with
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https://doi.org/10.1371/journal.pbio.3001633.g003
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We computed the maximum a posteriori (MAP) estimate of the GAP1 CNV formation rate
and selection coefficient by determining the mode (i.e., argmax) of the joint posterior distribu-
tion, and computed the log ratio of the MAP relative to the true parameters. We find that the
MAP estimate is close to the true parameter (i.e., the log ratio is close to zero) when the selec-
tion coefficient is high (s¢ = 0.1), regardless of the model or method, and much of the error is
due to the formation rate estimation error (Fig 3D). Generally, the MAP estimate is within an
order of magnitude of the true parameter (i.e., the log ratio is less than 1), except when the for-
mation rate and selection coefficient are both low (8¢ = 1077, sc = 0.001); in this case, the for-
mation rate was underestimated up to 4-fold, and the selection coefficient was slightly
overestimated (Fig 3D). In some cases, there are substantial differences in log ratio between
training sets using NPE; however, this variation in log ratio is usually less than the variation in
the log ratio when performing inference with ABC-SMC. Overall, the log ratio tends to be
closer to zero (i.e., estimate close to true parameter) when using NPE (Fig 3D).

We performed posterior predictive checks by simulating GAPI CNV dynamics using the
MAP estimates as well as 50 parameter values sampled from the posterior distribution (S1
Data in https://doi.org/10.17605/OSE.IO/E9D5X). We computed both the root mean square
error (RMSE) and the correlation coefficient between posterior predictions and the observa-
tion to measure the prediction accuracy (Fig 3E, S3 Fig). We find that the RMSE posterior pre-
dictive accuracy of NPE is similar to, or better than, that of ABC-SMC (Fig 3E). The predictive
accuracy quantified using correlation was close to 1 for all cases except when GAPI CNV for-
mation rate and selection coefficient are both low (sc = 0.001 and 8¢ = 1077) (S3 Fig).

We performed model comparison using both Akaike information criterion (AIC), com-
puted using the MAP estimate, and widely applicable information criterion (WAIC), computed
over the entire posterior distribution [86]. Lower values imply higher predictive accuracy and a
difference of 2 is considered significant (S4 Fig) [87]. We find similar results for both criteria:
NPE with either model have similar values, although the value for Wright-Fisher is sometimes
slightly lower than the value for the chemostat model. When s¢ = 0.1, the value for NPE is con-
sistently and significantly lower than for ABC-SMC. When ¢ = 10~ and s¢. = 0.001, the value
for NPE with the Wright-Fisher model is significantly lower than that for ABC-SMC, while the
NPE with the chemostat model is not. The difference between any combination of model and
method was insignificant for 8 = 10" and s¢ = 0.001. Therefore, NPE is similar or better than
ABC-SMC using either evolutionary model and for all tested combinations of GAPI CNV for-
mation rate and selection coefficient, and we further confirmed the generality of this trend
using the Wright-Fisher model and 8 additional parameter combinations (S5 Fig).

We performed NPE using 10,000 or 100,000 simulations to train the neural network and
found that increasing the number of simulations did not substantially reduce the MAP estima-
tion error, but did tend to decrease the width of the 95% HDIs for both parameters (S6 Fig).
Similarly, we performed ABC-SMC with per observation maximum accepted parameter sam-
ples (i.e., “particles” or “population size”) numbers of 10,000 and 100,000, which correspond
to increasing number of simulations per inference procedure, and found that increasing the
budget decreases the widths of the 95% HDIs for both parameters (S6 Fig). Overall, amortiza-
tion with NPE allowed for more accurate inference using fewer simulations corresponding to
less computation time (S7 Fig).

The Wright-Fisher model is suitable for inference using chemostat
dynamics

Whereas the chemostat model is a more precise description of our evolution experiments,
both the model itself and its computational implementation have some drawbacks. First, the
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Fig 4. Inference with WF model from chemostat dynamics. The figure shows results of inference using NPE and either the WF or chemostat (Chemo)
model on 5 simulated synthetic observations generated using the chemostat model for different combinations of fitness effect sc and formation rate 8.
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Wright-Fisher.

https://doi.org/10.1371/journal.pbio.3001633.9004

model is a stochastic continuous time model implemented using the t-leap method [77]. In
this method, time is incremented in discrete steps and the number of stochastic events that
occur within that time step is sampled based on the rate of events and the system state at the
previous time step. For accurate stochastic simulation, event rates and probabilities must be
computed at each time step, and time steps must be sufficiently small. This incurs a heavy
computational cost as time steps are considerably smaller than one generation, which is the
time step used in the simpler Wright-Fisher model. Moreover, the chemostat model itself has
additional parameters compared to the Wright-Fisher model, which must be experimentally
measured or estimated.

The Wright-Fisher model is more general and more computationally efficient than the che-
mostat model (S1 Table). Therefore, we investigated if it can be used to perform accurate
inference with NPE on synthetic observations generated by the chemostat model. By assessing
how often the true parameters were covered by the HDRs, we found that the Wright-Fisher is
a good enough approximation of the full chemostat dynamics when selection is weak (s¢c =
0.001) (S8 Fig), and it performs similarly to the chemostat model in parameter estimation
accuracy (Fig 4A and 4B). The Wright-Fisher is less suitable when selection is strong (sc =
0.1), as the true parameters are not covered by the 50% or 95% HDR (S8 Fig). Nevertheless,
estimation of the selection coefficient remains accurate, and the difference in estimation of the
formation rate is less than an order of magnitude, with a 3- to 5-fold overestimation (MAP log
ratio between 0.5 and 0.7) (Fig 4C and 4D).

Inference using a set of observations

Our empirical dataset includes 11 biological replicates of the same evolution experiment. Dif-
ferences in the dynamics between independent replicates may be explained by an underlying
DEFE rather than a single constant selection coefficient. It is possible to infer the DFE using all
experiments simultaneously. However, inference of distributions from multiple experiments
presents several challenges, common to other mixed-effects or hierarchical models [88]. Alter-
natively, individual values inferred from individual experiments could provide an approxima-
tion of the underlying DFE.
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To test these 2 alternative strategies for inferring the DFE, we performed simulations in
which we allowed for variation in the selection coefficient of GAPI CNVs for each population
in a set of observations. We sampled 11 selection coefficients from a Gamma distribution with
shape and scale parameters a and S, respectively, and an expected value E(s) = o8 [69], and
then simulated a single observation for each sampled selection coefficient. As the Wright-
Fisher model is a suitable approximation of the chemostat model (Fig 4), we used the Wright-
Fisher model both for generating our observation sets and for parameter inference.

