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Abstract 3 

Void ratio is one of the key engineering properties of granular soils. It reflects how well 4 

the grains are packed and hints whether the soil is contractive or dilative upon shearing. On 5 

the other hand, fabric tensor has been at the centre of experimental and theoretical granular 6 

mechanics research over the past decade for its intimate relation with the material’s 7 

anisotropy and critical-state behaviour. This paper tests the hypothesis that the void ratio and 8 

the fabric tensor of granular soils are tightly correlated to each other. Through discrete 9 

element method, a series of isotropic/anisotropic consolidation tests and monotonic triaxial 10 

compression and extension tests are conducted. The obtained void ratio data is found to 11 

collapse onto one unique surface, namely the fabric-void ratio surface (FVS), when plotted 12 

against the first two invariants of the contact-based fabric tensor. The robustness of this 13 

relation is confirmed by testing samples with different initial void ratios under various 14 

consolidation and monotonic triaxial stress paths. An additional undrained cyclic triaxial test 15 

followed by continuous shearing to critical state is performed to further examine the fabric-16 

void ratio relation under complex loading paths. It is found that the previously identified FVS 17 

from monotonic tests still attracts the states of these specimens at critical state, although their 18 

fabric-void ratio paths deviate from the FVS during cyclic loading. The newly discovered 19 

FVS provides a refreshing perspective to interpret the structural evolution of granular 20 

materials during shearing and can serve as an important modelling component for fabric-21 

based constitutive theories for sand.  22 
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1 Introduction 24 

Void ratio (or porosity) is the most widely used index by geotechnical engineers and soil 25 

mechanists to characterize the “state” of granular soils. The celebrated critical state soil 26 

mechanics framework uses void ratio to define critical state which further distinguishes dense 27 

and loose soils [1]. Void ratio (e) informs engineers how well the soil is packed [2] and its 28 

potential for liquefaction [3]. On the other hand, fabric structure characterized by the 29 

directional statistics of particles, voids, contact normal vectors is also tightly related to the 30 

macro-behaviour of granular soils including anisotropy [4, 5], non-coaxiality [6], critical state 31 

[7], and liquefaction [8]. However, despite both void ratio and fabric tensors are quantitative 32 

descriptors of soil internal structure, their interconnections are seldomly studied. A specific 33 

question is, can the fabric data be used to deduce the void ratio of granular materials? First of 34 

all, it is straightforward to see that void ratio is proportional to the hydrostatic component of 35 

void-based fabric tensors [9]. Such clear relation does not exist for particle- or contact-based 36 

fabric tensors. Many studies in the field of granular physics, powder technology and chemical 37 

engineering have been devoted to establishing a relation between e and the coordination 38 

number (Z), i.e., the first invariant of the non-normalized contact fabric tensor. For 39 

frictionless monodisperse granular assemblies, an e-Z relation can be pinned down by 40 

considering several idealized packings including cubic (Z = 6, e = 0.9099), orthorhombic (Z = 41 

8, e = 0.6540), tetragonal–sphenoidal (Z = 10, e = 0.4533) and rhombohedral (Z = 12, e = 42 

0.3503). A number of empirical e-Z equations have been also proposed for bi-disperse or 43 

polydisperse granular assemblies based on experiments and DEM simulations of gravitational 44 

stable or compressed specimens [10-15].  45 

For general stress paths that involves shearing, the relation between Z and e is no longer 46 

unique. This can be demonstrated by considering an undrained test: if each e uniquely 47 

corresponds to one Z value, Z must be a constant during undrained shearing since e is kept 48 

constant. This is not supported by DEM experiments showing that undrained samples can 49 

liquefy where Z drops sharply [16-18]. It is thus inferred that e should at least also be a 50 

function of the fabric anisotropy (F), or equivalently the second invariant of contact fabric 51 



tensor. Rothenburg and Kruyt [19] have similarly pointed out that the relationship between Z 52 

and e is affected by the anisotropy of contact orientations. Kruyt [20] showed that Z evolves 53 

with both volumetric and shear strains, implying that e may be a function of both Z and fabric 54 

anisotropy. Huang et al. [21] shows that the critical state e-Z relation is not unique and is 55 

dependent on the intermediate principal stress ratio b, and the variation of e is apparently 56 

related to F which is sensitive to b. They clarified that the increase of F with b is the cause of 57 

non-uniqueness of e-Z relation at critical state. In an attempt to integrate fabric tensor in the 58 

constitutive modeling of sand, Zhang et al. [22] suggested that a relation between e and soil 59 

fabric is imperative to unify the classical notion of critical state defined in the e-p-q space [1] 60 

(p is the mean effective stress, q is the deviatoric stress) and the recently discovered critical 61 

fabric surface (CFS) in the principal fabric space [23]. Hence, the fabric-void ratio 62 

relationship worth a systematic investigation for better understanding and modelling of the 63 

micro-macro behaviour of granular soils.  64 

The objective of this paper is to study the linkage between void ratio and the non-65 

normalized second-rank contact fabric tensor for granular soils. Towards this goal, a series of 66 

three-dimensional (3D) DEM simulations consists of consolidation, undrained, and drained 67 

monotonic triaxial tests are conducted (Section 2). The fabric tensor and the void ratio data 68 

are plotted in the e-Z-F space, through which a unique fabric-void ratio surface (FVS) is 69 

identified (Section 3). The FVS is then mathematically represented and further validated by 70 

additional DEM tests with various initial void ratios (Section 4). Finally, an undrained cyclic 71 

triaxial tests is performed to examine whether the proposed FVS can capture the fabric-void 72 

ratio data for samples experiencing stress reversals (Section 5). The significance of proposed 73 

