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Abstract  18 

Some experiments and observations of free-living plants have found that increasing atmospheric 19 
concentration of CO2 (pCO2) is directly correlated with increasing discrimination against 13C 20 
during photosynthesis (D13C) in C3 plants. The inverted form of this correlation has been used to 21 
estimate pCO2 in the geological past (i.e. the C3 plant proxy), but there has been little 22 
experimental work to establish the relative importance of pCO2 as a driver of discrimination in 23 
more natural settings and over a range of pCO2 relevant to the deep-time geologic record. Here 24 
we report on an experiment exploring the relationship between pCO2 and D13C in Ginkgo biloba, 25 
a plant long used to infer past CO2 levels because of the strong similarity of extant to fossil 26 
Ginkgo and the abundance of Ginkgo fossils with preserved cuticle from late Mesozoic and 27 
Cenozoic periods of warm global climate. 28 

We grew Ginkgo biloba plants for three years under ambient pCO2 (~425 ppm) and elevated 29 
levels (~600, ~800, and ~1000 ppm) while measuring the carbon isotope composition of air 30 
(δ13Cair) and leaves (δ13Cleaf) as well as the ratio of internal to external CO2 concentration (ci/ca), 31 
maximum photosynthetic assimilation rate (Amax), C:N ratio, and leaf mass per area (LMA). We 32 
found no significant relationship between pCO2 and Δ13Cleaf or ci/ca. We did find a direct 33 
correlation of pCO2 with Amax, LMA, and C:N ratio. The lack of increase in Δ13Cleaf with rising 34 
pCO2 may result from the lack of change in ci/ca, thicker leaves that slow the rate of diffusion of 35 
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CO2 through the leaf to mesophyll cells, higher Amax that drives more rapid consumption of 36 
intracellular CO2 and/or changes in the relative proportions of starches, lipids or other 37 
compounds that have distinct isotopic compositions. 38 

Our results, along with a compilation of data from the literature on Δ13Cleaf in many different 39 
types of C3 plants, suggest that Δ13Cleaf does not consistently increase with increasing pCO2. 40 
Rather, there is a diversity of responses, both positive and negative, that are not clearly related to 41 
taxonomic group or growth form but may reflect changes in leaf structure, stomatal response and 42 
Amax under higher pCO2. Given the complex relationship between Δ13Cleaf and pCO2 in living 43 
plants we consider Δ13Cleaf of fossil plants to be an unreliable proxy for paleo-atmospheric pCO2.  44 
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 47 
1. Introduction 48 

Attempts to reconstruct the relationship between climate change and atmospheric carbon dioxide 49 
(pCO2) in the geological past have led the earth science community to develop many proxies for 50 
pCO2 that can be applied to periods before the oldest direct records of atmospheric composition 51 
from bubbles trapped in ice (Petit et al., 1999; Siegenthaler et al., 2005; Lüthi et al., 2008; Petit 52 
& Raynaud, 2020). Testing and improving these geological proxies for pCO2 is important 53 
because accurate estimates of paleo-pCO2 will help reveal the role of high pCO2 in maintaining 54 
hothouse climates, in feedbacks between the climate and carbon cycle, and the sensitivity of the 55 
Earth’s climate to the addition of CO2 to the atmosphere. Using Earth history to understand these 56 
interactions requires a reliable, stratigraphically dense proxy for pCO2, yet currently there is 57 
quite large disagreement among different types of proxy estimates for the Cenozoic, as well as 58 
low stratigraphic density (Beerling & Royer, 2011; Royer, 2015; Westerhold et al., 2020).  59 

One previously proposed proxy for paleo-pCO2 relies on the firmly established preference of C3 60 
plants for the light isotope of carbon. Plant tissues are depleted in the heavy isotope of carbon 61 
(13C) relative to the atmosphere because they preferentially incorporate light carbon (12C) into 62 
their tissues during photosynthesis. Farquhar et al. (Farquhar et al., 1980, 1989a) suggested a 63 
simplified model for the carbon isotope discrimination between plant tissues and the surrounding 64 
atmospheric CO2 (Eq. 1),  65 

∆!"𝐶#$%& = 𝑎 + (𝑏 − 𝑎) *'!
'"
+  (1) 66 

where “a” is the fractionation during diffusion into the stomata (4.4 ‰), “b” is the fractionation 67 
during carbon fixation due to RuBisCO (~27 ‰), ci is the intercellular concentration of CO2 68 
within the leaf, and ca is the concentration of CO2 in the air around the leaf. (Note: Earth 69 



 3 

scientists commonly denote the atmospheric concentration of CO2 as pCO2, whereas plant 70 
physiologists refer to the concentration of CO2 in the atmosphere around the leaf as ca. Here we 71 
will use pCO2 when referring to the general atmospheric concentration of CO2 in the past and 72 
present, but ca when referring to the atmosphere just external to the leaf.)  CO2 diffuses through 73 
stomata into the interior air spaces of the leaf prior to photosynthesis (see Fig. 1), so the value of 74 
ci cannot exceed that of ca. Observed ci /ca commonly ranges between 0.2 and 0.9. As the value 75 
of ci /ca approaches 1, the value of ∆13Cleaf approaches that of fractionation by RuBisCO, or ~27 76 
‰. As ci /ca approaches 0, the value of ∆13Cleaf from the Farquhar equation approaches that of 77 
fractionation during diffusion, or 4.4 ‰. Though the simplified Farquhar model  focuses on the 78 
ratio ci/ca, which is controlled by stomatal conductance, it is important to note that  fixation of 79 
carbon by RuBisCO occurs within chloroplasts, whose CO2 concentration is denoted as cc. 80 
Diffusion of CO2 from substomatal spaces to chloroplasts (gm) is also known to play and 81 
important role in discrimination in many plants (Veromann-Jürgenson et al. 2020) which we 82 
consider in the discussion of our results. The value of ∆13Cleaf can be calculated using 83 
measurements of the isotopic compositions of the air (δ13Cair) and the plant tissue (δ13Cleaf) with 84 
Eq. 2.  85 
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 87 
Fig. 1. Cartoon depicting the movement of carbon for photosynthesis. Carbon moves from the 88 
atmosphere (ca) to the substomatal airspaces (ci) via stomatal diffusion (gs) (which imparts 89 
isotopic fractionation, “a”) then to the chloroplast (cc) via mesophyll diffusion (gm). 90 
Photosynthesis occurs in the chloroplast (which also imparts isotopic fractionation, “b”). 91 
Synthesized sugars then undergo additional isotopic fractionations as they are used to make 92 
starches, lipids, etc. The bulk leaf carbon is a mixture of these different compounds.  93 
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Schubert and Jahren (2012) found a direct correlation of ∆13C with pCO2 in growth chamber 94 
studies of two herbaceous C3 species, Arabidopsis thaliana (rock cress) and Raphanus sativus 95 
(radish), under 15 levels of pCO2 from 370-2255 and 407-4200 ppm, respectively. Light, 96 
temperature, relative humidity, soil moisture, and pCO2 were all maintained at uniform levels in 97 
growth chambers (Schubert & Jahren, 2012), henceforth SJ2012. SJ2012 observed a positive 98 
hyperbolic relationship between ∆13C and pCO2 for bulk above-ground tissue (R. sativus and A. 99 
thaliana), bulk below-ground tissue (R. sativus), and n-alkanes (A. thaliana). They also compiled 100 
∆13C measurements from a number of prior studies of C3 plants growing under varying pCO2 101 
and argued these were consistent with the same hyperbolic relationship in which ∆13C increases 102 
rapidly as pCO2 increases from 0 to ~1000 ppm, then asymptotically to 28-30‰ as pCO2 rises to 103 
4000 ppm and fractionation due to RuBisCO is fully expressed. SJ2012 used this hyperbolic 104 
relationship to calculate sensitivity (S), the amount that ∆13C increases with a given increment of 105 
pCO2, by taking the derivative of a hyperbolic curve fit to their data. S is expressed in parts per 106 
mil per 100 ppm increase in pCO2. SJ2012 calculated S values from the literature by fitting data 107 
with a hyperbolic equation and using the derivative of this curve to yield an S value. A 108 
compilation of these values was used to construct a relationship between pCO2 and S. In a 109 
subsequent paper Schubert & Jahren (2015) offered an equation based on this hyperbolic 110 
relationship by which one can use ∆13C from fossil organic matter to reconstruct paleo-pCO2, 111 
provided we know the pCO2 level at a reference time t = 0. This proxy has since been applied to 112 
a variety of geological data sets (Schubert & Jahren, 2015; Cui & Schubert, 2017; Cui et al., 113 
2020; Wu et al., 2021).  114 

