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1 Abstract

In this paper, we use an integrodifference equation model and pairwise invasion analysis to find what
dispersal strategies are evolutionarily stable strategies (ESS) when there is spatial heterogeneity in
habitat suitability, and there may be seasonal changes in this spatial heterogeneity, so that there are
both advantages and disadvantages of dispersing. We begin with the case where all spatial locations
can support a viable population, and then consider the case where there are non-viable regions in
the habitat that makes dispersal really necessary for sustaining a population. Our findings generally
align with previous findings in the literature that were based on other modeling frameworks, namely
that dispersal strategies associated with ideal free distributions are evolutionarily stable. In the case
where only part of the habitat can sustain a population, a partial occupation ideal free distribution that
occupies only the viable region is shown to be associated with a dispersal strategy that is evolutionarily
stable. As in some previous works, the proofs of these results make use of properties of line sum
symmetric functions, which are analogous to those of line sum symmetric matrices but applies to
integral operators.

2 Introduction

The main goal of this paper is to determine which dispersal strategies are predicted by pairwise invasion
analysis to be evolutionarily steady (sometimes also known as evolutionarily stable or abbreviated as
ESS) in the context of integrodifference models for population dynamics and dispersal in bounded
regions. Integrodifference models are widely used in ecology because they are in some ways simpler
to analyze and simulate than partial differential equations, they can describe a very wide range of
dispersal patterns, and they are based on descriptions of dispersal that can be constructed in a natural
way from empirical data; see Lutscher (2019). We consider both the cases where there is only a single
season and the population occupies all of the region at each time step, which leads to a fairly typical
integrodiference model, and those where there are two seasons and the occupancy may be partial,
that is, populations may only occupy parts of the region in either season, which leads to a more
complicated form of integrodifference model. A secondary goal is to develop a framework for studying
competition between populations using different dispersal strategies in the setting of integrodifference
models which could be used to study the evolution of migration. Similar analyses of evolutionarily



steady strategies have been done in various other modeling contexts, including patch models, reaction-
diffusion-advection models, and integrodifferential models; see Averill et al. (2012), Cantrell et al.
(2010, 2012a,b, 2017b), Cantrell and Cosner (2018), Cosner (2014). In many of those settings the
strategies that are evolutionarily stable are those that can produce an ideal free distribution of a
population that uses them. The ideal free distribution originated as a verbal description of how a
population would distribute itself if individuals could sense what their fitness would be in any given
location, taking into account logistic types of crowding effects from the presence of conspecifics, and
could move freely to locations where their fitness would be greatest. In spatially explicit models for
population dynamics in environments that are heterogeneous in space but static in time a population
with an ideal free distribution will exactly match the distribution of resources in the environment
(Averill et al. 2012, Cantrell et al. 2010, 2012a,b, 2017b, Cosner 2014). In various modeling contexts
the notion of line sum symmetry from matrix theory or its extension to integral operators plays an
important role in showing which dispersal strategies are evolutionarily steady. That turns out to be
the case in the present setting as well. For general background on the evolution of dispersal in reaction-
advection-diffusion systems and the ideal free distribution see Cosner (2014). For general background
on integrodifference models see Lutscher (2019).

In Hardin et al. (1988) dispersal operators in integrodifference models for a single population were
compared in terms of the spectral radii of the models linearized around zero. (More specifically, the
criterion used in Hardin et al. (1988) to rank a linear dispersal operator K was the maximum over a
class of growth functions F ∈ F of the infimum of the spectral radius of the linearization at u = 0 of
the full dispersal and growth operator Φ(u) = K ◦ F (u) . Their idea was to rank dispersal operators
by asking which were the most likely to result in survival of populations under a range of possible
environmental conditions modeled by set of possible growth functions F .) They considered the cases
of no dispersal at all, uniform dispersal everywhere, and dispersal described by diffusion-like kernels
k(x, y) = J(|x − y|) for some function J(x). By their criterion they found that among those three
types of dispersal, no movement at all is optimal in temporally static environments but dispersing
everywhere is optimal in the temporally variable environments they considered. Their criterion is
quite different from ours, but their conclusions are roughly consistent with those obtained for reaction-
diffusion models when diffusion rates are compared by pairwise invasion analysis. In that setting,
in temporally static environments pairwise invasion analysis shows that there is selection for slower
diffusion, so that not diffusing at all is a convergence stable strategy; see Hastings (1983), Dockery
et al. (1998). On the other hand, in time periodic environments, there may be selection for faster dif-
fusion; see Hutson et al. (2001). In the temporally static case for both diffusion and integrodifference
models there is a connection between the strategy of no movement and the ideal free distribution.
In such environments a small logistically growing population that initially has a positive density ev-
erywhere will increase to exactly match the resource density wherever that is positive, and thereby
the population will achieve an ideal free distribution. However, in temporally variable environments
the time average of the population growth rate over time at every point in space might be too small
to support a population, but at any given time it might always be large enough at some locations.
In that situation a population that did not move would not survive but one that moved correctly might.

We will allow dispersal operators defined by fairly general kernels k(x, y). Our analysis of the
pairwise invasion problem will be based on the theory of monotone semidynamical systems, so we will
always assume that the population growth terms are qualitatively similar to those in the Beverton-Holt
model. We first consider the case where there is only one season and populations occupy the entire
environment. We then consider the more complicated case where there are distinct summer and winter
seasons and populations may only partially occupy the environment. In that case we combine the two
transitions from summer to winter and winter to summer to produce a single summer to summer
map. Related ideas were used to capture periodic variation in rivers in Jacobsen et al. (2015). The
second case requires some new technical results that may be of independent interest. In both cases
we give a definition of the ideal free distribution that is appropriate for the class of models and show
that populations using a dispersal strategy that leads to an ideal free distribution can invade and
resist invasion by otherwise ecologically similar populations that use dispersal strategies which do not
produce an ideal free distribution.

2



3 Model formulation and main results

In this section, we will construct a model to study the dynamics of a population of single-species
organisms that disperse before every summer and winter to keep track of the seasonal changes in
their habitat. The main variables of the model are ns,t(x) and nw,t(x), which are the density of the
population at location x for year t at the beginning of summer (with subscript s) and winter (with
subscript w). The habitat of the population is restricted in space in a compact subset Ω of Rn, so that
the population density outside Ω is always 0. In cases of applied interest, 1 ≤ n ≤ 3.

We adopt an integrodifference-equation framework, which is suitable for organisms whose dispersal
occurs in short periods of time, so that the change in their population size during dispersal is negligible.
The population we are studying is assumed to be sessile for most of the year, but redistribute in space
twice a year. This redistribution in space is modeled by taking an integral transformation of the pre-
dispersal population density, mapping it to the post-dispersal population density. The kernel of the
integral transformation is referred to as the redistribution kernel or the dispersal kernel. The model
framework is discrete in time. The population density ns,t(x) is mapped to nw,t(x), and then nw,t(x)
to ns,t+1(x), t = 0, 1, 2, . . ., by the pair of integral equations below:

nw,t(x) =

∫
Ω

kws(x, y)Qs(y)
f0 ns,t(y)

1 + b0ns,t(y)
dy, (1a)

ns,t+1(x) =

∫
Ω

ksw(x, y)Qw(y) g0nw,t(y) dy. (1b)

In equation (1a), ns,t(x) is first mapped to the pre-dispersal density,

Qs(y)
f0 ns,t(y)

1 + b0ns,t(y)
, (2)

to account for the change in the population size when the population is sessile. The function Qs(y) is
a habitat quality function with range [0, 1] that describes the spatial heterogeneity of habitat quality
at each location y. By multiplying the habitat quality function to a Beverton–Holt type nonlinear
growth function with parameters f0 and b0, it is assumed that the spatial heterogeneity of habitat
quality affects population growth by rescaling the growth function with Qs(y). The pre-dispersal
density (2) is then mapped to nw,t(x) by the integral in (1a) with the dispersal kernel kws(x, y) to
account for the spatial redistribution during the dispersal before winter. The dispersal kernel is related
to a probability density function: for any location y, kws(x, y) is the probability density of an individual
from location y being redistributed to location x. It is assumed that there is no population change
during the dispersal, therefore ∫

Ω

kws(x, y) dx = 1, ∀y. (3)

Likewise, equation (1b) maps nw,t(x) to ns,t+1(x) in a similar way, with a linear population growth
function that is rescaled by the habitat quality Qw(y) and then transformed by an integral transfor-
mation with dispersal kernel ksw(x, y). We also assume∫

Ω

ksw(x, y) dx = 1, ∀y. (4)

3.1 The special case with no winter season

Let us first consider a special case where kws(x, y) = δ(x − y), Qw(y) ≡ 1, and g0 = 1. In this case,
model (1) takes the condensed form

ns,t+1(x) =

∫
Ω

ksw(x, y)Qs(y)
f0 ns,t(y)

1 + b0ns,t(y)
dy. (5)

Equation (5) reflects an absence of a distinct winter season, and the population only disperses once a
year after summer.
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Dropping the s and sw subscripts, and using a more abstract fitness function

g[y, nt(y)] (6)

to replace
f0Qs(y)

1 + b0nt(y)
, (7)

equation (5) can be rewritten in the generalized form

nt+1(x) =

∫
Ω

k(x, y)g[y, nt(y)] nt(y) dy. (8)

We still assume ∫
Ω

k(x, y) dx = 1, ∀y. (9)

When the population, hereafter referred to as population N, does not disperse at all, equation (8)
becomes

nt+1(x) = g[x, nt(x)] nt(x). (10)

Throughout this section we assume that g[x, n(x)] satisfies the following conditions:

(G1) ∀ x ∈ Ω, n > 0, g[x, n] > 0;

(G2) ∀ x ∈ Ω, if n1 > n2 ≥ 0, then g[x, n1] < g[x, n2],

(G3) ∀ x ∈ Ω, if n1 > n2 ≥ 0, then g[x, n1] n1 > g[x, n2)] n2.

Clearly, the formulation (7), as a function of nt(x), with the assumption ∀ x ∈ Ω, Qs(x) > 0, meets
conditions (G1) − (G3). In addition, for the cases we consider (except in section 2.3), we make an
additional assumption:

(G4) g[x, n(x)] is a function such that equation (10) has a unique nontrivial equilibrium n∗(x) that is
asymptotically stable, and

n∗(x) > 0, ∀x ∈ Ω. (11)

Since this equilibrium satisfies
g[x, n∗(x)] = 1, (12)

it describes how the population distributes itself so that the fitness at each location is 1, which keeps
the population at equilibrium when there is no dispersal. Under condition G2, condition G4 implies
that g[x, 0] > 1 on Ω.

In section 2.3 we consider cases where G1 and G4 are replaced by weaker conditions which allow
cases where g[x, 0] > 1 only on part of Ω. However, in such cases we must assume some additional
technical conditions on g[x, n] and on the dispersal kernels.

Definition 1. The population described by nt(x) in equation (8) is adopting an ideal free dispersal
strategy k(x, y) (relative to n∗(x)) if the dispersal kernel k(x, y) satisfies

n∗(x) =

∫
Ω

k(x, y)n∗(y) dy, (13)

where n∗(x) is defined by (12).

