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Abstract—Accurate traffic prediction is indispensable for in-
telligent traffic management. The availability of large-scale road
sensing data collected by connected wireless sensors and mobile
devices have provided unrealized potential for traffic prediction.
However, sensory data is often incomplete due to various factors
in the process of data acquisition and transmission. The missing-
ness of traffic data brings a key challenge to the traffic prediction
task since the state-of-the-art ML-based traffic prediction models
(e.g., Graph Convolutional Networks (GCN)) often rely on spatial
and temporal completion of the data. Moreover, existing GCN-
based methods usually build a static graph based on geographical
distances and are limited in their ability to capture the time-
evolving relationships amongst road segments. In this paper, we
develop a heterogeneous spatio-temporal prediction framework
for traffic prediction using incomplete historical data. In the
framework, we build multiple graphs to explicitly model the dy-
namic correlations among road segments from both geographical
and historical aspects, and employ recurrent neural networks
to capture temporal correlations for each road segment. We
impute missing values in a recurrent process, which is seamlessly
embedded in the prediction framework so they can be jointly
trained. The proposed framework is evaluated on a public dataset
of static sensors and a private dataset collected by our roving
sensor system. Experimental results show the effectiveness of
the proposed framework compared to state-of-the-art methods,
and indicate the potential to be deployed into real-world traffic
prediction systems.

Index Terms—Traffic prediction, graph neural network, data
imputation

I. INTRODUCTION

Recent years have witnessed increasing stresses on traffic
systems as a result of the acceleration of urbanization and
the growing human population and numbers of vehicles.
Intelligent Transportation System (ITS) [1] aims to improve
traffic management by leveraging new data-driven and coordi-
nated services and techniques to guide users in the transport
networks. Traffic prediction, whose goal is to predict future
traffic conditions (e.g., traffic volume or travel time) of road
networks using historical observations, is a fundamental task
towards building ITS. Accurate traffic prediction is essential
for delivering key transportation services, such as traffic vol-
ume control, routine schedule and congestion alleviation.

Nowadays, given the massive amount of traffic data gener-
ated and collected by connected wireless sensors and mobile
devices, there is growing interest in building data-driven meth-
ods for traffic prediction. Recent studies commonly formulate
traffic prediction as a spatio-temporal prediction problem. In

9 Lu Su is the corresponding author.

particular, the state-of-the-art deep learning approaches, e.g.,
Convolutional Neural Networks (CNN) and Graph Convolu-
tional Network (GCN), have shown much promise in modeling
the spatio correlations based on the geographic distance and
road connectivity [2]. For example, GCN-based methods have
been shown to achieve superior performance over traditional
empirical models on several traffic prediction tasks due to its
ability to extract complex non-linear dependencies amongst
irregular road networks via the graph-structured modeling [3]-
[6]. On the other hand, Long Short-Term Memory (LSTM) and
temporal convolution have been widely used to capture tempo-
ral correlations. Although these techniques have shown some
success in isolated studies and relatively simple datasets, they
cannot be directly deployed in real-world traffic management
systems due to the following challenges:

Missing data over space and time: In modern society,
traffic data are mainly collected from two types of sensors:
static sensors (e.g., loop detector [3], [5], [7]), and roving
sensors (e.g., GPS device on vehicles [8]-[10]). For static
sensors, missing data is inevitable due to detector malfunc-
tions, communication errors and transmission failures [11]. For
roving sensors, data is often characterized by irregular/non-
uniform samples, and the amount of historical data may vary
across different segments of a road network [10], resulting
in temporal irregularity and spatial sparsity. The existence
of missing data from both sensors can negatively impact the
performance of aforementioned traffic prediction models as
they were originally designed to learn spatio-temporal correla-
tions only from complete data profiles over a continuous time
period. Although they can simply remove or fix incomplete
samples (e.g., filling zeros or mean values), the prediction
performance could drop dramatically with high missing rate.
Addressing this challenge requires the development of novel
mechanism to impute missing data that recovers spatial and
temporal trajectories that are close to the reality.