Following the initial development and implementation of the C3 plant proxy, complicating 115 
factors for the C3 plant proxy have been recognized. SJ2012 already recommended that the C3 116 
plant proxy should be applied only if the fossil plants for which ∆13C was being estimated had 117 
grown in well-watered paleoenvironments, because water availability could change 118 
discrimination independently of pCO2. (Schlanser et al., 2020) pointed out that the amount of 119 
CO2 in the atmosphere changes with altitude as well as secular global change, suggesting that in 120 
order to detect secular change, discrimination should only be compared between fossil plants that 121 
grew at similar paleoelevation. Increases in O2:CO2 ratios and vapor pressure deficit (VPD) are 122 
both correlated with decreasing ∆13C, though responses vary significantly between angiosperms 123 
and gymnosperms (Hare & Lavergne, 2021). Within C3 angiosperms and gymnosperms, traits 124 
inherent to a specific taxon have sizeable effects on ∆13C (Porter et al., 2019; Sheldon et al., 125 
2019; Schlanser et al., 2020; Stein et al., 2021; Poorter et al., 2022), which have led some to 126 
argue that the relationship between ∆13C and pCO2 is affected by too many factors for 127 
discrimination to be a good proxy for pCO2 (Schlanser et al., 2020). Additionally, after diffusing 128 
into the substomatal cavity, carbon must still diffuse through the mesophyll to reach sites of 129 
photosynthesis in the chloroplasts (Fig. 1). Once sugars are photosynthesized, biosynthetic 130 
isotopic fractionation occurs during the formation of starches, lipids, etc. that will then influence 131 
the bulk carbon isotope composition of the leaf. 132 
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In this study, a part of the Fossil Atmospheres Project, we aimed to quantify the relationship 133 
between ∆13Cleaf and pCO2 in Ginkgo. We chose Ginkgo because it is a genus with an extensive 134 
fossil record during the late Mesozoic and early Cenozoic periods of hothouse climate (eg., 135 
(Royer, 2003)). Any relationship between pCO2 and ∆13Cleaf documented in the living G. biloba 136 
would likely be applicable to nearly identical fossil species such as G. wyomingensis and G. 137 
adiantoides (Zhou & Zheng, 2003; Golovneva, 2010; Zhou et al., 2012). Many of the studies 138 
documenting increases in ∆13C with increasing pCO2 were conducted during the anthropogenic 139 
rise in pCO2, and therefore at values below 400 ppm, so we also examined the relationship in G. 140 
biloba at pCO2 levels up to 1000 ppm, which are more relevant for reconstructing pCO2 in 141 
hothouse periods of the Mesozoic and early Cenozoic (Foster et al., 2017; Rae et al., 2021). 142 
Further, above 400 ppm the fit of the relationship between ∆13C and pCO2 developed by 143 
Schubert & Jahren (2012) has been calibrated only with angiosperm data. Since gymnosperms on 144 
average have lower ∆13C values (Diefendorf et al., 2010, 2011; Hare & Lavergne, 2021), it was 145 
important to document the relationship in a gymnosperm for potential application of the C3 plant 146 
proxy in periods prior to the Late Cretaceous, when angiosperms were a smaller component of 147 
global vegetation (Carvalho et al., 2021). 148 

2. Methods 149 

2.1 Experimental setup 150 

Ginkgo biloba trees were planted in an experimental field surrounded by a pine-hardwood forest 151 
at the Smithsonian Environmental Research Center in Edgewater, MD. The G. biloba trees are 152 
all of the same variety ‘Presidential Gold’; a varietal branch was grafted onto root stock of G. 153 
biloba at the J. Frank Schmidt Plant Nursery in Boring Oregon, so the trunks and leaves are 154 
therefore genetically identical. We used two size classes of plants.  The “large trees” (up to 3 m 155 
tall) were planted in the ground using locally sourced clay-rich topsoil, and have been in 156 
chambers since the spring of 2016 (n=15).  The “small trees” (started at ~50 cm tall; n=20) 157 
arrived bare-rooted and were potted using Espoma Organic Potting Mix, and added to the 158 
chambers in the spring of 2019. The plants were grown in open-topped chambers (Drake et al., 159 
1989; Day et al., 2013) which allowed for daily and seasonal fluctuations in ambient light and 160 
temperature, and  natural precipitation (Fig. 2A). There were three chambers at each CO2 level: 161 
1000, 800, 600, and 450 ppm (in-chamber ambient), as well as  425 ppm for outdoor ambient 162 
plots.  No CO2 was added to the in-chamber ambient plots, but effluent air from adjacent 163 
elevated chambers slightly increases the in-chamber ambient relative to external ambient plots. 164 
Chambers were arranged in a randomized block design, with three rows that each contained all 165 
five treatments (Fig. 2B).  166 

We followed standard protocols for the setup and operation of open-top chambers (Drake et al., 167 
1989).  Carbon dioxide was added to chambers at the intake of the blower fans from CO2 dewars 168 
under pressure. We regulated the pressure to between 40-60 psi, delivering the approximate total 169 
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pressure required for all flow meters for the atmospheric conditions of the day.  CO2 levels were 170 
monitored and recorded in each chamber (or next to outdoor trees) with a single Licor 7000 gas 171 
analyzer, calibrated for CO2 and H2O at least 2 times per year. CO2 levels were adjusted as 172 
needed via flowmeters in the control shed by measuring air pumped continuously back from each 173 
tree plot. A solenoid system cycled the returned air through the Licor analyzer, switching among 174 
chambers every 1.5 minutes and recording the value at the end before switching to the next 175 
chamber in the sequence. Human breath exhaled while moving in and out of the chambers to 176 
take measurements or perform maintenance had only a transient effect on CO2 levels because the 177 
air inside each chamber was replaced every few minutes. Shade cloth that uniformly reflects 178 
50% of sunlight was added to the experiment in the summer of 2018 to equalize temperatures 179 
between chambers and outdoor controls. Plants were watered as necessary to maintain soil 180 
moisture at ≥70% field capacity, measured using a Watermark irrometer soil moisture sensor 181 
(model 200SS-15). Plants were fertilized twice per month during the growing season with liquid 182 
Neptune Harvest organic fish and seaweed (2N:3P:1K), and once per month with solid Espoma 183 
Plant-Tone organic (5N:3P:3K), offset from liquid fertilizer application.  184 

 185 

 186 
Fig. 2. (A) Experimental setup at the Smithsonian Environmental Research Center (SERC) in 187 
Edgewater, Maryland. All trees are in open-topped chambers, except outdoor control trees 188 
(front). The control shed houses monitoring equipment as well as the supply of CO2. Blowers 189 
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combine ambient air and CO2 from the control shed into each of the chambers. (B) The 190 
experimental plots are laid out in a randomized block design to control for plot location effects. 191 