An ideal free dispersal strategy allows the population to reach an equilibrium that is the same
as the equilibrium without dispersal. In what follows in this section, we will show that with proper
assumptions, an ideal free strategy defined by (13) is an evolutionarily stable strategy, meaning it cannot
be invaded by another population adopting a non-ideal-free strategy. To elaborate, we introduce a
population of mutants, referred to as population M, whose density is described by mt(x), and let the
two populations engage in a competitive relationship when it comes to resourses and space. We assume
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that the two populations only differ in their dispersal, and are the same in other ecological aspects.
Thus the competition between the two populations can be modeled by the following equations:

nt+1(x) =

∫
Ω

kn(x, y)g[y, nt(y) +mt(y)] nt(y) dy, (14a)

mt+1(x) =

∫
Ω

km(x, y)g[y, nt(y) +mt(y)]mt(y) dy. (14b)

In system (14), kn(x, y) is an ideal free dispersal strategy relative to n∗(x), km(x, y) is not, but both
kernels satisfy (9). In addition to assumptions (G1) − (G3), we also assume system (14) has a unique
semi-trivial equilibrium (n(x), 0) when mt(x) ≡ 0. We aim to show that this equilibrium (n(x), 0) is
globally asymptotically stable, which implies that the dispersal strategy kn(x, y) is an evolutionarily-
stable strategy according to the following definitions.

Definition 2. Suppose n(x) is an asymptotically stable equilibrium of (8). This equilibrium is invasible
by mt(x) if mt(x) ≡ 0 is unstable relative to nonnegative initial data in equation (14b). If mt(x) ≡ 0
is stable relative to nonnegative initial data in equation (14b), then n(x) is not invasible.

Definition 3. A dispersal strategy k(x, y) in (13) with corresponding asymptotically stable equilibrium
n(x) is evolutionarily stable with respect to nt(x) if n(x) is not invasible by any small population mt(x)
using another dispersal strategy.

We will first establish a lemma regarding line-sum symmetry, as defined below.

Definition 4. (Cantrell et al. 2012b, Theorem 4) A function f(x, y) is said to be line-sum symmetric
if it satisfies ∫ ∞

−∞
f(y, x) dy =

∫ ∞
−∞

f(x, y) dy. (15)

Lemma 1. Conditions (9) and (13) imply that the function k(x, y)n∗(y) is line-sum symmetric.

Proof. The fact that k(x, y)n∗(y) is line-sum symmetric is verified by the calculation below:∫
Ω

k(y, x) n∗(x) dy = n∗(x)

∫
Ω

k(y, x) dy (16a)

= n∗(x)

∫
Ω

k(x, y) dx (16b)

= n∗(x) (16c)

=

∫
Ω

k(x, y) n∗(y) dy. (16d)

We will first restate Theorem 4 of (Cantrell et al. 2012b) below because we will make frequent use
of this theorem.

Theorem 1. (Cantrell et al. 2012b, Theorem 4) Let f(x, y) be a nonnegative function for all x and
y. Then f(x, y) is line-sum symmetric if and only if∫ ∞

−∞

∫ ∞
−∞

f(x, y)
ψ(x)

ψ(y)
dx dy ≥

∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy (17)

for all ψ(x) > 0 and ψ(y) > 0. In addition, if f(x, y) > 0, ∀x, ∀y, and f(x, y) is line-sum symmetric,
then equality in (17) holds if and only if ψ(x) ≡ ψ(y).

Lemma 2. Assume kn(x, y) and km(x, y) are continuous functions that satisfy both condition (9) and
the positivity condition

k(x, y) > 0,∀x, ∀y ∈ Ω. (18)
5



The kernels kn(x, y) and km(x, y) are such that population N, described by nt(x), adopts an ideal free
dispersal strategy relative to n∗(x), and population M, described by mt(x), does not adopt an ideal free
dispersal strategy. In addition, assume g[x, n(x)] satisfies (G1) − (G4). Then system (14) does not
have a coexistence equilibrium (n(x),m(x)) where n(x) and m(x) are both nonzero.

Proof. We will prove the lemma by contradiction. Suppose the contrary, that there is a solution
(n(x),m(x)) to the system

n(x) =

∫
Ω

kn(x, y) g[y, n(y) +m(y)] n(y) dy, (19a)

m(x) =

∫
Ω

km(x, y) g[y, n(y) +m(y)]m(y) dy, (19b)

with both components nonzero. Because of the positivity condition (18), the two components must be
strictly positive:

n(x) > 0, m(x) > 0, ∀x ∈ Ω. (20)

We will show that this means population M also adopts an ideal free strategy, which contradicts the
assumptions of the lemma.

To begin, we multiply both sides of equation (19a) with ψ(x), where

ψ(x) =
n∗(x)

g[x, n(x) +m(x)]n(x)
. (21)

This fraction is well-defined because of (20) and assumption (G1). Thus we obtain

n∗(x)

g[x, n(x) +m(x)]
=

∫
Ω

kn(x, y)
g[y, n(y) +m(y)]n∗(x)n(y)

g[x, n(x) +m(x)]n(x)
dy (22a)

=

∫
Ω

kn(x, y)n∗(y) · g[y, n(y) +m(y)]n(y)

g[x, n(x) +m(x)]n(x)
· n
∗(x)

n∗(y)
dy (22b)

=

∫
Ω

kn(x, y)n∗(y)
ψ(x)

ψ(y)
dy, (22c)

while (11) is also invoked to ensure the fractions are well-defined. Integrating both sides with respect
to x, we get

∫
Ω

n∗(x)

g[x, n(x) +m(x)]
dx =

∫
Ω

∫
Ω

kn(x, y)n∗(y)
ψ(x)

ψ(y)
dydx (23a)

≥
∫

Ω

∫
Ω

kn(x, y)n∗(y) dydx. (23b)

The inequality in the last step is due to inequality (17) and kn(x, y)n∗(y) being line-sum symmetric.
Since kn(x, y) integrates to 1 with respect to x,∫

Ω

∫
Ω

kn(x, y)n∗(y) dydx =

∫
Ω

n∗(x) dx, (24)

and the last inequality in (23) can be replaced by∫
Ω

n∗(x)

g[x,m(x) + n(x)]
dx ≥

∫
Ω

n∗(x) dx. (25)
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Therefore ∫
Ω

n∗(x)

{
1− g[x,m(x) + n(x)]

g[x,m(x) + n(x)]

}
dx ≥ 0. (26)

On the other hand, adding equation (19a) to equation (19b) and integrating both sides yields∫
Ω

[m(x) + n(x)] · {1− g[x,m(x) + n(x)]} dx = 0. (27)

Subtracting equation (27) from inequality (26), we obtain∫
Ω

{
n∗(x)

g[x,m(x) + n(x)]
− [m(x) + n(x)]

}
· {1− g[x,m(x) + n(x)]} dx ≥ 0. (28)

Rewriting inequality (28) and using (12), we obtain∫
Ω

n∗(x)− [m(x) + n(x)]g[x,m(x) + n(x)]

g[x,m(x) + n(x)]
· {1− g[x,m(x) + n(x)]} dx (29a)

(29b)

=

∫
Ω

n∗(x)g(x, n∗(x))− [m(x) + n(x)]g[x,m(x) + n(x)]

g[x,m(x) + n(x)]
· {g[x, n∗(x)]− g[x,m(x) + n(x)]} dx (29c)

≥ 0. (29d)

But the integrand satisfies

n∗(x)g[x, n∗(x)]− [m(x) + n(x)]g[x,m(x) + n(x)]

g[x,m(x) + n(x)]
· {g[x, n∗(x)]− g[x,m(x) + n(x)]} ≤ 0 (30)

because the two factors

n∗(x)g[x, n∗(x)]− [m(x) + n(x)]g[x,m(x) + n(x)] (31)

and
g[x, n∗(x)]− g[x,m(x) + n(x)] (32)

are of opposite signs. This is because g(x, n) is monotonically decreasing with respect to n but
g(x, n)n is monotonically increasing with respect to n. Depending on whether n∗(x) is larger or less
than n(x) +m(x), one of the two factors is positive and the other is negative. Since the integral of a
nonpositive integrand is nonnegative, the only possibility is that the integrand is 0. Therefore

n∗(x) = m(x) + n(x). (33)

Meanwhile, this also means inequalities (23) and (28) are, in fact, both equalities. Therefore∫
Ω

∫
Ω

kn(x, y)n∗(y) · ψ(x)

ψ(y)
dydx =

∫
Ω

∫
Ω

kn(x, y)n∗(y) dydx. (34)

Because the function kn(x, y)n∗(y) is line-sum-symmetric and strictly positive, Theorem 1 implies that
equality (34) is achieved only if ψ(x) = ψ(y). So we have

n∗(x)

n(x)
=
n∗(y)

n(y)
. (35)

Therefore it must be that both fractions are a constant, and there is some constant c so that

n∗(x)

n(x)
=

1

c
. (36)
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Thus we have
n(x) = cn∗(x), (37)

and
m(x) = (1− c)n∗(x). (38)

As a result, equation (19b) is equivalent to

(1− c)n∗(x) =
∫

Ω
km(x, y)g[y,m(y) + n(y)](1− c)n∗(y) dy

=
∫

Ω
km(x, y)g[y, n∗(y)](1− c)n∗(y) dy

=
∫

Ω
km(x, y)(1− c)n∗(y) dy.

(39)

If c 6= 1, then

n∗(x) =

∫
Ω

km(x, y)n∗(y) dy. (40)

Equation (40) implies that km(x, y) is also an ideal free strategy relative to n∗(x), which is a contradic-
tion to the assumptions of this lemma. Therefore system (14) does not have a coexistence equilibrium
(n(x),m(x)) where n(x) and m(x) are both nonzero, and the lemma is proved.

Lemma 3. We will make the same assumptions as the previous lemma, namely, that population N
adopts an ideal free dispersal strategy kn(x, y) relative to n∗(x), and population M adopts a dispersal
strategy km(x, y) that is not ideal free. Both dispersal kernels are positive in Ω×Ω and satisfy condition
(9). The function g[x, n(x)] is assumed to satisfy (G1)− (G4). With these assumptions, if system (14)
has a semitrivial equilibrium (0,m∗), then this equilibrium (0,m∗) must be unstable.

Proof. Consider the eigenvalue problem

λφ(x) =

∫
Ω

kn(x, y)g[y,m∗(y)]φ(y) dy. (41)

With our assumptions, the integral operator defined by the right-hand side of equation (41) is com-
pletely continuous. (See Hardin et al. (1990). The reason the operator is completely continuous is
that Ω×Ω is closed and bounded, and k(x, y) is continuous on Ω×Ω, so it is bounded and uniformly
continuous there. Thus, the integral operator maps any bounded set of continuous functions into a set
of functions that is uniformly bounded and equicontinuous.) Because kn(x, y) satisfies the positivity
condition (18), the Krein-Rutman theorem (Krein and Rutman 1950) guarantees this integral operator
has an eigenfunction φ(x), corresponding to the dominant eigenvalue λ of the operator, that is strictly
positive in Ω. In order to show that (0,m∗) is unstable, we need to show that λ > 1.

