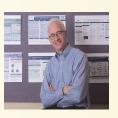
National Association of County & City Health Officials (NACCHO)

Public Health Preparedness Summit

Learning from Disasters


Matthew Seeger, Ph.D. Wayne State University Department of Communication

Shawn P. McElmurry, Ph.D., P.E. Wayne State University Department of Civil & Environmental Engineering

Marcus Zervos, MD WSU School of Medicine, Division Head, Infectious Diseases, Henry Ford Health System

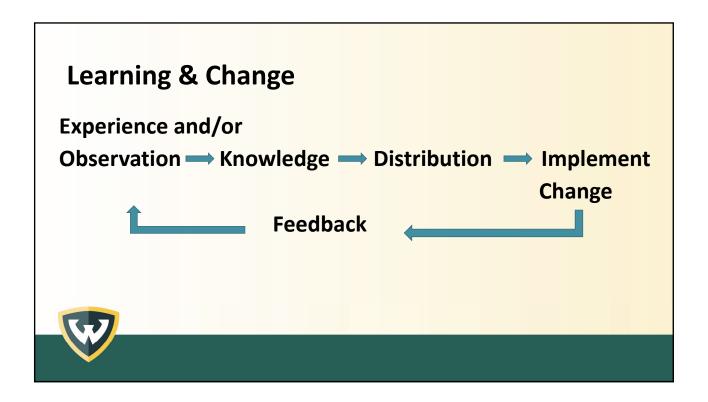
Paul Kilgore, M.D., M.P.H. Wayne State University Eugene Applebaum School of Pharmacy

Learning from Disasters

Post Crisis Creates an Opportunity to Learn

Interest in understanding

- What happened
- What worked
- What didn't
- What needs to change


Organizational Learning

Organizations and communities learn by encoding inferences from their or other's history into routines, procedures and plans that guide future behavior.

Organizations learn from their own direct experience
Trial and Error

Organizations learn by observing the experience of others
Vicarious

Crisis as a learning opportunity A Crisis . . .

- Focuses attention
- Signals some deficiency
- Provides motivation to search
- Creates consensus for need for change
- Brings groups together to address a specific issue

Learning from Disasters

Post Crisis Creates an Opportunity to Learn

Interest in understanding

- What happened
- What worked
- What didn't
- What needs to change

Levels of Learning

Surface level learning

Procedures, Processes Plans

Deep Learning

Reconsidering fundamental assumption and beliefs about the nature of risk and threats and how to avoid them.

Post-Crisis Learning Structures

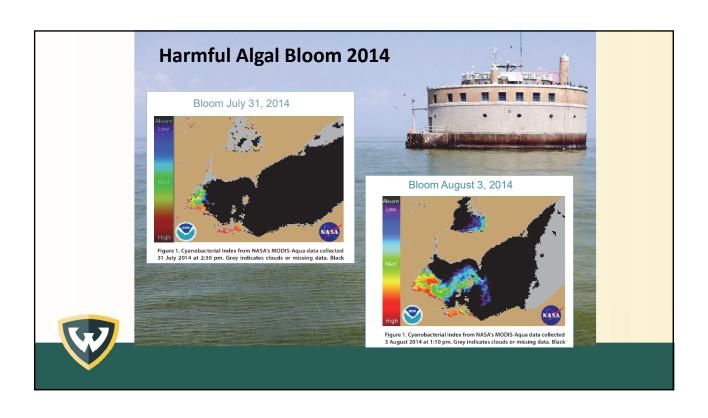
- Media investigations
- After Action Reports
- Independent investigations
- Lessons Leaned Reports
- Investigating Commissions: 9/11 Commissions

Cases of Learning

- Flint Water Crisis
- Toledo Water Crisis
- Winter Storm Uri
- Covid 19 in Detroit

Water System Failures and Opportunities: Flint Water Crisis and Toledo, Harmful Algal Bloom

Matthew Seeger, Ph.D.
Professor and Dean
Wayne State University
Matthew.Seeger@Wayne.Edu