2.2 Leaf sampling and preparation 192 

In the summers of 2018 and 2019, leaves from large trees were sampled during the first 11 and 193 
10 weeks of the growing season, respectively, beginning when leaves were first emerging and 194 
ending ~ 4 weeks after leaves had reached full expansion. In 2018, leaves were collected from 195 
both the North and South sides of the canopy. Each week, one row of trees (5 trees, one at each 196 
nominal CO2 level) had three leaves sampled from the North and South sides of the canopy, 197 
while the remaining ten trees had one leaf sampled each from the North and South side of the 198 
tree. The row of trees subjected to extra sampling rotated each week. After observing no 199 
significant difference between leaves sampled in different canopy locations, leaves in 2019 were 200 
sampled from only the South side of the canopy (one leaf per week). Leaves were sampled from 201 
small trees every second week over the same period in the summer of 2019. All leaves sampled 202 
in the summers of 2018 and 2019 were collected from short shoots. Long shoots were not 203 
sampled. Abscised leaves from the fall of 2015 were collected from the ground around large 204 
trees before they were exposed to experimental conditions. In 2016-2019, all naturally abscised 205 
leaves were collected from the ground within each chamber, and a subset of these were used for 206 
isotope analysis. Leaf preparation details can be found in the supplementary text.  207 

2.3 Air sampling  208 

Air was collected in flasks from the CO2 source dewar and adjacent to each tree on the same day 209 
as leaf sampling in the summers of 2018 and 2019. An air pump was connected via a 15 cm long 210 
tube to a collection flask under vacuum. The pump moved air through the opened flask for a 211 
period of three minutes before being closed off.  212 

2.4 Isotope methods  213 

Detailed leaf and air isotope methods is provided in the supplemental text. Carbon isotope ratios 214 
of leaf samples (δ13Cleaf) were measured using elemental analysis (EA) isotope ratio mass 215 
spectrometry (IRMS). Leaves collected during the 2018 growing season were analyzed using 216 
conventional EA/IRMS at the Smithsonian Institution Museum Conservation Institute. All 217 
abscised leaves and leaves from 2019 were analyzed at the Pennsylvania State University using 218 
an EA-IRMS system modified for smaller sample size (modified EA/IRMS). About 5 mg of 219 
homogenized powder from each leaf was used for conventional isotopic analyses, and about 0.05 220 
mg for modified EA/IRMS analyses.  221 

Atmospheric carbon dioxide samples were analyzed using OTTO-IRMS at the SIRFER lab at the 222 
University of Utah. OTTO is a custom-built sample preparation device for the analysis of CO2 223 
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from atmospheric air samples collected in 100-mL glass flasks. OTTO consists of an autosampler 224 
and a Thermo Finnigan gas chromatograph coupled to a Thermo Finnigan Delta Plus Advantage 225 
isotope ratio mass spectrometer through an open-split interface (Thermo Finnigan GC/TC); 226 
(Schauer et al., 2005). The system is run in continuous flow mode. Pure (99.999%) carbon dioxide 227 
gas samples were analyzed for δ13C and δ18O using a dual inlet Thermo MAT 253 IRMS system. 228 
Oztech calibrated internal lab gas tank (pure CO2) was used during the analyses. The Oztech tank 229 
was also calibrated against NIST standards. The measurements were comprised of twenty dual-230 
inlet cycles.  231 

2.5 Physiological data collection methods  232 

Leaf gas exchange was measured using two LI-6400 Portable Photosynthesis Systems (model 233 
LI-6400XT, LI-COR Biosciences, Lincoln, NE). Plant health was determined visually: healthy 234 
plants had fully expanded, deeply green leaves, whereas unhealthy plants had smaller leaves and 235 
lighter green leaves, suggesting a lower chlorophyll concentration. Health of the plants was 236 
further confirmed by examining gas exchange data: unhealthy plants opened stomata for a briefer 237 
period, particularly during hot weather, whereas healthy plants exhibited normal ranges of 238 
stomatal conductance. Using standard techniques, we selected healthy leaves on each plant for 239 
gas exchange measurement. Measurements were made beginning one to two hours after dawn (as 240 
the day length changed from spring through fall) and before midday stomatal closure. Leaf 241 
temperatures were maintained as close to the initial value as possible using the fan in the Licor 242 
cuvette chamber. Maximum net CO2 assimilation rate (Amax) was measured at saturating levels of 243 
PPFD for each plant (1000 µmol m-2 s-1), at chamber CO2 concentration (e.g., 400, 600, 800, or 244 
1000 ppm), and initial flow rates were set at 500 µmol s-1. Chamber relative humidity was 245 
allowed to track ambient conditions; replicate measurements performed in a random order 246 
ensured that some plants measured later in one session were measured earlier in another, and 247 
vice versa, minimizing any effect. External CO2 concentration (ca), was measured directly by the 248 
LI-6400, and internal CO2 concentration (ci) was calculated by the LI-6400 software (OPEN, Li-249 
COR Biosciences, Lincoln, NE), as described below.  250 
 251 
Internal CO2 concentration (ci; µmol CO2 mol air-1) is calculated from the following equation, 252 
derived from direct measurements of assimilation rate (A; µmol CO2 m-2 s-1), transpiration (E; 253 
mol H2O m-2 s-1), total conductance to CO2 (gtc; mol CO2 m-2 s-1), and mole fraction of CO2 in 254 
the sample IRGA (Cs; µmol CO2 mol air-1): 255 

𝑐. =
*𝑔/0 −

𝐸
2+𝐶1 − 𝐴

𝑔/0 +
𝐸
2

 256 

The total conductance to CO2 (gtc) is derived from the stomatal conductance to water vapor (gsw; 257 
mol H2O m-2 s-1), the boundary layer conductance to water vapor (gbw; mol H2O m-2 s-1), and the 258 
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stomatal ratio (K; dimensionless: estimate of the ratio of stomatal conductances of one side of 259 
the leaf to another): 260 

𝑔/0 =
1

21.6𝑔12
+
1.37 𝐾3 + 1

(𝐾 + 1)3
𝑔42

8

 261 

This equation uses 1.6 as the ratio of the diffusivity of CO2 and water in air through the stomata, 262 
and 1.37 is the ratio of the diffusivity of CO2 and water in the boundary layer (OPEN Manual, 263 
section 1-10, Li-COR Biosciences, Lincoln, NE; a full derivation of these equations and their 264 
parameters can be found within). 265 

The ci /ca measurement from each tree taken on the date closest to leaf sampling in 2019 were 266 
used in this study. In the case where multiple measurements were made on the same day, the 267 
measurement with the highest ci /ca value was used, in order to ensure that measurements with 268 
stomata fully open were compared with one another. To process the Amax data, the measurements 269 
made at the very beginning and the very end of the session were deleted to remove periods of 270 
instrumental fluctuation. Measurements that recorded negative ci values were also excluded.  271 

2.6 Leaf mass per area (LMA) methods 272 

Leaf mass per area was calculated for the full population of leaves collected in 2018 and 2019 273 
(with the exception of the last week of leaves from 2018) by a simple division of the leaf mass 274 
by leaf area on an individual leaf basis. Leaves were photographed on a light box (5000k) using a 275 
Canon EOS 5D SLR fitted with a 1:2.8 100 mm macro lens. The scale bar in the image was used 276 
for calibration in Photoshop image software. Leaf area was measured from the calibrated image 277 
using the magic wand tool, with tolerance values set to accurately capture the margin of the 278 
lamina and the complete petiole. The same leaves were dried in a Fisher Scientific oven (model 279 
650G) at 40°C for 48 hours and then hot-massed on a Sartorius balance (model A120S) 280 
immediately after being removed from the oven. Nitrogen per unit leaf area (NPA) was also 281 
calculated using nitrogen weight % and leaf area: NPA = (N wt%/100)*LMA.  282 

2.7 Mixing lines  283 

Pure CO2 was added to ambient air to raise the concentration of CO2 within chambers. The 284 
added CO2 had a variable carbon isotopic composition, ranging from -40.8 to -25.4‰ (Fig. S1), 285 
while ambient air at the site has a δ13Cair value of ~-10‰. To calculate the isotopic composition 286 
of CO2 in the chamber, mixing relationships between these two sources were constructed for 287 
each week of the growing season (details in supplementary text).  288 
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2.8 ∆13Cleaf calculation  289 