FVS is discussed in Section 6. The main conclusions and possible future extensions of this 74 

work are discussed at the end (Section 7).  75 

2 Methodology 76 

2.1 DEM configuration 77 

The open-source program YADE [24] is used in this study to carry out all DEM 78 



simulations. Consolidation and triaxial tests are simulated employing periodical boundary 79 

conditions on a granular representative volume (REV) made of 10,000 sphere particles with a 80 

grain size distribution shown in Fig. 1. The choice of 10,000 particles is made to balance the 81 

computational efficiency and the representativeness of the granular specimen. Other DEM 82 

studies on granular REVs have used similar or fewer particles [25-27]. All particles are 83 

randomly generated without contacts in a 3 × 3 × 3 cm3 box and then isotropically or 84 

anisotropically consolidated prior to shearing. Linear elastic contact law is adopted with the 85 

normal stiffness kn and tangential stiffness ks being kn/d = ks/d = 100 MPa, where d is the 86 

particle diameter. The normal and tangential interparticle forces between two particles with 87 

stiffness kn1, ks1 and kn2, ks2 are calculated by Fn = Kn δn = kn1 ∙ kn2 / (kn1 + kn2) δn and Fs = Ks 88 

δs = ks1 ∙ ks2 / (ks1 + ks2) δs , where Kn, δn and Ks, δs are the stiffness and displacement of the 89 

contact in the normal and tangential direction. The interparticle friction is modelled by the 90 

Coulomb’s law with the friction coefficient set to μ = 0.5, a typical value for quartz sand [18, 91 

28].  92 

The simulation is conducted under quasi-static condition where the influence of particle 93 

mass (inertia) is negligible so that the density scaling technique can be adopted to reduce the 94 

computation cost [17, 29-31]. Specifically, the critical timestep of the system is related to the 95 

minimum particle size and elastic wave propagation speed by ( )( )mincr i g ii
t R E =  [24], 96 

where subscript “i” represents the ith particle, R the particle radius, ρg the particle density, and 97 

E the elastic modulus. By scaling the particle density from ρg = 2.65 × 103 kg to 2.65 × 106 kg, 98 

Δtcr is increased by a factor of 1000 31.62= , allowing the computation to accelerate by 99 

31.62 times. For triaxial test simulations, the inertia number 
gI d p =  should be much 100 

less than 10-3 to ensure the quasi-static condition [32-35], where   is the strain rate, d  the 101 

average particle diameter, and p the mean effective stress. Through a parametric study, a 102 

strain rate of 0.05 s-1 is selected to ensure the maximum I << 10-3 such that the quasi-static 103 

requirement is satisfied.  104 

In DEM, a common method to control the initial void ratio of granular specimens is to 105 



adjust the initial friction coefficient μ0 when generate and initially compact the spheres before 106 

the official test program [31, 36, 37]. The use of a lower value of μ0 eases the particle 107 

rearrangement during initial compaction and thus leads to a denser specimen, and vice versa. 108 

Note that the value of μ0 must be less than μ, otherwise the sample will have sudden collapse 109 

at the moment when μ0 is updated to μ. Since we are interested in the consolidation data in 110 

this study, it is necessary to update μ0 to μ at the very early stage of compaction such that this 111 

operation does not interference with the consolidation and triaxial data which must reflect the 112 

behaviour of soils with μ=0.5. The procedure adopted in this study is the following: spheres 113 

are sparsely generated in a cubic regime according to the designated grain size distribution 114 

(Fig. 1) with μ0 selected between 0 to 0.5; the periodic boundaries are moved inwards to 115 

isotropically consolidate the particles to p = 5kPa which is far less than the consolidation 116 

stresses pc=50~2000 kPa studied in this work; μ0 is then updated to μ = 0.5 and the remaining 117 

consolidation and triaxial shearing are conducted following the ordinary procedure.  118 

2.2 Experiment design 119 

Three series of DEM experiments are performed in this study. In the first series, μ0 = 0.3 120 

is used to create an initially medium-dense packing e0 = 0.6437. Note that, throughout this 121 

paper, notation e0 refers to the void ratio of the specimen at isotropic p = 50 kPa. The 122 

medium-dense samples are isotropically or anisotropically consolidated under various stress 123 

ratios η0 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7, as shown in Fig. 2. This is to probe the fabric-124 

void ratio relation of granular packings during consolidation. For isotropically consolidated 125 

specimens, undrained (CIU) and drained (CID) triaxial tests are performed at various 126 

confining stresses pc to allow the stress ratio η evolve from 0 to critical value. These are 127 

designed to cover a wide range of intermediate states in the fabric-void ratio space. Various 128 

intermediate principal strain and stress ratios with be = 0, 0.25, 0.5, 0.75, 1 and b = 0, 0.25, 129 

0.5, 0.75, 1 are used in the CIU and CID tests to check the potential Lode-angle dependency 130 

of the fabric-void ratio relation. Here be = (ε2 – ε3) / (ε1 – ε3) and b = (σ2 − σ3)/(σ1 − σ3), where 131 

(ε1, ε2, ε3) and (σ1, σ2, σ3) are the major, intermediate, and minor principal strains and stresses, 132 

respectively. The testing details of the consolidation, CIU and CID tests are summarized in 133 



Table 1.  134 

To examine the effect of initial void ratio e0 on the fabric-void ratio relation, another 135 

series of consolidation and triaxial tests on specimens prepared at different μ0 values are 136 

performed. They are named C_e0, CIU_e0, and CID_e0 tests, respectively (Table 2). These 137 

sample are prepared with μ0 = 0.2 or 0.5 to obtain an initially dense (e0=0.6174) or loose 138 

(e0=0.6701) state, respectively.    139 

Finally, an isotropically consolidated undrained cyclic triaxial (CIUC) test is performed 140 

to probe the fabric-void ratio relation under complex stress paths involving loading reversals. 141 

The CIUC test is conducted on the dense specimen (μ0 = 0.2 and e0 = 0.6174). Cyclic loading 142 

is applied after consolidation (pc = 300kPa) in a stress-controlled manner with maximum 143 

deviatoric stress qmax = 150kPa. After cyclic loading for N = 20 cycles, the specimen is 144 

monotonically sheared until reaching critical state.  145 

A total of 137 simulations are conducted in this study, including 8 consolidation tests, 40 146 

