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ABSTRACT: Chiral crystals and their constituent molecules play a
prominent role in theories about the origin of biological homochirality
and in drug discovery, design, and stability. Although the prediction and
identification of stable chiral crystal structures is crucial for numerous
technologies, including separation processes and polymorph selection and
control, predictive ability is often complicated by a combination of many-
body interactions and molecular complexity and handedness. In this work,
we address these challenges by applying genetic algorithms to predict the
ground-state crystal lattices formed by a chiral tetramer molecular model,
which we have previously shown to exhibit complex fluid-phase behavior.
Using this approach, we explore the relative stability and structures of the
model’s conglomerate and racemic crystals, and present a structural phase
diagram for the stable Bravais crystal types in the zero-temperature limit.

I. INTRODUCTION
Crystals composed of chiral molecules (i.e., molecules that
exist as isomers with nonsuperimposable mirror images) are
important from both fundamental and technological perspec-
tives.1 Previous studies2−4 indicate that the relative stability of
conglomerate (chirally pure) and racemate crystals (composed
of both enantiomers) provides a route toward the enrichment
of one chiral entity relative to the other. From a fundamental
standpoint, this offers a tantalizing proposal for the emergence
of biological homochirality.2−4 The chiral identity of biological
molecules is essential to their function,1,5,6 and hence, the
appearance of biological homochirality is an outstanding
question closely tied to the origin of terrestrial life. From a
technological perspective, the ability to reliably predict and
control chiral crystal structures can dramatically accelerate
material discovery and design. This is particularly important for
developing novel pharmaceuticals, since left-handed and right-
handed enantiomers of the same drug molecule often exhibit
drastically different physiological effects in the human
body.7−10 Therefore, effective separation of molecules based
on chirality is often critical in industrial settings, and
generating high-purity compounds by controlled crystallization
is an auspicious alternative to the enantioselective asymmetric
synthesis prevalent in the pharmaceutical industry.11,12 Beyond
new drug development and manufacture, crystal engineering
(the selection of chemical substituents and processing
conditions) as a route toward enantiopure chemical
production is relevant to, for example, optoelectronic

manufacturing,13,14 catalysis,15 and insecticides and agro-
chemicals.16,17

To address the need for tools that can offer molecular-level
insight into processes such as chiral symmetry breaking and
phase amplification, we previously developed a generic
molecular model for studying chirality phenomena inspired
by hydrogen peroxide,18,19 the simplest chiral molecule; note,
however, that this model system uses molecular parameters as
tunable variables to explore the range of behaviors compatible
with this type of chirality rather than as fitting parameters
aimed at reproducing the properties of hydrogen peroxide or
any other specific molecule. The chiral molecules consist of
four sites, with chirality encoded in each molecule’s dihedral
angle; that is, bond constants are specified such that the
tetrameric molecules can exist in either left-handed L- or right-
handed D-configurations (see Figure 1). A critical component
of this model is the coarse-grained parameter λ, a mean-field
representation of short-range interactions that introduces an
energetic preference for homochiral interactions when λ > 0
and heterochiral interactions when λ < 0. While simple in its
formulation, the model’s ability to tune the chiral bias has
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enabled investigation into fluid-phase separation and chiral
symmetry breaking in chiral systems through molecular
dynamics (MD) simulations.20−23 In particular, this model
has been demonstrated to exhibit a wide range of complex
chirality-induced phenomena in its various fluid phases,
including phase amplification,18 interconversion-controlled
liquid−liquid phase separation,20 and multiple fluid−fluid
transitions.23 The chiral tetramer model, in other words, has
proven to be a remarkably versatile vehicle for exploring a wide
range of complex chirality-induced fluid-phase behaviors, and
in this work we focus on expanding our understanding of this
model to the crystalline phase.
Despite the idealized nature of this model, however, it

remains difficult to directly predict the range of stability of its
conglomerate and racemate solid phases through application of
plain MD calculations. This difficulty is not surprising, since
direct crystallization of molecular systems from the liquid
phase is well-known to be challenging in computer simulations
due to the large number of potential crystal structures and
molecular conformations.24 The search for stable crystal
structures is further complicated by the existence of
polymorphic forms that differ only slightly in their free energy;
for example, spherical particles on a face-centered cubic lattice
have the exact same maximum packing fraction as in hexagonal
close-packed structures, but exhibit a 10−3 kBT larger free
energy per sphere due to the different entropy of the void
distribution.25,26 Nevertheless, state-of-the-art advanced sam-
pling techniques, such as the forward-flux sampling meth-
od,27−29 umbrella sampling,30,31 and crystal seeding methods,32

as well as global optimization techniques such as basin-
hopping,33−35 evolutionary algorithms,36−41 particle swarm
optimization,42,43 and simulated annealing,44−47 have enabled a
broad range of theoretical and computational investigations of
the thermodynamics and kinetics of crystallization. Moreover,
strides in crystal structure prediction leveraging highly refined
empirical force fields and density functional theory (DFT)
calculations have made possible the accurate prediction of
optimal crystal structures formed by molecules with ever-
increasing complexity, as illustrated by the series of Cambridge
Crystallographic Data Center blind tests.48 More recently,
crystal structure prediction has shifted to include deep learning
and data-driven approaches for structure identification,
prediction, and design.49−51 In this work, in contrast, we aim
to isolate and highlight the effect of molecular chirality on the
crystal phases of a model system that has already been shown
to exhibit complex fluid-phase behavior.18−20,23 Thus, we