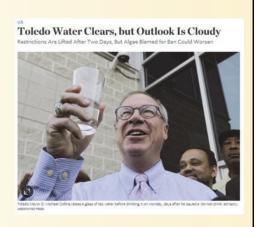
Case study – the Toledo water crisis (2014)

Microcystins – a form of hepatoxin produced by freshwater cyanobacteria a naturally occurring organism sometimes referred to as "blue green algae"

- August 2, 2014 3:00 a.m. email alert from City
- Nearly ½ million people affected for two days not to drink, brush teeth, wash pets, not to boil etc. – a story of international interest
- Medical procedures rescheduled, food destroyed, events cancelled, emergency water supplies provided.

- Warning was fast and efficient.
 - Short Duration
 - Weekend
 - Social Media
- Coordination between Public Health, Municipal Water System, Emergency Response, City Government
 - Pre-event and emerging relationships
 - People connections
- The Toledo Water Crisis was focused attention created changes
 - Changes to engineered system.
 - Processes, monitoring, response, coordination
 - Assumptions about Lake Erie

Lessons Learned: Toledo


- 1. Better tools for early detection were needed
- 2. Additional chemical feed capacity was needed
- 3. Emergency Response Standard
 Operation Procedures needed
 updating (plus more training)
 4. Federal microcystin standard based on
 additional scientific research was
- needed
- 5. Communication is key

Lessons Learned: Toledo

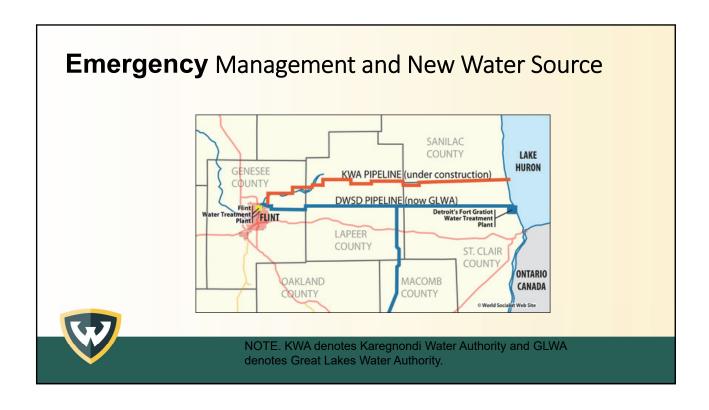
- 6. Municipal water systems are vulnerable.
- 7. Coordination is essential to rapid an effective response.
- 8. Ongoing data sharing between agencies should occur in normal time.
- 9. Crisis creates change.

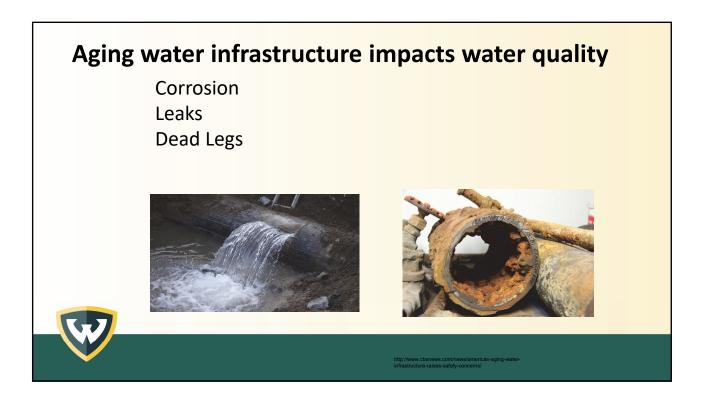
Overview of Flint Water Crisis (2018)

Aging water systems Shrinking Cities Health Risks

- Urban Populations and Health Disparities increase Risks
- Failures in Risk Monitoring and Recognition
- Communication Breakdowns
- Disconnected Systems

Flint Background


- Automotive town
- Population of 99,000 (¼ of Genesee County population)
- 42% of Flint residents in poverty
- The Flint plant was completed in 1954.
- Flint purchased water from Detroit Water and Sewage Department (DWSD) since 1967.



