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Relation Between Void Ratio and Contact Fabric of Granular Soils

Yuxuan Wen' and Yida Zhang®*

Abstract

Void ratio is one of the key engineering properties of granular soils. It reflects how well
the grains are packed and hints whether the soil is contractive or dilative upon shearing. On
the other hand, fabric tensor has been at the centre of experimental and theoretical granular
mechanics research over the past decade for its intimate relation with the material’s
anisotropy and critical-state behaviour. This paper tests the hypothesis that the void ratio and
the fabric tensor of granular soils are tightly correlated to each other. Through discrete
element method, a series of isotropic/anisotropic consolidation tests and monotonic triaxial
compression and extension tests are conducted. The obtained void ratio data is found to
collapse onto one unique surface, namely the fabric-void ratio surface (FVS), when plotted
against the first two invariants of the contact-based fabric tensor. The robustness of this
relation is confirmed by testing samples with different initial void ratios under various
consolidation and monotonic triaxial stress paths. An additional undrained cyclic triaxial test
followed by continuous shearing to critical state is performed to further examine the fabric-
void ratio relation under complex loading paths. It is found that the previously identified FVS
from monotonic tests still attracts the states of these specimens at critical state, although their
fabric-void ratio paths deviate from the FVS during cyclic loading. The newly discovered
FVS provides a refreshing perspective to interpret the structural evolution of granular
materials during shearing and can serve as an important modelling component for fabric-
based constitutive theories for sand.
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1 Introduction

Void ratio (or porosity) is the most widely used index by geotechnical engineers and soil
mechanists to characterize the ‘“state” of granular soils. The celebrated critical state soil
mechanics framework uses void ratio to define critical state which further distinguishes dense
and loose soils [1]. Void ratio (e) informs engineers how well the soil is packed [2] and its
potential for liquefaction [3]. On the other hand, fabric structure characterized by the
directional statistics of particles, voids, contact normal vectors is also tightly related to the
macro-behaviour of granular soils including anisotropy [4, 5], non-coaxiality [6], critical state
[7], and liquefaction [8]. However, despite both void ratio and fabric tensors are quantitative
descriptors of soil internal structure, their interconnections are seldomly studied. A specific
question is, can the fabric data be used to deduce the void ratio of granular materials? First of
all, it is straightforward to see that void ratio is proportional to the hydrostatic component of
void-based fabric tensors [9]. Such clear relation does not exist for particle- or contact-based
fabric tensors. Many studies in the field of granular physics, powder technology and chemical
engineering have been devoted to establishing a relation between e and the coordination
number (Z), i.e., the first invariant of the non-normalized contact fabric tensor. For
frictionless monodisperse granular assemblies, an e-Z relation can be pinned down by
considering several idealized packings including cubic (Z = 6, e = 0.9099), orthorhombic (Z =
8, e = 0.6540), tetragonal-sphenoidal (Z = 10, e = 0.4533) and rhombohedral (Z = 12, e =
0.3503). A number of empirical e-Z equations have been also proposed for bi-disperse or
polydisperse granular assemblies based on experiments and DEM simulations of gravitational
stable or compressed specimens [10-15].

For general stress paths that involves shearing, the relation between Z and e is no longer
unique. This can be demonstrated by considering an undrained test: if each e uniquely
corresponds to one Z value, Z must be a constant during undrained shearing since e is kept
constant. This is not supported by DEM experiments showing that undrained samples can
liquefy where Z drops sharply [16-18]. It is thus inferred that e should at least also be a

function of the fabric anisotropy (F), or equivalently the second invariant of contact fabric
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tensor. Rothenburg and Kruyt [19] have similarly pointed out that the relationship between Z
and e is affected by the anisotropy of contact orientations. Kruyt [20] showed that Z evolves
with both volumetric and shear strains, implying that e may be a function of both Z and fabric
anisotropy. Huang et al. [21] shows that the critical state e-Z relation is not unique and is
dependent on the intermediate principal stress ratio b, and the variation of e is apparently
related to F' which is sensitive to b. They clarified that the increase of /' with b is the cause of
non-uniqueness of e-Z relation at critical state. In an attempt to integrate fabric tensor in the
constitutive modeling of sand, Zhang et al. [22] suggested that a relation between e and soil
fabric is imperative to unify the classical notion of critical state defined in the e-p-g space [1]
(p 1s the mean effective stress, g is the deviatoric stress) and the recently discovered critical
fabric surface (CFS) in the principal fabric space [23]. Hence, the fabric-void ratio
relationship worth a systematic investigation for better understanding and modelling of the
micro-macro behaviour of granular soils.

The objective of this paper is to study the linkage between void ratio and the non-
normalized second-rank contact fabric tensor for granular soils. Towards this goal, a series of
three-dimensional (3D) DEM simulations consists of consolidation, undrained, and drained
monotonic triaxial tests are conducted (Section 2). The fabric tensor and the void ratio data
are plotted in the e-Z-F space, through which a unique fabric-void ratio surface (FVS) is
identified (Section 3). The FVS is then mathematically represented and further validated by
additional DEM tests with various initial void ratios (Section 4). Finally, an undrained cyclic
triaxial tests is performed to examine whether the proposed FVS can capture the fabric-void
ratio data for samples experiencing stress reversals (Section 5). The significance of proposed
FVS is discussed in Section 6. The main conclusions and possible future extensions of this

work are discussed at the end (Section 7).