embark on the logical next step in the exploration of the rich
behavior exhibited by our simple model system by
investigating its possible crystal phases while minimizing
computational expense and model degrees of freedom.
Given the success of evolutionary optimization techniques in

crystal prediction,38 in this work we utilize the framework of
genetic algorithms (GAs) to systematically explore the possible
solid crystalline phases of our tetramer model in the zero-
temperature limit, and identify stable conglomerate and
racemate crystals. GAs provide a biologically inspired
stochastic route toward finding optimal parameters in high-
dimensional space, which is a characteristic feature of many
condensed matter physics systems.38,52−54 This optimization
strategy has been employed in the design of various soft
materials, including granular and block copolymers,55,56 DNA-
grafted colloids,57 multipolar colloids,58,59 and nematic liquid
crystals.60 Other applications using GAs include the identi-
fication of stable crystals and polymorphs of small
molecules,61,62 structure prediction of interfaces in multi-
component systems,63 and the docking of ligands in
biomolecules.64 Previous studies leveraging GAs for crystal
prediction have primarily focused on ab initio DFT
calculations for chemically specific systems,65,66 with crystal
lattice representation based on symmetry groups or standard
crystal lattices.67,68 Despite the intense research activity
enabled by GAs, reports on the prediction of crystal structures
comprised from chiral molecules are rather limited and focus
on specific chemical substances (e.g., energetic materials69 and
plasmonic metasurfaces70). In contrast, this study instead seeks
to utilize our simple, tunable model to extract chirality-specific
phenomena that are general and transferrable to a broad
spectrum systems.
The rest of this paper is organized as follows: In section IIA

we briefly review the chiral tetramer model and its interaction
potential, and in section IIB we describe the GA approach used
in this work. In section III we present the results of the GA
calculations, discuss the stable structures for conglomerates
and racemates, and provide a structural phase diagram across a
span of crystal densities. Finally, we offer concluding remarks
and directions for future work in section IV.

II. MODEL AND METHODS
A. Chiral Tetramer Model. Our model system for generic

chiral behavior consists of four-site molecules with two bond
angles, θ1 and θ2, and a dihedral angle ϕ (see Figure 1).18 Each
site is equivalent with respect to intermolecular interactions.
The relevant configurations a single molecule can adopt
include the stable L- and D-enantiomer states, and unstable
“trans”- and “cis”-transition states, also shown in Figure 1. The
chiral order parameter ζ is a simple metric that quantifies the
chiral state of an individual molecule, and can be defined as

r r r r
r r r
r r r

( , , , )
( )

1 2 3 4
12 23 34

12 23 34
=

· ×
| || || | (1)

where the positions of the four monomers are given by the
vectors r1, r2, r3, and r4, and relative vectors are defined as r12 ≡
r1 − r2. In MD simulations of flexible and deformable
molecules, the chiral order parameter varies continuously over
the interval ζ ∈ [−1, 1],18−20 but in the present work we treat
the molecules as rigid bodies with fixed dihedral and bond
angles in the two (L, D) mechanical equilibrium states with θ1 =
θ2 = π/2, and ϕ = ±π/2. Thus, the chiral order parameter ζα

Figure 1. Visual representation of the chiral tetramer model.
Molecules are able to adopt either left-handed L- (blue) or right-
handed D- (red) enantiomer configurations. The chiral identity is
measured by the order parameter ζ, whose value is shown in the figure
above each corresponding configuration. For illustrative purposes, we
include visualizations of the unstable cis- (green) and trans- (yellow)
transition states.
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for molecule α can only adopt two possible values, that is, ζα =
−1 if molecule α is in the left-handed L-configuration, and ζα =
+1 if it is in the right-handed D-configuration (note that we use
superscripts to index the tetramer molecules, while subscripts
are used to index monomer sites on the molecules). The
transition states (ϕ = 0 and ϕ = π) separating these two stable
configurations lie on the hyperplane ζα = 0. The rigid body
assumption is equivalently obtained by taking the positive-
infinity limit of the intramolecular bond constants; future
studies can relax this simplifaction to study the phonon spectra
of the resulting crystal structures.
A key feature of our model is the ability to directly specify a

chirality-dependent interaction potential between molecules
(we ignore intramolecular interactions). The intermolecular
potential energy function between monomer i from molecule α
and monomer j from molecule γ is18,19

vr r
r r

( , ) (1 )ij i j
i j

tt
0 LJ

i
k
jjjjj

y
{
zzzzz{ } { } = +

| |

(2)

Here, νLJ = 4(r−̂12 − r−̂6) is the standard Lennard-Jones (LJ)
potential with the energy prefactor factored out, r ̂ = |rjα − rkγ|/
σtt is the reduced monomer−monomer distance, ε0 is the
nominal interaction energy scale, and σtt is the monomer
characteristic size. The “chiral renormalization parameter” λ in
eq 2 allows us to tune the chiral bias of the system by giving
energetic preference to locally enantiopure or racemic
environments depending on its sign and magnitude. For
example, if molecules α and γ have the same chiral identity,
and hence, ζα and ζγ have the same sign, the molecular
attraction becomes stronger when λ > 0, thus favoring
homochiral interactions. Conversely, λ < 0 gives energetic
preference for heterochiral interactions, or ones where
tetramers α and γ have different chiral identities, that is, ζα

and ζγ have opposite signs. Equation 2 reduces to the standard
LJ potential for monomer pairs when there is no chiral bias, λ
= 0. For our calculations, we use reduced LJ units such that ε0
and the monomer diameter σtt are unity. The reduced bond
length of the molecules is set to b = 1.0583, inspired by
hydrogen peroxide (H2O2).