For the observation sets, we used NPE to either infer a single selection coefficient for each
observation or to directly infer the Gamma distribution parameters @ and §§ from all 11 obser-
vations. When inferring 11 selection coefficients, one for each observation in the observation
set, we fit a Gamma distribution to 8 of the 11 inferred values (Fig 5, green lines). When
directly inferring the DFE, we used a uniform prior for a from 0.5 to 15 and a log-uniform
prior for 8 from 107> to 0.8. We held out 3 experiments from the set of 11 and used a 3-layer
neural network to reduce the remaining 8 observations to a 5-feature summary statistic vector,
which we then used as an embedding net [71] with NPE to infer the joint posterior distribution

of @, B, and 8¢ (Fig 5, blue lines). For each observation set, we performed each inference
method 3 times, using different sets of 8 experiments to infer the underlying DFE.

We used Kullback-Leibler divergence to measure the difference between the true DFE and
inferred DFE and find that the inferred selection coefficients from the single experiments cap-
ture the underlying DFE as well or better than direct inference of the DFE from a set of obser-
vations for both @ = 1 (an exponential distribution) and « = 10 (sum of 10 exponentials)
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Fig 5. Inference of the DFE. A set of 11 simulated synthetic observations was generated from a WF model with CNV selection coefficients sampled from an exponential
(Gamma with a = 1) DFE (true DFE; black curve). The MAP DFEs (observation set DFE, green curves) were directly inferred using 3 different subsets of 8 out of 11
synthetic observations. We also inferred the selection coefficient for each individual observation in the set of 11 separately and fit a Gamma distribution (single
observation DFE, blue curves) to sets of 8 inferred selection coefficients. All inferences were performed with NPE using the same amortized network to infer a posterior
for each set of 8 synthetic observations or each single observation. (A) weak selection, high formation rate, (B) weak selection, low formation rate, (C) strong selection,
high formation rate, (D) strong selection, low formation rate. Data and code required to generate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X.
CNV, copy number variant; DFE, distribution of fitness effects; MAP, maximum a posteriori; NPE, Neural Posterior Estimation; WF, Wright-Fisher.

https://doi.org/10.1371/journal.pbio.3001633.9005
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(Fig 5, S9 Fig). The only exception we found is when a = 10, E(s) = 0.001, and 8¢ = 107 (S9
Fig, S2 Table). We assessed the performance of inference from a set of observations using out-
of-sample posterior predictive accuracy [86] and found that inferring o and f from a set of
observations results in lower posterior predictive accuracy compared to inferring sc from a
single observation (S10 Fig). Therefore, we conclude that estimating the DFE through infer-
ence of individual selection coefficients from each observation is superior to inference of the
distribution from multiple observations.

Inference from empirical evolutionary dynamics

To apply our approach to empirical data we inferred GAP1 CNV selection coefficients and for-
mation rates using 11 replicated evolutionary experiments in glutamine-limited chemostats [48]
(Fig 1A) using NPE with both evolution models. We performed posterior predictive checks,
drawing parameter values from the posterior distribution, and found that GAPI CNV were pre-
dicted to increase in frequency earlier and more gradually than is observed in our experimental
populations (S11 Fig). This discrepancy is especially apparent in experimental populations that
appear to experience clonal interference with other beneficial lineages (i.e., gln07, gln09). There-
fore, we excluded data after generation 116, by which point CNVs have reached high frequency
in the populations but do not yet exhibit the nonmonotonic and variable dynamics observed in
later time points, and performed inference. The resulting posterior predictions are more similar
to the observations in initial generations (average MAP RMSE for the 11 observations up to gen-
eration 116 is 0.06 when inference excludes late time points versus 0.13 when inference includes
all time points). Furthermore, the overall RMSE (for observations up to generation 267) was not
significantly different (average MAP RMSE is 0.129 and 0.126 when excluding or including late
time points, respectively; S12 Fig). Restricting the analysis to early time points did not dramati-
cally affect estimates of GAP1 CNV selection coefficient and formation rate, but it did result in
less variability in estimates between populations (i.e., independent observations) and some reor-
dering of populations’ selection coefficients and formation rate relative to each other (513 Fig).
Thus, we focused on inference using data prior to generation 116.

The inferred GAPI CNV selection coefficients were similar regardless of model, with the
range of MAP estimates for all populations between 0.04 and 0.1, whereas the range of inferred
GAPI1 CNV formation rates was somewhat higher when using the Wright-Fisher model,
107*! to 107, compared to the chemostat model, 10™*” to 10~* (Fig 6A and 6B). While there
is variation in inferred parameters due to the training set, variation between observations (rep-
licate evolution experiments) is higher than variation between training sets (Fig 6A-6C). Pos-
terior predictions using the chemostat model, a fuller depiction of the evolution experiments,
tend to have slightly lower RMSE than predictions using the Wright-Fisher model (Fig 6C).
However, predictions using both models recapitulate actual GAPI CNV dynamics, especially
in early generations (Fig 6D).

To test the sensitivity of these estimates, we also inferred the GAP1 CNV selection coeffi-
cient and formation rate using the Wright-Fisher model in the absence of other beneficial
mutations (8 = 0), and for 9 additional combinations of other beneficial mutation selection
coefficient sp and formation rate 8 (S14 Fig). In general, perturbations to the rate and selec-
tion coefficient of other beneficial mutations did not alter the inferred GAP1 CNV selection
coefficient or formation rate. We found a single exception: When both the formation rate and
fitness effect of other beneficial mutations is high (s = 0.1 and 83 = 10~°), the GAPI CNV
selection coefficient was approximately 1.6-fold higher and the formation rate was approxi-
mately 2-fold lower (S14 Fig); however, posterior predictions were poor for this set of parame-
ter values (S15 Fig), suggesting that these values are inappropriate.
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Experimental confirmation of fitness effects inferred from adaptive
dynamics

To experimentally validate the inferred selection coefficients, we used lineage tracking to esti-
mate the DFE [7,89,90]. We performed barseq on the entire evolving population at multiple
time points and identified lineages that did and did not contain GAP1 CNVs (Fig 7A). Using
barcode trajectories to estimate fitness effects ([89]; see Methods), we identified 1,569 out of
80,751 lineages (1.94%) as adaptive in the bc01 population. A total of 1,513 (96.4%) adaptive
lineages have a GAPI CNV (Fig 7A).