CIU tests, 40 CID tests, 16 C_e0 tests, 16 CIU_e0 tests, 16 CID_e0 tests and 1 CIUC tests. 147 

2.3 Fabric tensor definition 148 

We focus on contact-based characterization of soil fabric. For a given granular assembly, 149 

the directional distribution of contacts is given by: 150 

 ( ) ( )
2 c

p

N

N
 =n n  (1) 151 

where n is the unit contact normal vector; ( ) n  is the distribution density; Np the number of 152 

particles and Nc the number of contacts. The integration of ρ(n) over all direction gives the 153 

coordination number, Z: 154 

 ( )
4

2 c

p

N
d Z

N


  = = n  (2) 155 

where 0,4 is the solid angle. Kanatani [38] defined three kinds of fabric tensors, with 156 

the first kind expressed as: 157 

 ( )
4

ij i jG n n d


=  n  (3) 158 

where ni with i = 1, 2, 3 is the component of the contact normal. It is straightforward to see 159 



that the trace of Gij is exactly the coordination number, i.e., Gkk = Z and the discretized form 160 

of Gij is:   161 

 ( ) ( )

1

2 cN

ij i j

p

G n n
N

 

=

=   (4) 162 

On the other hand, it is useful to approximate ρ(n) by a 2nd order tensor: 163 

 ( )
1

4
ij i jE n n


n   (5) 164 

where the Eij is the fabric tensor of the second kind [38]. It can be shown that the mean 165 

spherical part of Eij is Z (i.e., Z= Ekk / 3) by integrating Eq. (5) over all directions. By 166 

multiplying Eq.(5) with nknl and integrating over [0, 4π], the relation between Eij and Gij 167 

is obtained as: 168 

 
15 1

2 5
ij ij kk ijE G G 

 
= − 

 
 (6) 169 

Finally, the fabric tensor of the third kind is simply the deviatoric part of Eij which also 170 

has a linear relationship with the deviatoric part of Gij: 171 

 
1 15 1 15

3 2 3 2
ij ij kk ij ij kk ij ijF E E G G G 

 
= − = − = 

 
 (7) 172 

where the superscript ’ means the deviatoric part. Substituting Eq.(7) into Eq.(5) gives: 173 

 ( ) ( )
1

4
ij i jZ F n n


 +n  (8) 174 

which can be viewed as the spherical harmonic expansion of ρ(n) truncated to the second 175 

order. The normalized fabric tensors of the first, second and third kind can be obtained with 176 

the same mathematical procedure with respect to ( ) n  instead of ( ) n . Most of the 177 

previous DEM studies [36, 39, 40] have reported their fabric data in terms of normalized 178 

fabric tensors to focus on fabric anisotropy. However, the information of Z is lost in this 179 

representation, thus cannot reveal the full picture of fabric evolution for granular materials 180 

undergoing deformation. In analogous to using p and q where p = σkk / 3 and 181 

(3 / 2) ij ijq   =  to represent the stress state of soil specimens, here we use the first two 182 

invariants of the non-normalized contact fabric tensor Eij , namely Z = Ekk / 3 and 183 



( )3 / 2 ij ijF F F= , to monitor the fabric evolution and to correlate with void ratio in each test.  184 

3 Fabric-void ratio surface  185 

3.1 Consolidation tests  186 

The consolidation lines in the e-p plane are plotted in Fig. 3a. The normal consolidation 187 

line (NCL) is best fitted by ( )ae p p


= −  with pa = 101.3 kPa (the atmosphere pressure), 188 

Γ = 0.6555, λ = 0.01832 and ξ = 0.7628. The consolidation lines of η0 = 0.1 ~ 0.3 tests almost 189 

coincide with the NCL, and the lines of η0 ≥ 0.4 tests becomes lower when η0 increases. The 190 

observation that the consolidation line locates lower for specimens consolidated at higher η0 191 

is consistent with previous findings [41-43]. The consolidation lines are plotted in the e-Z 192 

plane in Fig. 3b. Data from different η0 tests deviates with each other at the beginning of 193 

consolidation but converges as Z increases. This proves that the e-Z relation is non-unique for 194 

frictional granular materials, as speculated in the Introduction session. Fig. 3c shows the 195 

fabric paths of consolidation tests in the Z-F plane. It is evident that higher η0 lead to overall 196 

stronger fabric anisotropy during consolidation. Another observation is that F decreases with 197 

the increase of Z for η0 ≥ 0.4 tests, indicating reduced fabric anisotropy under high confining 198 

stresses. This is expected, as higher confining stress creates stronger and more connected 199 

force networks to support the same stress anisotropy with a weaker contact anisotropy. By 200 

combining Figs. 3a-c, the fabric-void ratio relation of consolidation tests in e-Z-F space is 201 

shown in Fig. 3d. More data is needed to probe the fabric-void ratio states in between the 202 

consolidation lines to tell whether a unique surface can be constructed.  203 

3.2 Undrained (CIU) tests 204 

The stress paths and stress-strain curves of CIU test under triaxial compression (be = 0) 205 

and extension (be = 1) conditions are presented in Fig. 4. It is observed that several tests 206 

under small pc are liquefied while others reach critical state at around axial strain of 20-30%. 207 

The slopes of the critical state line (CSL) in p-q space for compression and extension tests are 208 

Mc = 0.77 and Me = 0.61, respectively.  209 

Figs. 5a and b shows the fabric paths of triaxial compression and extension tests, 210 



respectively. The initial states of all samples are nearly isotropic with F≈0 and a Z value of 211 

3.5~6. Upon shearing, fabric anisotropy F start to develop accompanied by the decrease of Z.  212 