*US Cansus American Community Survey 5-year actimates 2012—16

Pipes, People and Public Health

Understanding the Socio –Technical System

Political

Social

Economic

Consequences

Lead Contamination

Legionnaires Disease

Rashes, Skin Diseases

Flint exemplifies conditions likely to create public health crises

- Socio-demographic factors where health disparities thrive, many of which are present in shrinking cities.
- Pre-existing conditions, such as **decaying infrastructure**, provide the foundation for sustained exposure to illness precursors.
- Signals that could identify or corroborate potential problems are missed (e.g., disconnect between water quality and public health).
- Public disempowerment amplified by high levels of uncertainty that inhibits implementation of mitigation and response.

Lessons Learned: Flint

- 1. Failures of foresight / Risk recognition
- 2. Drinking water systems are complex and not well understood by the public, reflecting a disconnect between infrastructure and those it serves.
- 3. Urban water systems in **shrinking cities experience multiple challenges**; many of these challenges likely increase risk to public health.
- 4. Regulations inadequate: Lead and Cooper Rule

Lessons Learned: Flint

- 5. Social Justice and environmental racism increases risk and undermines response
- 6. Trust is a critical and fragile resource
- 7. Emerging science contexts create *high levels of uncertainty* and compound risk management and communication challenges.
- 8. Coordinating of systems is essential.
- 9. Vicarious Learning "We are not Flint." "We need to test for lead."

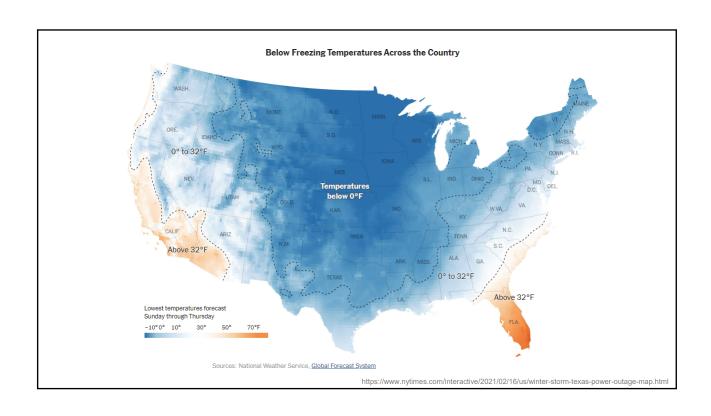
One Wintery Week in Texas: Learning from Winter Storm Uri about BWN

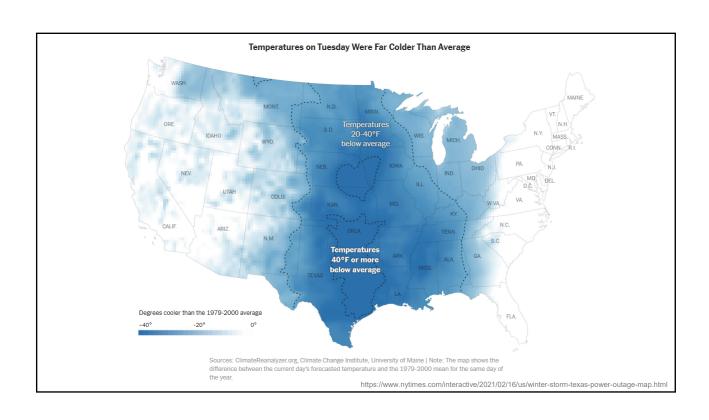
Shawn McElmurry, PhD., P.E.