To begin, notice that m∗(x) must satisfy the positivity condition

m∗(x) > 0, ∀x ∈ Ω, (42)

because km(x, y) meets the positivity condition (18). Multiplying both sides of the eigenvalue problem
equation (41) by

n∗(x)

φ(x)g[x,m∗(x)]
, (43)

we obtain

n∗(x)

φ(x)g[x,m∗(x)]
· λφ(x) =

∫
Ω

kn(x, y) · n∗(x)

φ(x)g[x,m∗(x)]
· φ(y)g[y,m∗(y)] dy (44a)

=

∫
Ω

kn(x, y)n∗(x) · φ(y)g[y,m∗(y)]

φ(x)g[x,m∗(x)]
dy (44b)

=

∫
Ω

kn(x, y)n∗(y) · φ(y)g[y,m∗(y)]/n∗(y)

φ(x)g[x,m∗(x)]/n∗(x)
dy. (44c)
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Therefore
λn∗(x)

g[x,m∗(x)]
=

∫
Ω

kn(x, y)n∗(y) · φ(y)g[y,m∗(y)]/n∗(y)

φ(x)g[x,m∗(x)]/n∗(x)
dy. (45)

Integrating both sides, we get

λ

∫
Ω

n∗(x)

g[x,m∗(x)]
dx =

∫
Ω

∫
Ω

kn(x, y)n∗(y) · φ(y)g[y,m∗(y)]/n∗(y)

φ(x)g[x,m∗(x)]/n∗(x)
dydx. (46)

Since kn(x, y) is an ideal free strategy, function kn(x, y)n∗(y) is line-sum symmetric, and Theorem
1 implies∫

Ω

∫
Ω

kn(x, y)n∗(y) · φ(y)g[y,m∗(y)]/n∗(y)

φ(x)g[x,m∗(x)]/n∗(x)
dydx ≥

∫
Ω

∫
Ω

kn(x, y)n∗(y)dydx =

∫
Ω

n∗(x) dx. (47)

Thus equation (46) can be replaced by the inequality

λ

∫
Ω

n∗(x)

g[x,m∗(x)]
dx ≥

∫
Ω

n∗(x) dx. (48)

The last inequality means that

(λ− 1)

∫
Ω

n∗(x)

g[x,m∗(x)]
dx ≥

∫
Ω

n∗(x)

{
1− 1

g[x,m∗(x)]

}
dx =

∫
Ω

n∗(x)

{
g[x,m∗(x)]− 1

g[x,m∗(x)]

}
dx (49)

Meanwhile, by definition, function m∗(x) must satisfy the equation

m∗(x) =

∫
Ω

km(x, y)g[y,m∗(y)]m∗(y) dy. (50)

Integrating both sides of (50), and using the fact that km(x, y) satisfies condition (9), we integrate
both sides and get∫

Ω

m∗(x) dx =

∫
Ω

g[y,m∗(y)]m∗(y) dy =

∫
Ω

g[x,m∗(x)]m∗(x) dx. (51)

Therefore ∫
Ω

m∗(x){1− g[x,m∗(x)]} dx = 0. (52)

That means ∫
Ω

n∗(x)

{
g[x,m∗(x)]− 1

g[x,m∗(x)]

}
dx (53a)

=

∫
Ω

{n∗(x)−m∗(x)g[x,m∗(x)]} ·
{
g[x,m∗(x)]− 1

g[x,m∗(x)]

}
dx (53b)

=

∫
Ω

{g[x, n∗(x)]n∗(x)− g[x,m∗(x)]m∗(x)} ·
{
g[x,m∗(x)]− g[x, n∗(x)]

g(x,m∗(x))

}
dx (53c)

≥ 0. (53d)

Inequality (53) becomes an equality only when

g[x,m∗(x)] = g[x, n∗(x)] = 1, (54)

and
m∗(x) = n∗(x), (55)

resulting in

n∗(x) = m∗(x) =

∫
Ω

km(x, y)g[y,m∗(y)]m∗(y) dy. (56)
9



Since population M is not adopting an ideal free strategy, km(x, y) would not be such a function that
equation (56) holds. Therefore inequality (53) is strict, and

(λ− 1)

∫
Ω

n∗(x)

g[x,m∗(x)]
dx > 0. (57)

Therefore
λ > 1, (58)

and the lemma is proved.

Theorem 2. With the same assumptions as the previous two lemmas, the semi-trivial equilibrium
(n(x), 0) of system (14) is globally asymptotically stable, and the ideal free dispersal strategy k(x, y),
as defined in Definition 1, is an evolutionarily-stable strategy.

Proof. Let the spaces X1 and X2 be Xi = BC(Ω), the space of all bounded and continuous functions
on Ω, for i = 1, 2. Let them be equipped with positive cones X+

i = BC+(Ω), the set of all nonnegative
functions in BC(Ω), for i = 1, 2. The cones X+

i generate the order relations ≤, <,� in the usual
way. The cone K = X+

1 × (−X+
2 ) generates the partial order relations ≤K , <K ,�K in the sense that

(n,m) ≤K (n̄, m̄) is equivalent to n ≤ n̄ and m̄ ≤ m, and likewise for <K and �K .
Let X+ = X+

1 ×X
+
2 , and the operator T : X+ → X+ be defined as

T

[
n(x)
m(x)

]
=

 ∫Ω kn(x, y)g[y, n(y) +m(y)] n(y) dy∫
Ω
km(x, y)g[y, n(y) +m(y)]m(y) dy

 . (59)

We will first verify the following properties of T :

(P1) T is order compact. That is, for every (n,m) ∈ X+, T ([0, n]× [0,m]) has compact closure in X.

(P2) T is strictly order-preserving with respect to <K . That is, n < n̄ and m̄ < m implies T (n,m) <K
T (n̄, m̄).

(P3) T (X+
1 × {0}) ⊂ X+

1 × {0}. There exists n̂ such that 0 � n̂ , T (n̂, 0) = (n̂, 0), and T t(n0, 0) →
(n̂, 0), ∀ n0, 0 < n0.

To verify property (P1), first notice that operator T is compact because Ω is a bounded set, and the
dispersal kernels kn(x, y) and km(x, y) are both continuous. Since any order interval pair ([0, n]×[0,m])
is bounded in X+, it has a relatively compact image. Therefore T is order compact.

The fact that the order-preserving property in (P2) is satisfied comes from assumptions (G2) and
(G3). For any n < n̄ and m̄ < m, the monotonicity of g(x, n) · n means

g(x, n+m) · (n+m) < g(x, n̄+m) · (n̄+m). (60)

Expanding the terms in both sides yields

g(x, n+m) · n+ g(x, n+m) ·m < g(x, n̄+m) · n̄+ g(x, n̄+m) ·m (61)

But the second terms on both sides are compared by the inequality

g(x, n+m) ·m > g(x, n̄+m) ·m, ∀x ∈ Ω. (62)

because g(x, n) is monotonically decreasing. Therefore g(x, n + m) · n < g(x, n̄ + m) · n̄. Meanwhile,
m̄ < m means

g(x, n̄+m) < g(x, n̄+ m̄), (63)

and g(x, n̄ + m) · n̄ < g(x, n̄ + m̄) · n̄. Therefore g(x, n + m) · n < g(x, n̄ + m̄) · n̄ as well. A parallel
argument can be made to show that g(x, n + m) · m̄ < g(x, n̄ + m̄) · m, and we can conclude that
T (n,m) <K T (n̄, m̄).
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It is clear that T (X+
1 × {0}) ⊂ X+

1 × {0}. To verify property (P3), we begin by noticing that
the ideal free distribution n∗(x), as defined in (12), satisfies T (n∗(x), 0) = (n∗(x), 0). The interior
of the cone X+

1 consists of all functions that are positive everywhere in Ω, therefore by assumption
(G4), 0 � n∗(x). To show that T t(n0, 0) → (n∗(x), 0), ∀ n0, 0 < n0, we will verify that T , when
restricted to X1×{0}, satisfies the assumptions of Theorem 2.3.4 of Zhao (2003). First of all, because
of assumption (G3), T is monotone when restricted to X1. Assumptions (G1)-(G3) also ensure that
f(x, n) = g(x, n) · n satisfies

f(x, αn) > αf(x, n), ∀α ∈ (0, 1). (64)

Therefore T is also strongly subhomogeneous (Zhao 2003 Definition 2.3.1) on X1 × {0}. We know T
is continuous and compact on X1 × {0} so it is asymptotically smooth (Zhao 2003, Definition 1.1.2).
The same is true of the Fréchet derivative of T at (0, 0). Assumptions (G1)-(G3) and condition (9)
ensure that every orbit of T is bounded on X1 × {0}. The positivity assumption (18) being satisfied
by kn(x, y) ensures that the Fréchet derivative of T at (0, 0), when restricted to X1 × {0}, is strongly
positive. We can now invoke Theorem 2.3.4 of Zhao (2003) to conclude that either (0, 0) is the only
fixed point of T on X1×{0}, or there exists a semitrivial fixed point of T that is globally asymptotically
stable when T is restricted to X1 ×{0}. Because we have already shown the existence of a semitrivial
fixed point (n∗(x), 0), the latter is clearly the case. Thus, letting n̂ = n∗(x) suffices for (P3).

Property (P3) shows that the resident population nt(x) is an “adequate” competitor in the sense
that it can persist on its own when the other competitor is absent. Meanwhile, there are two possibilities
when it comes to the invader population mt(x). Either there exists a semi-trivial equilibrium (0, m̃)
such that m̃ 6= 0, T (0, m̃) = (0, m̃), or such an equilibrium does not exist.

Assume it is the first case. Then we can show that T satisfies the assumptions of Theorem A in
Hsu et al. (1996), which are the following:

(H1) T is order compact. That is, for every (n,m) ∈ X+, T ([0, n]× [0,m]) has compact closure in X.

(H2) T is strictly order-preserving with respect to <K . That is, n < n̄ and m̄ < m implies T (n,m) <K
T (n̄, m̄).

(H3) T (0) = 0, and 0 is a repelling point in the sense that there exists a neighborhood U of 0 in X+

such that ∀ (n,m) ∈ U\{0}, ∃ t, t ∈ Z, such that T t(n,m) 6∈ U .

(H4) T (X+
1 ×{0}) ⊂ X

+
1 ×{0}. There exists 0� n̂ such that T (n̂, 0) = (n̂, 0), and T t(n0, 0)→ (n̂, 0),

∀ n0 > 0. Likewise for T on {0} ×X2, with fixed point (0, m̃).

(H5) If (n1,m1) <K (n2,m2), and either (n1,m1) or (n2,m2) belongs to Int(X+), then T (n1,m1)�K

T (n2,m2). If (n,m) ∈ X+ satisfies n,m 6= 0, then T (n,m)� 0.

Assumptions (H1) and (H2) are the same as (P1) and (P2). Assumption (H3) is true, because the
positivity condition in assumption (G4) means g[x, 0] > 1, ∀ x ∈ Ω. The first part of assumption (H4)
is the same as property (P3), and the second part is true because in the case where the semi-trivial
equilibrium (0, m̃) exists, it also has the property that ∀m0, 0 < m0, T t(0,m0) → (0, m̃) as t → ∞.
This is true because all assumptions of Theorem 2.3.4 of Zhao (2003) are satisfied by T when restricted
to {0}×X2, just like in the case of T restricted on X1×{0}. The interiors of X+

i , i = 1, 2 both consist
of strictly positive functions on Ω. Because kn(x, y) and km(x, y) both satisfy the positivity condition
(18), if (n,m) ∈ X+ satisfies n 6= 0, m 6= 0, then both components of T (n,m) are strictly positive
functions, and therefore T (n,m) � 0. Likewise, for (n1,m1) <K (n2,m2), T (n1,m1) �K T (n2,m2).
Therefore (H5) is satisfied as well.

Since we have shown in Lemma 2 that there is not a nontrivial equilibrium of system (14) with
both components nonzero, and operator T satisfies conditions (H1) − (H5), from Theorem A in Hsu
et al. (1996), ∀ (n,m) ∈ X+, either T t(n,m) → (n̂, 0) or T t(x) → (0, m̃). Since Lemma 3 showed
the latter cannot be the case, it must be that T t(n,m) → (n̂, 0) = (n(x), 0). Therefore the semi-
trivial equilibrium (n(x), 0) of system (14) is globally asymptotically stable. This implies that n(x) is
not invasible, and by Definition 3, the ideal free dispersal strategy kn(x, y) is an evolutionarily-stable
strategy.