2 Methodology

2.1 DEM configuration

The open-source program YADE [24] is used in this study to carry out all DEM
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simulations. Consolidation and triaxial tests are simulated employing periodical boundary
conditions on a granular representative volume (REV) made of 10,000 sphere particles with a
grain size distribution shown in Fig. 1. The choice of 10,000 particles is made to balance the
computational efficiency and the representativeness of the granular specimen. Other DEM
studies on granular REVs have used similar or fewer particles [25-27]. All particles are
randomly generated without contacts in a 3 x 3 x 3 cm® box and then isotropically or
anisotropically consolidated prior to shearing. Linear elastic contact law is adopted with the
normal stiffness kn and tangential stiffness ks being kn/d = ks/d = 100 MPa, where d is the
particle diameter. The normal and tangential interparticle forces between two particles with
stiffness kn1, ks1 and kn2, ks2 are calculated by Fn = Kn 0n = kn1 * kn2 / (kn1 + kn2) on and Fs = Ks
Os = ks1 * ks2 / (ks1 + ks2) 0s , where Kn, on and K, Js are the stiffness and displacement of the
contact in the normal and tangential direction. The interparticle friction is modelled by the
Coulomb’s law with the friction coefficient set to 4 = 0.5, a typical value for quartz sand [18,
28].

The simulation is conducted under quasi-static condition where the influence of particle
mass (inertia) is negligible so that the density scaling technique can be adopted to reduce the

computation cost [17, 29-31]. Specifically, the critical timestep of the system is related to the

minimum particle size and elastic wave propagation speed by Az, = min(Ri . f( Py ) / E, ) [24],

7D
1

where subscript “i” represents the i particle, R the particle radius, pg the particle density, and

E the elastic modulus. By scaling the particle density from pg = 2.65 x 10° kg to 2.65 x 10° kg,
At is increased by a factor of 1000 =31.62, allowing the computation to accelerate by
31.62 times. For triaxial test simulations, the inertia number 7 = éd Py / p should be much

less than 107 to ensure the quasi-static condition [32-35], where ¢ is the strain rate, d the
average particle diameter, and p the mean effective stress. Through a parametric study, a
strain rate of 0.05 s’ is selected to ensure the maximum / << 107 such that the quasi-static
requirement is satisfied.

In DEM, a common method to control the initial void ratio of granular specimens is to
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adjust the initial friction coefficient o when generate and initially compact the spheres before
the official test program [31, 36, 37]. The use of a lower value of uo eases the particle
rearrangement during initial compaction and thus leads to a denser specimen, and vice versa.
Note that the value of po must be less than x, otherwise the sample will have sudden collapse
at the moment when o is updated to u. Since we are interested in the consolidation data in
this study, it is necessary to update woto u at the very early stage of compaction such that this
operation does not interference with the consolidation and triaxial data which must reflect the
behaviour of soils with 4=0.5. The procedure adopted in this study is the following: spheres
are sparsely generated in a cubic regime according to the designated grain size distribution
(Fig. 1) with uo selected between 0 to 0.5; the periodic boundaries are moved inwards to
isotropically consolidate the particles to p = 5kPa which is far less than the consolidation
stresses pc=50~2000 kPa studied in this work; uo is then updated to ¢ = 0.5 and the remaining
consolidation and triaxial shearing are conducted following the ordinary procedure.
2.2 Experiment design

Three series of DEM experiments are performed in this study. In the first series, @o = 0.3
is used to create an initially medium-dense packing eo = 0.6437. Note that, throughout this
paper, notation eo refers to the void ratio of the specimen at isotropic p = 50 kPa. The
medium-dense samples are isotropically or anisotropically consolidated under various stress
ratios 70 =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7, as shown in Fig. 2. This is to probe the fabric-
void ratio relation of granular packings during consolidation. For isotropically consolidated
specimens, undrained (CIU) and drained (CID) triaxial tests are performed at various
confining stresses pc to allow the stress ratio # evolve from 0 to critical value. These are
designed to cover a wide range of intermediate states in the fabric-void ratio space. Various
intermediate principal strain and stress ratios with be = 0, 0.25, 0.5, 0.75, 1 and b = 0, 0.25,
0.5, 0.75, 1 are used in the CIU and CID tests to check the potential Lode-angle dependency
of the fabric-void ratio relation. Here be = (&2 — €3) / (€1 — €3) and b = (02 — 03)/(61 — 03), Where
(e1, &2, &3) and (o1, 02, 03) are the major, intermediate, and minor principal strains and stresses,

respectively. The testing details of the consolidation, CIU and CID tests are summarized in
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Table 1.