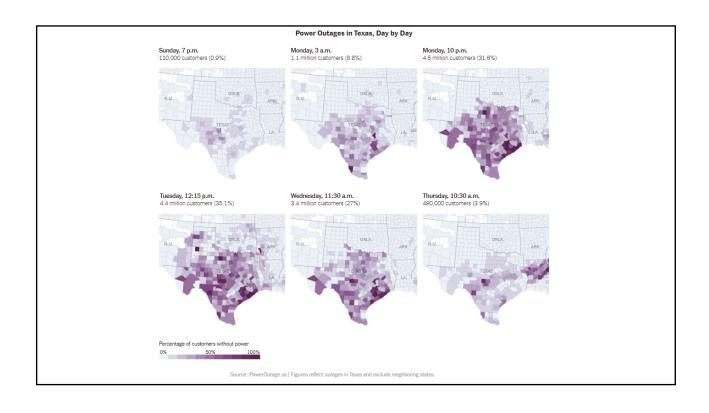
Professor, Department of Civil and Environmental Engineering

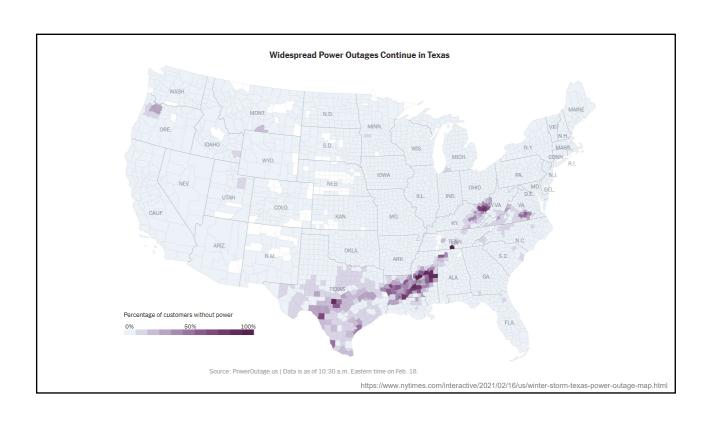
College of Engineering

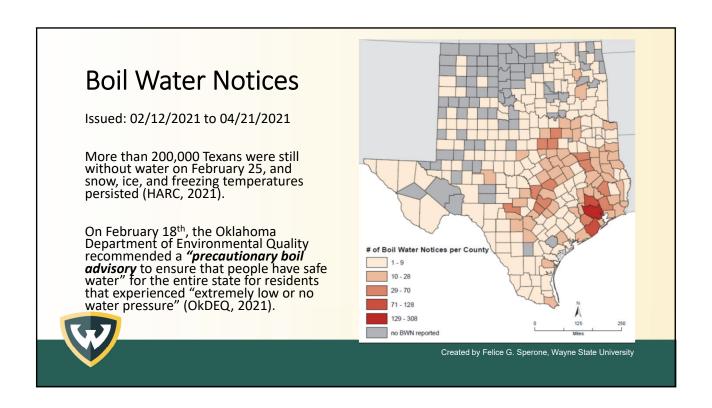
Wayne State University

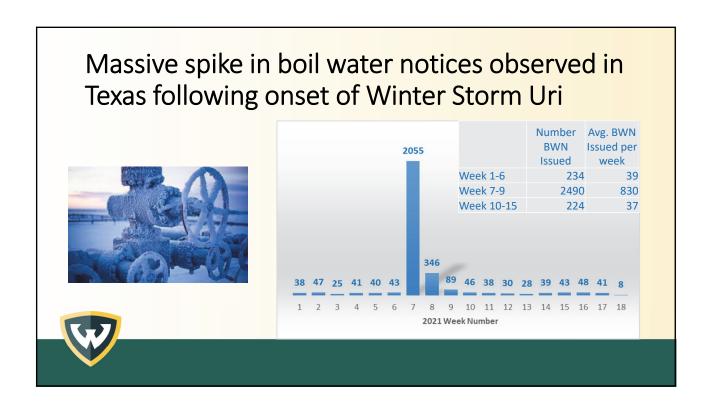



Winter Storm Uri


The Dallas-Fort Worth area, which typically experiences temperatures of 40°F to 60°F in mid-February, had twelve consecutive days of temperatures below freezing, with the lowest temperature (-2°F) recorded for the area occurring on February 16, 2021 (National Weather Service, 2021)