If it is the case that a semi-trivial equilibrium (0, m̃) does not exist, the argument in the second
half of Theorem 3.3 of Kirkland et al. (2006) applies, and we can still conclude that the semi-trivial
equilibrium (n(x), 0) of system (14) is globally asymptotically stable. Thus, with the assumptions of
this theorem, the ideal free dispersal strategy kn(x, y) is an evolutionarily-stable strategy.
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3.2 The two-season case with both summer and winter seasons

Now let us consider the two-season model (1). Equations (1a) and (1b) can be combined as one
equation that maps ns,t(x) to ns,t+1(x),

ns,t+1(x) =

∫
Ω

∫
Ω

ksw(x, z)Qw(z) kws(z, y) · f0g0Qs(y) ns,t(y)

1 + b0ns,t(y)
dydz, (65)

Let

g[x, u(x)] =
f0g0 Qs(x)

1 + b0u(x)
, (66)

and let n∗s(x) be the solution to
g[x, n∗s(x)] = 1. (67)

Then we can think of n∗s(x) as the ideal free distribution in the summer season for the two-season case.
Within this section, we assume that n∗s(x) > 0,∀ x ∈ Ω. Note that for an ideal free distribution we
will want n∗s(x) to be an equilibrium of (65), so that using g[x, n∗s(x)] = 1 we get

n∗s(x) =

∫
Ω

∫
Ω

ksw(x, z)Qw(z) kws(z, y) n∗s(y) dydz. (68)

Integrating in x and using Fubini’s theorem and the assumption
∫

Ω
k(x, z)dx = 1 we have∫

Ω

n∗s(x)dx =

∫
Ω

∫
Ω

Qw(z) kws(z, y)dz n∗s(y) dy. (69)

Since Qw(z) ≤ 1, and in general we may have we have Qw(z) < 1 for some z, unless we require
Qw(z) kws(z, y) = kws(z, y) we would have∫

Ω

Qw(z) kws(z, y)dz <

∫
Ω

kws(z, y)dz = 1, (70)

which would create a contradiction in (69). Thus the condition Qw(z)kws(z, y) = kws(z, y) is necessary
to achieve an ideal free distribution.

For the two-season case, a dispersal strategy is represented by two dispersal kernels, ksw and kws.
Therefore we consider a pair of equations that jointly define an ideal free strategy, as elaborated in
the following definition.

Definition 5. Let n∗s(x) be defined by (67). If the dispersal kernels k∗sw(x, z) and k∗ws(z, y) satisfy

Qw(z)k∗ws(z, y) = k∗ws(z, y) (71)

and

n∗s(x) =

∫
Ω

∫
Ω

k∗sw(x, z)k∗ws(z, y) n∗s(y) dz dy, (72)

then k∗sw(x, z) and k∗ws(z, y) together define an ideal free dispersal strategy relative to n∗s(x).

We want to show that this ideal free strategy is an evolutionarily-stable strategy.
Since we can combine the two seasons to rewrite model (1) as equation (65), we consider a two-

species competition model based on model (65),

ns,t+1(x) =

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z)k∗ws(z, y) g[y, ns,t(y) +ms,t(y)]ns,t(y) dz dy, (73a)

ms,t+1(x) =

∫
Ω

∫
Ω

ksw(x, z)Qw(z)kws(z, y) g[y, ns,t(y) +ms,t(y)]ms,t(y) dz dy, (73b)

for two competing species, which we label as N and M. Species N is adopting the pair of strategies k∗sw
and k∗ws, and species M is adopting another pair of strategies ksw and kws, so that either
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Qw(z)kws(z, y) 6= kws(z, y) for some (z, y) ∈ Ω× Ω (74)

or

n∗s(x) 6=
∫

Ω

∫
Ω

ksw(x, z)kws(z, y) n∗s(y) dz dy (75)

for some x ∈ Ω. Meanwhile, all dispersal kernels k∗sw, k∗ws, ksw, and kws satisfy the no-loss conditions
(3) and (4).

We will first verify that the dispersal kernels k∗sw(x, z) and k∗ws(z, y), and the ideal free distribution
n∗s(x), satisfy a line-sum symmetry condition. Let

K∗(x, y) =

∫
Ω

k∗sw(x, z) k∗ws(z, y) n∗s(y) dz, (76)

then K∗(x, y) is line-sum symmetric. This is true because conditions (3) and (4) imply that∫
Ω

K∗(y, x) dy =

∫
Ω

∫
Ω

k∗sw(y, z) k∗ws(z, x) n∗s(x) dzdy (77a)

=

∫
Ω

k∗ws(z, x) n∗s(x) dz (77b)

= n∗s(x). (77c)

Since the ideal free strategy requirement (72) can be rewritten as∫
Ω

K∗(x, y) dy = n∗s(x), (78)

we have ∫
Ω

K∗(x, y) dy =

∫
Ω

K∗(y, x) dy. (79)

Therefore K∗(x, y) is line-sum symmetric.
We now proceed to show that system (73) does not allow the two species to coexist at a coexistence

equilibrium, and that any semi-trivial equilibrium of system (73) of the form (0,m∗) must be unstable.

Lemma 4. Assume the dispersal kernels k∗sw(x, y), k∗ws(x, y), ksw(x, y), and kws(x, y) are continuous
functions that satisfy the no-loss condition (9). In addition, the kernels k∗sw(x, y) and ksw(x, y) satisfy
the positivity condition (18). The kernels k∗sw(x, y) and k∗ws(x, y) are such that population N, described
by ns,t(x), adopts an ideal free dispersal strategy relative to n∗s(x), and population M, described by
ms,t(x), does not adopt an ideal free dispersal strategy. In addition, assume g[x, n(x)] satisfies (G1)
− (G4). Then system (73) does not have a coexistence equilibrium (n(x),m(x)) where n(x) and m(x)
are both nonzero.

Proof. We will again prove that system (73) does not have a nontrivial equilibrium by contradiction.
Suppose, on the contrary, that there is a nontrivial equilibrium (n(x),m(x)) for the pair of equations
(73). The positivity assumption (18) about the kernels k∗sw(x, z) and ksw(z, y), and the positivity as-
sumption (G1) on function g[x, n(x)] imply that n(x) and m(x) are both positive in Ω. The equilibrium
(n(x),m(x)) satisfies

n(x) =

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z)k∗ws(z, y) g[y, n(y) +m(y)]n(y) dz dy, (80a)

m(x) =

∫
Ω

∫
Ω

ksw(x, z)Qw(z)kws(z, y) g[y, n(y) +m(y)]m(y) dz dy. (80b)
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Integrating equation (80a) with respect to x, and using the ideal free condition (71) and the no-loss
condition (9), we get∫

Ω

n(x) dx =

∫
Ω

∫
Ω

Qw(z)k∗ws(z, y)g[y, n(y) +m(y)]n(y) dydz (81a)

=

∫
Ω

∫
Ω

k∗ws(z, y)g[y, n(y) +m(y)]n(y) dydz (81b)

=

∫
Ω

k∗ws(z, y) dz

∫
Ω

g[y, n(y) +m(y)]n(y) dy (81c)

=

∫
Ω

g[y, n(y) +m(y)]n(y) dy. (81d)

Integrating equation (80b) with respect to x, we get

∫
Ω

m(x) dx =

∫
Ω

∫
Ω

Qw(z)kws(z, y)g[y, n(y) +m(y)]m(y) dydz (82a)

≤
∫

Ω

∫
Ω

kws(z, y) g[y, n(y) +m(y)]m(y) dydz (82b)

=

∫
Ω

g[y, n(y) +m(y)]m(y) dy. (82c)

In inequality (82b), equality holds only if∫
Ω

Qw(z)kws(z, y) dz =

∫
Ω

kws(z, y) dz, (83)

which is equivalent to
Qw(z)kws(z, y) = kws(z, y) (84)

because Qw(z) ≤ 1.
Adding the two integrals (81) and (82) together yields∫

Ω

[n(x) +m(x)] dx ≤
∫

Ω

g[x, n(x) +m(x)] · [n(x) +m(x)] dx, (85)

where the inequality is strict unless condition (83) is true.
Multiplying equation (80a) by

Ψ(x) =
n∗s(x)

n(x)g[x, n(x) +m(x)]
, (86)

and integrating both sides, we obtain
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∫
Ω

n∗s(x)

g[x, n(x) +m(x)]
dx (87a)

=

∫
Ω

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z)k∗ws(z, y) g[y, n(y) +m(y)]n(y) · n∗s(x)

g[x, n(x) +m(x)]n(x)
dz dy dx (87b)

=

∫
Ω

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z)k∗ws(z, y) n∗s(y) · g[y, n(y) +m(y)]n(y)n∗s(x)

g[x, n(x) +m(x)]n(x)n∗s(y)
dz dy dx (87c)

=

∫
Ω

∫
Ω

∫
Ω

k∗sw(x, z)k∗ws(z, y)n∗s(y) · g[y, n(y) +m(y)]n(y)n∗s(x)

g[x, n(x) +m(x)]n(x)n∗s(y)
dz dy dx (87d)

=

∫
Ω

∫
Ω

K∗(x, y) · Ψ(x)

Ψ(y)
dy dx (87e)

≥
∫

Ω

∫
Ω

K∗(x, y) dy dx (87f)

=

∫
Ω

n∗s(x) dx. (87g)

Here, inequality (87f) is due to Theorem 1 and the line-sum symmetric property of K∗(x, y).
Therefore we know ∫

Ω

n∗s(x)

g[x, n(x) +m(x)]
dx ≥

∫
Ω

n∗s(x) dx, (88)

and thus ∫
Ω

n∗s(x)

{
1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
≥ 0. (89)

Meanwhile, inequality (85) implies∫
Ω

{1− g[x, n(x) +m(x)]} · [n(x) +m(x)] dx ≤ 0, (90)

and ∫
Ω

g[x, n(x) +m(x)] · [n(x) +m(x)] ·
{

1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
dx ≤ 0. (91)

Subtracting inequalities (89) and (91), we get∫
Ω

{n∗s(x)− g[x, n(x) +m(x)] · [n(x) +m(x)]} ·
{

1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
dx ≥ 0. (92)

Replacing n∗s(x) with g[x, n∗s(x)]n∗s(x), we obtain∫
Ω

{g[x, n∗s(x)]n∗s(x)− g[x, n(x) +m(x)] · [n(x) +m(x)]} ·
{

1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
dx ≥ 0. (93)

Replacing 1 with g[x, n∗s(x)], we then obtain∫
Ω

{g[x, n∗s(x)]n∗s(x)− g[x, n(x) +m(x)] · [n(x) +m(x)]} ·
{
g[x, n∗s(x)]− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
dx ≥ 0.

(94)
The integrand of the integral in (94) is nonpositive because conditions (G2) and (G3) do not allow the
two factors in the integrand to be of the same signs. Therefore inequality (94) is in fact an equality,
which in turn implies the inequalities (82), (89), and (91) are equalities too. Meanwhile, the integrand
of the integral in equation (94) must be 0, which means
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n∗s(x) = n(x) +m(x). (95)

The fact that the equal sign holds in (94) means∫
Ω

∫
Ω

K∗(x, y) · Ψ(x)

Ψ(y)
dydx (96a)

=

∫
Ω

∫
Ω

K∗(x, y) dydx. (96b)

That means Ψ(x) = Ψ(y), so Ψ(x) is a constant. This constant is positive because the factors in
Ψ(x) in (86) are all positive in Ω. We can thus assume

n∗s(x)

n(x)
=

1

c
, (97)

which means n(x) = cn∗s(x) and m(x) = (1− c)n∗s(x). From (80b) and (84),

m(x) =

∫
Ω

∫
Ω

ksw(x, z) kws(z, y) g[x,m(x) + n(x)]m(y) dy, (98)

hence

m(x) =

∫
Ω

∫
Ω

ksw(x, z) kws(z, y)m(y) dy. (99)

Substituting (1− c)n∗s(x) for m(x), we have

n∗s(x) =

∫
Ω

∫
Ω

ksw(x, z) kws(z, y) n∗s(y) dy. (100)

This is a contradiction with ksw and kws being not ideal free strategies. Therefore a nontrivial
equilibrium (n(x),m(x)) for equations (73) does not exist.