To examine the effect of initial void ratio eo on the fabric-void ratio relation, another
series of consolidation and triaxial tests on specimens prepared at different uo values are
performed. They are named C _eo, CIU eo, and CID e tests, respectively (Table 2). These
sample are prepared with xo = 0.2 or 0.5 to obtain an initially dense (e0=0.6174) or loose
(e0=0.6701) state, respectively.

Finally, an isotropically consolidated undrained cyclic triaxial (CIUC) test is performed
to probe the fabric-void ratio relation under complex stress paths involving loading reversals.
The CIUC test is conducted on the dense specimen (10 = 0.2 and eo= 0.6174). Cyclic loading
is applied after consolidation (pc = 300kPa) in a stress-controlled manner with maximum
deviatoric stress gmax = 150kPa. After cyclic loading for N = 20 cycles, the specimen is
monotonically sheared until reaching critical state.

A total of 137 simulations are conducted in this study, including 8 consolidation tests, 40
CIU tests, 40 CID tests, 16 C_eo tests, 16 CIU eo tests, 16 CID_eo tests and 1 CIUC tests.

2.3 Fabric tensor definition
We focus on contact-based characterization of soil fabric. For a given granular assembly,

the directional distribution of contacts is given by:

p(n)=23 5(n) n

P

where n is the unit contact normal vector; ﬁ(n) is the distribution density; N, the number of

particles and N. the number of contacts. The integration of p(n) over all direction gives the

coordination number, Z:

2N,

[ p(n)yi2= =7 )

p

where QQ€[0,47] is the solid angle. Kanatani [38] defined three kinds of fabric tensors, with

the first kind expressed as:

G, = Ip(n)ninde 3)

where ni with i = 1, 2, 3 is the component of the contact normal. It is straightforward to see
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that the trace of Gj is exactly the coordination number, i.e., Gk = Z and the discretized form
of Gjj is:

7 N
G, = v an.(a)nﬁ“) 4)
p a=l

On the other hand, it is useful to approximate p(n) by a 2" order tensor:

p(n)= EEijninj ®))
where the Ej; is the fabric tensor of the second kind [38]. It can be shown that the mean
spherical part of Ej; is Z (i.e., Z= Ew / 3) by integrating Eq. (5) over all directions. By

multiplying Eq.(5) with nin and integrating over Qe€[0, 4], the relation between Ej; and Gj

1s obtained as:

15 1
Eij ZE(G;‘;' _gGkké;jj (6)

Finally, the fabric tensor of the third kind is simply the deviatoric part of E;; which also

has a linear relationship with the deviatoric part of G

1 15 1 15
F;‘j:Ey'_gEkké;j:3(Gy‘_§Gkké:jj:E i (7

where the superscript “ means the deviatoric part. Substituting Eq.(7) into Eq.(5) gives:
1
p(“)zE(ZJrEJ”f”J‘) ®)
which can be viewed as the spherical harmonic expansion of p(n) truncated to the second

order. The normalized fabric tensors of the first, second and third kind can be obtained with

the same mathematical procedure with respect to p(n) instead of po(m). Most of the
previous DEM studies [36, 39, 40] have reported their fabric data in terms of normalized
fabric tensors to focus on fabric anisotropy. However, the information of Z is lost in this
representation, thus cannot reveal the full picture of fabric evolution for granular materials

undergoing deformation. In analogous to using p and ¢ where p = o / 3 and

q :./(3/ 2)o;0; to represent the stress state of soil specimens, here we use the first two

invariants of the non-normalized contact fabric tensor E; , namely Z = Ew / 3 and
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F= (3 / 2)Flej , to monitor the fabric evolution and to correlate with void ratio in each test.

3 Fabric-void ratio surface

3.1 Consolidation tests

The consolidation lines in the e-p plane are plotted in Fig. 3a. The normal consolidation
line (NCL) is best fitted by e=T —ﬂ,( /P, )5 with p, = 101.3 kPa (the atmosphere pressure),

I'=10.6555,4=0.01832 and £ = 0.7628. The consolidation lines of 70 = 0.1 ~ 0.3 tests almost
coincide with the NCL, and the lines of 70 > 0.4 tests becomes lower when 7o increases. The
observation that the consolidation line locates lower for specimens consolidated at higher 7o
is consistent with previous findings [41-43]. The consolidation lines are plotted in the e-Z
plane in Fig. 3b. Data from different 7o tests deviates with each other at the beginning of
consolidation but converges as Z increases. This proves that the e-Z relation is non-unique for
frictional granular materials, as speculated in the Introduction session. Fig. 3¢ shows the
fabric paths of consolidation tests in the Z-F plane. It is evident that higher 7o lead to overall
stronger fabric anisotropy during consolidation. Another observation is that F' decreases with
the increase of Z for 5o > 0.4 tests, indicating reduced fabric anisotropy under high confining
stresses. This is expected, as higher confining stress creates stronger and more connected
force networks to support the same stress anisotropy with a weaker contact anisotropy. By
combining Figs. 3a-c, the fabric-void ratio relation of consolidation tests in e-Z-F space is
shown in Fig. 3d. More data is needed to probe the fabric-void ratio states in between the
consolidation lines to tell whether a unique surface can be constructed.
3.2 Undrained (CIU) tests

The stress paths and stress-strain curves of CIU test under triaxial compression (be = 0)
and extension (be = 1) conditions are presented in Fig. 4. It is observed that several tests
under small pc are liquefied while others reach critical state at around axial strain of 20-30%.
The slopes of the critical state line (CSL) in p-q space for compression and extension tests are
M. =0.77 and Me = 0.61, respectively.