18,71−73 Note, however, that this
model is not intended to accurately represent hydrogen
peroxide, and this particular substance simply gives a basis for
choosing qualitatively reasonable physical parameters for the
tetramers.
The total potential energy Φαγ for two interacting tetramers

α and γ is given by summing all 16 pair interactions [eq 2]
between monomers from molecule α, i ∈ α, and monomers
from molecule γ, j ∈ γ,

i j
ij

,

=
(3)

Note that even though the potential energy in eq 3 is written as
a pairwise sum over monomer sites, the energy for each
interaction is rescaled by the chiral measures ζα and ζγ, which
depend on the full configurations of both molecules α and γ·
Hence, eq 2 represents an 8-body energy of interaction. For
additional details on this interaction potential and its basic
properties, we refer the reader to our previous work.18−20

In this study, we use lattice sums74 to determine the
potential energy per molecule, where our calculation is
implemented similarly to the computation in ref 60. Using
eq 3, we can write

X( ; , )
1
2

=
(4)

where the sum goes over all molecules surrounding the
molecule α at the origin that lie partially or fully within a cutoff
radius rc = 4.0. The precise number of molecules used for the
lattice sum calculation depends on the choice of rc and
tetramer number density ρ, and we ensure that a sufficient
number of periodic cells are generated in the x-, y-, and z-
directions surrounding the molecule at the origin to give the
required number of neighbors within rc. We utilize a basis set
composed of two molecules (here denoted by the “1” and “2”
superscripts), which enables us to represent both conglomerate
and racemic lattices. Here, X = {Ri,b2,n1,n2,ζ1,ζ2} denotes the
Bravais lattice spanned by primitive vectors Ri ≡ {ai}, with i =
1, 2, 3, n1 and n2 are orientation vectors for the molecules at
the two basis points, respectively. The first basis vector is fixed
to b1 = (0,0,0), while the second basis vector b2 = (Δx, Δy,
Δz) is an optimizable parameter. Finally, ζ1 and ζ2 give the
chiral identities of the molecules in the basis set and, hence,
capture whether the crystal is conglomerate or racemic. To
determine the ground state (T = 0) configurations of the
crystal, we seek to minimize the potential energy ϕ̃ [eq 4] at a
particular chiral renormalization parameter λ and tetramer
number density ρ with respect to the lattice parameters (see
section IIB for additional discussion),

X
X( , )

min
( ; , )= { } (5)

An exploration of crystal free energy minima at nonzero
temperatures will be the subject of future investigation.

B. Brief Review of Genetic Algorithms for Crystal
Systems. In this work, we leverage GAs, stochastic
optimization algorithms inspired by evolutionary processes,
to explore the high-dimensional energy landscape for crystals
composed of rigid chiral molecules that interact through the
intermolecular potential described in section IIA (eq 2). A
single iteration of the GA search procedure consists of three
parts: (i) encoding/decoding, (ii) crossover, and (iii)
mutation. This section describes each of these steps in detail.
For the (i) encoding/decoding step, each parameter required
to specify a particular crystal lattice configuration is
represented as a gene, enabling straightforward “genetic”
transformations. The gene is composed of bits (a sequence of
0s and 1s) that represent the lattice parameters, and the
number of bits used to encode these values specifies the
numerical resolution for the optimization. In other words,
using a high number of bits results in a fine-grained but often
inefficient search process, whereas a small number of bits
results in a coarse-grained representation of the energy
landscape at the expense of numerical precision. The collection
of genes that fully specifies a single crystal lattice is referred to
as an individual I, and this “genotype” represents an instance of
all parameters to be optimized. A group of individuals with the
same genetic trajectory length is referred to as a generation.
For a more comprehensive discussion of how the GA approach
encodes information into bits, and performs transformations
on the resulting genes, we refer the reader to ref 52.
The search procedure or genetic trajectory is induced in the

(ii) crossover step, where the genes of “parent” individuals are
randomly cut and recombined to create new genes that result
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in a “child” individual. As a first step, the fitness of each
individual I of the ith generation is calculated:

f I I( ) exp ( )/i 0= [ ] (6)

where ϕ(I) is the potential energy-per-molecule computed
from the lattice sum eq 4, and ϕ0 is an energy normalization
factor that adjusts the scale of fitness values for numerical
stability. The choice of ϕ0 does not affect the final results, and
in our work we use ϕ0 = 10, which narrows the range of
possible values to f(I) ∼ [0, 100] for typical lattice energies.
The probability that an individual I is selected for mating is
then defined as (i.e., fitness proportionate selection or “roulette
selection”)

p I
f I

f I
( )

( )

( )
i

I i

=
(7)