Lemma 5. Assume the dispersal kernels k∗sw(x, z), k∗ws(z, y), ksw(x, z), and kws(z, y) are continuous
functions that satisfy condition (9), and the two kernels k∗sw(x, z) and ksw(x, z) also satisfy the positivity
condition (18). The kernels k∗sw(x, z) and k∗ws(z, y) are such that population N, described by ns,t(x),
adopts an ideal free dispersal strategy relative to n∗s(x), and population M, described by ms,t(x), does
not adopt an ideal free dispersal strategy. In addition, assume g[x, n(x)] satisfies (G1) − (G4). If
system (73) has a semitrivial equilibrium (0,m∗), then this equilibrium must be unstable.

Proof. We consider the eigenvalue problem

λφ(x) =

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z) k∗ws(z, y) g[y,m∗(y)] φ(y) dz dy, (101)

where

g[y,m∗(y)] =
f0g0 Qs(y)

1 + b0 m∗(y)
. (102)

Multiplying both sides of equation (101) by

n∗s(x)

φ(x)g[x,m∗(x)]
, (103)

we obtain

λ n∗s(x)

g[x,m∗(x)]
=

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z) k∗ws(z, y)
n∗s(x)

φ(x)g[x,m∗(x)]
g[y,m∗(y)] φ(y) dz dy (104a)

=

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z) k∗ws(z, y) n∗s(x)
φ(y)g[y,m∗(y)]

φ(x)g[x,m∗(x)]
dz dy (104b)

=

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z) k∗ws(z, y) n∗s(y)
Φ(y)

Φ(x)
dz dy, (104c)
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where

Φ(x) =
φ(x)g[x,m∗(x)]

n∗s(x)
. (105)

Integrating both sides, we obtain

λ

∫
Ω

n∗s(x)

g[x,m∗(x)]
dx =

∫
Ω

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z) k∗ws(z, y) n∗s(y)
Φ(y)

Φ(x)
dz dy dx (106a)

=

∫
Ω

∫
Ω

K∗(x, y)
Φ(y)

Φ(x)
dy dx (106b)

≥
∫

Ω

∫
Ω

K∗(x, y) dy dx (106c)

=

∫
Ω

n∗s(x) dx. (106d)

Therefore

λ

∫
Ω

n∗s(x)

g[x,m∗(x)]
dx ≥

∫
Ω

g[x,m∗(x)]

g[x,m∗(x)]
n∗s(x) dx, (107)

and

(λ− 1)

∫
Ω

n∗s(x)

g[x,m∗(x)]
dx ≥

∫
Ω

n∗s(x)

{
1− 1

g[x,m∗(x)]

}
dx. (108)

Next we will show that the right hand side of equation (108) is nonnegative. To see this, we begin
with observing that the equilibrium m∗(x) must satisfy the equation

m∗(x) =

∫
Ω

∫
Ω

ksw(x, z)Qw(z) kws(z, y) g[y,m∗(y)]m∗(y) dz dy. (109)

Integrating both sides of equation (109), we obtain∫
Ω

m∗(x) dx =

∫
Ω

∫
Ω

∫
Ω

ksw(x, z)Qw(z) kws(z, y) g[y,m∗(y)]m∗(y) dz dy dx (110a)

≤
∫

Ω

∫
Ω

∫
Ω

ksw(x, z) kws(z, y) g[y,m∗(y)]m∗(y) dz dy dx (110b)

=

∫
Ω

g[y,m∗(y)]m∗(y) dy. (110c)

Therefore ∫
Ω

m∗(x){1− g[x,m∗(x)]} dx ≤ 0, (111)

and ∫
Ω

m∗(x) {g[x,m∗(x)]− 1} dx ≥ 0. (112)

Subtracting the left-hand side of equation (112) from the right-hand side of equation (108), we obtain∫
Ω

n∗s(x)

{
1− 1

g[x,m∗(x)]

}
dx−

∫
Ω

m∗(x) {g[x,m∗(x)]− 1} dx (113a)

=

∫
Ω

{n∗s(x)−m∗(x)g[x,m∗(x)]} g[x,m∗(x)]− 1

g[x,m∗(x)]
dx (113b)

=

∫
Ω

{n∗s(x)g[x, n∗s(x)]−m∗(x)g[x,m∗(x)]} g[x,m∗(x)]− g[x, n∗s(x)]

g[x,m∗(x)]
dx (113c)

≥ 0. (113d)
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From inequalities (112) and (113), we know∫
Ω

n∗s(x)

{
1− 1

g[x,m∗(x)]

}
dx ≥

∫
Ω

m∗(x) {g[x,m∗(x)]− 1} dx ≥ 0. (114)

Inequality (112) becomes an equality only when Qw(z)kws(z, y) = kws(z, y). Inequality (113) becomes
an equality only when g[x,m∗(x)] ≡ 1, which requires n∗s(x) ≡ m∗(x), and

n∗s(x) =

∫
Ω

∫
Ω

ksw(x, z)Qw(z) kws(z, y) dz g[y, n∗s(y)] n∗s(y) dy (115a)

=

∫
Ω

∫
Ω

ksw(x, z)Qw(z) kws(z, y) dz n∗s(y) dy. (115b)

If ksw and kws are kernels that do not satisfy the ideal free conditions (71) and (72), either one of the
inequalities (112) and (113) will be strict. Therefore, with inequality (108), we know

(λ− 1)

∫
Ω

n∗s(x)

g[x,m∗(x)]
dx > 0, (116)

and
λ > 1. (117)

Just as in the single-season case, Lemmas 4 and 5 imply that the ideal free dispersal strategy, as
defined in Definition 5, is an evolutionarily-stable strategy. The supporting argument for this result is
a special case of Theorem 3 in the next section, and is not repeated here for the sake of brevity. In the
next section, we show that the results in this section can be further extended to a more general case.

3.3 More general case with partial occupancy

In previous sections, we assumed condition (G4), which requires that the entire habitat Ω is suitable
for reproduction, so that n∗s(x) > 0, which in turn requires that g[(x, 0] > 1 on Ω. In that setting
it is natural to assume all of Ω is occupied during the summer, that is, (18) is satisfied, so that
ksw(x, y) > 0 ∀(x, y) ∈ Ω × Ω. In ecological terms condition (G4) means that all of Ω consists of
source habitats during the summer. That may not always be the case. In a heterogeneous habitat it
is possible that only some regions are sources, while others are sinks, even during the summer season.
In such a case, a population with an ideal free distribution cannot occupy sink environments. That
is because under an ideal free distribution a population should have equal fitness everywhere, and at
population equilibrium that fitness would have to be equal to 1, but our proxy for fitness is g[x, n(x)]
so that is impossible if g[x, 0] < 1 in some locations. In the setting of patch models in continuous
time, it was shown in Cantrell et al. (2017a) that in a habitat with both sources and sinks an ideal free
distribution is only possible with partial occupancy. This turns out to be true in our present setting as
well. In this section, we generalize the results in the previous section to the case where g[x, 0] < 1 for
some x so that g[x, n] does not guarantee n∗s(x) > 0, ∀x ∈ Ω, i.e. condition (G4) is no longer assumed
to hold. That is, in some regions of the habitat Ω, the habitat quality is not high enough to sustain
a population over the two seasons. Here, g[x, n(x)] is still defined as in (66). To address this case we
need to extend our definition of ideal free dispersal and address some technical issues related to the
function spaces we need to use in the analysis.

We will first redefine the ideal free distribution n∗s(x) using a piece-wise construction. Let

Ω1 = {x ∈ Ω : g[x, 0] > 1} = {x ∈ Ω : f0g0 Qs(x) > 1} . (118)

To define the ideal free distribution we require

n∗s(x) =

{
g[x, n∗s(x)]n∗s(x), for x ∈ Ω1,

0, for x ∈ Ω\Ω1.
(119)
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That is,

n∗s(x) =


f0g0 Qs(x)− 1

b0
, for x ∈ Ω1,

0, for x ∈ Ω\Ω1.
(120)

Therefore n∗s(x) is well-defined and unique. We also know it has positivity properties n∗s(x) ≥ 0,∀x ∈ Ω
and n∗s(x) > 0,∀x ∈ Ω1. For the cases we consider, we will impose an additional assumption that will
be needed for technical reasons which will be discussed later.

(D) n∗s(x) restricted to Ω̄1 belongs to C1
0 (Ω̄1) and Dνn

∗
s(x) < −n1 for some n1 > 0 , where ν is any

outward normal vector on ∂Ω1, and Dν refers to the directional derivative in the direction of ν.

We can now generalize the definition of the ideal free dispersal strategy.

Definition 6. The population described by system (1) is adopting an ideal free dispersal strategy
relative to n∗s(x), as defined in (119), if its dispersal kernels k∗sw(z, y) and k∗ws(x, z) satisfy conditions
(71) and (72), where n∗s(x) is defined by (119).

The ideal free dispersal strategy must move all of the population into the favorable habitat Ω1

during the summer. That means k∗sw(x, z) must satisfy k∗sw(x, z) = 0 for x ∈ Ω\Ω1 and z such that
k∗ws(z, y) > 0 for some y ∈ Ω1 . To see this, we integrate both sides of (72) for x ∈ Ω\Ω1, and get∫

Ω

∫
Ω

(∫
Ω\Ω1

k∗sw(x, z) dx

)
k∗ws(z, y) n∗(y) dz dy = 0. (121)

Therefore ∫
Ω\Ω1

k∗sw(x, z) dx = 0, (122)

for all z ∈ Ω such that k∗ws(z, y) > 0 for some y ∈ Ω1. Since k∗sw(x, z) is nonnegative,

k∗sw(x, z) = 0 for x ∈ Ω\Ω1 and z ∈ Ω with k∗ws(z, y) > 0 for some y ∈ Ω1. (123)

The overall dispersal operator from summer to summer defined by k∗sw(x, z)k∗ws(z, y) then maps Ω1

into itself. Therefore the ideal free strategy restricts dispersal to Ω1, the habitat of good quality. Thus
the no-loss condition ∫

Ω

k∗sw(x, y) dx = 1, ∀y (124)

is equivalent to ∫
Ω1

k∗sw(x, y) dx = 1, ∀y. (125)

Correspondingly, the positivity condition (18) can be modified as

k∗sw(x, y) > 0, ∀ x ∈ Ω1, ∀ y ∈ Ω. (126)

That condition is adequate for the extension of some of our results to the case of partial occupancy,
but the proofs of others require the spaces X1 and X2 to have positive cones with nonempty interiors
and the operator T or its derivatives to be strongly positive. That will not be the case if we use
X1 = C0(Ω̄1) with positive cone P1 = {n(x) ∈ C0(Ω̄1)|n(x) ≥ 0,∀x ∈ Ω1} because the interior of P1 is
empty. A similar difficulty arises in formulating homogeneous Dirichlet problems for parabolic partial
differential equations. In both cases the problem arises because we want functions that are zero on
the boundary of a region but positive in the interior to belong to a positive cone that has nonempty
interior. However, it can be addressed in both cases by using order unit norms; see Amann (1976),
Mierczyński (1998). The idea of order unit norms is, roughly speaking, to find a suitable function
e(x) ∈ P1 with e(x) = 0 on ∂Ω1 and e(x) > 0 inside Ω1 such that the first component of T maps
nonzero n(x) in P1 into {n(x) ∈ C0(Ω̄1) : αe(x) ≤ n(x) ≤ βe(x)} for some positive α and β and then
use e(x) to define the norm and ordering for a new subspace Xe of C0(Ω̄1) whose positive cone has a
nonempty interior that can be used to replace X1. This is described in more detail when we prove the
main theorem in the section. A condition related to (D) will be needed in that construction:
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(D1) k∗sw(x, y) ∈ C1(Ω̄1 × Ω), and for ∀x ∈ ∂Ω1, ∀y ∈ Ω, k∗sw(x, y) = 0 and Dνk
∗
sw(x, y) ≤ −k1 for

some k1 > 0, where ν is any normal vector on ∂Ω1, and Dν refers to the directional derivative
relative to the variable x in the direction of ν.