Figs. 5a and b shows the fabric paths of triaxial compression and extension tests,
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respectively. The initial states of all samples are nearly isotropic with =0 and a Z value of
3.5~6. Upon shearing, fabric anisotropy F start to develop accompanied by the decrease of Z.
For liquefied specimens, their fabric paths quickly evolve towards the origin at the onset of
liquefaction as marked by the dash lines. As axial strain keeps increasing, the stresses of
liquefied specimens remain nearly zero (i.e., p = g = 0 kPa), while their fabric structures start
to rebuild as manifested by the development of a fabric path in the low Z regime, which
appears to be independent of the initial condition of the specimen. The fabrics of liquefied
samples finally reach steady state somewhere along this unique curve. Regarding the
minimum value of Z during liquefaction, Nguyen et al. [17] found that the Z of liquefied
samples directly evolve to a steady-state value 3.91 instead of dropping to O first, which is
different from the observations of Gu et al. [16], Wang and Wei [18], Wen and Zhang [23]
and the current paper. Wang et al. [44] showed that the value of Z drops to ~1 instead of 0
upon liquefaction. More studies on the fabric structure and coordination number of liquefied
frictional granular materials are needed to clarify these inconsistencies.

The fabric paths of non-liquefied specimens never drop below a threshold coordination
number (Zwm) and reached to some critical-state fabric (Z., Fc) when sheared to large strain
levels. Connecting the liquefied fabric path with the series of critical-state fabric data, it is
possible to construct a critical-state line in the Z-F plane that attracts the fabric states of both
liquefied and non-liquefied specimens when sheared to large strain levels (Figs. 5a and b).

This line can be mathematically represented by the Gunary equation

F =Z/(al +a2\/2+a32) where (a1 = 1.05, a2 = —1.17, a3 = 0.755) for be = 0 tests and (a1 =

0.82, a2 = —0.58, a3 = 0.49) for be = 1 tests. These envelopes are in fact projections of the
more general critical fabric surface (CFS) in the principal fabric (E1-E2-E3) space, as recently
proposed by Wen and Zhang [23].

Fig. 5c plots all the fabric and void ratio data obtained from CIU tests in e-Z-F space.
Starting from the NCL shown in Fig. 3d, specimens with different pc and be are sheared under
undrained condition which enforces a constant void ratio during shearing. The tests with pc =

50 and 100 kPa are liquefied while other tests with higher pc are not. It is observed that the
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fabric-void ratio data seems to fall in two apparent regimes separated by Zn. Data in Z < Zu
belongs to liquefied specimens and Z > Zm for non-liquefied tests. It is also observed that for
tests with pc > 300 kPa, their fabric-void ratio relations are almost independent of the shear
mode be, despite that the values of Z and F at critical state are be-dependent (see Fig. 5a and
Fig. 5b). For liquefied specimens with pc = 50 ~ 100 kPa, the fabric-void ratio data under
different be condition also coincides with each other prior to liquefaction and roughly
collapse into one line in the Z < Z regime.

3.3 Drained (CID) tests

The CID tests results for » = 0 and b = 1 are shown Figs. 6a-b and Figs. 6¢-d,
respectively. It is observed from Fig. 6a and Fig. 6¢ that the critical state stress ratio is Mc =
0.77 for compression tests and M. = 0.61 for extension tests, which is consistent with the CIU
tests results shown in Figs. 4a and c. For the drained fabric paths in Figs. 6b and d, anisotropy
F evolves from near zero to a peak and then drops to the critical state value. These critical
fabric values again fall on the same CFS identified previously in the undrained tests (Figs. 5a
and b). This again proves that CFS is independent of liquefaction or drainage conditions and
can serve as an universal attractor for fabric state upon continuous shearing [23]. Fig. 6¢ plots
the fabric data against the evolving void ratios obtained from CID tests. Similar to Fig. 5c, it
is found that the fabric path in CID tests is independent of the shear mode b except near the
critical-state values.

Fig. 7 combines the fabric-void ratio data obtained from consolidation, CIU, and CID
tests presented in Figs. 3d, 5c, and 6e. An astonishing finding is that all the fabric-void ratio
data for non-liquefied specimens visually collapse into one single surface which shall be
referred to as the non-liquefied (NL) fabric-void ratio surface (FVS). The “state” of the
sample (characterized by fabric and void ratio) simply travels along this surface via different
paths when subjected to monotonic shearing. It is also noted that the post-liquefication data
from CIU tests collapse into another surface (or line) in the low Z (< Zm) regime and exhibits
certain degree of scattering. Based on the observations in Figs. 5a and b, this surface can be

regarded as the CFS for liquefied soils extended vertically along the void ratio axis, which
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will be referred to as the liquefied (L) FVS. The L-FVS data only expands within a small
range of e near the upper bound of NL-FVS in the e-Z-F space, since only very loose packing
are liquefied in this series of CIU tests.