For liquefied specimens, their fabric paths quickly evolve towards the origin at the onset of 213 

liquefaction as marked by the dash lines. As axial strain keeps increasing, the stresses of 214 

liquefied specimens remain nearly zero (i.e., p ≈ q ≈ 0 kPa), while their fabric structures start 215 

to rebuild as manifested by the development of a fabric path in the low Z regime, which 216 

appears to be independent of the initial condition of the specimen. The fabrics of liquefied 217 

samples finally reach steady state somewhere along this unique curve. Regarding the 218 

minimum value of Z during liquefaction, Nguyen et al. [17] found that the Z of liquefied 219 

samples directly evolve to a steady-state value 3.91 instead of dropping to 0 first, which is 220 

different from the observations of Gu et al. [16], Wang and Wei [18], Wen and Zhang [23] 221 

and the current paper. Wang et al. [44] showed that the value of Z drops to ~1 instead of 0 222 

upon liquefaction. More studies on the fabric structure and coordination number of liquefied 223 

frictional granular materials are needed to clarify these inconsistencies.  224 

The fabric paths of non-liquefied specimens never drop below a threshold coordination 225 

number (Zth) and reached to some critical-state fabric (Zc, Fc) when sheared to large strain 226 

levels. Connecting the liquefied fabric path with the series of critical-state fabric data, it is 227 

possible to construct a critical-state line in the Z-F plane that attracts the fabric states of both 228 

liquefied and non-liquefied specimens when sheared to large strain levels (Figs. 5a and b). 229 

This line can be mathematically represented by the Gunary equation 230 

( )1 2 3/F Z a a Z a Z= + +  where (a1 = 1.05, a2 = −1.17, a3 = 0.755) for be = 0 tests and (a1 = 231 

0.82, a2 = −0.58, a3 = 0.49) for be = 1 tests. These envelopes are in fact projections of the 232 

more general critical fabric surface (CFS) in the principal fabric (E1-E2-E3) space, as recently 233 

proposed by Wen and Zhang [23].  234 

Fig. 5c plots all the fabric and void ratio data obtained from CIU tests in e-Z-F space. 235 

Starting from the NCL shown in Fig. 3d, specimens with different pc and be are sheared under 236 

undrained condition which enforces a constant void ratio during shearing. The tests with pc = 237 

50 and 100 kPa are liquefied while other tests with higher pc are not. It is observed that the 238 



fabric-void ratio data seems to fall in two apparent regimes separated by Zth. Data in Z < Zth 239 

belongs to liquefied specimens and Z > Zth for non-liquefied tests. It is also observed that for 240 

tests with pc ≥ 300 kPa, their fabric-void ratio relations are almost independent of the shear 241 

mode be, despite that the values of Z and F at critical state are be-dependent (see Fig. 5a and 242 

Fig. 5b). For liquefied specimens with pc = 50 ~ 100 kPa, the fabric-void ratio data under 243 

different be condition also coincides with each other prior to liquefaction and roughly 244 

collapse into one line in the Z < Zth regime.  245 

3.3 Drained (CID) tests 246 

The CID tests results for b = 0 and b = 1 are shown Figs. 6a-b and Figs. 6c-d, 247 

respectively. It is observed from Fig. 6a and Fig. 6c that the critical state stress ratio is Mc = 248 

0.77 for compression tests and Me = 0.61 for extension tests, which is consistent with the CIU 249 

tests results shown in Figs. 4a and c. For the drained fabric paths in Figs. 6b and d, anisotropy 250 

F evolves from near zero to a peak and then drops to the critical state value. These critical 251 

fabric values again fall on the same CFS identified previously in the undrained tests (Figs. 5a 252 

and b). This again proves that CFS is independent of liquefaction or drainage conditions and 253 

can serve as an universal attractor for fabric state upon continuous shearing [23]. Fig. 6e plots 254 

the fabric data against the evolving void ratios obtained from CID tests. Similar to Fig. 5c, it 255 

is found that the fabric path in CID tests is independent of the shear mode b except near the 256 

critical-state values.  257 

Fig. 7 combines the fabric-void ratio data obtained from consolidation, CIU, and CID 258 

tests presented in Figs. 3d, 5c, and 6e. An astonishing finding is that all the fabric-void ratio 259 

data for non-liquefied specimens visually collapse into one single surface which shall be 260 

referred to as the non-liquefied (NL) fabric-void ratio surface (FVS). The “state” of the 261 

sample (characterized by fabric and void ratio) simply travels along this surface via different 262 

paths when subjected to monotonic shearing. It is also noted that the post-liquefication data 263 

from CIU tests collapse into another surface (or line) in the low Z (< Zth) regime and exhibits 264 

certain degree of scattering. Based on the observations in Figs. 5a and b, this surface can be 265 

regarded as the CFS for liquefied soils extended vertically along the void ratio axis, which 266 



will be referred to as the liquefied (L) FVS. The L-FVS data only expands within a small 267 

range of e near the upper bound of NL-FVS in the e-Z-F space, since only very loose packing 268 

are liquefied in this series of CIU tests.  269 

Note that the current fabric-void ratio relation is investigated in the e-Z-F space and the 270 

effect of the third invariant of Eij or the fabric Lode angle θE is omitted. This appears to be a 271 

reasonable assumption since the shear mode be or b is observed to have little effect on the 272 

evolution of fabric-void ratio data in CIU and CID tests prior to reaching the critical state (see 273 

Figs. 5c and 6e), and there is not much data scattering around the FVS (see the next section 274 

for a quantitative evaluation) identified in the e-Z-F space including the near critical state 275 

regime (see Fig. 7). Therefore, θE will not be considered when we construct a model of the 276 

fabric-void ratio relation in the following.  277 

4 Mathematical description and validation  278 

We shall pursue a mathematical description of the FVS to evaluate the quality of the data 279 

correlation and to facilitate the integration of such surface in constitutive models for sands 280 

such as the critical fabric theory proposed by Zhang et al. [22]. In addition, the uniqueness of 281 