As a complementary experimental approach, selection coefficients can be directly measured
using competition assays by fitting a linear model to the log ratio of the GAP1 CNV strain and
ancestral strain frequencies over time (Fig 7B). Therefore, we isolated GAP1 CNV containing
clones from populations bc01 and bc02, determined their fitness (Methods), and combined
these estimates with previously reported selection coefficients for GAP1 CNV containing
clones isolated from populations gln01-gln09 [48] to define the DFE.

The DFE for adaptive GAP1 CNV lineages in bc01 inferred using lineage-tracking barcodes
and the DFE from pairwise competition assays share similar properties to the distribution
inferred using NPE from all experimental populations (Fig 7C). Thus, our inference frame-
work using CNV adaptation dynamics is a reliable estimate of the DFE estimated using labori-
ous experimental methods that are gold standards in the field.
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Fig 7. Comparison of DFE inferred using NPE, lineage-tracking barcodes, and competition assays. (A) Barcode-based lineage frequency trajectories in experimental
population bc01. Lineages with (green) and without (gray) GAPI CNVs are shown. (B) Two replicates of a pairwise competition assay for a single GAPI CNV containing
lineage isolated from an evolving population. The selection coefficient for the clone is estimated from the slope of the linear model (blue line) and 95% CI (gray). (C) The
DFE for all beneficial GAP1 CNVs inferred from 11 populations using NPE and the WF (purple) and chemostat (Chemo; green) models compared with the DFE inferred
from barcode frequency trajectories in the bc01 population (light blue) and the DFE inferred using pairwise competition assays with different GAPI CNV containing
clones (gray). Data and code required to generate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X. CNV, copy number variant; DFE, distribution of
fitness effects; NPE, Neural Posterior Estimation; WF, Wright-Fisher.
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Discussion

In this study, we tested the application of simulation-based inference for determining key evo-
lutionary parameters from observed adaptive dynamics in evolution experiments. We focused
on the role of CNVs in adaptive evolution using experimental data in which we quantified the
population frequency of de novo CNVs at a single locus using a fluorescent CNV reporter. The
goal of our study was to test a new computational framework for simulation-based, likelihood-
free inference, compare it to the state-of-the-art method, and apply it to estimate the GAP1
CNV selection coefficient and formation rates in experimental evolution using glutamine-lim-
ited chemostats.

Our study yielded several important methodological findings. Using synthetic data, we
tested 2 different algorithms for joint inference of evolutionary parameters, the effect of differ-
ent evolutionary models on inference performance, and how best to determine a DFE using
multiple experiments. We find that the neural network-based algorithm NPE outperforms
ABC-SMC regardless of evolutionary model. Although a more complex evolutionary model
better describes the evolution experiments performed in chemostats, we find that a standard
Wright-Fisher model can be a sufficient approximation for inference using NPE. However,
the inferred GAP1 CNV formation rate under the Wright-Fisher model is higher than under
the chemostat model (Fig 6A and 6B), which is consistent with the overprediction of forma-
tion rates using the Wright-Fisher model for inference when an observation is generated by
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the chemostat model and selection coefficients are high (Fig 4C and 4D). This suggests that
Wright-Fisher is not the best suited model to use in all real-world cases, in particular if many
beneficial CNVs turn out to have strong selection coefficients. Finally, although it is possible to
perform joint inference on multiple independent experimental observations to infer a DFE, we
find that inference performed on individual experiments and post facto estimation of the dis-
tribution more accurately captures the underlying DFE.

Previous studies that applied likelihood-free inference to results of evolutionary experi-
ments differ from our study in various ways [5,6,49]. First, they used serial dilution rather than
chemostat experiments. Second, most focused on all beneficial mutations, whereas we catego-
rize beneficial mutations into 2 categories: GAPI CNVs and all other beneficial mutations;
thus, they used an evolutionary model with a single process generating genetic variation,
whereas our study includes 2 such processes, but focuses inference on our mutation type of
interest. Third, we used 2 different evolutionary models: the Wright-Fisher model, a standard
model in evolutionary genetics, and a chemostat model. The latter is more realistic but also
more computationally demanding. Fourth and importantly, previous studies applied relatively
simple rejection ABC methods [5,6,49,69]. We applied 2 modern approaches: ABC with
sequential Monte Carlo sampling [63], which is a computationally efficient algorithm for
Bayesian inference, using an adaptive distance function [81]; and NPE [78-80] with NSF [84].
NPE approximates an amortized posterior distribution from simulations. Thus, it is more effi-
cient than ABC-SMC, as it can estimate a posterior distribution for new observations without
requiring additional training. This feature is especially useful when a more computationally
demanding model is better (e.g., the chemostat model when selection coefficients are high).
Our study is the first, to our knowledge, to use neural density estimation to apply likelihood-
free inference to experimental evolution data.

Our application of simulation-based inference yielded new insights into the role of CNVs in
adaptive evolution. Using a chemostat model we estimated GAP1 CNV formation rate and selec-
tion coefficient from empirical population-level adaptive evolution dynamics and found that
GAP1 CNVs form at a rate of 10°*7 to 10 per generation (approximately 1 in 10,000 cell divi-
sions) and have selection coefficients of 0.04 to 0.1 per generation. We experimentally validated
our inferred fitness estimates using barcode lineage tracking and pairwise competition assays and
showed that simulation-based inference is in good agreement with the 2 different experimental
methods. The formation rate that we have determined for GAP1 CNVs is remarkably high.
Locus-specific CNV formation rates are extremely difficult to determine and fluctuation assays
have yielded estimates ranging from 10~"% to 10~ [91-95]. Mutation accumulation studies have
yielded genome-wide CNV rates of about 10> [32,37,38], which is an order of magnitude lower
than our locus-specific formation rate. We posit 2 possible explanations for this high rate: (1)
CNVs at the GAPI locus may be deleterious in most conditions, including the putative nonselec-
tive conditions used for mutation-selection experiments, and therefore underestimated in muta-
tion accumulation assays due to negative selection; and (2) under nitrogen-limiting selective
conditions, in which GAPI expression levels are extremely high, a mechanism of induced CNV
formation may operate that increases the rate at which they are generated, as has been shown at
other loci in the yeast genome [96, 97]. Empirical validation of the inferred rate of GAP1 CNV for-
mation in nitrogen-limiting conditions requires experimental confirmation.