The subsequent i + 1 generation of individuals is then created
by selecting parent individuals with a probability according to
eq 7 and performing one-point crossover mating with the
genetic material of the parents to generate a new genome for
the child individual. The crossover point is determined by
sampling from a uniform random distribution.
The final step in a single iteration of the GA search is (iii)

mutation, where the genes of individuals are randomly altered
to prevent the loss of genetic material. Hence, the mutation
step introduces a stochastic element in the search that prevents
individuals from being trapped in local minima. Steps (ii) and
(iii) in the procedure outlined above are typically repeated for
some fixed number of generations or iterated until
convergence, based on an energy or fitness criterion. For a
more detailed description of GAs, we refer the interested
reader to previous reports on the subject.39,52,60

In the context of crystal systems, a careful selection of
parameters is necessary to facilitate a rapid search for stable
lattice configurations. Specifically, we assume that candidate
crystal structures will be of the Bravais lattice type. With this
assumption, a monatomic crystalline system in three
dimensions can be defined by three primitive lattice vectors
{a1, a2, a3}, which equivalently can be parametrized using six
parameters {a, x, y, Θ, Ψ, ν}. The lattice constant a is specified
through the density of the crystal as ρ−1 = |a1·(a2 × a3)| and
therefore not included in the optimization procedure.60 The
parameters x and y are bound between [0,1], and the lattice
angles are defined on the ranges Θ ∈ [0, π/2], Ψ ∈ [0, π], and
ν ∈ [0, π/2]. The transformation between lattice vectors and
these parameters is given by

a

a x x

a xy xy xy

a

a

a

(1, 0, 0),

( cos , sin , 0),

( cos cos , sin cos , sin )

1

2

3

=

=

= (8)

For monatomic crystals, an individual I is then defined as an
instance of these parameters encoded into binary representa-
tion, I{adi} = bxbybΘbΨbν. The parametrization in eq 8 is not
unique, and we include an additional constraint during
optimization, requiring that the surface area of the unit cell
is minimized.60

Compared to monatomic crystals, chiral systems may form
enantiomerically pure (conglomerate) or racemate struc-
tures.40 In addition, enantiomerically similar molecules may
be distinct also on the basis of their orientation. Consequently,

we implement the crystal search for our problem so that each
lattice point represents the molecular center-of-mass, and we
include one additional basis point to allow for exploring
racemate structures. We found that including more basis points
becomes prohibitively expensive from a computational stand-
point. Each lattice point is also supplemented by two vectors
n1 and n2, which describe the orientation of the two molecules.
In our implementation, the chiral identity of the crystal is
controlled by the measures ζ1 and ζ2 for the two basis points,
and these identities are included as additional parameters (i.e.,
genes) to be optimized. In general, introducing more degrees
of freedom in the lattice description appends additional bits to
I{adi}, and hence, the final form of our genome is

I b b b b b b b b b b b b b b b bx y x y z n n n n n nai x y z x y z
1 1 1 2 2 2 1 2={ } (9)

Note that here we have included the displacement for the
second basis point relative to the first, b2 ≡ (Δx, Δy, Δz).
Optimizing the set of genes in eq 9 is equivalent to the
minimization in eq 5. Further details on the application of GAs
to crystal systems and Bravais lattices, in particular, are
provided in refs 52 and 60.
Lastly, to accelerate the convergence of the GA search, we

implemented a variable resolution strategy, where the number
of bits used to represent each individual is periodically changed
every 10 generations by drawing a random number from a
uniform distribution in the range Nbit ∈ [7, 31] for all genes.
We found that this “activated” search method significantly
accelerates the optimization for our problem compared to
traditional GAs with a fixed resolution (i.e., fixed number of
bits). In between the periodic bit number changes, and also at
the conclusion of the GA search, we perform a Hill-search
optimization on the fittest individual Ii* of the ith generation to
remove errors due to the encoding resolution and ensure that
parameters relax to the basin minimum. Finally, we apply
“elitism” and transfer the most fit, Hill-search-optimized
genotype Ii* from generation i into the next generation i + 1,
preserving the most fit individual’s genetic information into the
continuing search. Further improvements and a more
quantitative exploration of the activated search GA strategy
will be the subject of future work.

