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ABSTRACT: Reversed conductance decay describes increasing conductance of a molecular chain
series with increasing chain length. Realizing reversed conductance decay is an important step
towards making long and highly conducting molecular wires. Recent work has shown that one-
dimensional topological insulators (1D TIs) can exhibit reversed conductance decay due to their
non-trivial edge states. The Su-Schrieffer-Heeger (SSH) model for 1D TIs relates to the electronic
structure of these isolated molecules but not their electron transport properties as single-molecule
junctions. Herein, we use a tight-binding approach to demonstrate that polyacetylene and other
diradicaloid 1D TIs show a reversed conductance decay at the short chain limit. We explain these
conductance trends by analyzing the impact of the edge states in these 1D systems on the single-
molecule junction transmission. Additionally, we discuss how the self-energy from the electrode-
molecule coupling and the on-site energy of the edge sites can be tuned to create longer wires with

reversed conductance decays.
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Most molecular wires conducting through an off-resonant transport mechanism exhibit an

exponentially decreasing conductance (G) with increasing molecular length (L),!” showing
G=Gee Pt (B>0) (D

where [ is the exponential decay factor, and G, is the contact conductance, which depends
primarily on the electrode-molecule coupling. According to equation (1), the molecular
conductance for a long molecule is inevitably lower than its shorter analogs. This makes it
challenging to build long and highly conducting molecular wires. However, researchers have

proposed®!! and experimentally realized!?!®

a reversed conductance-length decay in mixed-
valence or diradical molecular systems, where the conductance increases exponentially with
molecular length. Diradical molecules have also been identified as one-dimensional analogs of
topological insulators!”, which suggests that this anomalous conductance-length relationship for
diradicals is a consequence of their nontrivial topology.'® ' By defying exponential decay
(equation 1), these molecular systems could inspire the design of long, highly conducting

molecular wires.

Interest in diradicals as conductive molecular wires has been motivated by theoretical tight-
binding models of polyacetylene in its diradical form. The anomalous conductance-length
relationship of diradical polyacetylene was first noted by Hush?® in the context donor-bridge-
acceptor systems and has been popularized more recently by Hoffmann and coworkers’ in the
context of molecular junctions. In these works, the molecule-electrode coupling is neglected, and
the conductance of diradical polyacetylene is predicted to increase exponentially with length (i.e.,
B < 0). However, since the conductance through a single channel cannot exceed 1 Gy (2¢*/h, the
conductance quantum), the conductance cannot exponentially increase indefinitely. As the chain
length grows, the molecule-electrode coupling becomes increasingly important. Eventually a long-
chain regime is reached where the conductance-length relationship reverts to exponential decay
(equation 1), as indicated by the complex band theory?!?>. This transition between the two
conductance-length regimes has recently been shown in experiments'® 2*. Here, we examine
systems of molecular wires terminated by radicals in molecular junctions and use a tight-binding
approach® to investigate the full evolution of the conductance with length. We further explain how
the molecule-electrode coupling and the on-site energy of the edge sites affect the conductance

trends, to highlight the role of the electrode-molecule interaction on electron transmission.



ty=tge® ty=te’ a Trivial Topological Edge States
0

|L> ~ e—é'k

o

Energy relative to &¢

-3t, !
-1 0 1

Bond alternation (J)

Figure 1. (A) Pictorial depiction of H,, which describes a chain of 8 carbon atoms with alternating
coupling (ty, green; t,, purple). Alternating coupling is parameterized by 6. (B) Chemical
interpretation of § in terms of carbon-carbon bond order. For § < 0, t; represents a double bond
and t, a single bond; whereas, for § > 0, t; represents a single bond and t, a double bond. (C)
Energy spectrum of Uy, as functions of 8. The energy bands of the corresponding infinite chain are
shaded gray. When 6 > 0, two edge states (red) exist within the band gap. (D) Schematic
molecular orbitals of the left (L) and right (R) edge states for m = 4 and § = 0.5.