This simulation-based inference approach can be readily extended to other evolution exper-
iments. In this study, we performed inference of parameters for a single type of mutation. This
approach could be extended to infer the rates and effects of multiple types of mutations simul-
taneously. For example, instead of assuming a rate and selection coefficient for other beneficial
mutations and performing ex post facto analyses looking at the sensitivity of inference of
GAPI CNV parameters in other beneficial mutation regimes, one could simultaneously infer
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parameters for both of these types of mutations. As shown using our barcode-sequencing data,
many CNVs arise during adaptive evolution, and previous studies have shown that CNVs have
different structures and mechanisms of formation [48,98]. Inferring a single effective selection
coefficient and formation rate is a current limitation of our study that could be overcome by
inferring rates and effects for different classes of CNVs (e.g., aneuploidy versus tandem dupli-
cation). Inspecting conditional correlations in posterior distributions involving multiple types
of mutations has the potential to provide insights into how interactions between different clas-
ses of mutations shape evolutionary dynamics.

The approach could also be applied to CNV dynamics at other loci, in different genetic back-
grounds, or in different media conditions. Ploidy and diverse molecular mechanisms likely impact
CNV formation rates. For example, rates of aneuploidy, which result from nondisjunction errors,
are higher in diploid yeast than haploid yeast, and chromosome gains are more frequent than
chromosome losses [37]. There is considerable evidence for heterogeneity in the CNV rate
between loci, as factors including local sequence features, transcriptional activity, genetic back-
ground, and the external environment may impact the mutation spectrum. For example, there is
evidence that CNVs occur at a higher rate near certain genomic features, such as repetitive ele-
ments [42], tRNA genes [99], origins of replication [100], and replication fork barriers [101].

Furthermore, this approach could be used to infer formation rates and selection coefficients
for other types of mutations in different asexually reproducing populations; the empirical data
required is simply the proportion of the population with a given mutation type over time,
which can efficiently be determined using a phenotypic marker, or similar quantitative data
such as whole-genome whole-population sequencing. Evolutionary models could be extended
to more complex evolutionary scenarios including changing population sizes, fluctuating
selection, and changing ploidy and reproductive strategy, with an ultimate goal of inferring
their impact on a variety of evolutionary parameters and predicting evolutionary dynamics in
complex environments and populations. Applications to tumor evolution and viral evolution
are related problems that are likely amenable to this approach.

Methods

All source code and data for performing the analyses and reproducing the figures is available
at https://doi.org/10.17605/OSF.IO/E9D5X. Code is also available at https://github.com/
graceave/cnv_sims_inference.

Evolutionary models

We modeled the adaptive evolution from an isogenic asexual population with frequencies X
of the ancestral (or wild type) genotype, X¢ of cells with a GAPI CNV, and X} of cells with a
different type of beneficial mutation. Ancestral cells can gain a GAPI CNV or another benefi-
cial mutation at rates 8¢ and 3, respectively. Therefore, the frequencies of cells of different
genotypes after mutation are

xTA = (1 - 53 - 5C)xA7
xTB = x,05 + Xp,
xTC = x,0¢c + x¢

For simplicity, this model neglects cells with multiple mutations, which is reasonable for
short timescales, such as those considered here.
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In the discrete time Wright-Fisher model, the change in frequency due to natural selection
is modeled by

* kai —
X, =—, W= E . WX,y
w ic{A,B,C}

where w; is the relative fitness of cells with genotype i, and w is the population mean fitness rel-
ative to the ancestral type. Relative fitness is related to the selection coefficient by

w,=1+s,i=B,C

The change in frequency due random genetic drift is given by

n, = Multinomial(N, (x* ,,x",x"0)), % = Ni’
where N is the population size. In our simulations N = 3.3 x 10, the effective population size
in the chemostat populations in our experiment (see the “Determining the effective population
size in the chemostat” section).

The chemostat model starts with a population size 1.5 x 10~” and the concentration of the
limiting nutrient in the growth vessel, S, is equal to the concentration of that nutrient in the
fresh media, Sy. During continuous culture, the chemostat is continuously diluted as fresh
media flows in and culture media and cells are removed at rate D. During the initial phase of
growth, the population size grows, and the limiting nutrient concentration is reduced until a
steady state is attained at which the population size and limiting nutrient concentration are
maintained indefinitely. We extended the model for competition between 2 haploid clonal
populations for a single growth-limiting resource in a chemostat from [73] to 3 populations
such that

ds xX,1,S XptsS XS
P (s _S\D— Al _ B'B _ c’c
(S0 =$) (S+k,)Y, (S+ky)Y, (S+k,)Y.

Y; is the culture yield of strain i per mole of limiting nutrient. r, is the Malthusian parame-
ter, or intrinsic rate of increase, for the ancestral strain, and in the chemostat literature is fre-
quently referred to as y,,,,,, the maximal growth rate. The growth rate in the chemostat, y,

depends on the the concentration of the limiting nutrient with saturating kinetics y = % k;

is the substrate concentration at half-maximal y. rc and rp are the Malthusian parameters for
strains with a CNV and strains with another beneficial mutation, respectively, and are related
to the ancestral Malthusian parameter and selection coefficient by [102]

si:ri_rAan,i:B,C.

Ta

The values for the parameters used in the chemostat model are in Table 1.
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We simulated continuous time in the chemostat using the Gillespie algorithm with r-leap-
ing. Briefly, we calculate the rates of ancestral growth, ancestral dilution, CNV growth, CNV
dilution, other mutant growth, other mutant dilution, mutation from ancestral to CNV, and
mutation from ancestral to other mutant. For the next time interval 7, we calculated the num-
ber of times each event occurs during the interval using the Poisson distribution. The limiting
substrate concentration is then adjusted accordingly. These steps repeat until the desired num-
ber of generations is reached.