FVS will be validated using data from samples prepared to different initial densities (i.e., 282 

different e0).  283 

4.1 Mathematical description 284 

For the non-liquefied portion of the FVS, a good starting point is the Z-n equation 285 

proposed by O’hern et al. [12] for isotropically or oedometrically compressed granular 286 

assemblies:  287 

 ( )r rZ Z h n n


− = −   (9) 288 

where n is the porosity; h and φ are material parameters; Zr is the coordination number at a 289 

reference porosity nr which is usually taken at the jamming point. Taking Eq. (9) as a 290 

reference for ( ),e f Z F=  at F = 0, the mathematical expression of the NL-FVS is proposed 291 

as: 292 



 ( ) 2

1 2r r re e h Z Z A F A F


= + − + +  (10) 293 

where a second-order polynomial in terms of F is added to consider the effect of fabric 294 

anisotropy; er and Zr are respectively the void ratio and coordination umber taken at the 295 

reference point; hr, ζ, A1 and A2 are material parameters. Eq. (10) is best fitted to the NL-FVS 296 

data with parameters er = 0.6641, Zr = 3.258, hr = −0.02898, ζ = 2.0, A1 = −0.02627 and A2 = 297 

0.004352 with the accuracy quantified by R2 = 0.9852 (Fig. 8).  298 

For the liquefied portion (i.e., Z <= Zth) of the FVS, we first examine the data on the Z-F 299 

plane, as shown in Fig. 9a, given all data in this portion comes from CIU tests conducted at 300 

similar void ratios. The fitted CFS curves for be = 0 and 1 in Figs. 5a and b are also plotted 301 

here in Fig. 9a. It is clear that the CFS is dependent on the shear mode, which is consistent 302 

with the observation of Wen and Zhang [23] who inspected the shape of CFS in the principal 303 

fabric space. For simplicity, here we adopt an averaged critical fabric curve with expression:  304 

 ( )0.9937 1.044 0.7070F Z Z Z= − +  (11) 305 

to represent this data cluster in the fabric-void ratio space (Fig. 9b). By doing so, we have 306 

hypothesized that averaged critical fabric curve or the L-FVS is independent of void ratio as 307 

long as the sample is fully liquefied. This assumption shall be further tested with more CIU 308 

tests conducted at a wider range of void ratios in the next section. For now, the L-FVS fitting 309 

gives a R2 value of 0.9568, as shown in Fig. 9b.   310 

The small scattering (R2 = 0.9852 for NL-FVS and R2 = 0.9568 for L-FVS) supports the 311 

existence of a unique FVS linking the void ratio and the first two invariants of contact fabric 312 

tensor for samples subjected to monotonic consolidation, undrained, and drained triaxial 313 

shearing. This surface exhibit weak dependency on the shear mode near critical state in both 314 

liquefied and non-liquefied regime. Comparing to the many e-Z models developed for 315 

gravity-filled granular packings in powder technology [15, 45-47], our proposed FVS depicts 316 

a more complete picture by incorporating the effect of fabric anisotropy on the density of 317 

granular assemblies. The new FVS concept is therefore applicable for conditions involving 318 

anisotropic consolidation and triaxial shearing which are relevant for soil mechanics 319 

applications, providing a new perspective to analyse the internal structure of granular soils. 320 



4.2 Validation 321 

The FVS in Figs. 8 and 9 is developed exclusively based on medium-dense samples 322 

prepared with μ0 = 0.3. To validate the uniqueness and the robustness of the FVS, additional 323 

tests including C_e0, CIU_e0 and CID_e0 tests using relatively dense (prepared with μ0 = 0.2) 324 

and loose (prepared with μ0 = 0.5) samples are conducted, as summarized in Table 2.  325 

Fig. 10 present the critical state data of CIU, CID, CIU_e0 and CID_e0 tests on the e-p 326 

and the Z-p planes. The conventional CSL in the e-p plane can be well represented by the 327 

power-law function of Li and Wang [48] as ( )
1.202

0.630 0.00365 /c ae p p= −  where pa = 328 

101.3 kPa. The critical-state Z-p data also collapse into a single curve fitted by 329 

0.4412.779 0.679( / )c aZ p p= + . These results confirm that the CSL in the e-Z-p space is 330 

independent of the sample’s initial void ratio, shear mode, and drainage conditions, which is 331 

consistent with previous findings [16, 23, 49]. Fig. 11a compares the NCLs for the dense, 332 

medium dense, and loose samples in the e-p plane. Fig. 11b plots the corresponding NCLs in 333 

e-Z plane, or in other words the fabric-void ratio relation for isotropically consolidated 334 

samples (F ≈ 0). It is observed that the e-Z curves are closely located in a narrow band 335 

(despite some slight variations in the dense regime) in contrast to the distinct curves in the e-p 336 

plane.  337 

The previously constructed NL-FVS (Eq. (10)) and the fabric-void ratio data from the 338 

new C_e0, CIU_e0 and CID_e0 tests are plotted together in Fig. 12a. It can be observed that 339 

the new data qualitatively falls on the same surface. For a specific fabric-void ratio data (Zdata, 340 

Fdata, edata), its corresponding e on the FVS can be calculated by e(Zdata, Fdata) using Eq. (10) 341 

and is denoted as eFVS. The comparison of edata and eFVS is then shown in the Fig. 12b. The 342 

small scattering (R2 =0.9700) quantitatively validates the uniqueness of the NL-FVS with 343 

respect to the initial densities of the specimens. It is noted that the eFVS deviates slightly from 344 

the edata in the very dense regime (around edata = 0.45). This deviation could be due to several 345 

limitations of this study. First, the contact model is linear elastic which might be reasonable 346 

for low confining pressures but cannot represent real contacts (nonlinear, pressure-dependent) 347 

at high pressure levels. The error due to this idealization therefore shows up at dense packing 348 



regime where high confining stress is applied. Second, the present study uses the first two 349 

invariants of Eij (represented by Z and F) to correlate with void ratio. This approach neglects 350 

the information represented by θE, as well as the higher-order information contained in the 351 

full contact distribution density. Future enrichments of FVS considering the above may 352 

remove the deviations between edata and eFVS. 353 

 The data from liquefied specimens in CIU_e0 test and the mathematical L-FVS (Fig. 9b) 354 

are plotted together in the Z-F plane (Fig. 13a) and in the fabric-void ratio space (Fig. 13b). 355 