We first consider the tight-binding model of polyene (i.e., the Su-Schrieffer-Heeger (SSH)

model?% 27

in physics parlance, see SI section 1), and we provide a complete, analytical analysis of
the conductance-length relationship. Polyacetylene comprises a chain of sp*-hybridized carbon
atoms that are bonded together by alternating single and double bonds. A simple tight binding
model of polyacetylene utilizes two nearest-neighbor coupling parameters, t; and t,, to model the
alternating bond orders in the chain. Without loss of generality, the coupling parameters can be
expressed by t; = tye™® and t, = tye®, where t, is the geometric mean of t; and t,, and §
parametrizes the bond order alternation. With this parameterization, the Hamiltonian for the SSH
model (H,,) is given by equation (2), where m denotes the number of C-C unit cells (Figure 1A).
Here we assume t4, t, > 0 and a minus sign is included in equation (2) so that the nearest-neighbor
coupling is negative. Additionally, we have assigned the on-site energy of the carbon atoms (&) a
value of zero. In matrix form, H,, forms a tridiagonal matrix.

2m-1

H,, = Z e VRS k) (ke + 1| + H.c. )
k=1



The influence of bond order alternation (&) on the electronic structure of polyacetylene molecules
can be understood from simple Kekulé structures (Figure 1B). When § < 0, then t; > t, and the
molecule assumes the form of a polyene, whereas when § > 0 then t; < t, and the molecule is a
diradical. These two regimes are separated by the condition § = 0 which describes a chain with

uniform bond order (t; = t,).

The energy spectrum of H, is shown in Figure 1C as a function of §. It has been shown
that § < 0 and § > 0 represent two distinct topological classes with trivial and nontrivial topology,
respectively. Transitioning from the trivial to the topological regimes requires passing through a
gapless metallic state (6 = 0), which demarcates the two topological classes. In the trivial regime
(6 < 0), all the energy levels fall within the energy bands of the bulk chain (gray shaded region).
In the topological regime (6 > 0), two energy levels (highlighted in red) fall within the band gap.
These are edge states that are not accounted for in the bulk band structure. When § > 1/m, the
edge states are nearly degenerate with energy &¢. As expected from the simple diradical structure
(Figure 1B), the edge states are localized on the left and right edges of the chain (Figure 1D), given
by equation (3) and (4), respectively. They decay exponentially into the bulk with alternating

orbital phase on every other site. C,, represents the MO coefficient of the first site and is set by

. . / 1-e~49
unit normalization to be C,,, = T i

2m
IL) = Cp, ) cos[(k — 1)m/2] e~2*=D k) ©)
2m
IR) = C,, Z cos[(k — 2m)m/2] e5k=2m) k) 4)
k=1

To investigate the electron transmission behavior of polyacetylene, we couple the molecule
to electrodes to determine the transmission through the resulting molecular junctions®*3! (see SI

section 2). The molecular junction can be modelled by considering the matrix,
~ i

where I}, = I1,|1)(1]| and Ty = Iz|2m)(2m| are coupling matrices that describe the left and right

electrodes, which couple to the first and last site on the chain, respectively (Figure 2A). In a



symmetrically coupled junction, I}, = IR = I'. Here we assume the wide-band limit, where the
coupling strength, I', is independent of energy. From equation (5), the transmission function can
be calculated by T(E) = Tr[I[,G(E)I[RGT(E)], where G(E) = [El—i-vln]_1 is the Green’s
function and I is the identity matrix. At low bias, the conductance of a molecular junction is
directly proportional to the transmission at the Fermi energy (Er): G = GoT (Er) Therefore, we

are primarily interested in T(Er), and for convenience we will assume that Ep = & (i.e., the

carbon on-site energy).
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Figure 2. (A) Transmission spectrum for m = 4, 6 = 0.2, and I' = 0.1ty. The energy bands of an
infinite chain are shaded gray. Two resonance peaks exist within the band gap due to the edge
states. (B) Transmission spectrum, plotted within the band gap region, for m = 1-5 with 6 = 0.5,
and I' = 0.1ty, Fermi level (Er) is indicated by the dashed line. (C) Transmission at Er as a
Sfunction of length from panel B for I' = 0.1ty, 0.01ty, and 0.001t. Short and long chains exhibit

exponentially increasing and decreasing transmission, respectively. Grey data points mark the

transmission at integer m values.