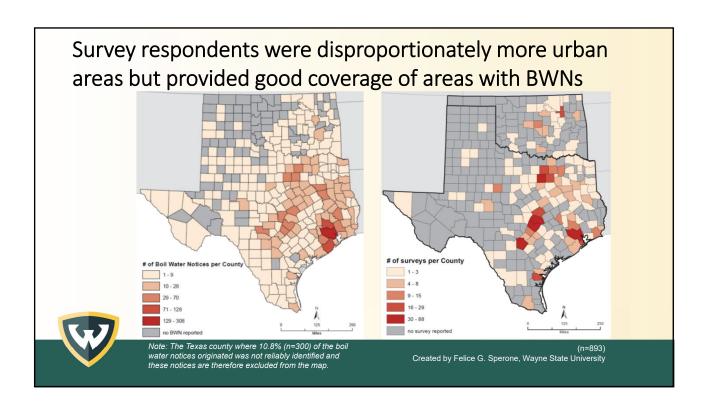


Winter Storm Uri: Feb. 14-20 Impacts

- About of 69 percent, of Texans lost power at some point during Almost half, or about 49 percent, had disruptions in water service.
- The storm contributed to at least 210 deaths from hypothermia, vehicle crashes, carbon monoxide poisoning and chronic medical conditions complicated by the storm.
- Federal Reserve Bank of Dallas estimated the state's stormrelated losses would range from \$80 billion to \$130 billion.

- The Electric Reliability Council of Texas (ERCOT), which manages the electricity grid
- 26 million Texas customers, or nearly 90 percent of the population, depend on ERCOT for electricity services
- Uri far exceeded the parameters of ERCOT's seasonal planning.
- rolling blackouts intended to take stress off the power grid turned into outages that — in some parts of the state — lasted several days.
- Almost half (49%) lost access to running water on average for 52 hours.

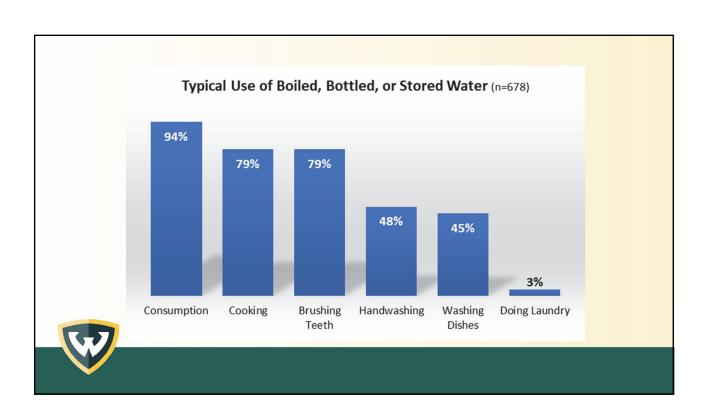
- Challenges included obtaining food or groceries (75%), the loss of Internet service (71%), and difficulty obtaining bottled water (63%).
- One-third of Texans reported water damage.
- One-fifth (18%) opted to leave their home.
- One in four (26%) used their gas oven or cooktop for heat, 8% used a grill or smoker indoors, 5% used an outdoor propane heater indoors.

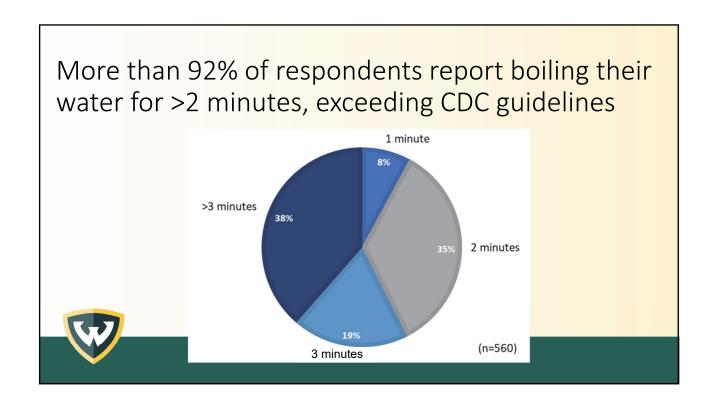

Sources: University of Houston, Hobby School of Public Affairs, "The Winter Storm of 2021" https://uh.edu/hobby/winter2021/storm.pdf