III. RESULTS AND DISCUSSION
We now apply the GA crystal search approach outlined in
section IIB to optimize the fitness function in eq 6 and
investigate the ground state crystal structures formed by the
chiral tetramer model (section IIA).75 In particular, we explore
values for the coarse-grained chiral renormalization parameter
λ in the range λ ∈ [−0.5, 0.5] and molecular solid-phase
densities ρ ∈ [0.14, 0.32]. The intermolecular potential in our
calculations is given by eq 2, with values reported in reduced
LJ units (see section IIA). In practice, a typical lattice in our
calculations is composed of 128−432 molecules or 512−1728
monomers, depending on the choice of molecular number
density. For a more comprehensive search of the high-
dimensional parameter space, we initialize a collection of 57
independent GA walkers (i.e., independent initializations of the
search algorithm that explore the energy landscape) for every
(ρ, λ) point. The GA hyperparameters selected in the present
study include a population composed of NI = 500 individuals,
optimization for a total of NG = 25000 generations, and
mutation probability pmutate = 0.05 per bit.60 After the GA
search procedure completes, we select the lowest-energy
structure from the resulting ensemble of GA trajectories.
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First, we present results for the chiral renormalizations that
favor enantiomerically pure crystal types, that is, λ > 0. Figure
2a shows the per-tetramer lattice energy for the most stable
crystal structure as a function of molecular number density ρ
and chiral renormalization in the interval λ ∈ [0.0, 0.5].
Different color curves correspond to different choices of λ,
with λ = 0 (dashed black curve) giving the highest-energy
structures for a given density overall, and λ = 0.5 (solid violet
curve) giving the lowest energy ones. Note that the energy
equation of state across different λ values possesses a generic
feature with a minimum in the range of molecular densities ρ ≈
0.24−0.26, most frequently at ρ = 0.25, and exhibits increasing
energy minimum depth for larger values of λ. Therefore, a
larger chiral bias enables the crystal to adopt more energetically
favorable configurations. Given that positive renormalization
values favor locally homochiral interactions, we find that
indeed most of the crystal structures obtained for λ > 0 are
enantiopure (conglomerate crystals).
Interestingly, we identified one exception at λ = 0.1 and ρ =

0.31, where a racemate simple orthorhombic crystal with
energy ϕ = −21.91 was observed, despite having a positive
chiral renormalization parameter. After revisiting this particular
state point and performing another ensemble of GA
optimization at identical conditions but different seeds for
the random number generator, we obtained a conglomerate
structure with slightly higher energy, ϕ = −20.30. This
structure is also a simple orthorhombic lattice, and differs only
in chiral character. We also observed such competing crystal
structures with comparable energies but different chiral
identities in some our exploratory test runs at higher densities
(i.e., ρ > 0.30) and near vanishing renormalizations λ → 0+
(results not shown), though these structures were ultimately
replaced by more stable conglomerate ones when collecting
our final set of data. Finally, we note that the probability of
observing this metastability diminishes drastically with
increasing λ, and we observed no racemate crystals when λ >
0.1 in our final calculations.
To illustrate the variance in energy across the ensemble of

GA optimized structures, we focus on the λ = 0.5 case in
Figure 2b and show the minimum energy curve ϕ (ρ, λ = 0.5)
compared against the average energy of the ensemble for every
point ⟨ϕ⟩ (ρ, λ = 0.5). Error bars for ⟨ϕ⟩ represent the
standard deviation in energies across the 57 independent

trajectories that comprise the ensemble. The error bars for
curves corresponding to the λ ≠ 0.5 cases look similar to the
representative case in Figure 2b and are, therefore, omitted in
Figure 2a for clarity. Note that the standard deviation of the
ensemble energy becomes larger with increasing ρ, illustrating
that it is more challenging for the GA algorithm to converge at
higher densities and highlighting the need for the ensemble
approach utilized in this paper.
The most stable conglomerate crystal found by the GA was

at the point λ = 0.5 and ρ = 0.25, with a per-tetramer lattice
energy of ϕ = −40.97. This is the lowest energy crystal lattice
obtained from our entire study. A visualization of this
particular structure is presented in Figure 3, where a single

lattice cell comprised of two tetramer molecules is highlighted.
In order to determine the identity of the Bravais lattice
obtained from this search, we applied the NIST*LATTICE
classification strategy76,77 to the GA optimized primitive
vectors, combined with manual categorization for important
state points. This algorithm is based on cell type matching
using a reduced form of the six scalar products between the

Figure 2. (a) Energy of most stable crystal configurations versus molecular number density for positive chiral bias λ > 0. Different colors denote
different values of λ, as indicated. (b) The minimum energy ϕmin for the λ = 0.5 case, compared to the average energy from the ensemble of 57
walkers, ⟨ϕ⟩. Error bars indicate the standard deviation of energies in the ensemble.

Figure 3. Visualization for the most stable conglomerate crystal
structure for λ > 0, which occurred at the point (ρ, λ) = (0.25, 0.5).
Here, all molecules are in the L-configuration. Two molecules from a
single unit cell are colored in green to aid the eye. The two green
molecules represent a single cell of the lattice that is repeated to
generate the full crystal structure.
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three primitive lattice vectors, a1, a2, and a3. Due to the
numerical precision of the GA, the optimized lattice vectors
will inevitably deviate somewhat from the ones of perfect
Bravais crystals, thus necessitating some tolerance in the
identification procedure; we chose a relative tolerance of 10−4

and absolute tolerance of 0.15 of the magnitude of the largest
primitive vector. We note that this approach does not
unambiguously identify lattices, and the specific choice of
absolute tolerance impacts the classification. In particular, the
distinction between type II and type IV lattices (described
below) is affected by the choice of absolute tolerance, whereas
other lattice types are less sensitive. Nevertheless, the present
choice of these parameters does identify clear patterns in the
data. Our classification algorithm identified a total of 13
distinct lattices, which can be broadly grouped into four
general lattice types based on the primitive vector lengths a1 =
|a1|, a2 = |a2|, and a3 = |a3|: (i) type I lattices, where the three
primitive vectors obey a1 = a2 = a3, (ii) type II lattices, in which
case a1 = a2, (iii) type III lattices, where a2 = a3, and (iv) type
IV lattices where a1 ≤ a2 ≤ a3, which captures lattices that did
not belong to types I−III.
From this analysis, we determined that the global energy