Dynamic spatial correlations: Most existing GCN-based
methods often build static graph structures according to
geographic distances or external prior knowledge such as
functional similarity and road connectivity [4], [9]. These
methods maintain a fixed graph structure over time even
under different circumstances. However, the constructed graph
structures may not be suitable for predicting future events,
as the spatial correlations of traffic data could change over
time. For example, it is common to see heavy traffic flow
from one road segment to another during the morning peak



hours but much less traffic during other time, which shows the
non-stationarity of spatial correlations between these two road
segments. Hence, relying purely on a single fixed graph, even
with some external knowledge, may not be not sufficient to
model the dynamic spatial correlations among road segments.

To tackle the challenges, we propose a novel frame-
work: Recurrent Imputation based Heterogeneous Graph
Convolution Network (RIHGCN) for traffic prediction. We
handle missing values through a bi-directional recurrent im-
putation process, in which missing values of different road
segments at each timestamp are predicted using spatial and
temporal correlations learned from historical data. We then
combine imputed and observed values into a “complement”
vector and use it for predicting values at the next timestamp.
It is noteworthy that imputed values are treated as trainable
variables in this computational flow, i.e., they can be updated
during the back-propagation of the entire model. This training
strategy enables refining the imputation process and prediction
process at the same time, and thus prevents imputation errors
from impacting the final prediction performance.

Furthermore, to capture dynamic spatial correlations, we
build multiple GCNs based on various distance measurements,
including geographic distances and historical distances mea-
sured by morning peak, evening peak and weekly periodic, etc.
The idea is to predict traffic conditions for each road segment
by leveraging the information from other road segments with
similar historical patterns in each time interval, e.g., morning
peak, evening peak. In particular, we create both a static graph
based on geographic distances and multiple evolving graphs
based on similarities of traffic conditions in each time interval.
By using such heterogeneous graphs, our method enables
learning more complex and non-stationary spatial relationships
amongst road segments.

We evaluate our methods in two real-world traffic datasets.
Our experiments show the superiority of our proposed method
over existing approaches in both traffic prediction and missing
data imputation tasks. Also, we study sensitivity of model
performance in response to a varying number of heterogeneous
graphs and different values of model hyper-parameters.

Our main contributions can be summarized as follows,

e We design a novel traffic prediction framework to predict
traffic conditions and impute missing values simultane-
ously. This can effectively address the limitation of tra-
ditional imputation methods where potential errors from
imputation may negatively impact the final prediction.

e We propose a heterogeneous graph structure, which con-
sists of multiple sub-graphs built on both geographic
distances and various temporal similarities, to represent
the evolving spatial correlations among road segments.
Through learning a GCN for each sub-graph and aggre-
gate the learned representations for each road segment,
we can better model the non-stationary underlying spatial
relationships.

e We impute missing values in a bi-directional recurrent
process, and capture complex spatio-temporal correla-
tions by combining GCN and LSTM. The missing values

are involved in the backpropagation process, and get de-
layed gradients in both forward and backward directions
with a consistency constraint, which makes the estimation
more accurate.

e We empirically show that the proposed framework can
effectively handle missing values and significantly out-
perform state-of-the-art traffic prediction models on both
static and roving sensory datasets. The proposed method
will be built into a transportation application system to
provide future traffic conditions to users.

II. RELATED WORK
A. Traffic Prediction

Traffic prediction is a fundamental problem for urban
management. Early approaches on traffic prediction include
statistical methods such as autoregressive moving average
(ARIMA) [12], Kalman filter [13] and Gaussian process [14].
Recently, various deep learning methods have been devel-
oped to capture complex spatial-temporal correlations for
traffic prediction, and have achieved state-of-the-art perfor-
mance. For capturing temporal correlations in traffic condi-
tions, LSTM has been employed in recent approaches [6],
[7], [15]. Gated convolutional networks [3], [16] and attention
mechanism [17], [18] are also utilized for extracting temporal
features. To model spatial correlations, CNN has been used to
capture dependencies in the Euclidean space and aggregate
predictions in rectangular regions [15], [19], [20]. Recent
work [3], [4], [16], [21]-[23] employ GCN to model network
graphs and capture the non-Euclidean spatial correlations, and
have shown superior performance than CNN-based methods.
In general, recent traffic prediction methods simultaneously
employ LSTM or temporal convolution for capturing temporal
correlations and CNN or GCN to capture spatial correlations.