δ13Cleaf and δ13Cair values were used in Eq. 2 (Farquhar et al., 1989b) for the calculation of 290 
∆13Cleaf. In 2018, multiple leaves were collected and analyzed for δ13Cleaf for five trees per week 291 
on a rotating basis. These measurements were averaged for one δ13Cleaf value per tree per week. 292 
Leaf values were paired with air values from the weeks prior to collecting the leaf. A leaf 293 
collected on a given day was composed of carbon from CO2 that had been incorporated before 294 
that collection day. Therefore, if the leaf was collected in week 8, then the air values from weeks 295 
1-7 were averaged for the δ13Cair value used in Eq. 2. We explored the possibility that carbon 296 
stored as starch from years prior to the trees being under experimental setting was used to 297 
construct leaves in 2018 and 2019, and found this not to be the case. A discussion of this topic 298 
can be found in the supplemental text, section 2.3. 299 

2.9 Regression and ANOVA Analysis 300 

Linear regressions were fit to ∆13Cleaf data in Matlab (v. 9.8.0.1451342 (R2020a) Update 5) using 301 
the functions polyfit and fitlm. ANOVA analysis was used to investigate differences between 302 
nominal CO2 groups for ci/ca, C:N, NPA, LMA, and Amax data. Analyses were carried out in 303 
Matlab using the functions anova1 and multcompare with ‘Alpha’ set to 0.05 for a 95% 304 
confidence level.  305 

2.10 Mixed effect modeling 306 

Mixed effect modeling (MEM) was conducted in 'RStudio' (v. 4.1.0) using the lme4.0 package to 307 
investigate the importance of different factors on ∆13Cleaf. We ran two mixed effects models 308 
(MEM1 and MEM2) on each subset of our data (large trees 2018, large trees 2019, and small 309 
trees 2019) as well as all data together. The separation of data in this way avoids unequal 310 
population sizes.  311 
 312 
We used the following model (MEM1):  313 

 314 
logΔ13Cleaf ~ pCO2 +  LMA + as.factor(chamber) + (1|Chambernumber/Treenumber)  (5) 315 

 316 
Where “logΔ13Cleaf” is the log-transformed ∆13Cleaf data, “LMA” is calculated leaf mass per area, 317 
“chamber” refers to whether the tree is in a chamber or is an outdoor ambient control, and 318 
“Chambernumber/Treenumber” nests each tree’s identifying number within its chamber to 319 
account for individual differences in growth environment. After identifying that growing in a 320 
chamber has a significant on discrimination a second model (MEM2) was  run to better isolate 321 
the effect of elevated pCO2. Two changes were made: outdoor ambient tree data were excluded 322 
and “chamber” was removed from Eq. 5. The results from the six model runs are reported below.  323 
 324 
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2.11 Compilation of discrimination values from the literature  325 

To expand the dataset for exploring the effect of pCO2 on ∆13Cleaf, we compiled data from the 326 
literature, including recompiling data used in SJ2012. In our compilation we only included 327 
studies that calculated discrimination from leaves, that reported both δ13Cleaf and δ13Cair, and that 328 
had at least two discrete levels of CO2. Data from five of the eleven studies in the SJ2012 329 
compilation satisfied these criteria, and we added data from four additional studies (Peñuelas & 330 
Azcón‐Bieto, 1992; Tu et al., 2004; Hietz et al., 2005; Lomax et al., 2019; see text in 331 
supplement; data in Table S2). This is not an exhaustive literature review, but includes a range of 332 
species and plant functional types. 333 

Species-specific differences in the relationship between pCO2 and ∆13Cleaf values might make it 334 
difficult to discern the overall shape of the relationship. To put data from multiple species in a 335 
common frame, we followed SJ2012 in calculating sensitivity (S, the first derivative of a ∆13Cleaf 336 
versus pCO2 plot). Positive S values indicated a positive relationship between ∆13Cleaf and pCO2; 337 
negative values the opposite. Here, we calculated S by using ∆13Cleaf and pCO2 values at two 338 
levels of CO2:  339 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	(‰ 𝑝𝑝𝑚⁄ ) = ∆#$')!*)(∆#$'&+,
6'7-)!*)(6'7-&+,

 (6) 340 

3. Results 341 

3.1 Change in δ13Cleaf during leaf expansion  342 

Table S1 contains measurements of δ13Cleaf, δ13Cair, and pCO2 for each of 164 leaves, from which 343 
we calculated discrimination values. In 2018 and 2019, δ13Cleaf decreased from week one to week 344 
seven of spring flush by 2.86 ± 1.38‰ for every tree under every level of pCO2 (Fig. S4). The 345 
carbon isotopic composition of leaves did not change during the last four weeks of sampling. We 346 
hypothesize that the decline and subsequent plateau of δ13Cleaf occurs because the diffusivity of 347 
leaves, and thus ci/ca, increases during the spring leaf flush, as leaves expand and develop larger 348 
and more complex mesophyll airspaces, and develop larger stomata (Beck, 2009). In all 349 
subsequent analyses we used the mean δ13Cleaf value from the last four weeks of the leaf 350 
sampling (weeks 8-12 in 2018, 7-11 in 2019; see Fig. S4) which represents the isotopic value of 351 
the fully-expanded leaves. We found no significant difference between the δ13Cleaf from each tree 352 
in the last four weeks of 2018 and senesced leaves collected in the fall of 2018 (Fig. S5).  353 

3.2 Factors affecting ∆13Cleaf  354 

Considering all plants, years and treatment levels, ∆13Cleaf varied from 12.2 to 20.4‰, with a 355 
grand mean value of 16.1‰ and a standard deviation of 2.0‰ (Fig. 3). Variability in ∆13Cleaf is 356 
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high within each pCO2 treatment group (range = 4.1-8.0‰) and also within plants of the same 357 
year-size class (2018 large, 2019 large, 2019 small) grown at the same pCO2 level (range = 1.1-358 
7.4‰). For each year-size class, the greatest mean values of ∆13Cleaf are from the unchambered 359 
trees grown at the lowest pCO2 (outdoor ambient trees, Fig. 3). Large trees in 2019 had the 360 
lowest mean values of ∆13Cleaf at each pCO2 treatment level. A two-way ANOVA examining the 361 
effect of year-size class and nominal pCO2 level on ∆13Cleaf showed a significant interaction term 362 
(8 d.f., F 2.9, p = 0.005). For this reason, we’ve analyzed our data in the following section in 363 
year-size subgroups as well as with all data together.  364 

The results of regressions performed on subgroups of ∆13Cleaf versus pCO2 data are reported in 365 
Table S2 and shown in Fig. S7. These regressions revealed only three subgroups with slopes 366 
statistically significantly different than zero (p<0.5): 2018 Large trees excluding outdoor ambient 367 
trees, 2019 Large trees, and 2019 small trees with slopes of 0.0036, -0.00259, -0.002663, 368 
respectively. These slopes correspond to extremely small changes in ∆13Cleaf: .36, -0.26, and -369 
0.27 ‰ over 100 ppm, very close to a typical instrumental uncertainty for δ13C measurements. 370 
All other subgroups gave a p value of >0.05 for the slope estimate, so they are not significantly 371 
different from a slope of zero.  372 

The results of the mixed effects model (MEMs) runs are shown in Table 1. Notably, all four 373 
MEM1 runs show a large proportion of variance is explained by whether or not a tree was grown 374 
in a chamber or as an outdoor ambient control: 31.0, 43.3, 28.2, and 22.0% for 2018 large, 2019 375 
large, 2019 small trees, and all data, respectively. In MEM2, where outdoor ambient tree data is 376 
removed and “chamber” is excluded from the model, LMA accounts for a larger proportion of 377 
the variance than Ca in all three datasets (59.1 to 25.5%, 6.4 to 1.4%, 24.8 to 7.6%, and 18.7 to 378 
0.0% for 2018 large, 2019 large, and 2019 small trees, and all data, respectively).  379 

  2018 Large 2019 Large 2019 Small All Data 
  MEM1 MEM2 MEM1 MEM2 MEM1 MEM2 MEM1 MEM2 
Random 11.3 3.7 33.7 71.0 21.3 33.2 40.6 53.6 