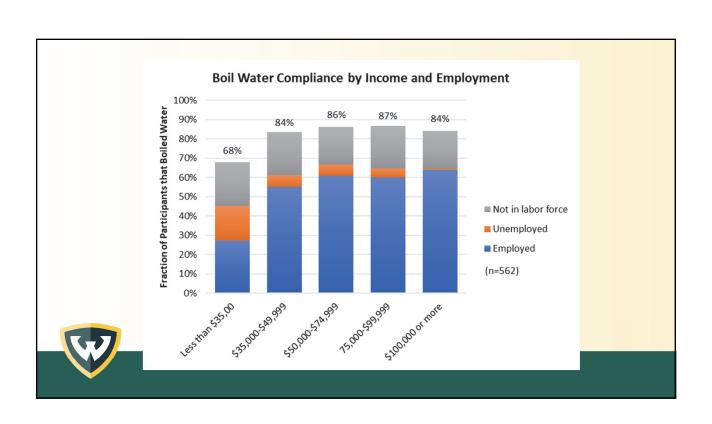
Donald, J. Winter Storm Uri 2021, The Economic Impact of the Storm. https://comptroller.texas.gov/economy/fiscal-notes/2021/oct/winter-storm-impact.php

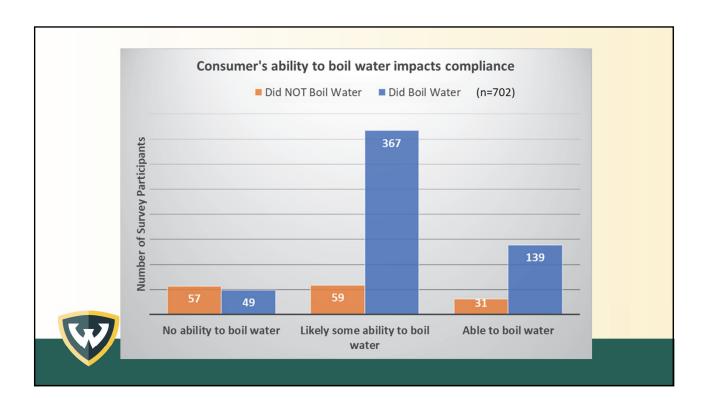
Survey

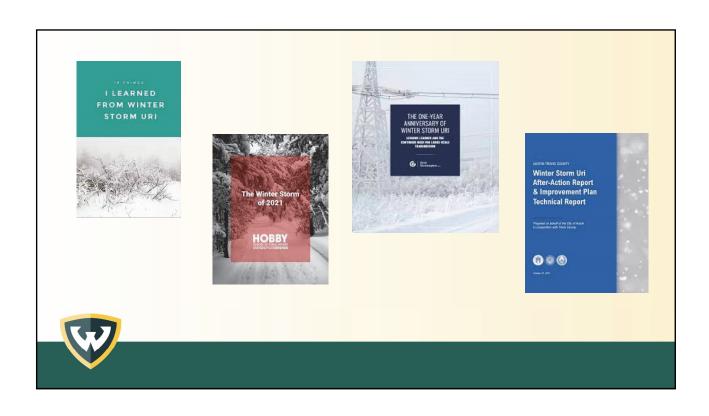
- Administered March 9 to June 14, 2021
- Snowball recruitment with Facebook advertising
- Adults (18+ years old) living in Texas and Oklahoma during the storm were collected March 2 through April 21, 2021
- Almost all the survey respondents (99.9%) reported they were affected by the winter storm from February 14 to 26, 2021.
- Overall, there were a total of 893 participants; 775 from Texas, 101 from Oklahoma (including Indian reservations), and 17 other participants (did not identify, etc.).