The agreement between the data and the mathematical L-FVS (Eq. (11)) is quite well as 356 

evidenced by R2 = 0.9806. The observation that the liquefied fabric data of all undrained tests 357 

with different e0 can be represented by the same Z-F curve confirms our earlier hypothesis 358 

that the critical fabric curve is independent of void ratio in the liquefied regime, and thus 359 

validated the L-FVS proposed in Fig. 9b and Eq. (11). It is also observed in Fig. 13b that Z 360 

and F for denser soils evolves to larger values in the liquefied regime. This feature can be 361 

utilized to precisely locate the threshold Z (Zth) that separates the liquefied and the non-362 

liquefied states, i.e., by observing the maximum Z (Zmax) of the specimen with the minimum 363 

void ratio among all liquefied tests. The Zmax of all liquefied undrained tests presented in Figs. 364 

9 and 13 is Zmax = 2.73 from the CIU_e0 test with e = 0.6171 and pc = 50 kPa. This means that 365 

the value of Zth must be ≥ 2.73. On the other hand, it is interesting to note that the critical 366 

state Zc at p = 0 calculated by the CSL equation in Fig. 10(b) is Zc(p=0) = 2.779, which is 367 

quite close to Zth. It is therefore reasonable to infer that the intersection Zc(p=0) in the power-368 

law equation that fits the critical state Z-p data is not just a fitting parameter but has the 369 

physical meaning of the threshold Z that distinguishes the liquefied and non-liquefied soils. 370 

5 Undrained cyclic (CIUC) test 371 

We have demonstrated that the states (fabric, void ratio) of granular material travel along 372 

a single FVS during monotonic loading including consolidation, CIU, and CID tests. There 373 

are two aspects remain to be addressed: 1) it is unclear whether the same FVS works for 374 

stress paths involving loading reversals; 2) at the moment of static liquefaction, the fabric-375 



void ratio data jumps from the NL-FVS to the L-FVS and then stays on it, but it is not clear 376 

whether this sudden transition happens during cyclic liquefaction and whether liquefied states 377 

can evolve from the L-FVS back to the NL-FVS as shear strain accumulates. To answer these 378 

questions, a CIUC test is conducted on a dense sample with pc = 300 kPa, qmax = 150 kPa and 379 

e = 0.5911. The specimen is subjected to a two-stage loading. The first stage is cyclic triaxial 380 

loading which stops when the number of cycles N reaches 20. After this, the specimen is 381 

monotonically sheared through triaxial compression to the critical state. 382 

Figs. 14a-d show the stress-strain curve, the stress path, the fabric path, and the fabric-383 

void ratio path from CIUC tests, respectively. It is observed from Figs. 14a and b that the 384 

specimen exhibits the typical cyclic liquefaction/mobility behaviour. In Fig. 14c, the fabric 385 

evolution path drifts to lower Z values during cyclic loading and jumps to the origin as soon 386 

as the sample liquefies. As shear continues, the fabric path evolves partially along the L-FVS 387 

and re-enters the non-liquefied regime (Z > Zth=2.73 regime) where the sample regains some 388 

shear strength. The same phenomenon can be better visualized in the fabric-void ratio space 389 

in Fig. 14d. It is clear that the “butterfly” stress loop in Fig. 14b corresponds to a closed 390 

fabric path circulating between the L-FVS and the non-liquefied regime.  391 

Figs. 14c and d confirm that the fabric-void ratio data during cyclic loading 392 

approximately stays on the L-FVS after liquefaction but does not stay on the NL-FVS before 393 

liquefaction. If the descriptor of soil’s inner structure is sufficient, it should fully quantify the 394 

“memory” of the soil and exhibit a one-to-one relation with the macroscopic properties of the 395 

soil. We suspect that the non-uniqueness of FVS for monotonically and cyclically loaded 396 

specimens can be removed by considering higher-order fabric information which is not 397 

reflected in the 2nd-rank fabric tensor. Along this line, examining the full directional 398 

distribution density of contact normal may reveal some unique microstructural features of 399 

cyclically loaded granular materials.  400 

The monotonic loading after the cyclic stage takes the specimen to its critical state and is 401 

marked by blue dot lines and red stars in Fig. 14. It is observed that the monotonic shearing 402 

eventually brings the cyclically loaded specimens back to the NL-FVS with the squared error 403 



(SE) = 3.73×10-5, confirming again the FVS identified in Fig. 8 could serve as a reference 404 

surface for granular materials under monotonic shearing, although it does not uniquely relate 405 

void ratio and fabric for cyclically loaded specimens.  406 

6 Significance of FVS 407 

With the FVS identified, a “so what” question naturally follows. We would like to make 408 

the case here that FVS can change how we conceive the constitutive theories and models of 409 

granular soils. Specifically, the fabric-void ratio relation proposed here connects two 410 

important state variables (void ratio and fabric), implying that the previously observed critical 411 

state line in the conventional e-p-q space [1] and fabric space [28] are not independent to 412 

each other. Indeed, the authors have recently proposed a constitutive framework, namely the 413 

critical fabric theory [22], where fabric is treated as the single internal state variable of 414 

granular soils. In this framework, the only criterion that judges whether a soil has reached 415 

critical state is to see if its fabric state converged to the critical fabric surface [23]. As the 416 

fabric evolves towards this CFS, the other state variables (e-p-q) approach their apparent 417 

critical state because of some geometrical or microstructural relations that link fabric with the 418 

void ratio and stress state of granular soils. To exercise this logic, let us combine the CFS (i.e., 419 

F(Z) relation) under an arbitrary shear mode (e.g., compression or extension as shown in Figs. 420 

5 or 6), a fabric-void ratio relation (FVS shown in Fig. 8), and a critical state Z-p relation 421 

(shown in Fig. 10(b)). A mathematical expression between e and p can be derived: 422 