For the chemostat model, we began counting generations after 48 hours, which is approxi-
mately the amount of time required for the chemostat to reach steady state, and when we
began recording generations in [48].

Determining the effective population size in the chemostat

In order to determine the effective population size in the chemostat, and thus the population
size to use in with the Wright-Fisher model, we determined the conditional variance of the
allele frequency in the next generation p’ given the frequency in the current generation p in the
chemostat. To do this, we simulated a chemostat population with 2 neutral alleles with fre-
quencies p and q (p + g = 1), which begin at equal frequencies, p = g. We allowed the simula-
tion to run for 1,000 generations, recording the frequency p at every generation, excluding the
first 100 generations to ensure the population is at steady state. We then computed the condi-
tional variance Var(p’|p) in each generation and estimated the effective population size as
(where t = 900 is the total number of generations) [103]:

__p-p)
© X var(prlp)

The estimated effective population size in our chemostat conditions is 3.3 x 10%, which is
approximately two-thirds of the census population size N when the chemostat is at steady state.

Inference methods

For inference using single observations, we used the proportion of the population with a GAP]I
CNV at 25 time points as our summary statistics and defined a log-uniform prior for the for-
mation rate ranging from 10™'* to 10~ and a log-uniform prior for the selection coefficient
from 107 to 0.4.

For inference using sets of observation, we used a uniform prior for o from 0.5 to 15, a log-
uniform prior for 8 from 10~ to 0.8, and a log-uniform prior for the formation rate ranging
from 1072 to 107>. For use with NPE, we used a 3-layer sequential neural network with linear
transformations in each layer and rectified linear unit as the activation functions to encode the
observation set into 5 summary statistics, which we then used as an embedding net with NPE.

We applied ABC-SMC implemented in the Python package pyABC [70]. For inference
using single observations, we used an adaptively weighted Euclidean distance function with
the root mean square deviation as the scale function. For inference using a set of observations,
we used the squared Euclidean distance as our distance metric. We used 100 samples from the
prior for initial calibration before the first round, and a maximum acceptance rate of either
10,000 or 100,000 for both single observations and observation sets (i.e.,10,000 single observa-
tions or 10,000 sets of 11 observations). For the acceptance rate of 10,000, we started inference
with 100 samples, had a maximum of 1,000 accepted samples per round, and a maximum of
10 rounds. For the acceptance rate of 100,000, we started inference with 1,000 samples, had a
maximum of 10,000 accepted samples per round, and a maximum of 10 rounds. The exact
number of samples from the proposal distribution during each round of sampling were
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adaptively determined based on the shape of the current posterior distribution [82]. For infer-
ence of the posterior for each observation, we performed multiple rounds of sampling until
either we reached the acceptance threshold € < = 0.002 or 10 rounds were performed.

We applied NPE implemented in the Python package sbi [71] using a MAF [83] or a NSF
[84] as a conditional density estimator that learns an amortized posterior density for single
observations. We used either 10,000 or 100,000 simulations to train the network. To test the
dependence of our results on the set of simulations used to learn the posterior, we trained 3
independent amortized networks with different sets of simulations generated from the prior
and compared our resulting posterior distributions for each observation.

Assessment of performance of each method with each model

To test each method, we simulated 5 populations for each combination of the following CNV
formation rates and fitness effects: sc = 0.001 and 8¢ = 107 s¢ = 0.1 and 8¢ = 10™>; s¢ = 0.001
and 8¢ = 1077; s¢ = 0.1 and 8¢ = 1077, for both the Wright-Fisher model and the chemostat
model, resulting in 40 total simulated observations. We independently inferred the CNV fit-
ness effect and formation rate for each simulated observation 3 times.

We calculated the MAP estimate by first estimating a Gaussian kernel density estimate
(KDE) using SciPy (scipy.stats.gaussian_kde) [104] with at least 1,000 parameter combinations
and their weights drawn from the posterior distribution. We then found the maximum of the
KDE (using scipy.optimize.minimize with the Nelder—-Mead solver). We calculated the 95%
HDIs for the MAP estimate of each parameter using pyABC (pyabc.visualization.credible.com-
pute_credible_interval) [70].

We performed posterior predictive checks by simulating CNV dynamics using the MAP
estimate as well as 50 parameter values sampled from the posterior distribution. We calculated
RMSE and correlation to measure agreement of the 50 posterior predictions with the observa-
tion and report the mean and 95% confidence intervals for these measures. For inference on
sets of observations, we calculated the RMSE and correlation coefficient between the posterior
predictions and each of the 3 held out observations, and report the mean and 95% confidence
intervals for these measures over all 3 held out observations.

We calculated AIC using the standard formula

AIC = —2log(p(y|0)) + 2k,

where 0 is the MAP estimate, k = 2 is the number of inferred parameters, y is the observed
data, and p is the inferred posterior distribution. We calculated Watanabe-AIC or WAIC
according to both commonly used formulas:

WAICI = —zizog(ézpwev) . 2§"j<log<§zp<y,-|05>) —ézpmw))

n 1 N n S
WAIC2 = ~257 log (S0 p0il0) ) + 257, V2, (gp 010

where S is the number of draws from the posterior distribution, & is a sample from the poste-
rior, and V2 | is the posterior sample variance.

Pairwise competitions

We isolated CNV-containing clones from the populations on the basis of fluorescence and per-
formed pairwise competitions between each clone and an unlabeled ancestral (FY4) strain. We
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also performed competitions between the ancestral GAPI CNV reporter strain, with and with-
out barcodes. To perform the competitions, we grew fluorescent GAPI CNV clones and ances-
tral clones in glutamine-limited chemostats until they reached steady state [48]. We then
mixed the fluorescent strains with the unlabeled ancestor in a ratio of approximately 1:9 and
performed competitions in the chemostats for 92 hours or about 16 generations, sampling
approximately every 2 to 3 generations. For each time point, at least 100,000 cells were ana-
lyzed using an Accuri flow cytometer to determine the relative abundance of each genotype.
Previously, we established that the ancestral GAPI CNV reporter has no detectable fitness
effect compared to the unlabeled ancestral strain [48]. However, the GAPI CNV reporter with
barcodes does appear to have a slight fitness cost associated with it; therefore, we took slightly
different approaches to determine the selection coefficient relative to the ancestral state
depending on whether or not a GAPI CNV containing clone was barcoded. If a clone was not
barcoded, we determined relative fitness using linear regression of the log ratio of the fre-
quency of the 2 genotypes against the number of elapsed hours. If a clone was barcoded, rela-
tive fitness was computed using linear regression of the log ratio of the frequencies of the
barcoded GAPI CNV-containing clone and the unlabeled ancestor, and the log ratio of the fre-
quencies of the unevolved barcoded GAPI CNV reporter ancestor to the unlabeled ancestor
against the number of elapsed hours, adding an additional interaction term for the evolved
versus ancestral state. We converted relative fitness from per hour to generation by dividing by
the natural log of 2.