Note that the current fabric-void ratio relation is investigated in the e-Z-F space and the
effect of the third invariant of Ej; or the fabric Lode angle 6 is omitted. This appears to be a
reasonable assumption since the shear mode be or b is observed to have little effect on the
evolution of fabric-void ratio data in CIU and CID tests prior to reaching the critical state (see
Figs. 5¢ and 6¢), and there is not much data scattering around the FVS (see the next section
for a quantitative evaluation) identified in the e-Z-F space including the near critical state
regime (see Fig. 7). Therefore, 8¢ will not be considered when we construct a model of the

fabric-void ratio relation in the following.

4 Mathematical description and validation

We shall pursue a mathematical description of the FVS to evaluate the quality of the data
correlation and to facilitate the integration of such surface in constitutive models for sands
such as the critical fabric theory proposed by Zhang et al. [22]. In addition, the uniqueness of
FVS will be validated using data from samples prepared to different initial densities (i.e.,
different eo).

4.1 Mathematical description

For the non-liquefied portion of the FVS, a good starting point is the Z-n equation

proposed by O’hern et al. [12] for isotropically or oedometrically compressed granular

assemblies:

YAV =h(n—nr)(p 9)

where 7 is the porosity; 4 and ¢ are material parameters; Z: is the coordination number at a

reference porosity nr which is usually taken at the jamming point. Taking Eq. (9) as a
reference for e= f (Z I ) at F' = 0, the mathematical expression of the NL-FVS is proposed

as:
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e=e +h (Z-Z,) +AF + 4,F> (10)
where a second-order polynomial in terms of F' is added to consider the effect of fabric
anisotropy; er and Z, are respectively the void ratio and coordination umber taken at the
reference point; 4, {, A1 and 42 are material parameters. Eq. (10) is best fitted to the NL-FVS
data with parameters er = 0.6641, Z: = 3.258, h: = —0.02898, {= 2.0, 41 = —0.02627 and 4> =
0.004352 with the accuracy quantified by R? = 0.9852 (Fig. 8).

For the liquefied portion (i.e., Z <= Zu) of the FVS, we first examine the data on the Z-F
plane, as shown in Fig. 9a, given all data in this portion comes from CIU tests conducted at
similar void ratios. The fitted CFS curves for b = 0 and 1 in Figs. 5a and b are also plotted
here in Fig. 9a. It is clear that the CFS is dependent on the shear mode, which is consistent
with the observation of Wen and Zhang [23] who inspected the shape of CFS in the principal

fabric space. For simplicity, here we adopt an averaged critical fabric curve with expression:

F= Z/ (0.9937 —1.044+/7 + 0.70702) (11)

to represent this data cluster in the fabric-void ratio space (Fig. 9b). By doing so, we have
hypothesized that averaged critical fabric curve or the L-FVS is independent of void ratio as
long as the sample is fully liquefied. This assumption shall be further tested with more CIU
tests conducted at a wider range of void ratios in the next section. For now, the L-FVS fitting
gives a R? value of 0.9568, as shown in Fig. 9b.

The small scattering (R? = 0.9852 for NL-FVS and R*> = 0.9568 for L-FVS) supports the
existence of a unique FVS linking the void ratio and the first two invariants of contact fabric
tensor for samples subjected to monotonic consolidation, undrained, and drained triaxial
shearing. This surface exhibit weak dependency on the shear mode near critical state in both
liquefied and non-liquefied regime. Comparing to the many e-Z models developed for
gravity-filled granular packings in powder technology [15, 45-47], our proposed FVS depicts
a more complete picture by incorporating the effect of fabric anisotropy on the density of
granular assemblies. The new FVS concept is therefore applicable for conditions involving
anisotropic consolidation and triaxial shearing which are relevant for soil mechanics

applications, providing a new perspective to analyse the internal structure of granular soils.
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4.2 Validation

The FVS in Figs. 8 and 9 is developed exclusively based on medium-dense samples
prepared with po = 0.3. To validate the uniqueness and the robustness of the FVS, additional
tests including C_eo, CIU _eo and CID _eo tests using relatively dense (prepared with po = 0.2)
and loose (prepared with po = 0.5) samples are conducted, as summarized in Table 2.

Fig. 10 present the critical state data of CIU, CID, CIU eo and CID_eo tests on the e-p

and the Z-p planes. The conventional CSL in the e-p plane can be well represented by the
power-law function of Li and Wang [48] as e, =0.630-0.00365(p/ p, )1'202 where p. =
101.3 kPa. The critical-state Z-p data also collapse into a single curve fitted by
Z. =2.779+0.679(p/ p,)**". These results confirm that the CSL in the e-Z-p space is

independent of the sample’s initial void ratio, shear mode, and drainage conditions, which is
consistent with previous findings [16, 23, 49]. Fig. 11a compares the NCLs for the dense,
medium dense, and loose samples in the e-p plane. Fig. 11b plots the corresponding NCLs in
e-Z plane, or in other words the fabric-void ratio relation for isotropically consolidated
samples (F' = 0). It is observed that the e-Z curves are closely located in a narrow band
(despite some slight variations in the dense regime) in contrast to the distinct curves in the e-p
plane.