Ca 1.7 25.5 16.7 1.4 21.5 7.6 5.7 0.0 
LMA 43.6 59.1 0.3 6.4 2.8 24.8 6.3 18.7 

Chamber 31.0 - 43.3 - 28.2 - 22.0 - 
Year - - - - - - 6.5 8.7 
Pot - - - - - - 2.7 4.2 

Residual  12.3 11.6 6.1 21.1 26.2 34.4 16.1 14.8 

Table 1. Output results from eight runs of two different mixed-effects models. MEM1 includes 380 
outdoor ambient trees, while MEM2 excludes them and does not consider the chamber as a 381 
variable. Values in the table represent the percent variance explained within each model run. 382 

 383 
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 384 

Fig. 3. Leaf-level discrimination (∆13Cleaf) shown against measured pCO2 level. Each point 385 
represents one tree ∆13Cleaf value for one week. In 2019, this is from a single leaf, while in 2018 386 
this was one leaf or calculated from an average of six leaves. Only the last four weeks of 387 
sampling in June are used. Light blue circle = large trees 2018; Magenta square = large trees 388 
2019; Yellow diamond = small trees 2019. The solid black line in each panel is a linear 389 
regression through all data, the dashed grey lines are the 95% confidence interval. (A) includes 390 
outdoor ambient tree data (highlighted with shaded box). (B) outdoor ambient tree data excluded. 391 
Linear regressions give y = -0.0017x+17.25 with an R2 of 0.043 (A) and y = 0.0006x+15.12 with 392 
an R2 of 0.006 (B). P values of 0.005 and 0.095 for slopes in (A) and (B), respectively, show no 393 
relationship significantly different from a slope of zero. Regression results (Fig. S7, Table S2) 394 
and statistics (Table S2) for subgroups can be found in the supplementary information file. 395 

3.3 ci/ca ratio and pCO2 396 

We examined ci/ca ratios measured with the LI-6400. These values are reported in Fig. 4 and 397 
Table SD2. Measured ci/ca ranges from 0.26 to 0.95, but an ANOVA test showed no significant 398 
differences among CO2 groups at the 0.05 significance level.  399 
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 400 

Fig. 4. Measured ci/ca values for all trees from 2019. Direct ci/ca measurements are made by the 401 
LI-6400s as described in Methods. The middle marking on each box is the median value and the 402 
bottom and top edges the 25th and 75th percentiles, respectively. Whiskers extend to the largest 403 
and smallest values not considering outliers, which are shown as ‘+’ marks. Unchambered 404 
outdoor ambient tree data is denoted with a shaded box. Each box represents seven 405 
measurements.  406 

3.4 LMA, C:N ratios, and Amax values 407 

LMA, C:N, NPA, and Amax values are plotted in Fig. 5, and values are provided in Tables SD1 408 
and SD3. Across all plants in both years, LMA averaged 140 g/m2 with a standard deviation of 409 
32 g/m2.  ANOVA analysis showed LMA does not differ significantly from 425 - 600 ppm or 410 
from 800 - 1000 ppm, but there is a statistically significant increase in LMA from lower CO2 411 
treatment groups (425, 450, and 600 ppm) to higher treatment groups (800 and 1000 ppm) at the 412 
0.05 significance level. The mean LMA of the lower treatment groups is 125 g/m2, and that of 413 
the higher treatment groups is 161 g/m2. C:N ratios across all plants both years show a similar 414 
trend with pCO2 (mean 32.6, standard deviation 10.9). C:N is not statistically significantly 415 
different from 425 - 450 ppm or from 800 - 1000 ppm, but there is a statistically significant 416 
increase in C:N from the lowest CO2 group to 600 ppm and from 600 ppm to the highest 417 
treatment group at the 0.05 significance level. The mean C:N of the lowest group is 25.3, the 418 
mean for 600 ppm is 29.4, and the mean for the highest treatment group is 40.8. NPA across all 419 
plants and years averaged 2.97*10-4 g/m2 with a standard deviation of 1.30*10-4 g/m2. NPA at 420 
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425 ppm is statistically significantly different from NPA at 450, 800, and 1000 ppm, but not at 421 
600 ppm. NPA in all elevated treatment levels is statistically indistinguishable.  Amax values 422 
measured on small trees in 2019 are on average higher than values measured on large trees over 423 
the same period (mean 8.39, standard deviation 3.01 µmol•m-2s-1; mean 4.97, standard deviation 424 
2.79 µmol•m-2s-1, respectively). There are no significant differences in Amax between the trees at 425 
425 and 450 ppm nor among the three treated groups at 600, 800 and 1000 ppm, but the trees 426 
exposed to elevated CO2 have significantly higher Amax than those at near ambient levels at the 427 
0.05 significance level. (Mean Amax for 425 and 450 ppm trees is 7.45 µmol•m-2s-1, mean for 428 
trees in elevated chambers is 8.98 µmol•m-2s-1) 429 

430 
Fig. 5. Boxplots of C:N, NPA, LMA, and Amax values binned by nominal CO2 level. Note, the x-431 
axis is not a linear scale. The middle marking on each box is the median value and the bottom 432 
and top edges the 25th and 75th percentiles, respectively. Whiskers extend to the largest and 433 
smallest values not considering outliers, which are shown as ‘+’ marks. Row 1: C:N ratios, 434 
sample sizes refers to data points per box. Row 2: N per unit area (NPA) in g/m2, sample sizes 435 
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refers to data points per box. Row 3: Leaf mass per area (LMA) in g/m2, sample sizes refers to 436 
data points per box. Row 4: Amax values in µmol/m2•s, sample sizes are shown directly above 437 
each box. Column 1: 2018 large tree data from weeks 8, 9, and 10. Leaves from week 11 were 438 
not photographed to obtain leaf area due to handling mishap. Column 2: 2019 large tree data 439 
from weeks 7, 8, 9, 10. Column 3: 2019 small tree data from weeks 7,8,9,10. Column 4: All data 440 
together. In all panels, letter labeling from ANOVA test (p<0.05).  441 

3.5 Discrimination data compiled from the literature  442 

Our compilation of ∆13Cleaf values is reported, with references, in Table SD4. Sensitivity values 443 
(S) expressing the change in ∆13Cleaf with a 1 ppm increase in pCO2 are coded by growth 444 
form/plant type (Fig. 6) and range from -0.313 to +0.194 ‰/ppm. The mean S value is 0.000 445 
‰/ppm, and S values near 0 are very common. The largest positive and negative values of S fall 446 
below 400 ppm, and all of the values above 500 ppm are close to zero (between -0.015 and 0.021 447 
‰/ppm). When coded by growth form, no trends emerge. Separating angiosperms from 448 
gymnosperms also shows no trends; both groups span nearly the full range of S values (Fig. S9). 449 

 450 

 451 

Fig. 6. Sensitivity values (S) calculated from the literature (Table S4) and this study. The x-axis 452 
location represents the midpoint between the two CO2 levels that were used to calculate S. 453 
Studies ranged in pCO2 from 97 to 3000 ppm, but data here are only shown up to 1200 ppm (see 454 
supplementary file for full range, Fig. S8). Data were separated by plant type: grasses = yellow 455 
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circles; herbs = pink diamonds; shrubs = orange triangles; trees = blue squares. Ginkgo values 456 
from this study are highlighted in green squares. 457 

4. Discussion 458 

4.1 Implications of discrimination data from the literature 459 
Our compilation of data from the literature helps to broaden evaluation of the effect of pCO2 on 460 
∆13Cleaf in C3 plants. The compilation does not support a consistent relationship between 461 
sensitivity (S) and pCO2 (Fig. 6). Instead, sensitivity values range from ~ +0.2 ‰/ppm to -0.3 462 
‰/ppm; opposite relationships of about equal magnitude. Sensitivity values become smaller with 463 
increasing pCO2, indicating asymptotes in both positive and negative responses. These findings 464 
present two difficulties for the C3 plant proxy: (1) Without a consistent positive response of  465 
D13Cleaf to pCO2, the application of the C3 plant proxy to fossil record is questionable, and (2)  466 
the asymptote in any response of D13Cleaf above ~400 ppm CO2 means the C3 proxy is not useful 467 
for past periods of elevated pCO2 that are of geological interest.  468 
 469 
How can we understand the myriad of plant responses to increasing pCO2? We hypothesize that 470 
a combination of factors relating to plant growth strategy, taxon-specific traits, and/or 471 
environmental variables contribute to the diverse relationships between S and pCO2. We explore 472 
these factors in the following discussion, beginning with a review on the controls of ∆13Cleaf. 473 
Then, we use our study of Ginkgo as a model to explore some of these factors in the context of 474 
previous work (SJ2012, SJ2018) and new hypotheses. 475 