Barcode sequencing

In our prior study, populations with lineage tracking barcodes and the GAPI CNV reporter
were evolved in glutamine-limited chemostats [48], and whole population samples were peri-
odically frozen in 15% glycerol. To extract DNA, we thawed pelleted cells using centrifugation
and extracted genomic DNA using a modified Hoffman-Winston protocol, preceded by incu-
bation with zymolyase at 37°C to enhance cell lysis [105]. We measured DNA quantity using a
fluorometer and used all DNA from each sample as input to a sequential PCR protocol to
amplify DNA barcodes which were then purified using a Nucleospin PCR clean-up kit, as
described previously[48,89].

We measured fragment size with an Agilent TapeStation 2200 and performed qPCR to
determine the final library concentration. DNA libraries were sequenced using a paired-end
2 x 150 bp protocol on an Illumina NovaSeq 6000 using an XP workflow. Standard metrics
were used to assess data quality (Q30 and %PF). We used the Bartender algorithm with UMI
handling to account for PCR duplicates and to cluster sequences with merging decisions based
solely on distance except in cases of low coverage (<500 reads/barcode), for which the default
cluster merging threshold was used [69]. Clusters with a size less than 4 or with high entropy
(>0.75 quality score) were discarded. We estimated the relative abundance of barcodes using
the number of unique reads supporting a cluster compared to total library size. Raw sequenc-
ing data is available through the SRA, BioProject ID PRJNA767552.

Detecting adaptive lineages in barcoded clonal populations

To detect spontaneous adaptive mutations in a barcoded clonal cell population that is evolved
for over time, we used a Python-based pipeline (which can be found at https://github.com/
FangfeiLi05/PyFitMut) based on a previously developed theoretical framework [89]. The pipe-
line identifies adaptive lineages and infers their fitness effects and establishment time. In a bar-
coded population, a lineage refers to cells that share the same DNA barcode. For each lineage
in the barcoded population, beneficial mutations continually occur at a total beneficial
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mutation rate Ub, with fitness effect s, which results in a certain spectrum of fitness effects of
mutations p(s). If a beneficial mutant survives random drift and becomes large enough to
grow deterministically (exponentially), we say that the mutation carried by the mutant has
established. Here, we use Wright fitness s, which is defined as average number of additional t
offspring of a cell per generation, that is, n(t) = n(0)-(1 + s), with n(t) being the total number of
cells at generation t (can be nonintegers). Briefly, for each lineage, assuming that the lineage is
adaptive (i.e., a lineage with a beneficial mutation occurred and established), then estimates of
the fitness effect and establishment time of each lineage are made by random initialization,
and the expected trajectory of each lineage is estimated and compared to the measured trajec-
tory. Fitness effect and establishment time estimates are iteratively adjusted to better fit the
observed data until an optimum is reached. At the same time, the expected trajectory of the
lineage is also estimated assuming that the lineage is neutral. Finally, Bayesian inference is
used to determine whether the lineage is adaptive or neutral. An accurate estimation of the
mean fitness is necessary to detect mutations and quantify their fitness effects, but the mean
fitness is a quantity that cannot be measured directly from the evolution. Rather, it needs to be
inferred through other variables. Previously, the mean fitness was estimated by monitoring the
decline of neutral lineages [89]. However, this method fails when there is an insufficient num-
ber of neutral lineages as a result of low sequencing read depth. Here, we instead estimate the
mean fitness using an iterative method. Specifically, we first initialize the mean fitness of the
population as zero at each sequencing time point, then we estimate the fitness effect and estab-
lishment time for adaptive mutations, then we recalculate the mean fitness with the optimized
fitness and establishment time estimates, repeating the process for several iterations until the
mean fitness converges.

Supporting information

S1 Table. Wall time to run one simulation. Running time for a single WF simulation or a sin-
gle chemostat simulation for each of the following parameter combinations on a 2019 Mac-
Book Pro operating Mac OS Catalina 10.15.7 with a 2.6 GHz 6-Core Intel Core i7 processor.
Code required to generate this table can be found at https://doi.org/10.17605/OSF.I0/E9D5X.
WE, Wright-Fisher.

(CSV)

$2 Table. Kullback-Leibler divergence for Gamma distributions fit from single inferred
selection coefficients versus the true underlying DFE, or for directly inferred Gamma dis-
tributions versus the true underlying DFE. Code required to generate this table can be found
at https://doi.org/10.17605/OSF.JIO/E9D5X. DFE, distribution of fitness effects.

(CSV)

S1 Fig. Interpolation for bc01 and bc02. Populations gln01-gln09 and bc01-bc02 have differ-
ent time points—the gln populations have 25 time points in total, whereas the bc populations
have 32 time points in total. Of these, 12 of the time points are the same in both populations.
To match the time points in the gln populations, we interpolated from the 2 nearest time
points in the bc populations (using pandas.DataFrame.interpolate(“values”)). This way, we can
use the same data (same time points) for inference for all 11 populations so that we can use the
same amortized NPE posterior to infer parameters for both gln populations and bc popula-
tions. Original bc data are shown as black dots, the matched data, with interpolated time
points, is shown as red crosses. Data and code required to generate this figure can be found at
https://doi.org/10.17605/OSF.IO/E9D5X. NPE, Neural Posterior Estimation.