The previously constructed NL-FVS (Eq. (10)) and the fabric-void ratio data from the
new C_eo, CIU eo and CID eo tests are plotted together in Fig. 12a. It can be observed that
the new data qualitatively falls on the same surface. For a specific fabric-void ratio data (Zdata,
Flaata, edata), its corresponding e on the FVS can be calculated by e(Zdata, Fiata) using Eq. (10)
and is denoted as ervs. The comparison of edata and ervs is then shown in the Fig. 12b. The
small scattering (R* =0.9700) quantitatively validates the uniqueness of the NL-FVS with
respect to the initial densities of the specimens. It is noted that the ervs deviates slightly from
the edata in the very dense regime (around edata = 0.45). This deviation could be due to several
limitations of this study. First, the contact model is linear elastic which might be reasonable
for low confining pressures but cannot represent real contacts (nonlinear, pressure-dependent)

at high pressure levels. The error due to this idealization therefore shows up at dense packing
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regime where high confining stress is applied. Second, the present study uses the first two
invariants of Ej; (represented by Z and F) to correlate with void ratio. This approach neglects
the information represented by Ok, as well as the higher-order information contained in the
full contact distribution density. Future enrichments of FVS considering the above may
remove the deviations between edata and ervs.

The data from liquefied specimens in CIU eo test and the mathematical L-FVS (Fig. 9b)
are plotted together in the Z-F plane (Fig. 13a) and in the fabric-void ratio space (Fig. 13b).
The agreement between the data and the mathematical L-FVS (Eq. (11)) is quite well as
evidenced by R? = 0.9806. The observation that the liquefied fabric data of all undrained tests
with different eo can be represented by the same Z-F curve confirms our earlier hypothesis
that the critical fabric curve is independent of void ratio in the liquefied regime, and thus
validated the L-FVS proposed in Fig. 9b and Eq. (11). It is also observed in Fig. 13b that Z
and F for denser soils evolves to larger values in the liquefied regime. This feature can be
utilized to precisely locate the threshold Z (Zwm) that separates the liquefied and the non-
liquefied states, i.e., by observing the maximum Z (Zmax) of the specimen with the minimum
void ratio among all liquefied tests. The Zmax of all liquefied undrained tests presented in Figs.
9 and 13 is Zmax = 2.73 from the CIU eo test with e = 0.6171 and p. = 50 kPa. This means that
the value of Zmn must be > 2.73. On the other hand, it is interesting to note that the critical
state Z. at p = 0 calculated by the CSL equation in Fig. 10(b) is Z«(p=0) = 2.779, which is
quite close to Zm. It is therefore reasonable to infer that the intersection Zc(p=0) in the power-
law equation that fits the critical state Z-p data is not just a fitting parameter but has the

physical meaning of the threshold Z that distinguishes the liquefied and non-liquefied soils.

5 Undrained cyclic (CIUC) test

We have demonstrated that the states (fabric, void ratio) of granular material travel along
a single FVS during monotonic loading including consolidation, CIU, and CID tests. There
are two aspects remain to be addressed: 1) it is unclear whether the same FVS works for

stress paths involving loading reversals; 2) at the moment of static liquefaction, the fabric-
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void ratio data jumps from the NL-FVS to the L-FVS and then stays on it, but it is not clear
whether this sudden transition happens during cyclic liquefaction and whether liquefied states
can evolve from the L-FVS back to the NL-FVS as shear strain accumulates. To answer these
questions, a CIUC test is conducted on a dense sample with p. = 300 kPa, gmax = 150 kPa and
e =0.5911. The specimen is subjected to a two-stage loading. The first stage is cyclic triaxial
loading which stops when the number of cycles N reaches 20. After this, the specimen is
monotonically sheared through triaxial compression to the critical state.

Figs. 14a-d show the stress-strain curve, the stress path, the fabric path, and the fabric-
void ratio path from CIUC tests, respectively. It is observed from Figs. 14a and b that the
specimen exhibits the typical cyclic liquefaction/mobility behaviour. In Fig. 14c, the fabric
evolution path drifts to lower Z values during cyclic loading and jumps to the origin as soon
as the sample liquefies. As shear continues, the fabric path evolves partially along the L-FVS
and re-enters the non-liquefied regime (Z > Zn=2.73 regime) where the sample regains some
shear strength. The same phenomenon can be better visualized in the fabric-void ratio space
in Fig. 14d. It is clear that the “butterfly” stress loop in Fig. 14b corresponds to a closed
fabric path circulating between the L-FVS and the non-liquefied regime.