4.2 Controls of ∆13Cleaf  476 

Leaf level carbon isotope discrimination (∆13Cleaf) is determined proximately by the balance 477 
between the rate at which CO2 is supplied to chloroplasts and the rate at which it is consumed by 478 
carboxylation during photosynthesis (A) (Farquhar et al., 1982). The rate of supply is largely 479 
determined by atmospheric concentration of CO2 (ca), and the rates of diffusion through stomata 480 
(gs) and mesophyll (gm). The rate of photosynthesis is affected by temperature, light, supply of 481 
CO2, as well as biochemical and enzymatic parameters (Can I cite a textbook here?? -Yes, or 482 
early Farquhar). Leaf level discrimination is also influenced by the rate of photooxidation 483 
relative to photosynthesis, which is driven by temperature and the atmospheric O2:CO2 ratio 484 
(Farquhar et al., 1982). Leaf level discrimination is generally calculated from the isotopic 485 
compositions of atmospheric CO2 (δ13Cair) and whole leaf tissue (δ13Cleaf) according to Eq. 2; 486 
therefore, it is also possible for ∆13Cleaf to be influenced by the proportion of different leaf tissues 487 
that have acquired different isotopic compositions during biosynthesis (e.g., lipids are commonly 488 
-4‰ and starch +2‰ compared with bulk leaf; (Tcherkez et al., 2011)). These relationships are 489 
diagrammed in Fig. 7.  490 



 18 

491 
Fig. 7. Schematic of the movement of carbon between pools in the leaf and the factors that affect 492 
fluxes between pools and ultimately ∆13Cleaf. ∆13Cleaf is calculated from δ13Cair and δ13Cleaf and is 493 
therefore influenced by rates of diffusion, photosynthesis, photooxidation, and isotopic 494 
fractionations that occur with each step as well as the proportion of different tissue types in the 495 
leaf. Biosynthetic fractionations are associated with the synthesis of lipids, starches, etc. The 496 
proportions of these compounds within the leaf could affect bulk δ13Cleaf. 497 

The large number of ways in which plants can respond to increased ca permits multiple 498 
relationships between ca and ∆13Cleaf, some of which are described in Table 2. We organize the 499 
discussion of our results below according to these scenarios. Before discussing potential effects 500 
of ca on ∆13Cleaf, however, we point out that in mixed effects model 1 (MEM1) an important 501 
factor explaining variance in ∆13Cleaf is whether or not a plant was grown within or outside of a 502 
chamber (31.0, 43.3, 28.2, and 22.0% of variance for 2018 Large, 2019 Large, 2019 Small trees, 503 
and all data, respectively). ∆13Cleaf falls significantly from outdoor ambient trees (mean ∆13Cleaf 504 
from all outdoor trees in both years is 18.0‰) to chamber ambient trees (mean 15.6‰). Chamber 505 
effects like this have been noted in comparisons between chamber and free air carbon enrichment 506 
(FACE) studies as well (Ainsworth & Long, 2005). The chamber effect in our study is unlikely 507 
to be related to the small increase in pCO2 from outdoor ambient to chamber ambient trees (32 508 
ppm) but could be related to temperature differences between the chambers and the ambient 509 
environment.   510 
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  Observed Hypothesized   

Reference ∆13Cleaf Amax ci/ca gs gm Photo-
respiration ci/ca cc Explanation 

SJ2012 increases 
(hyperbolic) - - increases - - increases - 

Higher gs increases ci/ca, 
permitting greater 

expression of RuBisCo 
fractionation (simplified 
Farquhar model) 

SJ2018 increases 
(hyperbolic) - - constant - decreases constant - 

Higher internal CO2/O2 
ratio reduces 

photorespiration (which 
would otherwise cause 

lower ∆13Cleaf) 

This 
paper unchanged increases unchanged constant decreases not 

important (observed) constant 

Decreased mesophyll 
conductance limits supply 
of CO2 to chloroplasts, 
and Amax increases, either 
of which could keep Cc 
and ∆13Cleaf constant. 

Table 2. Responses of ∆13Cleaf to increasing pCO2 in SJ2012, SJ2018, and this study. Parameters fall into “Observed” or 511 
“Hypothesized” categories to explain observed ∆13C. 512 
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Temperatures are higher within than outside of chambers, on average 3.2°C higher during the 513 
2018 sampling season. This equates to a vapor pressure deficit (VPD) difference of 0.16 kPa 514 
(Fig. S3 panel B). Higher VPD has been shown to significantly decrease ∆13Cleaf, especially in 515 
gymnosperms, and the difference we observe in VPD would account for an ~1.0‰ drop in 516 
∆13Cleaf from outdoor to chambered plants (Hare & Lavergne, 2021). This effect alone is not 517 
sufficient to explain the entire difference in ∆13Cleaf between ambient and chambered trees. In 518 
addition to VPD changes, heightened temperatures can cause lower RuBisCO specificity, leading 519 
to higher rates of photorespiration (Tcherkez et al., 2006). Though VPD was higher in 520 
chambered than outdoor trees, there is no reason why trees in chambers growing at the four 521 
different CO2 levels should have experienced different VPD. Therefore, we consider the 522 
chambered trees independent of the ambient controls to examine how ∆13Cleaf varies with 523 
changing pCO2 in the absence of differences in VPD.  524 

In this study we controlled for several environmental variables. Altitude is constant across our 525 
experimental plot. By using clones, we ensured that RuBisCO optimization does not vary among 526 
trees (Tcherkez et al., 2006). We maintained soil moisture at or above 70% of field capacity and 527 
regularly fertilized all plants. However, there may be residual variation in soil texture caused by 528 
differences in the topsoil used to plant the large trees. Although this may contribute to the large 529 
proportion of the variance in MEM1 explained by random effects (Chambernum:Treenum), 530 
because of the randomized block design, it should not create a false correlation between ∆13Cleaf 531 
and pCO2. Furthermore, the small trees planted in pots are all in the same soil type and still show 532 
high variance associated with random effects and a lack of relationship between ∆13Cleaf and 533 
pCO2. Once ambient trees are removed from our dataset, all remaining trees were grown at the 534 
same temperature and VPD. We ran a second mixed effects model (MEM2) with just chambered 535 
trees. Importantly, when ambient trees are removed from the analyses, the proportion of variance 536 
in ∆13Cleaf explained by pCO2 drops from 16.7 and 21.5% to 1.4 and 7.6% for 2019 large and 537 
2019 small trees, respectively. For 2018 large trees, the proportion of variance explained by 538 
pCO2 increases from 1.7 to 25.5%, but LMA still explains much more variance (59.1%).  539 

In the following sections, we consider explanations for the absence of a relationship between 540 
pCO2 and ∆13Cleaf. These correspond to scenarios outlining ∆13Cleaf response to increasing pCO2 541 
presented in Table 2.  542 