minimum at (ρ, λ) = (0.25, 0.5) corresponds to a
conglomerate rhombohedral lattice, which has a significantly
lower energy than our previously reported conglomerate
crystal lattice [ϕ = −29.4 for (ρ, λ) = (0.25, 0.5)];18 the
structure presented in our previous work was obtained via a
combination of inherent structure calculations for a pair of
tetramer molecules, geometrical considerations, and low finite
temperature isobaric molecular dynamics calculations. At this
state point where the most stable structure obtained, the GA
search identified a collection of eight unique structures among
the 57 independent runs, where a triclinic lattice was the most
dominant Bravais lattice observed (44% of structures),
followed by oblique rhombic prism (21%) and rhombohedral
(12%) lattices. The remaining observed structures included C-
centered monoclinic, body-centered monoclinic, face-centered
orthorhombic, and body-centered tetragonal lattices.
Next, we turn our attention to renormalizations that favor

racemic crystal types, λ < 0. Figure 4a shows the lattice energy
per tetramer for the most stable crystal structures as a function
of molecular number density ρ over a range of negative
renormalization parameter values. We also provide in Figure

4b the ensemble average of the energy and corresponding
standard deviation for the most stable crystal structure (in this
case, λ = −0.5). Note that for all of the λ < 0 genetic
trajectories, only racemate structures were obtained, and hence
the affinity for local heterochirality imposed by negative λ
values appears to always produce racemates. This behavior is in
contrast to positive renormalizations, where our calculations
still produced a heterochiral structure at λ = 0.1 and ρ = 0.31.
Similar to the conglomerate case, the lattice energy per
tetramer for racemates exhibits a general form with a minimum
in the range of ρ ≈ 0.24−0.26. Moreover, there is again a linear
relationship between the minimum lattice energy per tetramer
ϕmin and the chiral bias λ (see discussion below). The most
stable racemate found from our application of the GA is at
(ρ, λ) = 0.25, −0.5) with a lattice energy of ϕmin = −30.39.
The crystal structure for the most stable racemate crystal is a
primitive oblique rhombic prism. A total of eight unique
structures were identified across the full ensemble at this
particular state point, with the most common structure being a
triclinic lattice (37% of structures), followed by oblique
rhombic prism (21% of structures), and rhombohedral hR
(18% of structures) lattices. Other lattice types observed in the
ensemble included C-centered monoclinic, body-centered
monoclinic, rhombohedral, and body-centered tetragonal. A
snapshot of the lattice corresponding to the most stable
racemic crystal is provided in Figure 5. The full energy surface
determined from our calculations is summarized in Figure 6,
and the crystal structure, density, and chiral identity for the
most stable lattice at every λ value are summarized in Table 1.
We now focus on the differences between the conglomerate

and racemate crystal predictions. Figure 7 shows the minimum
lattice energy per tetramer ϕmin across all investigated ρ values
as a function of renormalization λ. Both conglomerates and
racemates exhibit a linear relationship between ϕmin and λ, but
the dependence is stronger for conglomerates than racemates,
as evidenced by the difference in slopes shown in Figure 7.
Given the form of the potential energy function of our tetramer
model, this result can be explained by drawing a rough analogy
to the Ising model with up to second nearest neighbor
interactions.19,78,79 Of course, there are subtle differences
between the two models such as the presence of more than
second nearest neighbor interactions and molecularity in our
chiral tetramer model. Nevertheless, the conglomerate crystals

Figure 4. (a) Energy vs molecular number density ρ of the most stable crystal configurations for negative chiral bias, λ < 0. Different colors denote
different choices for the chiral renormalization parameter λ, as indicated. (b) Energies of the most stable racemic structures obtained from our
calculations, ϕmin, compared to the ensemble average ⟨ϕ⟩.
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have similar features to energetically favored ferromagnetic
parallel spins, while racemates are analogous to antiferromag-
netic systems that favor antiparallel spins. In this context,
increasing the magnitude of λ corresponds to increasing the
coupling constant in the Hamiltonian of the Ising model. Note
that unfavorable second nearest neighbor chiral interactions,
which can lead to cancellation effects, are present in racemates
but are absent in conglomerates. Specifically, the second
nearest neighbor interactions will diminish the effect of the
coupling constant λ for racemates with λ < 0, but will increase
for conglomerates with λ > 0. Therefore, an increase in the
magnitude of λ will produce a less dramatic effect for favorable
racemates when enantiomers (antiparallel spins) are nearest
neighbors, than for conglomerates when chirally equivalent
molecules (parallel spins) are nearest neighbors. At low
densities, where a small number of molecules contribute to
the total energy, the presence of energetically unfavorable
second nearest neighbor interactions can potentially give rise
to unexpected results; for example, the bias-free case gives
lower-energy structures compared to λ < 0 at low densities, ρ <
0.19 (see Figure 4a).
We conclude our discussion of the GA crystal predictions for

the chiral tetramer model by computing a structure phase
diagram (Figure 8). While there is some statistical noise in the
results, this diagram illustrates a clear preference for type II
lattices at lower densities ρ ≤ 0.18 and λ > 0, type III lattices at
high densities ρ > 0.29 and λ < 0, and a mix of types I and IV
lattices at intermediate densities (0.19 ≤ ρ ≤ 0.28; Figure 8).
As described earlier, structures are predominantly conglom-
erate when λ > 0, and racemic for λ < 0. Along λ = 0, there is
no preference for conglomerate or racemic structures, and
hence both types are observed. There is no obvious strong link
between crystal chiral identity and lattice structure, though at
lower densities, type II structures were more frequently
observed when λ > 0, and at high densities, type III structures
predominantly appear when λ < 0. The most common lattice
type observed across the full span of λ and ρ values is primitive
triclinic, which comprised 33% of all the observed lattices.
Oblique rhombic prism structures accounted for 32%, C-
centered monoclinic 11%, and rhombohedral 10%. The
remaining observed lattice structures included body-centered