Figs. 14c and d confirm that the fabric-void ratio data during cyclic loading
approximately stays on the L-FVS after liquefaction but does not stay on the NL-FVS before
liquefaction. If the descriptor of soil’s inner structure is sufficient, it should fully quantify the
“memory” of the soil and exhibit a one-to-one relation with the macroscopic properties of the
soil. We suspect that the non-uniqueness of FVS for monotonically and cyclically loaded
specimens can be removed by considering higher-order fabric information which is not
reflected in the 2"-rank fabric tensor. Along this line, examining the full directional
distribution density of contact normal may reveal some unique microstructural features of
cyclically loaded granular materials.

The monotonic loading after the cyclic stage takes the specimen to its critical state and is
marked by blue dot lines and red stars in Fig. 14. It is observed that the monotonic shearing

eventually brings the cyclically loaded specimens back to the NL-FVS with the squared error
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(SE) = 3.73x107°, confirming again the FVS identified in Fig. 8 could serve as a reference
surface for granular materials under monotonic shearing, although it does not uniquely relate

void ratio and fabric for cyclically loaded specimens.

6 Significance of FVS

With the FVS identified, a “so what” question naturally follows. We would like to make
the case here that FVS can change how we conceive the constitutive theories and models of
granular soils. Specifically, the fabric-void ratio relation proposed here connects two
important state variables (void ratio and fabric), implying that the previously observed critical
state line in the conventional e-p-g space [1] and fabric space [28] are not independent to
each other. Indeed, the authors have recently proposed a constitutive framework, namely the
critical fabric theory [22], where fabric is treated as the single internal state variable of
granular soils. In this framework, the only criterion that judges whether a soil has reached
critical state is to see if its fabric state converged to the critical fabric surface [23]. As the
fabric evolves towards this CFS, the other state variables (e-p-q) approach their apparent
critical state because of some geometrical or microstructural relations that link fabric with the
void ratio and stress state of granular soils. To exercise this logic, let us combine the CFS (i.e.,
F(Z) relation) under an arbitrary shear mode (e.g., compression or extension as shown in Figs.
5 or 6), a fabric-void ratio relation (FVS shown in Fig. 8), and a critical state Z-p relation
(shown in Fig. 10(b)). A mathematical expression between e and p can be derived:

e=e, +h[Z(p)-Z,] +AF(Z(p))+ 4F* (Z(p)) (12)
where parameters er, Zr, hr, {, A1 and A2 are already calibrated in Fig. 8 and presented after Eq.
(10). The obtained equation is plotted against the DEM critical-state data (Fig. 10(a)) in e-p
plane in Fig. 15. It is apparent that the derived CSL coincides with the CSL data, supporting
that the classical critical-state theory can be equivalently framed in terms of a critical fabric
relation and a fabric-void ratio relation. It is worth to note that, in the original model [22], the
fabric-void ratio relation is taken from O’hern et al. [12] which only depends on the

coordination number drawn from isotropic or oedometric compression tests (shown as Eq.
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(9)). The current study shows that this relation needs to be updated by the new FVS shown in
Fig. 8 for general stress paths involving shear and compression.

In a more general context, many elastoplastic/hypoplastic models start to acknowledge
soil fabric [7, 50-55] and are often formulated within the framework of anisotropic critical
state theory (ACST) [7, 50-53]. In these models, the CSL in e-p-¢g space and the critical fabric
are treated as separate conditions for attaining critical state, and thus the stress-dilatancy
relation and fabric evolution laws are often proposed separately. The new FVS identified in
this study, however, suggests that the evolution of fabric and void ratio (or dilatancy) are
intrinsically coupled especially under monotonic loading. This finding should inspire more
sensible and realistic stress-dilatancy-fabric relations in future elastoplastic models based on
ACST.

It should be noted that the current FVS expressed in void ratio e and the first two
invariants of second-order fabric tensor Z and F' can only be used in modelling monotonic
triaxial tests. The fabric-void ratio paths for cyclically loaded specimens do not collapse on
the same FVS but are only attracted by it when monotonically sheared after the cyclic loading.
We speculate that higher-order fabric tensors may contain some extra structural information
for cyclically loaded specimens that are not captured by the second-order tensor studied in the
current work. Establishing enriched descriptions of soil fabric based on contact, particle, and
void vectors could be the first step in the follow-up studies along this line. In addition, further
validation and investigation of FVS needs not only DEM simulations [16-18, 56, 57] but also
advanced laboratory tests equipped with in-situ X-ray microtomography and other advanced

imaging techniques [58-63].

7 Concluding remarks

The relationship between the contact fabric tensor £j; and the void ratio of granular soils
is studied by investigating the e-Z-F data of 137 DEM numerical tests. Among them, 8
consolidation and 80 true triaxial tests data is used for identifying a fabric-void ratio surface,

and the rest 49 tests are used to verify the uniqueness of the FVS. A cyclic triaxial test is
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employed to check whether the FVS observed from monotonic shearing is applicable when
stress reversal is included.