(PNG)
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S2 Fig. Performance assessment of NPE with MAF using single simulated synthetic obser-
vations. These show the results of inference on 5 simulated synthetic observations generated
using either the WF or chemostat (Chemo) model (and inference performed with the same
model) per combination of fitness effect sc and formation rate §c. Here, we show the results of
performing one training set with NPE with MAF using 100,000 simulations for training and
using the same amortized network to infer a posterior for each replicate synthetic observation.
(A) Percentage of true parameters within the 50% HDR. (B) Distribution of widths of the fit-
ness effect sc 95% HDI calculated as the difference between the 97.5 percentile and 2.5 percen-
tile, for each inferred posterior distribution. (C) Distribution of the number of orders of
magnitude encompassed by the formation rate 8¢ 95% HDI, calculated as difference of the
base 10 logarithms of the 97.5 percentile and 2.5 percentile, for each inferred posterior distri-
bution. (D) Log ratio MAP estimate as compared to true parameters for sc and 8¢. Note that
each panel has a different y-axis. (E) Mean and 95% confidence interval for RMSE of 50 poste-
rior predictions as compared to the synthetic observation for which inference was performed.
(F) RMSE of posterior prediction generated with MAP parameters as compared to the syn-
thetic observation for which inference was performed. (G) Mean and 95% confidence interval
for correlation coefficient of 50 posterior predictions compared to the synthetic observation
for which inference was performed. (H) Correlation coefficient of posterior prediction poste-
rior prediction generated with MAP parameters compared to the synthetic observation for
which inference was performed. Data and code required to generate this figure can be found at
https://doi.org/10.17605/OSF.IO/E9D5X. HDI, highest density interval; HDR, highest density
region; MAF, masked autoregressive flow; MAP, maximum a posteriori; NPE, Neural Poste-
rior Estimation; RMSE, root mean square error; WF, Wright-Fisher.

(PNG)

S3 Fig. NPE with the WF model performs as well or better than other combinations of
model and method. Results of inference on 5 simulated single synthetic observations gener-
ated using either the WF or chemostat (Chemo) model (and inference performed with the
same model) per combination of fitness effect sc and formation rate 8c. Here, we show the
results of performing training with NPE with NSF using 100,000 simulations for training and
using the same amortized network to infer a posterior for each replicate synthetic observation,
or ABC-SMC when the training budget was 10,000. (A) RMSE (lower is better) of posterior
prediction generated with MAP parameters as compared to the synthetic observation on
which inference was performed. (B) Correlation coefficient (higher is better) of posterior pre-
diction generated with MAP parameters compared to the synthetic observation on which
inference was performed. (C) Mean and 95% confidence interval for correlation coefficient
(higher is better) of 50 posterior predictions (sampled from the posterior distribution) com-
pared to the synthetic observation on which inference was performed. Data and code required
to generate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X. ABC-SMC,
Approximate Bayesian Computation with Sequential Monte Carlo; MAP, maximum a posteri-
ori; NPE, Neural Posterior Estimation; RMSE, root mean square error; WF, Wright—Fisher.
(PNG)

S4 Fig. NPE and WF have the lowest information criteria. WAIC and AIC (lower is better)
of models fitted on single synthetic observations using either the WF or chemostat (Chemo)
model and either ABC-SMC or NPE for different combinations of fitness effect s and forma-
tion rate 8¢ with simulation budgets of 10,000 or 100,000 simulations per inference procedure
(facets). We were unable to complete ABC-SMC with the chemostat model (red) when the
training budget was 100,000 within a reasonable time frame. Data and code required to gener-
ate this figure can be found at https://doi.org/10.17605/OSF.IO/E9D5X. ABC-SMC,
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Approximate Bayesian Computation with Sequential Monte Carlo; AIC, Akaike information
criterion; NPE, Neural Posterior Estimation; WAIC, widely applicable information criterion;
WEF, Wright-Fisher.

(PNG)

S5 Fig. NPE performs similar to or better than ABC-SMC for 8 additional parameter com-
binations. The figure shows the results of inference on 5 simulated synthetic observations
using the WF model per combination of fitness effect sc and formation rate 3¢. Simulations
and inference were performed using the same model. For NPE, each training set corresponds
to an independently amortized posterior distribution trained on a different set of 100,000 sim-
ulations, with which each synthetic observation was evaluated to produce a separate posterior
distribution. For ABC-SMC, each training set corresponds to independent inference proce-
dures on each observation with a maximum of 100,000 total simulations accepted for each
inference procedure and a stopping criteria of 10 iterations or € < = 0.002, whichever occurs
first. (A) The percent of true parameters within the 50% or 95% HDR of the inferred posterior
distribution. The bar height shows the average of 3 training sets. (B, C) Distribution of widths
of 95% HDI of the posterior distribution of the fitness effect s¢ (B) and CNV formation rate 8¢
(C), calculated as the difference between the 97.5 percentile and 2.5 percentile, for each sepa-
rately inferred posterior distribution. (D) Log ratio (relative error) of MAP estimate to true
parameter for sc and §¢c. Note the different y-axis ranges. A perfectly accurate MAP estimate
would have a log ratio of zero. (E) Mean and 95% confidence interval for RMSE of 50 posterior
predictions as compared to the synthetic observation for which inference was performed. (F)
RMSE of posterior prediction generated with MAP parameters as compared to the synthetic
observation for which inference was performed. (G) Mean and 95% confidence interval for
correlation coefficient of 50 posterior predictions compared to the synthetic observation for
which inference was performed. (H) Correlation coefficient of posterior prediction posterior
prediction generated with MAP parameters compared to the synthetic observation for which
inference was performed. Data and code required to generate this figure can be found at
https://doi.org/10.17605/OSE.I0/E9D5X. ABC-SMC, Approximate Bayesian Computation
with Sequential Monte Carlo; HDI, highest density interval; HDR, highest density region;
MAP, maximum a posteriori; NPE, Neural Posterior Estimation; RMSE, root mean square
error; WF, Wright-Fisher.

(PNG)

S6 Fig. Effect of simulation budget on relative error of MAP estimate and width of HDIs.
For NPE, amortized posteriors were estimated using either 10,000 or 100,000 simulations,
with which each synthetic observation was evaluated to produce a separate posterior distribu-
tion. For ABC-SMC, a posterior was independently inferred for each observation with a maxi-
mum of 10,000 or 100,000 total simulations accepted and a stopping criteria of 10 iterations or
€ < =0.002, whichever occurs first. The gray lines in (A, D) indicates a relative error of zero
(i.e., no difference between MAP parameters and true parameters). (D, E, F) We were unable
to complete ABC-SMC with the chemostat model (red) when the training budget was 100,000
within a reasonable time frame. Data and code required to generate this figure can be found at
https://doi.org/10.17605/OSE.I0/E9D5X. ABC-SMC, Approximate Bayesian Computation
with Sequential Monte Carlo; MAP, maximum a posteriori; NPE, Neural Posterior Estima-
tion.