The transmission function for a representative molecule in the topological regime (§ > 0)
is presented in Figure 2A. The transmission function reveals two resonance peaks within the band
gap that arise from the edge states. The resonance peaks result in a high transmission at E. This
suggests that diradical molecules, if chemically stable, serve as good conductors in molecular
junctions. The length-dependence of the chain is especially interesting. In Figure 2B, we show the
length-dependent transmission near Er for a chain with § = 0.5 and I’ = 0.1¢t,,. Increasing the
length of the chain from m = 1 to m = 3 causes the edge state-derived resonances to converge to

Er resulting in an increase in T(E). This increase in conductance with length is the opposite of



conventional molecular junctions where the conductance decreases exponentially with length
(equation (1)). When m = 4, for the parameters chosen, the resonance peaks are nearly degenerate

and T(Er) = 1. However, increasing the length beyond m = 4 results in a decrease in T (EF).
In Figure 2C, T(ER) is plotted as a function of length (m), using a constant length-
independent bond alternation (8). T(Er) obeys a simple expression'? (see SI section 4),

T, (Ey) = sech? [(Zm 15 +1n (2%)] 6)

The sech?(x) function describes a peak that ranges from zero to one (similar to a Gaussian
function). Since 6 is the coefficient of m it will primarily affect the width of the peak, while I" is
part of an additive constant that will shift the peak left or right. Restricting our attention to § > 0
as in the diradical case, since I' < t; in the weak coupling regime, the peak will be centered at
some positive m (Figure 2C). However, it should be noted that T, (EF) is only meaningful for
integer m (grey data points), and the peak position of the function will generally not coincide with
an integer value. For this reason, the peak conductance of a diradical polyacetylene series will not
perfectly reach 1Go. Away from the peak center, the transmission exhibits an exponential
dependence on length, i.e., T,,,(Er) ~ e ™. For short chain lengths f = —46 and for long chain
lengths 5 = 44§ (see Sl section 4). Therefore, although these wires are one-dimensional analogs to
2D and 3D TIs, in that conduction occurs through boundary states, unlike 2D and 3D TI materials,
a long chain, which would constitute a 1D material, is conductive at the edge points but not through

the entire chain. Only short chains, i.e., small molecules, are conductive via the edge states.

Figure 2C also shows how decreasing I" affects T, (Er). When I" becomes smaller, T; (Er)
becomes lower for small m and the peak of T,,(Er) shifts to longer chain lengths since the
In(I"/2t,) term becomes more negative. Going from I' = 0.1ty to I' = 0.01¢t, and 0.001¢,, the
chain length with peak transmission increases from m = 3 to m = 6 and m = 8.3* Accordingly, to
extend the range of m where we have a negative decay to create longer highly conducting wires, it

is necessary to efficiently decouple the polyacetylene chain from the electrodes.

To gain greater intuition on how the edge states mediate transmission it is instructive to
consider an explicit two-level model. The left and right edge states presented in equation (3) and

(4) are exact eigenstates for infinite chains with energy ec = 0. However, for finite chains, |L) and



|R) are no longer eigenstates, but they serve as an effective basis to approximate the HOMO and
LUMO of H,,,. Applying equation (3) and (4) to equation (2), the coupling between |L) and |R)

can be calculated to be:
£ = (L[Hp|R) = (=1)™|Cp|?toe M1 (7

The coupling between |L) and |R) results in eigenstates that are the symmetric and antisymmetric
linear combinations of |L) and |R) with energies +¢ and —¢, respectively. When m = odd, since
€ < 0 (equation (7)), the symmetric combination will be lower in energy and become HOMO (i.e.,
|YHoMo)) and the antisymmetric linear combination will be higher in energy (i.e., |Y1ymo)). When

m = even, since € > 0 (equation (7)), the HOMO and LUMO become reversed:

1

[YHomo) = \/§(|L> — (=1)™|R)), Exomo = — el (8)
1
[Yrumo) = ﬁ(lL) + (=1)™[R)), Erumo = lel 9)

The electrode coupling is given by the atomic orbital-electrode coupling (I") times the magnitude
squared of the MO coefficient at the contact site. The MO coefficient of the electrode contact site
for both the HOMO and LUMO is C,,,/v/2 (equation (8) and equation (9)). Therefore, the electrode
coupling for both the HOMO and the LUMO is the same and is given by,

1 2
y = ICul?r (10)

With the energy levels (¢) and the electrode coupling (y), the transmission coefficients for the

HOMO and LUMO are given by the Breit-Wigner formula®3-*° (see SI section 3),

(D™ ly

HOMO = 7 ) (11
D"y

tLumo = E—c+iy (12)

According to equation (11) and (12), the phase of HOMO (or LUMO) alternates from 0 (or m) to
7 (or 0) for odd and even m. The transmission function for the two-level model is given as the

magnitude squared of the sum of transmission coefficients,



Trglz) (E) = |tuomo + tLumol® (13)