   ( ) ( )2

1 2( ) ( ) ( )r r re e h Z p Z A F Z p A F Z p


= + − + +  (12) 423 

where parameters er, Zr, hr, ζ, A1 and A2 are already calibrated in Fig. 8 and presented after Eq. 424 

(10). The obtained equation is plotted against the DEM critical-state data (Fig. 10(a)) in e-p 425 

plane in Fig. 15. It is apparent that the derived CSL coincides with the CSL data, supporting 426 

that the classical critical-state theory can be equivalently framed in terms of a critical fabric 427 

relation and a fabric-void ratio relation. It is worth to note that, in the original model [22], the 428 

fabric-void ratio relation is taken from O’hern et al. [12] which only depends on the 429 

coordination number drawn from isotropic or oedometric compression tests (shown as Eq. 430 



(9)). The current study shows that this relation needs to be updated by the new FVS shown in 431 

Fig. 8 for general stress paths involving shear and compression.  432 

In a more general context, many elastoplastic/hypoplastic models start to acknowledge 433 

soil fabric [7, 50-55] and are often formulated within the framework of anisotropic critical 434 

state theory (ACST) [7, 50-53]. In these models, the CSL in e-p-q space and the critical fabric 435 

are treated as separate conditions for attaining critical state, and thus the stress-dilatancy 436 

relation and fabric evolution laws are often proposed separately. The new FVS identified in 437 

this study, however, suggests that the evolution of fabric and void ratio (or dilatancy) are 438 

intrinsically coupled especially under monotonic loading. This finding should inspire more 439 

sensible and realistic stress-dilatancy-fabric relations in future elastoplastic models based on 440 

ACST.      441 

It should be noted that the current FVS expressed in void ratio e and the first two 442 

invariants of second-order fabric tensor Z and F can only be used in modelling monotonic 443 

triaxial tests. The fabric-void ratio paths for cyclically loaded specimens do not collapse on 444 

the same FVS but are only attracted by it when monotonically sheared after the cyclic loading. 445 

We speculate that higher-order fabric tensors may contain some extra structural information 446 

for cyclically loaded specimens that are not captured by the second-order tensor studied in the 447 

current work. Establishing enriched descriptions of soil fabric based on contact, particle, and 448 

void vectors could be the first step in the follow-up studies along this line. In addition, further 449 

validation and investigation of FVS needs not only DEM simulations [16-18, 56, 57] but also 450 

advanced laboratory tests equipped with in-situ X-ray microtomography and other advanced 451 

imaging techniques [58-63].    452 

7 Concluding remarks 453 

The relationship between the contact fabric tensor Eij and the void ratio of granular soils 454 

is studied by investigating the e-Z-F data of 137 DEM numerical tests. Among them, 8 455 

consolidation and 80 true triaxial tests data is used for identifying a fabric-void ratio surface, 456 

and the rest 49 tests are used to verify the uniqueness of the FVS. A cyclic triaxial test is 457 



employed to check whether the FVS observed from monotonic shearing is applicable when 458 

stress reversal is included.  459 

The results of the monotonic tests show that the usual e-Z relation of granular packings 460 

is significantly influenced by the fabric anisotropy F. Such dependency can be conveniently 461 

represented by a parametric surface, namely the fabric-void ratio surface, in the e-Z-F space. 462 

The FVS consists of two separate parts with each describing the fabric-void ratio relation for 463 

liquefied and non-liquefied soils. When static liquefaction happens, the fabric path suddenly 464 

jumps from the non-liquefied portion of the FVS to the liquefied portion of the FVS. The 465 

threshold coordination number (Zth) that separates the liquefied and non-liquefied specimens 466 

is found to be Zth = 2.73. The proposed FVS is validated through an independent series of 467 

consolidation and triaxial tests with different initial void ratios.  468 

The fabric path of cyclically loaded specimen does not travel along the NL-FVS 469 

established on the monotonic test results. This suggests that the two invariants of the 2nd rank 470 

fabric tensor cannot completely tell the differences of soil structures induced by recent stress 471 

reversals. After cyclic loading, sufficient monotonic loading can remove the effect of recent 472 

stress history and thus recover the fabric-void ratio relation depicted by the FVS.  473 

Revealing connections between the microstructural attributes and the macroscale 474 

behaviours of granular is an ongoing endeavour for years. This study identifies an important 475 

reference surface for correlating the void ratio with the fabric structure of frictional granular 476 

materials and helps better understand the structural evolution of granular soils during 477 

compaction and liquefaction. Future extensions of this work include: 1) incorporating higher 478 

order fabric information to seek for a unique fabric-void ratio relation for both monotonically 479 

and cyclically loaded specimens; 2) investigating the fabric state of liquefied soils and 480 

understand its transition near the jamming point; 3) implement the concept of FVS in fabric-481 

centred constitutive theories of granular soils to unify the descriptions of critical state in 482 

terms of void ratio and fabric tensors. 483 
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List of symbols 

a1, a2, a3 parameters in the Gunary equation 
A1, A2 parameter in the NL-FVS equation 
b, be principal stress ratio and principal strain ratio 
𝑑, 𝑑̅ particle diameter and average particle diameter 
e, void ratio 
e0 initial void ratio taken at p = 50 kPa 
ec critical-state void ratio 
er reference void ratio 
edata void ratio of the DEM data 
eFVS corresponding void ratios on the FVS of DEM data 
E particle Young’s modulus 
E1, E2, E3 major, intermediate, and minor principal values of the second kind fabric tensor 
Eij fabric tensor of the second kind 
F fabric anisotropy 
Fc critical-state fabric anisotropy 
Fdata fabric anisotropy from DEM data  
Fn, Fs normal and tangential forces between two particles in contact 
Fij fabric tensor of the third kind 
Gij, fabric tensor of the first kind 
h parameter in the O’Hern equation 
hr parameter in the NL-FVS equation 
I inertia number 
kn, ks normal and tangential stiffness of a particle 
Kn, Ks normal and tangential stiffness of a contact 
Mc, Me critical stress ratio at compression and extension 
n, nr porosity and reference porosity 
n unit contact normal vector  
N number of loading cycles in cyclic triaxial test 
Nc, number of contacts  
Np number of particles in the assembly 
p mean effective stress  
pa atmosphere pressure 
pc mean effective stress at the end of consolidation or the beginning of triaxial 