Characteristics of Survey Participants	Number of Participants (% sample)	Weigthed Fraction of Texas and Oklahoma Residents
Gender (n = 776)		
Male	87(11%)	49.6%ª
Female	670 (86%)	50.4% ^a
Trans, Genderqueer, and Other	15 (1.5%)	NA
Age (n = 775)		
18-24 Years	51 (6.6%)	9.7%ª
25-44 Years	322 (41.5%)	28.1% ^a
45-64 Years	310 (40.0%)	23.6% ^a
65-74 Years	79 (10.2%)	8%ª
75 Years or over	13 (1.7%)	5.3%ª
Education (n = 775)		
Less than High School	2 (0.3%)	14.9%ª
High School Diploma	25 (3.2%)	26.0%ª
Some College	180 (23.2%)	28.9%ª
Bachelor's Degree or Higher	568 (73.3%)	30.2%ª
Annual Family Income (n= 685)		
Less than \$34,999	105 (15.3%)	27.4%ª
\$35,000-\$49,999	81 (11.8%)	12.5%ª
\$50,000-\$74,999	137 (20.0%)	18.0%ª
\$75,000-\$99,999	131 (33.7%)	12.6%ª
\$100,000 or more	231 (33.7%)	29.5%ª
Race* (n=761)		
White	665 (87.4%)	66.0% ^b
Black	13 (1.7%)	17.6% ^b
Asian	14 (1.8%)	7.8% ^b
Mixed Race	50 (6.6%)	5.9% ^b
American Indian	19 (2.5%)	1.9%b
*Due to a survey error, the number of respond	. ,	
¹ US Census (2019) ACS 1-Year Estimates Selec		
² US Census (2020) DEC Redistricting Data (PL		


There were multiple forms of notifications...


	Boil Water Notice	Do Not Use	Limited Use	Unsure
Yes	709 (95.9%)	34 (4.6%)	284 (38.4%)	24 (3.2%)
No	30 (4.1%)	705 (95.4%)	455 (61.6%)	715 (96.8%)


The majority (79.5%) of the participants who believed they were under a BWN reported that they boiled water before using it



Lesson's Learned from URI

- Boil water notifications issued during Winter Storm Uri were typically followed
- Cascading failure of interconnected systems (e.g. power and drinking water) inhibited some individuals from being able to follow boil water guidance
- Of the people who boiled their water, over 92% reported boiling it for 2 or more minutes
- Households with children present and higher income were more likely to follow boiling water recommendations.

WHIRL Survey of Health and Water Systems

NACCHO Forces of Change

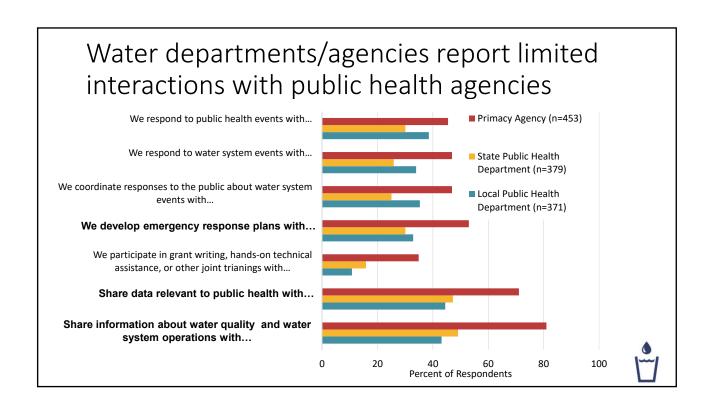
Survey Opened Oct. 27, 2020 Survey Closed Feb. 26, 2021 2,392 known local health departments (LHDs)