4.3 Model of SJ2012: increasing ci/ca increases discrimination 543 

In the model of SJ2012, increasing pCO2 is expected to drive an increase in ∆13Cleaf by 544 
increasing ci/ca and thus the internal supply of CO2, allowing greater expression of fractionation 545 
due to RuBisCO (row 1, Table 2). We explicitly tested the SJ2012 model by using their equation 546 
relating ∆13Cleaf to pCO2 (equation 6 in SJ2012) to predict known pCO2 in our experimental 547 
trees.   548 
 549 
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 551 
In Eq. 7, “A”, “B”, and “C” are fitting parameters determined in SJ2012 to be 28.26, 0.22, and 552 
23.85, respectively. This equation was used to solve for pCO2 for each value of ∆13Cleaf from our 553 
experiment (Fig. 8).  554 
 555 
The SJ2012 model greatly underpredicts CO2 from ∆13Cleaf data. Further, the CO2 prediction 556 
residuals are trended (Fig. 8B), with the SJ2012 model increasingly underpredicting actual pCO2 557 
as it rises from 450 to 1000 ppm.  558 
 559 
Although the equation of SJ2012 is a poor predictor of actual pCO2, our results are consistent 560 
with the simplified Farquhar model upon which the SJ2012 equation is based. In the simplified 561 
Farquhar model (equation 1 of this paper), ∆13Cleaf can only increase if ci/ca increases, since a and 562 
b are constants. Our LiCOR measurements indicating that ci/ca does not increase with pCO2 (Fig. 563 
3) are consistent with no change in ∆13Cleaf. We should note, however, that the physiological 564 
method of evaluating ci/ca has limitations. The LiCOR measurements are conducted over short 565 
intervals and thus may not capture the average physiological response of the plant to growth 566 
under elevated pCO2, which is why we have focused on the mean maximum estimate for each 567 
treatment level.  568 
 569 
We also point out that the simplified Farquhar model considers ca as a constant (Farquhar et al., 570 
1982, 1989a). Under constant ca, the internal pool of CO2 available for fixation by RuBisCO can 571 
increase only if stomatal diffusion and ci/ca increase. With rising ca, however, the internal pool of 572 
CO2 available for fixation by RuBisCO will increase even if ci/ca remains constant. (Farquhar et 573 
al., 1982, 1989a)In other words increasing ca alone could increase ∆13Cleaf, contrary to equation 574 
1. Given that our LiCOR measurements indicate constant ci/ca with rising CO2 perhaps we 575 
should expect D13Cleaf  to increase because of a rising internal reservoir of CO2. We explore this 576 
more in Section 4.5.  577 
 578 
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 579 
Fig. 8. (A) SJ2012 model-predicted CO2 plotted against measured chamber CO2. Blue line is a 580 
1:1 line for reference. (B) Differences between predicted CO2 and measured CO2 values. Each 581 
point represents the mean of one tree over the last four weeks of the growing season (4 leaves per 582 
point). 583 
 584 
4.4 Model of SJ2018: decreasing photorespiration increases discrimination 585 
 586 
In scenario 2, ci/ca is constant with increasing pCO2 and a decreasing rate of photorespiration 587 
drives an increase in ∆13Cleaf. During photorespiration, O2 reaches the active site of RuBisCO, 588 
which then acts as an oxygenase, using O2 as a substrate. The result of this oxygenase activity is 589 
that previously fixed, 12C-enriched carbon, is converted to CO2, which can then diffuse out of the 590 
leaf. Photorespiration is therefore associated with a positive? fractionation factor (“f”). In C3 591 
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plants, f varies from ~10 to 22‰ (Schubert & Jahren, 2018). In a second study of ∆13C in 592 
Arabidopsis, Schubert and Jahren (2018) incorporated photorespiration into their model for 593 
inferring pCO2 from ∆13C: 594 
∆!"𝐶	 = 𝑎 + (𝑏 − 𝑎) *'!

'"
+ − &(<∗)