shearing 
q deviatoric stress 
R particle radius 
Z, coordination number 
Zc critical-state coordination number 
Zr coordination number at reference porosity 
Zdata coordination number from DEM data 
Zth, threshold coordination number that distinguish the liquefied and non-liquefied state 
δn, δs normal and tangential displacement of a contact 
δij Kronecker delta 
Δtcr critical time step 
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ε1, ε2, ε3 major, intermediate, and minor principal strain  
εa axial strain 
𝜀̇ strain rate 
η, η0 deviatoric stress ratio and the deviatoric stress ratio during consolidation 
θE fabric lode angle 
λ parameter in the equation of e-p normal consolidation line  
μ particle friction coefficient after the initial compaction with p > 5kPa 
μ0 particle friction coefficient during the initial compaction with p <= 5kPa 
ξ parameter in the equation of e-p normal consolidation line  
ρ directional distribution of contact normals 
𝜌̅𝑐 directional distribution density of contact normals 
ρg particle density 
σ1, σ2, σ3 major, intermediate, and minor principal stress  
φ parameter in the O’Hern equation 
ζ parameter in the NL-FVS equation 
Γ maximum void ratio in the equation of e-p normal consolidation line  
Ω solid angle 



Fig. 1. Grain size distribution of the DEM specimen used in this study. 
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Fig. 2. Stress paths of consolidation tests. 
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Fig. 3. (a) Consolidation lines in e-p plane, (b) consolidation lines in e-Z plane, (c) fabric paths in Z-F 
plane, (d) fabric-void ratio paths in e-Z-F space. 
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Fig. 4. Stress and strain evolution of CIU tests: (a) stress of be = 0 tests, (b) stress-strain of be = 0 tests, 
(c) stress of be = 1 tests, (d) stress-strain of be = 1 tests.

0 500 1000 1500 2000 2500
0

400

800

1200

1600

2000

0.0 0.1 0.2 0.3 0.4 0.5
0

400

800

1200

1600

2000
q 

(k
Pa

)

p (kPa)

50kPa   2000kPa
100kPa   CSL, 
300kPa
500kPa
700kPa
1000kPa
1500kPa

Mc = 0.77

(a) (b)

q 
(k

Pa
)

ea

0.0 0.1 0.2 0.3 0.4 0.5
0

400

800

1200

1600

2000

0 500 1000 1500 2000 2500
0

400

800

1200

1600

2000

q 
(k

Pa
)

ea

q 
(k

Pa
)

p (kPa)

50kPa   2000kPa
100kPa   CSL, Me = 0.61
300kPa
500kPa
700kPa
1000kPa
1500kPa

(c) (d)



Fig. 5. Fabric evolution of CIU tests: (a) Z-F relation of be = 0 tests, (b) Z-F relation of be = 1 tests, (c) 
fabric-void ratio paths of be = 0 ~ 1 tests. 
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Fig. 6. Evolution of CID tests: (a) stress-strain of b = 0 tests, (b) fabric paths of b = 0 tests, (c) 
stress-strain of b =1 tests, (d) fabric paths of b = 1 tests, (e) fabric-void ratio paths of b = 0 ~ 1 tests. 
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Fig. 7. Compiled fabric-void ratio data from consolidation, CIU, and CID tests. 



Fig. 8. Mathematical description of the non-liquefied fabric-void ratio surface. 

2Eq. (10)  ( 0.9852)R 



Fig. 9. Mathematical description of the liquefied fabric-void ratio surface in (a) Z-F plane and (b) 
e-Z-F space.

2Eq. (11)  ( 0.9568)R 



Fig. 10. Critical state lines of CIU, CID, CIU_e0, and CID_e0 tests in (a) e-p plane and (b) Z-p plane. 
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Fig. 11. NCLs of specimens with different initial density in (a) e-p plane and (b) e-Z plane. 



Fig. 12. Validation of NL-FVS by C_e0, CIU_e0 and CID_e0 tests: (a) FVS and fabric-void ratio data, 
(b) comparison between the void ratio data and those calculated by the FVS equation.

2Eq. (10)  ( 0.9700)R 



Fig. 13. Validation of L-FVS by CIU_e0 test data in (a) Z-F plane and (b) e-Z-F space. 



Fig. 14. Evolution of CIUC test in: (a) stress-strain plane, (b) stress plane, (c) fabric plane, (d) 
fabric-void ratio space. 



Fig. 15. Comparison between the derived CSL in e-p plane the DEM critical-state data in Fig. 10(a) 
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Table 1. Summary of consolidation, CIU and CID tests 

Test series consolidation CIU CID 

pc 

(kPa) 
50 ~ 2000 

50, 100, 300, 500, 700, 

1000, 1500, 2000 

50, 100, 300, 500, 700, 

1000, 1500, 2000 

μ0 0.3 0.3 0.3 

η0 

0, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7 
0 0 

b or be N/A 
be = 0, 0.25, 

0.5, 0.75, 1 

b = 0, 0.25, 

0.5, 0.75, 1 

Tests number 8 40 40 

Table 2. Summary of C_e0, CIU_e0 and CID_e0 tests 

Test series C_e0 CIU_e0 CID_e0 

pc 

(kPa) 
50 ~ 2000 

50, 100, 300, 500, 700, 

1000, 1500, 2000 

50, 100, 300, 500, 700, 

1000, 1500, 2000 

μ0 0.2, 0.5 0.2, 0.5 0.2, 0.5 

η0 
0, 0.1, 0.2, 0.3, 0.4, 

0.5, 0.6, 0.7 
0 0 

b or be N/A 0 0 

Tests number 16 16 16 