When applied to real-world scenarios with missing data,
existing methods either ignore the data missing problem, e.g.,
remove data samples with missingness [24], or use straight-
forward strategies to fix it, e.g., replace all missing values
with Os [17]. However, when it comes to a high missing
ratio, especially for data collected by roving sensors, the
prediction performance of these methods could drop dramati-
cally. Therefore, handling missing values effectively is of great
importance.

B. Missing Data Imputation

Data sparsity issue ubiquitously exists in various real-
world applications. This has been handled in multiple ways,
including data processing using simple strategies (e.g., mean
padding), probabilistic methods and machine learning-based
data imputation by learning patterns from available data [25].
Amongst these methods, the imputation methods have the
flexibility and have also shown a lot of promise in a variety of
prediction tasks [26]-[28]. Commonly used imputation meth-
ods include K-nearest neighbors [29], matrix factorization [30]
and Multivariate Imputation by Chained Equation [31]. Re-
cently, due to the capability of modeling temporal depen-
dencies of sequential observations, RNN-based models have



been used in time series imputation [32]-[36]. In particular,
[32] uses bi-directional RNN combined with cross-sectional
feature regression to estimate the missing values, and [36]
incorporates adversarial training and memory networks into
RNN model. However, these methods only capture temporal
correlations of general time series, while ignore spatial correla-
tions among traffic data. To incorporate the spatial structures,
methods based on matrix factorization [27], [37], [38] and
tensor decomposition [10], [26] have been proposed for urban
prediction.

The above imputation methods might be used to first pre-
process the incomplete data, which are then fed into traffic
prediction methods (discussed in Section II-A). However, such
two-step solutions may amplify the errors and bring extra
computational efforts. Our method imputes the missing values
and performs traffic prediction jointly, without a need for a
separate imputation step.

I[II. METHODOLOGY

In this section, we introduce the proposed traffic predic-
tion framework. We start with the problem definition and
the overview of the proposed framework, and then provide
detailed descriptions about its internal components.

A. Problem Definition

Given traffic data collected from sensors from N locations,
the objective is to predict future traffic conditions of the
road network. Following previous studies, we represent a
road network as a weighted undirected graph G = (V, &, A),
where )V is the set of nodes representing road segments
in the road network with [V| = N, £ is a set of edges
indicating the connectivity between nodes, and A € RNV*¥
is the adjacency matrix representing proximities (e.g., road
network distances) between nodes. At each timestamp ¢, traffic
measurements from each node ¢ in the traffic network are
denoted as xi € RP, where D is the number of measured
features, and the value of the d-th feature is xi’d. Here
X = [xi,x2, - ,xN]T € RV*D denotes measured features
of all the nodes in the road network at time ¢, and X =
X1, Xg, -+, Xp]T € RVXPXT denotes collected features
over all the T timestamps. Since &’ carries missing values,
we introduce a masking tensor M € R¥*P*T (o track the
position of missing data in X': m?** is set to 0 if the feature 2}
(i.e., the dt" feature of node i at time ¢t) is missing; otherwise,
mi’d is set to 1. Figure 1 illustrates the structure of traffic data.

The traffic prediction problem can be defined as fol-
lows: Given historical traffic measurements X of all nodes
in the traffic network over past 7T timestamps, we aim
to learn a model to predict traffic conditions )Y =
(Yru1, Yrio, -, Yrpp]T € RNXP'XT" of next T” times-
tamps for all the nodes.

B. Overall Framework

Overview of the proposed framework is shown in Fig-
ure 2. The framework captures spatio-temporal correlations
and performs traffic prediction and missing data imputation
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Fig. 1: Traffic data illustration. (a) The spatio-temporal struc-
ture of the data. (b) Three variables (e.g., speed at different
lanes) are measured on a node across time. Some values are
missing as shown inside the dotted rectangle.

simultaneously. In Figure 2 (a), traffic measurements X; of all
nodes at time ¢ are fed into a heterogeneous GCN (HGCN)
block to capture spatial correlations. With obtained node
embeddings at different timestamps, we use LSTM to learn
temporal correlations of traffic data on each node (i.e., within
each road segment) over time. We then concatenate the output
vectors of LSTM and HGCN to obtain a hidden state for
each node at time ¢, which captures complex spatio-temporal
dependencies of historical measurements in the road network.
The hidden states of nodes at time ¢ are used to estimate traffic
measurements at the next timestmap ¢+ 1. All the hidden states
across timestamps are aggregated through a fully-connected
layer (FC) to perform prediction for traffic condition at future
time points T+1,T+2,--- , T+T".