Figure 5. Visualization of the most stable racemic crystal lattice,
which occurs at the point (ρ, λ) = (0.25, −0.5). Here, red denotes
molecules in the D-configuration, and blue denotes molecules in the L-
configuration. We have highlighted in green two molecules from a
single lattice cell to aid visualization of what a single unit cell looks
like.

Figure 6. Most stable crystal energy as a function of both crystal
density ρ and chiral renormalization λ.

Table 1. Summary of Most Stable Crystal Structure for
Every Chiral Renormalization Considered in Our Studya

λ ρ chirality structure

−0.5 0.25 racemate oblique rhombic prism (primitive)
−0.4 0.26 racemate monoclinic/triclinic (primitive)
−0.3 0.24 racemate monoclinic (primitive)
−0.2 0.26 racemate oblique rhombic prism (primitive)
−0.1 0.25 racemate tetratgonal (body-centered)
0.0 0.25 conglomerate triclinic (primitive)
0.1 0.25 conglomerate triclinic (primitive)
0.2 0.27 conglomerate tetragonal (body-centered)
0.3 0.26 conglomerate tetragonal (body-centered)
0.4 0.25 conglomerate triclinic (primitive)
0.5 0.25 conglomerate rhombohedral

aThe table summarizes the density at which the most stable crystal
was determined, as well as the crystal chirality and its structure.

Figure 7. Energy of the most stable crystal, ϕmin, across all densities as
a function of chiral renormalization (markers), with linear fits to the
data (dashed line).
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monoclinic, C-centered, face-centered, and body-centered
orthorhombic, primitive and body-centered tetragonal, and
body-centered cubic. Each of these lattice types accounted for
<10% of all structures.

IV. CONCLUSION
Genetic algorithms represent a powerful class of tools for
predicting and analyzing ground state crystal structures, and we
apply this framework to chiral systems and predict
conglomerate (chirally pure) and racemate (equal part
enantiomers) crystals over a broad range of conditions. After
identifying stable crystals with respect to molecular number
density and chiral renormalization parameter, we applied the
NIST*LATTICE approach to classify the optimized Bravais
lattices computed by the genetic algorithm. This approach
enabled us to develop a phase diagram for the chiral tetramer
model, classifying stable structures based on both lattice type
and chirality. Moreover, our findings revealed the presence of
racemic crystals for small positive chiral renormalization values,
suggesting the possibility of metastable states that differ only in
chiral identity. This result has tantalizing prospects for better
understanding the kinetics of crystallization and the mecha-
nistic pathways when a metastable phase has a different chiral
identity from its thermodynamically stable phase. In addition,
the chirality-induced metastability present in our model may
play a role in low temperature amorphous states, and may pose
new questions relevant to glass physics or the recently reported
critical point confluence phenomenon.80

Several aspects of this present work remain open for further
exploration. First, from an algorithmic standpoint, the
efficiency of the activated and expanded-ensemble genetic
algorithm search presented here may be improved through
further study, and by leveraging more sophisticated heuristics.
In addition, advanced sampling techniques for rate calculations
and the identification of mechanistic pathways of the
crystallization of the tetramer model may elucidate the effects
of the solid-phase chiral metastability. The chiral tetramer
model has already been implemented into the LAMMPS
simulation package,19,81,82 and further investigation of the
chiral tetramer model solid-phase behavior can be explored
using molecular dynamics simulations using the crystal
structures obtained in this work. Such simulations would

explore the phonon spectra of these lattices, and can also open
a pathway for studying the effect of strong compression and
high crystal densities, where pressure-induced chirality
inversion may occur.18 Finally, we anticipate that the
investigation of the additives and interactions that stabilize
conglomerates and racemates will be of great interest in crystal
design and engineering.
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“x” marker denotes racemic crystals.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04501
J. Phys. Chem. B 2022, 126, 7771−7780