For the population M we could retain the positivity condition (18) and use X2 = C(Ω), but that
condition implies that the population M occupies all of Ω, and if there is a semi-trivial equilibrium
m∗(x) then it is positive everywhere. However, even if the dispersal strategy for M is not ideal free,
that population may also avoid sink habitats to some extent so that both populations have partial
occupancy. To address that situation, we could allow ksw(x, y) = 0 on Ω\Ω2 for some open subset
Ω2 ⊂ Ω and impose a positivity condition analogous to (126):

ksw(x, y) > 0, ∀ x ∈ Ω2, ∀ y ∈ Ω. (127)

In that case we will also need an additional assumption analogous to (D1):

(D2) ksw(x, y) ∈ C1(Ω̄2 × Ω), and for ∀x ∈ ∂Ω2, ∀y ∈ Ω2, ksw(x, y) = 0 and Dνksw(x, y) ≤ −k2 for
some k2 > 0, where ν is any normal vector on ∂Ω2, and Dν refers to the directional derivative
relative to the variable x in the direction of ν.

Let K∗(x, y) be defined by equation (76), where x ∈ Ω1 and y ∈ Ω1. Then K∗(x, y) remains line-
sum symmetric with the generalized definition of the ideal free distribution and the ideal free dispersal
strategy. To see this, let us first observe that (72) implies

n∗s(x) =

∫
Ω1

∫
Ω

k∗sw(x, z)k∗ws(z, y) n∗s(y) dz dy =

∫
Ω1

K∗(x, y) dy (128)

because n∗s(y) in the integrand is 0 outside of Ω1. Meanwhile,∫
Ω1

K∗(y, x) dy =

∫
Ω1

∫
Ω

k∗sw(y, z) k∗ws(z, x) n∗s(x) dz dy (129a)

=

∫
Ω

k∗ws(z, x) n∗s(x) dz (129b)

= n∗s(x) (129c)

because of the no-loss condition (125) and∫
Ω

k∗ws(z, x) dz = 1. (130)

Therefore ∫
Ω1

K∗(x, y) dy =

∫
Ω1

K∗(y, x) dy, (131)

and K∗(x, y) is line-sum symmetric on Ω1 × Ω1.

We now turn to the issue of positivity in the case of partial occupancy.
The following two lemmas generalize Lemmas 4 and 5, respectively. They will again show that

system (73) does not allow the two species to coexist at a coexistence equilibrium, and that any
semi-trivial equilibrium of system (73) of the form (0,m∗) must be unstable.

Lemma 6. Assume that condition (D) holds and the dispersal kernels k∗ws(x, y), ksw(x, y), and
kws(x, y) are continuous functions that satisfy condition (9), and the kernel k∗sw(x, y) satisfies con-
ditions (125) and (D1). In addition, the kernel k∗sw(x, y) also satisfies the positivity condition (126),
and ksw(x, y) satisfies the positivity condition (18) or both (127) and condition (D2). The kernels
k∗sw(x, y) and k∗ws(x, y) are such that population N, described by ns,t(x), adopts an ideal free dispersal
strategy relative to n∗s(x) in (119), and population M, described by ms,t(x), does not adopt an ideal free
dispersal strategy. In addition, assume g[x, n(x)] satisfies (G1) − (G3), and Ω1 is not empty. Then
system (73) does not have a coexistence equilibrium (n(x),m(x)) where n(x) and m(x) are both nonzero.
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Proof. Suppose that there is a nontrivial equilibrium (n(x),m(x)) for system (73), which satisfies
equations (80). (In the case where ksw(x, y) satisfies both (127) and condition (D2), extend m(x) to
be 0 on Ω\Ω2.) Because of (123), we know from (80a) that

n(x) = 0 for x ∈ Ω\Ω1. (132)

Meanwhile, the positivity condition (126) ensures that

n(x) > 0 for x ∈ Ω1. (133)

Integrating both sides of (80a) on Ω, with the same calculations as those in equation (81), we
obtain ∫

Ω

n(x) dx =

∫
Ω

g[y, n(y) +m(y)] n(y) dy, (134)

which is equivalent to ∫
Ω1

n(x) dx =

∫
Ω1

g[y, n(y) +m(y)] n(y) dy (135)

because of (132). Likewise, following the calculations in (82), integrating both sides of (80b) yields∫
Ω

m(x) dx ≤
∫

Ω

g[y, n(y) +m(y)]m(y) dy (136a)

=

∫
{y:m(y)>0}

g[y, n(y) +m(y)]m(y) dy, (136b)

and the inequality is strict unless

kws(z, y) = Qw(z) kws(z, y) (137)

where m(y) > 0.
Adding (134) and (136) together, we obtain inequality (85) again. To proceed, we need to construct

a piece-wise function similar to the function Ψ(x) in (86). Let

Ψ̃(x) =


n∗(x)

n(x)g[x, n(x) +m(x)]
on Ω1,

0 on Ω\Ω1.

(138)

This function is well-defined because of the positivity condition (133).
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Multiplying both sides of equation (80a) by Ψ̃(x) and integrating, we get∫
Ω

Ψ̃(x)n(x) dx =

∫
Ω1

Ψ̃(x)n(x) dx (139a)

=

∫
Ω1

n∗s(x)

g[x, n(x) +m(x)]
dx (139b)

=

∫
Ω1

∫
Ω1

∫
Ω

k∗sw(x, z)Qw(z)k∗ws(z, y) g[y, n(y) +m(y)]n(y)
n∗s(x)

g[x, n(x) +m(x)]n(x)
dz dy dx

(139c)

=

∫
Ω1

∫
Ω1

∫
Ω

k∗sw(x, z)Qw(z)k∗ws(z, y) n∗s(y)
g[y, n(y) +m(y)]n(y)n∗s(x)

g[x, n(x) +m(x)]n(x)n∗s(y)
dz dy dx

(139d)

=

∫
Ω1

∫
Ω1

∫
Ω

k∗sw(x, z)k∗ws(z, y)n∗s(y)
g[y, n(y) +m(y)]n(y)n∗s(x)

g[x, n(x) +m(x)]n(x)n∗s(y)
dz dy dx (139e)

=

∫
Ω1

∫
Ω1

K∗(x, y)
Ψ̃(x)

Ψ̃(y)
dy dx (139f)

≥
∫

Ω1

∫
Ω1

K∗(x, y) dy dx (139g)

=

∫
Ω1

n∗s(x) dx. (139h)

The inequality is again due to Theorem 1 and the fact that K∗(x, y) is line-sum symmetric on Ω1×Ω1.
It is a strict inequality unless Ψ̃(x) = Ψ̃(y) in Ω1. Therefore we have∫

Ω1

n∗s(x)

g[x, n(x) +m(x)]
dx ≥

∫
Ω1

n∗s(x) dx, (140)

and thus ∫
Ω1

n∗s(x)

{
1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
≥ 0. (141)

Note that we can extend the integral domain to Ω because n∗s(x) = 0 outside Ω1, so∫
Ω

n∗s(x)

{
1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
≥ 0 (142)

is also true.
Meanwhile, the calculations from (80) and (85) are still valid in the present setting. Inequality (85)

says ∫
Ω

{1− g[x, n(x) +m(x)]} [n(x) +m(x)] dx ≤ 0, (143)

from which we have∫
Ω

g[x, n(x) +m(x)] · [n(x) +m(x)] ·
{

1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
dx ≤ 0. (144)

Combining (142) and (144), we get∫
Ω

{n∗s(x)− g[x, n(x) +m(x)] · [n(x) +m(x)]} ·
{

1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
dx ≥ 0. (145)
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Therefore, if

I1 =

∫
Ω1

{n∗s(x)− g[x, n(x) +m(x)] · [n(x) +m(x)]} ·
{

1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
dx, (146)

and

I2 =

∫
Ω\Ω1

{n∗s(x)− g[x, n(x) +m(x)] · [n(x) +m(x)]} ·
{

1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
dx (147a)

=

∫
Ω\Ω1

{−g[x, n(x) +m(x)] · [n(x) +m(x)]} ·
{

1− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
dx, (147b)

then
I1 + I2 ≥ 0. (148)

Both integrals I1 and I2 should be less than or equal to 0. We know I1 ≤ 0 because

I1 =

∫
Ω1

{g[x, n∗s(x)]n∗s(x)− g[x, n(x) +m(x)] · [n(x) +m(x)]} ·
{
g[x, n∗s(x)]− g[x, n(x) +m(x)]

g[x, n(x) +m(x)]

}
dx,

(149)
and the integrand contains two factors that must be of opposite signs. We know I2 ≤ 0 because
g[x, n(x) + m(x)] ∈ (0, 1] for x ∈ Ω\Ω1 and n(x) and m(x) are nonnegative. Therefore, the only
possibility is

I1 = I2 = 0. (150)

The fact that I1 = 0 implies

n∗s(x) = n(x) +m(x), ∀ x ∈ Ω1. (151)

With the same arguments as before, this implies that Ψ̃(x) is a constant on Ω1. So we can assume
that for some constant c,

n∗s(x)

n(x)
=

1

c
, x ∈ Ω1. (152)

As before, this leads to n(x) = cn∗s(x) and m(x) = (1− c)n∗s(x), x ∈ Ω1. Meanwhile, we have

m(x) + n(x) = 0, ∀ x ∈ Ω\Ω1, (153)

from I2 = 0. From (132), it must be the case that

m(x) = 0, ∀ x ∈ Ω\Ω1. (154)

From equations (80b), (137), and (151), we have, for x ∈ Ω1,

m(x) =

∫
Ω

∫
Ω

ksw(x, z) kws(z, y) g[x, n(x) +m(x)] m(y) dz dy, (155a)

=

∫
Ω

∫
Ω

ksw(x, z) kws(z, y) m(y) dz dy. (155b)

Thus (155b) implies

m(x) =

∫
Ω1

∫
Ω

ksw(x, z) kws(z, y) m(y) dz dy, ∀x ∈ Ω1. (156)

Substituting m(x) with (1− c)n∗s(x), we have

n∗s(x) =

∫
Ω1

∫
Ω

ksw(x, z) kws(z, y) n∗s(y) dz dy, ∀x ∈ Ω1. (157)

This together with (137) conflicts with the assumption that ksw(x, z) and kws(z, y) do not form an
ideal free strategy. Therefore system (73) does not have a coexistence equilibrium (n(x),m(x)) where
n(x) and m(x) are both nonzero.
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Lemma 7. Assume that condition (D) holds and the dispersal kernels k∗ws(x, y), ksw(x, y), and
kws(x, y) are continuous functions that satisfy condition (9), and the kernel k∗sw(x, y) satisfies con-
ditions (125) and (D1). In addition, the kernel k∗sw(x, y) also satisfies the positivity condition (126),
and ksw(x, y) satisfies the positivity condition (18) or both (127) and condition (D2). The kernels
k∗sw(x, y) and k∗ws(x, y) are such that population N, described by ns,t(x), adopts an ideal free dispersal
strategy relative to n∗s(x) in (119), and population M, described by ms,t(x), does not adopt an ideal
free dispersal strategy. In addition, assume g[x, n(x)] satisfies (G1) − (G3), and Ω1 is not empty. If
system (73) has a semitrivial equilibrium (0,m∗(x)), then this equilibrium must be unstable.