'"
,  (8) 595 

where 𝛤∗ is the CO2 compensation point in the absence of dark respiration. In Schubert and 596 
Jahren (2018), Arabidopsis was grown in sub-ambient CO2 conditions where O2:CO2 ratios are 597 
high, increasing photorespiration. ∆13C showed the same positive hyperbolic relationship with 598 
pCO2 as in Schubert and Jahren (2012), but following Equation 8, all of the increase in ∆13C was 599 
attributed to decreasing photorespiration with increasing pCO2 at constant ci/ca, although no 600 
independent physiological estimates of ci/ca were made.  601 
 602 
We fit the SJ2018 model to our data using values of a = 4.4‰, 𝛤∗ = 80 ppm (within the range 603 
reported for Ginkgo biloba; (Beerling et al., 1998; Miyazawa et al., 2020)) and f = 10‰. Both 604 
“b” and ci/ca were optimized for a best fit using a least-squares fitting function. The best-fit result 605 
at constant ci/ca is shown in Fig. 9. The residuals shown in panel b are large, varying from -4 to 606 
almost 6‰. Residuals are also trended, with more negative residuals at higher pCO2. The poor fit 607 
of this model to our data is not surprising; gymnosperms like Ginkgo have been shown to be less 608 
prone to photorespiration than angiosperms (Hare & Lavergne, 2021), so a model that relies on 609 
photorespiration as a driving mechanism for changes in ∆13C is not expected to explain our data. 610 
Additionally, even the lowest levels of pCO2 in our study (425 ppm) may be too high for 611 
photorespiration to have a measurable effect on ∆13Cleaf. (Note that pCO2 >400 ppm is thought to 612 
have persisted for most of the deep time periods with a hothouse climate, so the lack of a 613 
photorespiration effect under geologically relevant pCO2 levels is important). 614 
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 615 
Fig. 9. (A) SJ2018 model used to fit b and ci/ca with a set value of f (10‰) and ∆13Cleaf data from 616 
this study. (B) Residuals. Each point represents the mean ∆13Cleaf of one tree over the last four 617 
weeks of the growing season (4 leaves/point).  618 
 619 
4.5 Model of this paper: multiple factors influence discrimination 620 
We have seen that the models for the control of discrimination proposed by SJ2012 and SJ2018 621 
(first two rows of Table 2) are poor predictors of the D13Cleaf of G. biloba in our experiment. 622 
Each model implies that a single factor controls leaf-level discrimination: ci/ca (SJ2012) and 623 
O2:CO2 ratio (SJ2018). In our experiment we observed significant increases in Amax and LMA 624 
with increasing pCO2 that led us to consider the role of other factors in controlling D13Cleaf. We 625 
hypothesize that the thicker G. biloba leaves that grow under elevated CO2 may slow diffusion of 626 
CO2 through the mesophyll from substomatal spaces (decrease gm), thus limiting the supply and 627 
concentration of CO2 at the sites of fixation within chloroplasts (cc) and reducing the ability of 628 
RuBisCO to express its preference for 12C. We further hypothesize that our observed ~20% 629 
increase in Amax under elevated CO2 results in more rapid depletion of chloroplast CO2 supplies 630 
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(cc) and thus the ability of RuBisCO to express its preference for 12C (row 3, Table 2). These 631 
changes in gm and Amax would decrease the flux of CO2 to chloroplasts while at the same time 632 
increasing rates of fixation. This would offset the effect of higher CO2 concentration within 633 
substomatal spaces (ci) and result in constant ∆13Cleaf (Farquhar et al., 1982) even with rising ca. 634 
The combination of restricting supply and increasing consumption of CO2 in the chloroplasts 635 
prevents ∆13Cleaf from rising.  We also cannot rule out changes in bulk leaf composition such as 636 
an increase in starch that would increase δ13Cleaf and make ∆13Cleaf appear smaller. More 637 
generally, we should think about the expectation based on the simplified Farquhar model that ci 638 
can only increase through an increase in gs. This is true as long as ca is constant, but with rising 639 
ca, ci will rise in proportion to ca even with constant gs. 640 
 641 
If we broaden our thinking to recognize other factors aside from gs as influencing ∆13Cleaf 642 
(especially under increasing ca), we then need to consider alternate explanations for constant 643 
discrimination under increasing ca. Mesophyll conductance has received little attention in plant-644 
based paleo-pCO2 proxies, but is increasingly recognized as a significant factor in ∆13Cleaf, 645 
especially for gymnosperms in which mesophyll conductance is the largest single factor limiting 646 
photosynthetic rate (~40% of the limitation on diffusion), followed by stomata and biochemistry 647 
which each account for ~30% (Flexas et al., 2012; Veromann-Jürgenson et al., 2020). Other 648 
studies have found a strong positive relationship between mesophyll thickness and LMA in C3 649 
plants (Hanba et al., 1999). Although we have not measured mesophyll conductance directly in 650 
this study, we have observed an increase in LMA in plants grown under higher pCO2 (Fig. 5, row 651 
3), along with a significant increase in C:N ratio (Fig. 5, row 1). The increase in LMA and C:N 652 
ratio are consistent with an increase in structural tissue and/or starch, which would be expected 653 
to decrease total leaf diffusivity. This is consistent with the substantial proportion of variance in 654 
∆13Cleaf that LMA explains in our MEM2 (18.7% for all data).  655 
 656 
4.6 Plant growth strategy and taxon-specific traits also affect ∆13Cleaf 657 
 658 
(Voelker et al., 2016) outlined several leaf gas exchange strategies responding to increasing 659 
atmospheric CO2 levels. Plants may (1) maintain a constant internal CO2 level (ci), (2) maintain a 660 
constant difference between external and internal CO2 (ca - ci), (3) maintain a constant ratio of 661 
internal to external CO2 (ci /ca), or (4) use a mix of strategies depending on context and the 662 
relative importance of maximizing carbon gain and minimizing H2O loss. Though cc is the most 663 
important quantity for understanding carbon isotope effects from photosynthesis, ci and ca are 664 
useful in thinking about plant carbon gain/water loss strategies that are mediated by gs.  665 
 666 
A constant ca - ci strategy may be used by herbaceous annual plants that have rapid growth and a 667 
short lifespan (Voelker et al., 2016), like Arabidopsis.  This strategy values carbon gain over 668 
water loss because ci increases with increasing ca. Increasing ci allows greater expression of the 669 
RuBisCO preference for 12C. Long-lived woody plants, particularly gymnosperms like Ginkgo, 670 
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contain less diffusive mesophyll with thicker cell walls (Marshall & Zhang, 1994; Niinemets et 671 
al., 2009) and are more likely to maintain a constant ci and increase water conservation as pCO2 672 
increases. This more conservative growth strategy would prevent Δ13Cleaf from rising with pCO2. 673 
Physiological measurements from this study showed that there was no significant change in ci/ca 674 
with increasing CO2 in Ginkgo (Fig. 4), so ci was not held constant. The strategy taken by 675 
Ginkgo biloba seems to be an intermediate strategy, where water conservation is valued but 676 
carbon gain is not ignored. Reduction in mesophyll conductance further complicates Δ13Cleaf in 677 
Ginkgo but may covary with plant growth strategy to produce a similar lack of change in Δ13Cleaf 678 
with increasing pCO2 in other woody plants with conservative growth strategies. Although 679 
growth strategies can contribute to explaining the difference between small, herbaceous plants 680 
and Ginkgo, there is not an obvious correlation between plant growth form and S in our literature 681 
compilation, and there are positive and negative values of S in each growth form category (Fig. 682 
6).  683 
 684 
Angiosperms and gymnosperms differ in attributes that cause differences in these groups’ 685 
response to increasing pCO2. Though photorespiration was unimportant in understanding Δ13Cleaf 686 
in this study of Ginkgo and for gymnosperms generally, under high O2:CO2 levels, 687 
photorespiration becomes increasingly important for angiosperms. Changes in VPD negatively 688 
affect both gymnosperm and angiosperm ∆13Cleaf, though the effect is larger for gymnosperms 689 
(Hare and Lavergne 2021). When this compilation is divided into angiosperms and 690 
gymnosperms, we still fail to see any patterns: both angiosperm and gymnosperm S values span 691 
almost the entirety of the data space (Fig. S9). Even more heterogeneity between plants can be 692 
caused by differences in RuBisCO specificity which impacts the isotope effect associated with 693 
photosynthesis; the “b” value in equation 1 is often taken to vary between 26 and 30‰ (Schubert 694 
and Jahren 2012), which can give several ‰ of variability in ∆13Cleaf.  695 
 696 
4.7 Environmental factors other than pCO2 affect ∆13Cleaf 697 
Even if plant growth strategy, group-specific traits, and taxon-specific traits are thought to be 698 
reliably known for the fossil plants to which the C3 proxy is applied, environmental variables 699 
aside from pCO2 are also known to have significant effects on Δ13Cleaf. Water availability has a 700 
particularly strong relationship with ∆13Cleaf, which has been demonstrated in broad geographic 701 
patterns (Diefendorf et al., 2010) as well as in controlled experiments (Lomax et al., 2019). 702 
Altitude has a strong negative relationship with ∆13Cleaf, as does VPD (Cornwell et al., 2018; 703 
Schlanser et al., 2020; Hare & Lavergne, 2021) Soil properties such as pH and texture also have 704 
an important influence on ∆13Cleaf via water availability (Cornwell et al., 2018). Temperature 705 
reduces RuBisCO specificity, causing increased photooxidation (Tcherkez et al., 2006). Finally, 706 
O2:CO2 ratios have an important influence on ∆13Cleaf in angiosperms (Hare & Lavergne, 2021). 707 
Given the lack of a reliable paleo-O2 proxy and uncertainties in paleo-VPD, paleoaltitude, and 708 
soil features, it appears difficult to use ∆13Cleaf as a proxy for ancient pCO2, even if fossils are 709 
matched for water availability and taxon-specific differences in ∆13Cleaf are accounted for. 710 
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 711 
The compounding effects of so many factors on ∆13Cleaf—plant growth strategy, mesophyll 712 
conductance and assimilation rate, angiosperm/gymnosperm differences in response to VPD and 713 
O2:CO2, RuBisCO specificity—make it difficult to imagine using one relationship between pCO2 714 
and ∆13C applied to a single plant species to reconstruct paleo-pCO2. Some have called for an 715 
assemblage approach to the C3 plant proxy, where several types of fossil plants are used in hopes 716 
of averaging out taxon-specific effects (Porter et al., 2019). Even with this approach, uncertainty 717 
lies in reconstructing the environmental and physiological variables known to influence ∆13Cleaf. 718 
The complexity and variability in the relationship between pCO2 and ∆13Cleaf make the 719 
reconstruction of paleo-pCO2 from carbon isotope discrimination in C3 plants unreliable. 720 
Furthermore, the underlying model for ∆13Cleaf response to increasing pCO2, Eq. 1, is unfit for 721 
application to changing pCO2 conditions, so the model used in the C3 plant proxy is 722 
fundamentally flawed.  723 
 724 
5. Conclusions 725 
 726 
1. In our experiment with Ginkgo biloba, we do not observe an increase in ∆13Cleaf with 727 
increasing pCO2. Our results are inconsistent with a positive hyperbolic relationship 728 
between ∆13Cleaf and pCO2 that could underpin a simple proxy for paleo-pCO2 (the C3 729 
plant proxy). 730 

2. Likewise, we find no evidence for the changes in ci/ca or photorespiration that have been 731 
proposed as the underlying mechanisms for the C3 plant proxy (SJ2012 or SJ2018). 732 
Instead, we hypothesize that increasing leaf mass per area coupled with increasing 733 
assimilation rate are responsible for the lack of relationship we observed between ∆13Cleaf 734 
and pCO2.  735 

3. A compilation of ∆13Cleaf data from the literature shows no clear trend between ∆13Cleaf 736 
and pCO2. Responses vary widely even within plant types (herbs, trees, shrubs, grasses). 737 
∆13Cleaf lies at the nexus of different physiological and biochemical processes within 738 
leaves, and the most important of these processes respond to changes in water and light 739 
availability, temperature, humidity, growth strategy, and leaf anatomy and development, 740 
as well as atmospheric composition.  741 

4. Consequently, it is unlikely that ∆13Cleaf will consistently record atmospheric composition 742 
or any single environmental parameter. However, when the geological and botanical 743 
context of fossil leaves provide constraints on some of the environmental conditions and 744 
anatomical or physiological constraints, the isotopic composition of fossil leaves can be a 745 
powerful tool for interpreting past environmental conditions and plant function. 746 
 747 
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