7778

https://doi.org/10.34770/CHAG-5F03
https://doi.org/10.34770/CHAG-5F03
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pablo+G.+Debenedetti"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1881-1728
https://orcid.org/0000-0003-1881-1728
mailto:pdebene@princeton.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nikolai+D.+Petsev"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8647-720X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Arash+Nikoubashman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0563-825X
https://orcid.org/0000-0003-0563-825X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Folarin+Latinwo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2331-8607
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Frank+H.+Stillinger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1225-8186
https://orcid.org/0000-0002-1225-8186
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04501?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04501?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04501?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04501?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04501?fig=fig8&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ REFERENCES
(1) Yus, M.; Guijarro, A. The Origin of Chirality in the Molecules of
Life: A Revision from Awareness to the Current Theories and Perspectives
of This Unsolved Problem, 1st ed.; Royal Society of Chemistry:
Cambridge, 2009.
(2) Blackmond, D. G. The Origin of Biological Homochirality. Cold
Spring Harb. Perspect. Biol. 2019, 11 (3), a032540.
(3) Viedma, C. Enantiomeric Crystallization from DL-Aspartic and
DL-Glutamic Acids: Implications for Biomolecular Chirality in the
Origin of Life. Orig. Life Evol. Biosph. 2001, 31 (6), 501−509.
(4) Lombardo, T. G.; Stillinger, F. H.; Debenedetti, P. G.
Thermodynamic Mechanism for Solution Phase Chiral Amplification
via a Lattice Model. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (36),
15131−15135.
(5) Lough, W. J.; Wainer, I. W. Chirality in Natural and Applied
Science; Wiley-Blackwell: Oxford, 2006.
(6) Hoehlig, K.; Bethge, L.; Klussmann, S. Stereospecificity of
Oligonucleotide Interactions Revisited: No Evidence for Heterochiral
Hybridization and Ribozyme/DNAzyme Activity. PLoS One 2015, 10
(2), No. e0115328.
(7) Teo, S. K.; Colburn, W. A.; Tracewell, W. G.; Kook, K. A.;
Stirling, D. I.; Jaworsky, M. S.; Scheffler, M. A.; Thomas, S. D.; Laskin,
O. L. Clinical Pharmacokinetics of Thalidomide. Clin. Pharmacokinet.
2004, 43 (5), 311−327.
(8) Kean, W. F.; Howard-Lock, H. E.; Lock, C. J. L. Chirality in
Antirheumatic Drugs. Lancet 1991, 338 (8782), 1565−1568.
(9) Chhabra, N.; Aseri, M. L.; Padmanabhan, D. A Review of Drug
Isomerism and Its Significance. Int. J. Appl. Basic Med. Res. 2013, 3
(1), 16−18.
(10) Chiral Drugs: Chemistry and Biological Action, 1st ed.; Lin, G.-
Q., You, Q.-D., Cheng, J.-F., Eds.; Wiley: Hoboken, N.J., 2011.
(11) Lorenz, H.; Seidel-Morgenstern, A. Processes To Separate
Enantiomers. Angew. Chem., Int. Ed. 2014, 53 (5), 1218−1250.
(12) Cao, M.; Monson, P. A. A Study of the Phase Behavior of a
Simple Model of Chiral Molecules and Enantiomeric Mixtures. J.
Chem. Phys. 2005, 122 (5), 054505.
(13) Nugent, W. A.; RajanBabu, T. V.; Burk, M. J. Beyond Nature’s
Chiral Pool: Enantioselective Catalysis in Industry. Science 1993, 259
(5094), 479−483.
(14) Govan, J.; Gun’ko, Y. K. Recent Progress in Chiral Inorganic
Nanostructures. Nanoscience 2016, 3, 1−30.
(15) Mallat, T.; Orglmeister, E.; Baiker, A. Asymmetric Catalysis at
Chiral Metal Surfaces. Chem. Rev. 2007, 107 (11), 4863−4890.
(16) Liu, W.; Gan, J.; Schlenk, D.; Jury, W. A. Enantioselectivity in
Environmental Safety of Current Chiral Insecticides. Proc. Natl. Acad.
Sci. U. S. A. 2005, 102 (3), 701−706.
(17) Aguiar, A. R.; Alvarenga, E. S.; Silva, E. M.; Farias, E. S.;
Picanço, M. C. Synthesis, Insecticidal Activity, and Phytotoxicity of
Novel Chiral Amides. Pest Manag. Sci. 2019, 75 (6), 1689−1696.
(18) Latinwo, F.; Stillinger, F. H.; Debenedetti, P. G. Molecular
Model for Chirality Phenomena. J. Chem. Phys. 2016, 145 (15),
154503.
(19) Petsev, N. D.; Stillinger, F. H.; Debenedetti, P. G. Effect of
Configuration-Dependent Multi-Body Forces on Interconversion
Kinetics of a Chiral Tetramer Model. J. Chem. Phys. 2021, 155 (8),
084105.
(20) Uralcan, B.; Longo, T. J.; Anisimov, M. A.; Stillinger, F. H.;
Debenedetti, P. G. Interconversion-Controlled Liquid-Liquid Phase
Separation in a Molecular Chiral Model. J. Chem. Phys. 2021, 155
(20), 204502.
(21) Longo, T. J.; Anisimov, M. A. Phase Transitions Affected by
Natural and Forceful Molecular Interconversion. J. Chem. Phys. 2022,
156 (8), 084502.
(22) Longo, T. J.; Shumovskyi, N. A.; Asadov, S. M.; Buldryev, S. V.;
Anisimov, M. A. Structure Factor of a Phase Separating Binary
Mixture with Natural and Forceful Interconversion of Species. J. Non-
Cryst. Solids X 2022, 13, 100082.

(23) Wang, Y.; Stillinger, F. H.; Debenedetti, P. G. Fluid-Fluid Phase
Transitions in a Chiral Molecular Model. J. Chem. Phys. 2022, 157
(8), 084501.
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