(PNG)

S7 Fig. The cumulative number of simulations needed to estimate posterior distributions
for multiple observations. The x-axis shows the number of replicate simulated synthetic
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observations for a combination of parameters, and the y-axis shows the cumulative number of
simulations needed to infer posteriors for an increasing number of observations (see the
“Overview of inference strategies” section for more details), for observations with different
combinations of CNV selection coefficient s and CNV formation rate 8- (A-D). Each facet
represents a total simulation budget for NPE, or the maximum number of accepted simula-
tions for ABC-SMC. Since NPE uses amortization, a single amortized network is trained with
10,000 or 100,000 simulations, and that network is then used to infer posteriors for each obser-
vation (note that a single amortized network was used to infer posteriors for all parameter
combinations.) For ABC-SMC, each observation requires a separate inference procedure to be
performed individually, and not all generated simulations are accepted for posterior estima-
tion; therefore, the number of simulations used for a single observation may be more than the
acceptance threshold, and the number of simulations needed increases with the number of
observations for which a posterior is inferred. Data and code required to generate this figure
can be found at https://doi.org/10.17605/OSF.IO/E9D5X. ABC-SMC, Approximate Bayesian
Computation with Sequential Monte Carlo; CNV, copy number variant; NPE, Neural Poste-
rior Estimation.

(PNG)

S8 Fig. Results of inference on 5 simulated synthetic observations generated using either
the WF or chemostat (Chemo) model per combination of fitness effect s¢c and formation
rate 8c. We performed inference on each synthetic observation using both models. For NPE,
each training set corresponds to an independent amortized posterior trained with 100,000 sim-
ulations, with which each synthetic observation was evaluated. (A) Percentage of true parame-
ters within the 50% HDR. The bar height shows the average of 3 training sets. (B) Percentage
of true parameters within the 95% HDR. The bar height shows the average of 3 training sets.
Data and code required to generate this figure can be found at https://doi.org/10.17605/OSF.
IO/E9D5X. HDR, highest density region; NPE, Neural Posterior Estimation; WF, Wright-
Fisher.

(PNG)

S9 Fig. A set of 11 simulated synthetic observations was generated from a WF model with
CNV selection coefficients sampled from an Gamma distribution where o = 10 of fitness
effects (DFE) (black curve). The MAP DFEs (blue curves) were directly inferred using 3 dif-
ferent subsets of 8 out of 11 synthetic observations. We also inferred the selection coefficient
for each observation in the set of 11 individually, and fit Gamma distributions to sets of 8
inferred selection coefficients (green curves). All inferences were performed with NPE using
the same amortized network to infer a posterior for each set of 8 synthetic observations or
each single observation. Data and code required to generate this figure can be found at https://
doi.org/10.17605/OSF.IO/E9D5X. DFE, distribution of fitness effects; MAP, maximum a pos-
teriori; NPE, Neural Posterior Estimation; WF, Wright-Fisher.

(PNG)

$10 Fig. Out-of-sample posterior predictive accuracy using RMSE (A) or correlation (B)
using 3 held out observations when o and f§ are directly inferred from the other 8 observations,
for a =1 or o = 10 (facets). Data and code required to generate this figure can be found at
https://doi.org/10.17605/OSF.IO/E9D5X. RMSE, root mean square error.

(PNG)

S11 Fig. Proportion of the population with a GAPI CNV in the experimental observations
(black) and in posterior predictions using the MAP estimate shown in panels A and B with
either the WF or chemostat (Chemo) model. Inference was performed with all data up to
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generation 267 (WF ppc 267, Chemo ppc 267), or excluding data after generation 116

(WF ppc 116, Chemo ppc 116). Formation rate and fitness effect of other beneficial mutations
set to 107> and 10>, respectively. Data and code required to generate this figure can be found
at https://doi.org/10.17605/OSF.IO/E9D5X. MAP, maximum a posteriori; WF, Wright-
Fisher.

(PNG)

S12 Fig. MAP predictions have lower error when inference is performed using only up to
generation 116 and are most accurate for the first 116 generations. MAP posterior predic-
tion RMSE when inference was performed excluding data after generation 116 (left) or using
all data up to generation 267 (right). RMSE was calculated using either the first 116 generations
or using up to generation 267 (x-axis). Data and code required to generate this figure can be
found at https://doi.org/10.17605/OSF.IO/E9D5X. MAP, maximum a posteriori; RMSE, root
mean square error.

(PNG)

$13 Fig. The inferred MAP estimate and 95% HDIs for fitness effect s¢ and formation rate 8,
using the (A) WF or (B) chemostat (Chemo) model and NPE for each experimental popula-
tion from Lauer and colleagues (2018). Inference was either performed with data up to genera-
tion 116 or with all data, up to generation 267 (facets). Each training set corresponds to 3
independent amortized posterior distributions estimated with 100,000 simulations. Data and
code required to generate this figure can be found at https://doi.org/10.17605/OSE.I0/E9D5X.
HDI, highest density interval; MAP, maximum a posteriori; NPE, Neural Posterior Estimation;
WE, Wright-Fisher.

(PNG)

S14 Fig. Sensitivity analysis. GAPI CNV formation rate and selection coefficient inferred
using NPE with the WF model does not change considerably when other beneficial mutations
have different selection coefficients sz and formation rates 8z, except when both sp and 8y are
high (purple). Data and code required to generate this figure can be found at https://doi.org/
10.17605/OSF.IO/E9D5X. CNV, copy number variant; NPE, Neural Posterior Estimation;
WEF, Wright-Fisher.

(PNG)

$15 Fig. Mean and 95% confidence interval for RMSE (A) and correlation (B) of 50 posterior
predictions compared to empirical observations up to generation 116, using posterior distribu-
tions inferred when other beneficial mutations have different selection coefficients sz and for-
mation rates 8p. Data and code required to generate this figure can be found at https://doi.org/
10.17605/OSE.IO/E9D5X. RMSE, root mean square error.

(PNG)
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