Figure 2 (b) illustrates the learning process at one times-
tamp. At time ¢, the collected data X; carries missing values,
i.e., some measurements from certain nodes are missing. Since
missing values can hamper model performance, we do not
use X; as the input of the model directly. Instead, we use a
complementary input X, derived by our method to comple-
ment the missing values in X;. Specifically, the HGCN block
contains multiple GCNs constructed from geographic structure
and spatial dependencies based on historical measurements.
The hidden states learned from HGCN and LSTM are used
to estimate the values of measurements for each node at time
t + 1. The estimated X, is then combined with Xy, to
obtain X, which is used as the input at ¢ + 1 timestamp.
This process is performed recurrently to impute the whole
sequence of traffic measurements.

C. Basic Graph Convolutional Network

Traffic network is a graph structure in nature. Traffic mea-
surements collected by sensors in different road segments form
the features of nodes on the graph, and edges between nodes
represent the connectivity of road segments with larger edge
weights indicating stronger connections. GCN approaches
including spatial-based [39] and spectral-based [40] have
been widely used for learning patterns from data with graph
structures. Without loss of generality, we adopt the spectral-
based GCN in our framework. Note that our method can be
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Fig. 2: Framework overview. (a) Overall architecture for traffic prediction, where the output of LSTM at the previous timestamp
will be used to fill in the missing values at current timestamp. (b) Basic learning block at one timestamp for learning spatio-
temporal correlations and handling missing variables. Heterogeneous graphs are built based upon geographic distance and

temporal graphs learned from historical traffic information.

combined with other GCN variants for traffic prediction to
enhance the performances.

In a basic GCN approach, the properties of a graph can be
obtained by analyzing its corresponding Laplacian matrix. The
normalized Laplacian matrix L € RY*¥ can be represented
asL=1Iy— D_%AD_%, where I is an identity matrix, A
is the adjacent matrix, and D € RV*¥ is the degree matrix
with Dy =>° j A,;;. Based on spectral graph theory [2], graph
convolution can be written as follows,

K—-1
go % =go(L)x = Y OxTu(L)z, (1)
k=0

where the vector # € RX is the polynomial coefficient,
L= ﬁL — In, Amae is the maximum eigenvalue of the
Laplacian matrix, and T} () is a Chebyshev polynomial. By
using the approximate expansion of Chebyshev polynomial in
Eq. (1), the graph convolutional operation extracts information
from neighbors within K orders for each node in the graph.
In the implementation of GCN, we use generalized graph
convolution [3] that is performed on multi-dimensional input
vectors.

D. Heterogeneous Graphs

In most existing GCN-based approaches, the graph of road
network is constructed solely based on geographic distance,
i.e., if two locations are close in the map, the edge connecting
them is assigned a large weight. Such a graph structure is
static and thus cannot capture the dynamic spatial correlations
amongst nodes over time. In Figure 3, we show three graphs
constructed from five road segments in the PeMS [41] dataset
using different distance measurements. Thicker edges indicate
stronger correlations. We can see that although node 2 is far
away from other nodes in the geographic graph, it has a very
similar time series pattern as node 0. Thus the two nodes

are closely connected in temporal graphs. Similarly, although
node 3 is close to node 4 by geographic distance, its temporal
patterns are quite different from the others, making it less
connected with other nodes in temporal graphs. Moreover, the
structures of temporal graphs can also vary across different
time periods.

To incorporate such heterogeneous information, we propose
HGCN which constructs multiple graphs with each one cor-
responding to a type of spatial correlations. In particular, we
divide traffic data in a day into four time intervals: late night,
morning, afternoon and evening. We calculate the historical
averages of traffic features at the same time period over the
past days (e.g., within few months) and obtain a multivariate
time series for each interval. We then calculate time series
distances between nodes and obtain a temporal graph of the
road network for each time interval. Spatial correlations within
each temporal graph is learned through a GCN, in which the
representation of each node is updated by combining the infor-
mation from other nodes of similar historical patterns. We then
aggregate each node’s representations from all the temporal
graphs through a weighted summation. Note that we model
the daily heterogeneous time periods as an example to show
the effectiveness of incorporating dynamic spatial correlations.
This method can be easily extended to incorporate more graph
structures, e.g., certain time intervals across weeks/months.