Proof. Suppose system (73) has a semitrivial equilibrium (0,m∗(x)). We will show that this equilibrium
must be unstable.

As before, consider the eigenvalue problem

λφ(x) =

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z) k∗ws(z, y) g[y,m∗(y)] φ(y) dz dy, (158)

where

g[y,m∗(y)] =
f0g0 Qs(y)

1 + b0 m∗(y)
. (159)

(In the proof of the next result we will verify conditions which imply that a principal eigenvalue exists
in the present case.) Because of (123) and (126), we know

φ(x) = 0 for x ∈ Ω\Ω1 and φ(x) > 0 for x ∈ Ω1. (160)

Also, we have g[x,m∗(x)] > 0 for x ∈ Ω1, so

G(x) =


n∗s(x)

φ(x)g[x,m∗(x)]
, x ∈ Ω1,

0, x ∈ Ω\Ω1,

(161)

is well defined. Multiplying both sides of equation (158) by G we obtain, for x ∈ Ω1,

λ n∗s(x)

g[x,m∗(x)]
=

∫
Ω

∫
Ω

k∗sw(x, z)Qw(z) k∗ws(z, y)
n∗s(x)

φ(x)g[x,m∗(x)]
g[y,m∗(y)] φ(y) dz dy (162a)

=

∫
Ω1

∫
Ω

k∗sw(x, z)Qw(z) k∗ws(z, y)
n∗s(x)

φ(x)g[x,m∗(x)]
g[y,m∗(y)] φ(y) dz dy (162b)

=

∫
Ω1

∫
Ω

k∗sw(x, z)Qw(z) k∗ws(z, y) n∗s(x)
φ(y)g[y,m∗(y)]

φ(x)g[x,m∗(x)]
dz dy (162c)

=

∫
Ω1

∫
Ω1

k∗sw(x, z)Qw(z) k∗ws(z, y) n∗s(y)
Φ(y)

Φ(x)
dz dy, (162d)

where

Φ(x) =
φ(x)g[x,m∗(x)]

n∗s(x)
, x ∈ Ω1. (163)

Integrating both sides, we obtain from (128) and (131)

λ

∫
Ω1

n∗s(x)

g[x,m∗(x)]
dx =

∫
Ω1

∫
Ω1

∫
Ω

k∗sw(x, z)Qw(z) k∗ws(z, y) n∗s(y)
Φ(y)

Φ(x)
dz dy dx (164a)

=

∫
Ω1

∫
Ω1

K∗(x, y)
Φ(y)

Φ(x)
dy dx (164b)

≥
∫

Ω1

∫
Ω1

K∗(x, y) dy dx (164c)

=

∫
Ω1

n∗s(x) dx. (164d)
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Therefore

λ

∫
Ω1

n∗s(x)

g[x,m∗(x)]
dx ≥

∫
Ω1

g[x,m∗(x)]

g[x,m∗(x)]
n∗s(x) dx, (165)

and

(λ− 1)

∫
Ω1

n∗s(x)

g[x,m∗(x)]
dx ≥

∫
Ω1

n∗s(x)

{
1− 1

g[x,m∗(x)]

}
dx. (166)

Next we will show that the right hand side of (166) is nonnegative. To see this, we begin with
observing that the equilibrium m∗(x) must satisfy the equation

m∗(x) =

∫
Ω

∫
Ω

ksw(x, z)Qw(z) kws(z, y) g[y,m∗(y)]m∗(y) dz dy. (167)

Integrating both sides of equation (167), we obtain∫
Ω

m∗(x) dx =

∫
Ω

∫
Ω

∫
Ω

ksw(x, z)Qw(z) kws(z, y) g[y,m∗(y)]m∗(y) dz dy dx (168a)

≤
∫

Ω

∫
Ω

∫
Ω

ksw(x, z) kws(z, y) g[y,m∗(y)]m∗(y) dz dy dx (168b)

=

∫
Ω

g[y,m∗(y)]m∗(y) dy. (168c)

Therefore ∫
Ω

m∗(x){1− g[x,m∗(x)]} dx ≤ 0, (169)

and ∫
Ω

m∗(x) {g[x,m∗(x)]− 1} dx ≥ 0. (170)

Splitting the integral into two integrals, we have∫
Ω1

m∗(x) {g[x,m∗(x)]− 1} dx+

∫
Ω\Ω1

m∗(x) {g[x,m∗(x)]− 1} dx ≥ 0. (171)

For x ∈ Ω\Ω1, we have
g[x,m∗(x)] ≤ f0 g0 Qs(x) ≤ 1. (172)

Therefore ∫
Ω\Ω1

m∗(x) {g[x,m∗(x)]− 1} dx ≤ 0, (173)

because m∗(x) is nonnegative, rendering the integrand less than or equal to 0. The inequality (173) will
be strict unless for each x ∈ Ω\Ω1 either m∗(x) = 0 or g[x,m∗(x)] = 1. The case g[x,m∗(x)] = 1 would
be possible only if Qs(x) > 0, but then g[x, s] is strictly decreasing in s so that g[x,m∗(x)] < g[x, 0] ≤ 1
if m∗(x)) > 0, so that case is ruled out. Hence (173) is strict unless unless m∗(x) = 0 for x ∈ Ω\Ω1.
Therefore (173) implies ∫

Ω1

m∗(x) {g[x,m∗(x)]− 1} dx ≥ 0, (174)

with strict inequality unless m∗(x) = 0 for x ∈ Ω\Ω1. Subtracting the left-hand side of inequaltiy
(174) from the right-hand side of (166), we obtain∫

Ω1

n∗s(x)

{
1− 1

g[x,m∗(x)]

}
dx−

∫
Ω1

m∗(x) {g[x,m∗(x)]− 1} dx (175a)

=

∫
Ω1

{n∗s(x)−m∗(x)g[x,m∗(x)]} · g[x,m∗(x)]− 1

g[x,m∗(x)]
dx (175b)

=

∫
Ω1

{n∗s(x)g[x, n∗s(x)]−m∗(x)g[x,m∗(x)]} · g[x,m∗(x)]− g[x, n∗s(x)]

g[x,m∗(x)]
dx. (175c)

(175d)
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Since we assume Qs(x) > 0 for x ∈ Ω1, we have g[x, s] strictly decreasing and sg[x, s] strictly increasing
in s for x ∈ Ω1. Therefore the integrand in the last line of (175) is nonegative, and is strictly positive
unless either n∗s(x)g[x, n∗s(x)] = m∗(x)g[x,m∗(x)] or g[x,m∗(x)] = g[x, n∗s(x)]. Either of those implies
n∗s(x) = m∗(x) on Ω1. It follows that∫

Ω1

n∗s(x)

{
1− 1

g[x,m∗(x)]

}
dx ≥

∫
Ω1

m∗(x) {g[x,m∗(x)]− 1} dx ≥ 0. (176)

The first inequality is strict unless n∗s(x) = m∗(x) on Ω1. The second is strict unless unless m∗(x) = 0
for x ∈ Ω\Ω1. If either inequality is strict we have λ > 1 by (166) so that (0,m∗(x)) is unstable. The
conditions n∗s(x) = m∗(x) on Ω1 and m∗(x) = 0 for x ∈ Ω\Ω1 imply that n∗s(x) = m∗(x). We then
have

n∗s(x) =

∫
Ω

∫
Ω

ksw(x, z)Qw(z) kws(z, y) dz g[y, n∗s(y)] n∗s(y) dy (177a)

=

∫
Ω

∫
Ω

ksw(x, z)Qw(z) kws(z, y) dz n∗s(y) dy. (177b)

This is also required for inequality (175) to be an equality. Therefore, if ksw and kws are kernels that
do not satisfy the ideal free conditions (71) and (72), the inequalities (174) and (175) will be strict.
Therefore, with inequality (175), we know

(λ− 1)

∫
Ω

n∗s(x)

g[x,m∗(x)]
dx > 0, (178)

and
λ > 1. (179)

Therefore, the equilibrium (0,m∗(x)), if existing, must be unstable.

Theorem 3. Assume that either
(i) (full occupancy) g[x,n] satisfies (G1)-(G4) and the hypotheses of Lemmas 4 and 5 are satisfied

or
(ii)(partial occupancy) g[x,n] satisfies (G1)-(G3), Ω1 is nonempty, condition (D) holds, and the hy-
potheses of Lemmas 6 and 7 are satisfied.

Suppose the kernels k∗sw(x, z) and k∗ws(z, y) are such that population N, described by ns,t(x), adopts
an ideal free dispersal strategy relative to n∗s(x), as in Definition 5 in case (i) and Definition 6 in case
(ii), and population M, described by ms,t(x), does not adopt an ideal free dispersal strategy.

Then the semi-trivial equilibrium (n∗s(x), 0) is a globally asymptotically stable equilibrium, and the
ideal free dispersal strategy, as defined in Definition 5 (case(i)) or Definition 6 (case(ii)), is an
evolutionarily-stable strategy.

Proof. We will give a detailed proof for the case where N has partial occupancy but M occupies all
of Ω. First we will formulate the abstract setting for the case of partial occupancy by N on Ω1. If M
has partial occupancy on Ω2 we would make the corresponding construction for M on Ω2. For cases
with full occupancy for both M and N we would use the original space X1×X2 as in the single season
case. Recall that Ω1 is defined by (118). Let space X1 be

X1 = C0(Ω̄1) := {n(x) ∈ C(Ω̄1)|n(x) = 0,∀ x ∈ ∂ Ω1}, (180)

equipped with the cone
P1 = {n(x) ∈ C0(Ω̄1)|n(x) ≥ 0,∀ x ∈ Ω1}, (181)

and X2 = C(Ω), equipped with the cone P2 = C+(Ω). Let X = X1 ×X2, with cone X+ = P1 × P2,
and let T : X+ → X+ be the operator

26



T

[
n(x)
m(x)

]
=

∫Ω ∫Ω k∗sw(x, z)Qw(z)k∗ws(z, y) dz g[y, n(y) +m(y)] n(y) dy∫
Ω

∫
Ω
ksw(x, z)Qw(z)kws(z, y) dz g[y, n(y) +m(y)]m(y) dy

 . (182)

The cone P1 has an empty interior, so we will use order unit norms (Amann 1976) to construct an
alternative space Xe which possesses a cone Pe with a nonempty interior. For the current purpose,
it is natural to use e = n∗s(x), but any choice of e(x) with e(x) > 0 in Ω1, e(x) = 0 on ∂Ω1, and
e(x) satisfying condition (D) would produce an equivalent result. For e = n∗s(x), we have e ∈ X1\{0}.
Following Amann (1976), we can then use the Minkowski functional

||x||e = inf{λ > 0| − λe ≤ x ≤ λe} (183)

to construct the normed vector space

Xe = (∪{λ[−e, e]|λ ∈ R+}, || · ||e) , (184)

and define a cone Pe as
Pe = ∪{λ[−e, e]|λ ∈ R+} ∩ P1. (185)

By Theorem 2.3 of Amann (1976), (Xe, Pe) is an ordered Banach space, and P̊e 6= ∅, i. e. the interior
of Pe is nonempty.