The two-level transmission function for a representative molecule (m =4, = 0.2, and I' =
0.1¢,) is presented in Figure 3A. Due to quantum interference the transmission function (solid) is
not a simple sum of the single level Lorentzians (dashed) (see SI section 3). The energy splitting

between the resonance peaks is AE = 2¢ and the full width at half maximum (FWHM) for each

resonance is 2y.
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Figure 3. (A) Transmission function for two-level model of edge states (black) along with
hypothetical transmission for the individual levels (dashed). The energy splitting and the FWHM
of the HOMO/LUMO are indicated by blue and red arrows, respectively. (B) Comparison of the
length dependence of transmission (left axis) to the energy splitting (right axis, red) and the FWHM
(right axis, blue). The peak in the transmission versus m occurs when the energy splitting equals
the FWHM (vertical dashed line). There is good agreement between the full model (H,,) and the
two-level model. (C) Transmission from panel B, now plotted on a linear scale, along with the

interfering (orange) and noninterfering (blue) terms. The peak transmission occurs when QI is

zero.

The transmission at Er for the two-level model is given by equation (14). Remarkably,
equation (14) is equivalent to equation (6), which was derived from the full Hamiltonian, i.e.,
T,;Z) (Er) = T,,,(EF). This equivalence with the full model underscores the validity of the two-level
approximation. In Figure 3B, T,%Z) (Er) (black line) is compared with the length dependence of the
level splitting (AE = 2¢, red line) and the FWHM (2y, blue line), with § = 0.2, and I' = 0.1¢,,.
The level splitting and FWHM from the full model are included as markers. For the full model,

the splitting and FWHM are extracted from real and imaginary parts of the eigenvalues of H,,



(equation (5)), which take the form of € — iy. There is very good agreement between the full model
and the two-level model. Importantly, Figure 3B demonstrates that peak transmission at Er occurs
when the splitting equals the FWHM (AE = 2y). This condition is analogous to the Rayleigh
criterion from optics. Hence, for AE >> 2y transmission increases exponentially with length,

whereas, for AE < 2y transmission decreases exponentially with length.

(-1)™tr/2 4 (=D™r/2
toe=@m-DS 4 i /2  —tge M-8 i /2

T&Z)(EF) = (14)

The condition that T,,,(Er) = 1 when AE = 2y is an intuitive result. Each Lorentzian peak

contributes 0.5 to transmission resulting a total transmission of 1. However, this argument is only

true if the quantum interference (QI) is zero.* T,;Z)(E r) can be expanded into a noninterfering
term (|tgomol? + |tLumol?) and an interfering term (2Re[tyomotiumol)- These terms are plotted
alongside the transmission function in Figure 3C. When transmission is peaked at 1, indeed QI is
zero. For shorter chains, when AE >> 2y, there is constructive interference between the HOMO
and LUMO, as expected from the Yoshizawa rules®’. For longer chains, when AE « 2y, there is
destructive interference, and in the infinite chain limit the HOMO and LUMO coincide in energy
and have opposite phase, resulting in complete destructive interference. Equivalently, instead of
considering QI between MOs, for long chains one can consider that the basis states, |L) and |R),

are too weakly coupled (equation (7)) to facilitate transmission.

We next consider a related system in which the polyacetylene backbone is terminated by
two non-carbon atoms, X, as such systems better model real molecular systems that can be probed
experimentally through single molecule measurements. For example, X could be a terminal linker
such as -NH» or —SCH3.*® The onsite energy for X, ey, will be different from that of carbon and

hence non-zero (Figure 4A). This energy offset, as well as its magnitude relative to I3, /g, influences

the transmission function.

In the new system including a non-carbon terminal group, the Hamiltonian becomes

A = (sx—%) 11)(1] + (gx—%) 12m)(2m| + H.,, (15)

With [}, =Ix =T, and Ep = ¢c = 0, we can derive the transmission at Fermi, T,,(Er) as was

done above for the simple polyacetylene (see SI Section 5). Since T, (Er) is an even function with



respect to ex (SI Figure S3), in the discussion below €x is set to be positive without loss of

generality. Similar to equation (14), we can also consider contributions to transmission from just

the two edge states and rewrite Ty, (Er) as:

(—1)™1r/2 . (—)™r/2 ? 16)
—ex + toeW DS+ i[/2  —ggx —toeN-DS ([ /2

Tr:l(Z)(EF) =

Compared with the all-carbon polyacetylene model (or equivalently when ex = 0), the energies of
the HOMO and LUMO resonances are shifted up by ex while the coupling between the electrode
and the HOMO and LUMO levels is still I" /2.
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Figure 4. (A) Pictorial depiction of isolated W}y, and B}, with terminal non-carbon atoms X which
have on-site energy ex # 0. All the other parameters are the same as those of the all-carbon
polyacetylene model. (B) Plots of the transmission at Ep as functions of length m, with &g
increasing from 0 to 0.5t, while fixing I' = 0.1tp and 6 = 0.5. (C) Plots of the transmission at Er
as functions of length m fixing ex = 0.02t9p and 6 = 0.5, with I’ = 0.001ty, 0.01ty, and 0.1t9. (D)
Transmission functions of m = 1-5 for I' = 0.1ty, ex = 0.2tp and 6 = 0.5.
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We plot T, (Er) as a function of m for different values of ex in Figure 4B. We can see that
the maxima in T,, (Er) shift to smaller m as ex increases. Since only integer m values are allowed
(grey dots in Figure 4B), a reversed conductance decay requires that |ex| < 0.2t,. We show in
Figure 4C the impact of the electrode coupling I" on T,,(Er). In the polyacetylene case, smaller I’
shifts the peak of T, (Er) to longer chains without changing the peak shape (Figure 2C). However,
with non-zero ¢y, the relative energies of ex and I' are important. If ex < I' (dark blue), the peak
shape is not affected. If ex = I' (medium blue) or ex > I' (light blue), the peak becomes sharper
with the peak position remaining the same, indicating that ex becomes the determining factor in
the trends of T,,, (Er) with m while I" only affects the peak width. As a result, unlike the all-carbon
model, there is a limit in decreasing I" to extend the wire length over which a negative conductance

decay will be observed. If I' approaches ¢, this will no longer hold.

We then plot the transmission functions, Ty, (E), in Figure 4D for a fixed ex and I'. We see
that Er = 0 is not centered between the two resonance peaks derived from the edge states.
However, Er is in the middle of the bulk state-derived resonance peaks since &c = 0. Similar to
the all-carbon model, as the chain length increases, these edge-state derived resonances get closer
and merge into one peak. After the two resonance peaks coalesce, the transmission peak falls below
1 (for m = 5 in Figure 4D) and the system reverts to a conventional wire with exponentially

decreasing conductance again because of destructive QI.

We next expand our model to capture a poly-p-phenylene wire terminated with non-carbon
atoms (X) to explore whether reversed conductance decay can be achieved in synthetically
accessible structures.’* A diradical character emerges when polyphenylene is oxidized to the
quinone that can support edge states (Figure 5B). In this system, a single parameter ¢ is insufficient
to probe the structural transition between the quinone form and diradical form because there are
effectively three types of C-C bonds as illustrated in Figure 5SA and 5B. Thus, we use constants
t, = e %5t,, t, = e%ty, and t = 1t, to describe the two resonance structures separately. The
Hamiltonians ﬁm‘q for the quinoidal structure and ﬁm,r for the radical structure using m as the
number of phenylene units in the chain and ey as the on-site energy of the terminal atom are:

C-C Cc=C

~ il il

Fg = (e — 22) 1111+ (ex = 22) 16m + 2(6m + 2] = t, Y i)kl t, Y [p)al + H.c.(17)
Jk p.q

11



c-C c=c
~ il i
By = (20— 52) 1DGU + (8= 58] Jom + 2)6m + 2] = £, ) 170K = ¢ ) [p'Ha'| + H.c.(18)
! pl ql

Jj'k
A B
X X X X
m m
—~_ b e —~_ U e
1L, Ir Iy, Ir
&ty £x &x t £x
C
. 10°
10
-2
c. 3 c 10
510 o
R 210"
€10 [ =
g L e :
ST F=014 : —  m=1 210 7 =014 po—m=1
L £, =0.2t, 5 m=2 — &, =02t, ! m=2
w0k t=081t, | —m=3 10°F =081, | —m=3
L t,=164f, — m=4 - t=1t, o ——m=4
10-11 ] | 1 10-10 1 | 1
4ty -05t, 0  05f, ¢ 4, 05ty 0 05t ¢t
Energy relative to Eg Energy relative to £
E .
g =0 &x m=1
< 10o = Exfo-“o
ke & =021,
o — £,=0.3t,
§ L =0
10 [T
|_
10-2 ] ] |
-0.5t, 0 0.5f,

Energy relative to Eg

Figure 5. (A) Pictorial depiction of an oxidized poly-p-phenylene chain in the quinoidal form. (B)
Pictorial depiction of the same oxidized poly-p-phenylene chain in the diradical form. (C) The
calculated transmission function for m = 1-4 for the quinoidal form. (D) The calculated
transmission function for m = 1-4 for the diradical form. (E) The evolution of the two edge-state-

derived resonance peaks of the diradical poly-p-phenylene with m = I and ex increasing from (0
to 0.4ty. For Figures (C)-(E), the Fermi level (Er, dashed lines) is in the middle of the bulk state-

derived resonance peaks.