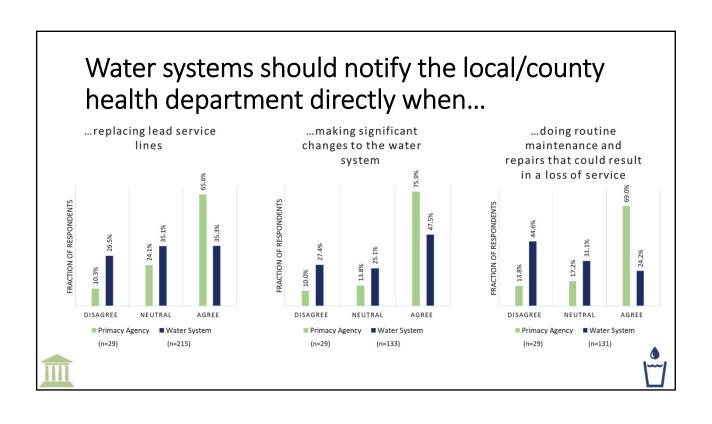
- Sampled 905 LHDs
- 237 total survey respondents
- 16.9% city
- 72.6% county
- 10.5% combination/other

WHIRL Water Survey

Survey Opened Sept. 16, 2020 Survey Closed Jan. 7, 2021 >148,000 known community water systems

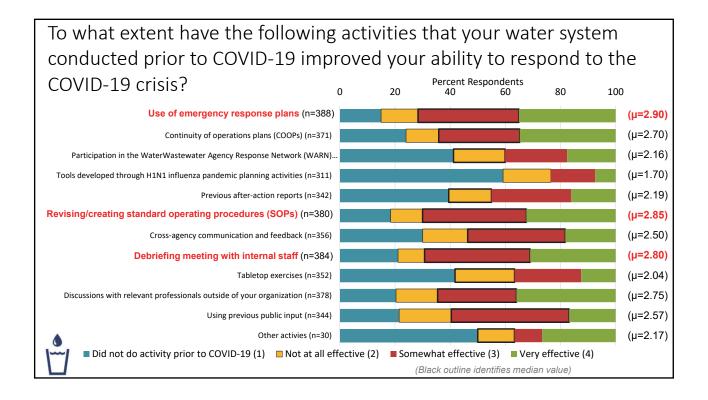
- 471 total survey respondents
- 550 public water systems
- 7 respondents could not be matched to a water system
- 7 water systems were reported more than once


ASDWA Survey


Survey Opened Aug. 10, 2021 Survey Closed Aug. 27, 2021

57 drinking water program administrators

- -50 states, 5 territories, the Navajo Nation, and the District of Columbia
- **29**/57 ASDWA program administrator respondents



To what extent have the following activities that your water system conducted prior to COVID-19 improved your ability to respond to the COVID-19 crisis?

- Use of emergency response plans
- Continuity of operations plans (COOPs)
- Participation in the Water/Wastewater Agency Response Network (WARN)
- Tools developed through H1N1 influenza pandemic planning activities
- Previous after-action reports
- Revising/creating standard operating procedures (SOPs)
- Cross-agency communication and feedback
- · Debriefing meeting with internal staff
- Tabletop exercises
- Discussions with relevant professionals outside of your organization
- Using previous public input
- Other actives

Lesson's Learned from WHIRL Survey

- Little coordination between PWS and health departments
- PWS are closer to their primacy agency than they are to local or state health departments
- Water systems should notify local/county health departments more often based on primacy agency responses
- Even during a crisis that is not water focused, interactions between local health department and PWS remained the same or increased.
- Preparation works! Developing emergency response plans and standard operating procedures were most effective means of improving PWS ability to respond to the COVID-19 crisis

Detroit's Covid-19 Experiences: Hard Lessons about Health Disparities in Urban Contexts

Paul E. Kilgore, M.P.H., M.D.
Associate Professor, Department of Pharmacy Practice
Adjunct Professor, School of Medicine
Wayne State University
paul.kilgore@wayne.edu

Marc Zervos. M.D.
Assistant Dean of Global Affairs
Wayne State University
Henry Ford Hospital, Division of Infectious Diseases
mzervos1@hfhs.org