The results of the monotonic tests show that the usual e-Z relation of granular packings
is significantly influenced by the fabric anisotropy F. Such dependency can be conveniently
represented by a parametric surface, namely the fabric-void ratio surface, in the e-Z-F space.
The FVS consists of two separate parts with each describing the fabric-void ratio relation for
liquefied and non-liquefied soils. When static liquefaction happens, the fabric path suddenly
jumps from the non-liquefied portion of the FVS to the liquefied portion of the FVS. The
threshold coordination number (Zn) that separates the liquefied and non-liquefied specimens
is found to be Zn = 2.73. The proposed FVS is validated through an independent series of
consolidation and triaxial tests with different initial void ratios.

The fabric path of cyclically loaded specimen does not travel along the NL-FVS
established on the monotonic test results. This suggests that the two invariants of the 2" rank
fabric tensor cannot completely tell the differences of soil structures induced by recent stress
reversals. After cyclic loading, sufficient monotonic loading can remove the effect of recent
stress history and thus recover the fabric-void ratio relation depicted by the FVS.

Revealing connections between the microstructural attributes and the macroscale
behaviours of granular is an ongoing endeavour for years. This study identifies an important
reference surface for correlating the void ratio with the fabric structure of frictional granular
materials and helps better understand the structural evolution of granular soils during
compaction and liquefaction. Future extensions of this work include: 1) incorporating higher
order fabric information to seek for a unique fabric-void ratio relation for both monotonically
and cyclically loaded specimens; 2) investigating the fabric state of liquefied soils and
understand its transition near the jamming point; 3) implement the concept of FVS in fabric-
centred constitutive theories of granular soils to unify the descriptions of critical state in

terms of void ratio and fabric tensors.
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List of symbols

ai, az, a3 parameters in the Gunary equation

A1, A> parameter in the NL-FV'S equation

b, be principal stress ratio and principal strain ratio

d,d particle diameter and average particle diameter

e, void ratio

€o initial void ratio taken at p = 50 kPa

ec critical-state void ratio

ér reference void ratio

€data void ratio of the DEM data

€FVs corresponding void ratios on the FVS of DEM data

E particle Young’s modulus

E\, E>, E3 major, intermediate, and minor principal values of the second kind fabric tensor

Ej fabric tensor of the second kind

F fabric anisotropy

Fe critical-state fabric anisotropy

Faata fabric anisotropy from DEM data

Fu, Fs normal and tangential forces between two particles in contact

Fy fabric tensor of the third kind

Gij, fabric tensor of the first kind

h parameter in the O’Hern equation

hy parameter in the NL-FV'S equation

1 inertia number

kn, ks normal and tangential stiffness of a particle

Ky, K normal and tangential stiffness of a contact

M., M. critical stress ratio at compression and extension

n, nr porosity and reference porosity

n unit contact normal vector

N number of loading cycles in cyclic triaxial test

Ne, number of contacts

Np number of particles in the assembly

)4 mean effective stress

Da atmosphere pressure

De mean effective stress at the end of consolidation or the beginning of triaxial
shearing

q deviatoric stress

R particle radius

Z, coordination number

Zc critical-state coordination number

Z; coordination number at reference porosity

Zdata coordination number from DEM data

Zih, threshold coordination number that distinguish the liquefied and non-liquefied state

On, Os normal and tangential displacement of a contact

0ij Kronecker delta

Ater critical time step
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p
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5 S

major, intermediate, and minor principal strain

axial strain

strain rate

deviatoric stress ratio and the deviatoric stress ratio during consolidation
fabric lode angle

parameter in the equation of e-p normal consolidation line

particle friction coefficient after the initial compaction with p > 5kPa
particle friction coefficient during the initial compaction with p <= 5kPa
parameter in the equation of e-p normal consolidation line

directional distribution of contact normals

directional distribution density of contact normals

particle density

major, intermediate, and minor principal stress

parameter in the O’Hern equation

parameter in the NL-FV'S equation

maximum void ratio in the equation of e-p normal consolidation line
solid angle
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Fig. 1. Grain size distribution of the DEM specimen used in this study.
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Table 1. Summary of consolidation, CIU and CID tests

Test series

consolidation CIU CID

Pe 50, 100, 300, 500, 700, 50, 100, 300, 500, 700,
50 ~ 2000
(kPa) 1000, 1500, 2000 1000, 1500, 2000
Mo 0.3 0.3 0.3
0,0.1,0.2,0.3,04,
Mo 0 0
0.5,0.6,0.7
b.=0,0.25, b=0,0.25,
b or b N/A
0.5,0.75,1 0.5,0.75,1
Tests number 8 40 40

Table 2. Summary of C_eo, CIU_eo and CID_ey tests

Test series

C_eo CIU_eo CID_eo

De 50, 100, 300, 500, 700, 50, 100, 300, 500, 700,
50 ~ 2000
(kPa) 1000, 1500, 2000 1000, 1500, 2000
o 0.2,0.5 0.2,0.5 0.2,0.5
0,0.1,0.2,0.3,0.4,
o 0 0
0.5,0.6,0.7
b or b N/A 0 0
Tests number 16 16 16