We will now show that T (X1 × {0}) embeds continuously, in fact compactly, into C1
0 (Ω̄1). Let

F = π1 ◦T , where π1 is the projection onto the first coordinate. By condition (D1), u ∈ C1
0 (Ω̄1). Also,

for each component xi of x,
∂k∗sw
∂xi

∈ C1
0 (Ω̄1 × Ω̄1). (186)

Thus, both k∗sw(x, y) and its first derivatives in the x variables are uniformly continuous on Ω̄1 × Ω̄1.
It follows that for each i,

∂u

∂xi
=

∫
Ω1

∫
Ω

∂k∗sw(x, z)

∂xi
Qw(z)k∗(z, y)g[y, n0(y)]n0(y) dy, (187)

so ∂u
∂xi

is well defined and uniformly continuous on Ω̄1. Hence the functions in the image under F of a

bounded set in C0(Ω̄1), and their first derivatives, will be equicontinuous and uniformly bounded , so
that image will have compact closure in C1

0 (Ω̄1) by Arzela-Ascoli. Thus, F is a completely continuous
map from X1 × {0} into C1

0 (Ω̄1). Also, by (D1), it follows that

||∇u||0 ≤ C||n0||0, (188)

where || ||0 denotes the sup norm on C(Ω̄1) and C is a constant independent of n0. It follows from
conditions (D), (D1) and (188) that there exists β = β(n0) > 0 sufficiently large that 0 ≤ u ≤ βe(x).
Additionally, it can be seen from (D), (D1), and (126) that if n0 ∈ X1\{0} then u(x) ≥ αe(x) for some
α > 0. Hence, F is a completely continuous map from X1×{0} into C1

0 (Ω̄1). Finally, the embedding of
C1

0 (Ω̄1) into Xe is continuous by Mierczyński (1998), Proposition 2.2. Since the map F from X1×{0}
into C1

0 (Ω̄1) is completely continuous, so its composition with the embedding of C1
0 (Ω̄1) into Xe is, as

well. Additionally, it maps X1\{0} × {0} into the interior of the cone Pe so it is strongly positive.
This argument shows that the eigenvalue problem (158) has a principal eigenvalue, since it allows us to
apply the Krein-Rutman Theorem in Xe. A similar argument implies that T (X1×X2) ⊂ C1

0 (Ω̄1)×X2.
The map obtained by restricting T to the second component is completely continuous; see the comments
after Lemma 3, sand again C1

0 (Ω̄1) ×X2 embeds continuously into Xe ×X2, so we can work in that
space. For the case where there is partial occupancy by M , a similar construction with order units
using condition (D2) and (127), and choosing, for example, e2(x) =

∫
Ω
ksw(x, y)dy, would allow us to

work in Xe ×Xe2 . If N has full occupancy we can work in the original space X1 ×X2.
The cones Pe and P2 define the order relations ≤, <,� in the usual way. Let P = Pe × (−P2), then
P defines the order relation

(n,m) ≤P (n̄, m̄)⇐⇒ n ≤ n̄, and m̄ ≤ m, (189)

and likewise the order relations <P and �P .

We want to show that T satisfies the following assumptions:
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(H1) T is order compact, meaning for every (n,m) ∈ Pe × P2, T ([0, n] × [0,m]) has compact closure
in X.

(H2) T is strictly order-preserving with respect to <P . That is, n < n̄ and m̄ < m implies T (n,m) <P
T (n̄, m̄).

(H3) T (0, 0) = (0, 0), and (0, 0) is a repelling point in the sense that there exists a neighborhood U of
0 in Pe × P2 such that ∀ (n,m) ∈ U\{0}, ∃ t, t ∈ Z, such that T t(n,m) 6∈ U .

(H4) T (X+
e ×{0}) ⊂ X+

e ×{0}. There exists 0� n̂ such that T (n̂, 0) = (n̂, 0), and T t(n0, 0)→ (n̂, 0),
∀ n0 > 0. Likewise for T on {0} ×X2, with fixed point (0, m̃).

(H5) If (n1,m1) <P (n2,m2), both are elements of Pe × P2, and either (n1,m1) or (n2,m2) belongs
to P̊e × P̊2, then T (n1,m1) �P T (n2,m2). If (n,m) ∈ Pe × P2 satisfies xi 6= 0, i = 1, 2, then
T (n,m)� 0.

We will now show that these assumptions are met.

(H1) The operator T is completely continuous on Xe × X2 under our hypotheses by the previous
arguments. (For case (i) we know that the operator T is compact under the original norm
on X1 × X2, because Ω is a compact set, and ksw(x, z) and k∗sw(x, z) are continuous dispersal
kernels.) Any order interval pair ([0, n]× [0,m]) in X1 ×X2 or Xe ×X2 relative to the positive
cones in those spaces is bounded in their respective norms, and thus has a relatively compact
image. Therefore T ([0, n] × [0,m]) is also relatively compact in Xe ×X2. Therefore T is order
compact.

(H2) The argument is the same as in Theorem 2 and is omitted here.

(H3) It is clear that T (0, 0) = (0, 0). The point (0, 0) is a repelling point because g[y, 0] > 1, ∀ y ∈ Ω1.

(H4) We know that e = n∗s(x) is a fixed point of T when restricted to Xe × {0}. By definition of Xe,
n∗s(x)� 0. Let n̂ = n∗s(x). To show convergence of trajectories towards (n̂, 0), we will first show
that T is strongly positive when restricted to Xe. That is, we want to show that ∀n0 ∈ Xe\{0},
∃α > 0, s.t. F [n0] > α · e. Suppose the contrary, then there exists a sequence {xk}∞k=1 such that
for each k ∈ N,

u(xk) <
1

k
· e(xk), xk ∈ Ω̄1. (190)

Following the arguments in Proposition 2.2 of Mierczyński (1998) again, we can show that this
eventually leads again to a contradiction with the assumptions about Dν(n∗s(x)) To show that
T t(n0, 0)→ (n̂, 0), ∀n0 > 0, we will use the same argument in Theorem 2 that invokes Theorem
2.3.4 of Zhao (2003). The only difference in the argument is that the strong positivity of the
Fréchet derivative of T at (0, 0) can be concluded with an argument very similar to how T is
strongly positive on Xe, replacing the nonlinear population growth function with its linearization
at 0. Therefore the existence of a semitrivial equilibrium (n̂, 0) means T t(n0, 0)→ (n̂, 0), ∀ n0 ∈
Xe\{0}. For the behavior of T on {0}×X2, we can still assume, without loss of generality, that
there exists a semitrivial equilibrium (0, m̃). In the case where such an equilibrium (0, m̃) does
not exist, we can use the same argument from the proof of Theorem 2, which cites the proof in
Theorem 3.3 of Kirkland et al. (2006). Assuming there exists a semitrivial equilibrium (0, m̃),
then 0 � m̃ because of the positivity conditions on the dispersal kernels. Thus we can invoke
Theorem 2.3.4 of Zhao (2003) again to show the convergence of initial data on {0}×X2 to (0, m̃).

(H5) We already showed T is strongly positive when restricted to Xe × {0}. The strong positivity of
T on Xe × X2 then comes from the positivity assumption that ksw(x, z) > 0,∀x ∈ Ω,∀z ∈ Ω.
Now let x = (x1, x2) and y = (y1, y2) be two elements of Pe × P2, and x <P y. From (H2) we
know that T (x) <P T (y). The fact that T (x)�P T (y) comes from the strong positivity of T .

As we have seen, operator T satisfies conditions (H1)-(H5). By Lemma 6 and Theorem A in
Hsu et al. (1996), ∀x = (x1, x2) ∈ X+, either Tn(x) → (x̂1, 0) or Tn(x) → (0, x̃2). Since Lemma
7 showed the latter cannot be the case, it must be that Tn(x) → (x̂1, 0) = (n∗s(x), 0). The global
asymptotic stability of the equilibrium (n∗s(x), 0) implies that the ideal free dispersal strategy is an
evolutionarily-stable strategy by Definition 3. This completes the proof of this theorem.
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4 Discussion

Our main conclusion is that it is possible to define the ideal free distribution for integrodifference
models in spatially heterogeneous environments with either one or two seasons, and if the population
dynamical terms are such that the integrodifference models generate a monotone semidynamical sys-
tem (e.g. Beverton–Holt dynamics), then dispersal strategies (i.e. choices of dispersal kernels) which
lead to an ideal free distribution are evolutionarily steady (ESS) and neighborhood invaders ( NIS)
relative to strategies that do not produce an ideal free distribution. A secondary conclusion is that
the class of strategies that can produce an ideal free distribution is quite restricted, at least during the
growing season, and it appears that to achieve an ideal free distribution typically requires a complete
knowledge of the spatial distribution of habitat that is favorable for population growth during the
growing season. This is in contrast with the case of reaction-advection-diffusion and integrodifferential
models in temporally constant but spatially varying environments where there are multiple strategies
that can produce an ideal free distribution, and all (for reaction-diffusion-advection) or at least some
(in the case of integrodifferential models) of those strategies can be achieved on the basis of purely local
information. See Averill et al. (2012), Cantrell et al. (2010, 2012b), Cosner et al. (2012), Korobenko
and Braverman (2014). For reaction-advection-diffusion models in time periodic environments, how-
ever, nonlocal information is needed to achieve an ideal free distribution Cantrell and Cosner (2018).

The fact that a rather complete knowledge of the environment in the growing season is typically
needed to achieve an ideal free distribution in the setting of integrodifference models raises the question
of how organisms can obtain the information. There are several possible answers. In an environment
where population growth is possible at every location, a population that simply stays in place will
grow to match the level of resources wherever it is initially present. If it is initially present everywhere
that will lead to an ideal free distribution. That strategy would not be available to a population col-
onizing new habitats, however. Another possibility would be for organisms to update their dispersal
strategies (i. e. modify their dispersal kernels) by learning. We are currently thinking about how
to build mechanisms to account for learning from experience and memory into our models. It seems
plausible that in an environment that was relatively benign but not necessarily universally favorable a
population that initially used the strategy of going everywhere but learned from experience might be
able to survive long enough to eventually learn the resource distribution well and thus approximate
ideal free dispersal. Such a process might involve social learning, which is known to be important
in sustaining existing migrations; for discussion of social learning and a spatially implicit model see
Fagan et al. (2012). It would be possible and might be of interest to construct related spatially explicit
migration models with social learning by using the sort formulation we have developed in the present
paper.

Our primary focus here is on the evolutionary advantages of dispersal that produces an ideal free
distribution, but there may be some other phenomena which the models support that are also of in-
terest. For example, we assume no density dependent effects during the winter, but for an ideal free
distribution a population must spend the winter in regions that optimize survival. If those regions are
small such a strategy could produce high densities of organisms during the winter. In fact, winter-
ing (and hibernating) in large groups has been observed in ladybird beetles, garter snakes, and some
species of bats.

The theoretical framework we have developed allows us to study interacting populations that may
only occupy part of the environment during either season from the viewpoint of discrete semidynamical
systems. A key issue is that with partial occupancy we may have population densities that are zero
in some places. That causes difficulties with regard to using results based on strong positivity such
as the strong version of the Krein-Rutman theorem. To address that issue we set up the partial
occupancy model on spaces with positive cones similar to those used in treating diffusion models with
Dirichlet boundary conditions. That construction may be useful in formulating and analyzing other
integrodifference models for situations that involve partial occupancy.
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