For ﬁm,q (equation (17)), we have a sum over the single-bond sites (j,k) that have a
coupling ¢, and double-bond sites (p,q) that have a coupling t,. For H,, - (equation (17)), we have

a sum over the inter-phenylene single-bond sites (j ',k ") with a coupling t; and the intra-phenylene

12



bond sites (p’,q") with a coupling ¢. With I}, = Iz = I', the calculated transmissions at Ep,

Tinq(Ep) and T, . (Ef) are derived in SI section 6. Similar to the X-terminated polyacetylene

system, we only consider the cases in which &y is positive.

We plot the full transmission functions of the quinoidal junction in Figure SC where we
see that longer chains have smaller HOMO and LUMO gaps. However, as the orbitals get
delocalized over longer lengths as the molecule gets longer, electron density decreases throughout
molecular backbone which results in a weaker electrode-molecule coupling. By contrast, for the
diradical junction (Figure 5D), we obtain two additional edge state-derived resonance peaks in the
middle of the bulk resonance peaks. The transmission function can also be written in a two-level

model expression:

(-1)™tr/2 ~nmr/2 |

—ex+Tt+il/2 —e—1+il/2

Ty (Er) = (19)
where T = t"*1/(2t)™. Equation (19) shares the same form as equation (16) for the X-terminated
polyacetylene system. The two resonance peaks are now separated by AE = 2t. The plotted
transmission functions in Figure 5D are similar to Figure 4D for the X-terminated polyacetylene
system. In Figure S5E, we plot the transmission function for m = 1, with increasing €x. We find that
ex does not affect the shape of the transmission function, but the position of the two resonance
peaks relative to Ep. Due to the similarity between this system and the previous polyacetylene
systems, the diradical structure of oxidized poly-p-phenylene wire can also be classified as a 1D
TI. Therefore, this conclusion supports the design of reversed conductance decay in more realistic

molecular wires, which has been confirmed in experiments.**

We note here that these models and derivations rely on a single-particle approach which
does not include electron-electron interactions or the electron spin. In general, electron-electron
interactions lead to Coulomb blockade which results in a splitting of the spin-up and spin-down
density of states by a charging energy AU when one electron occupies a spin-degenerate two-
electron level. AU (equal to e?/ Cjunction) 18 the single-electron charging energy, where e is the
charge of an electron and Cjynction 18 the capacitance of the junction®. At the short chain limit,
Cjunction 18 small and the Coulomb blockade effect is more significant. Furthermore, introducing

non-carbon X atoms at the edges of the polyacetylene or polyphenylene chains could lead to
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molecules with net charges. This can give rise to a larger Coulomb blockade effect where the
energy for adding one more electron on the molecule is much larger than that indicated by these
tight-binding results. Therefore this difference in the charging energy will lead to a larger edge-
state HOMO-LUMO gap and Ey will locate between the two edge state resonances.*’ As a result,
for the systems with ex # 0, the reversed conductance decay could extend to longer chains than is

be predicted from a tight-binding model.

In conclusion, we incorporate the SSH model with tight-binding transmission calculations
to show that 1D wires with topological edge states (topological insulators) can exhibit reversed
conductance decay at the short chain limit. According to the two-level model, this reversed
conductance decay results from electron transmission mainly through the two topological states
which is distinct from the exponential conductance decay that would be obtained from the bulk
states. Besides the regular polyacetylene system with an all-carbon backbone, we demonstrate that
analogous systems terminated with other atoms also features reverse conductance decay. This
work highlights the impact of the topological edge states on the electron transmission. Other
factors, such as the electron withdrawing or donating nature of the terminal atoms (&x), and the
molecular backbone, as well as the molecule-electrodes coupling also affects the electron
transmission supported by the edge states, which gives new insights in designing such molecular

wires showing reversed conductance decay.
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