It is worthwhile to mention that the graph structures created
in our framework are consistent with the typical definition of
“heterogeneous graph” - a single graph with different types of
edges. Here, we decompose this complex graph into multiple
graphs, with each one focusing on a specific type of edge
relationship (e.g., road network, similarities of traffic data in
a specific time period) so it is clear to show how we learn
patterns specific to each type of edges/relationships. However,
we can still merge these graphs as a typical heterogeneous
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Fig. 3: Heterogeneous graphs and the corresponding data. (a) is constructed based on geographic distances between stations
in a road map shown in (d). (b) and (c) are constructed based on historical averaged traffic speeds within (e) late night period
and (f) evening period, respectively. For (e) and (f), the X-axis is time, and the Y-axis is the averaged traffic speeds.

graph. Our method essentially extracts patterns based on edges
of different types in this graph and then merges these learned
patterns.

Next, we give more details on the construction procedure
of heterogeneous graphs. We build temporal graphs based on
different patterns of historical traffic measurements on the
road network. In particular, we define a timeline with T
timestamps to track the historical traffic patterns. For example,
if we choose a timeline ranging from 00:00 AM to 11:59
PM (24 hours), the timeline will contain 288 timestamps, i.e.,
T = 288, with 5 minutes per timestamp. Then, for each feature
in each node, we calculate the historical average of data at
the same timestamps over past days. Therefore, we obtain the
historical averaged values for all nodes during the timeline as
H ¢ RVXT*D where N is the number of nodes in the graph,
and D is the number of measured traffic features.

1) Select the Number of Graphs: We will divide the whole
timeline into several intervals and create temporal graphs for
each interval. Here we consider the selection of the number
of graphs M, i.e., the number of intervals to divide the 7T
into. Similar to the selection of the number of clusters in
the clustering problem, the selection of A depends on the
nature of traffic data. If M is too small, then we do not have
enough graphs to capture varying spatial correlations across
time. If M is too large, the computation overhead will increase
but patterns learned from consecutive short intervals can be
redundant. We will study the impact of different values of M
in the experiment section.

2) Divide the Timeline: After picking up the number of
temporal graphs to build, we then split the timeline into M
non-overlapping intervals. The length of each interval does
not need to be the same. Since we want the graphs to capture

varying traffic conditions across time, we need to divide the
timeline into intervals in a way such that the total difference
between the historical values of each time interval and those
of other intervals is maximized. We use {tg,t1,...,tpr} tO
denote the time points to split on, where tg is 0, tps is
T,and t; < ti;1. Let H,, € RV*ti~ti-)xD denote the
historical measures for all nodes between timestamp ¢;_; and
ti, i € 1,.., M. Then, we can estimate these split points by
solving the following equation,

ZD(Ht'NHtj)’

(2]

max
{t1,tae{l,.. T}

2
where D(:) denotes the distance function between series.
There are multiple ways to calculate the distance between
time series, e.g., Dynamic Time Warping DTW [42], Edit
Distance with Real Penalty (ERP) [43], and Longest Common
Subsequence (LCSS) [44]. Here, we use DTW to calculate the
distance since it can capture the distance between series of
variable lengths while does not put too much weight on the
difference of amplitude.

One potential problem with Eq. (2) though is that it might
produce a trivial solution in which a giant interval dominates
other small intervals. To overcome this potential issue, we
apply several constraints during the calculation. First, the
minimum length of all time intervals must be larger or equal
to some threshold, e.g., 7/(PM) where P is a constant. In
our settings, this minimum threshold is 1 hour. Second, the
maximum length of all time intervals must be smaller or equal
to some limit, e.g., Q7 /M where @) is a constant. We set
Q = 2, i.e., maximum 12 hours. Third, the ratio between the
minimum distance among all time intervals and the sum of all
distances must be lower or equal to 7. n is 10% in the paper.



Finally, the ratio between the length of the longest time interval
and the total length of the timeline 7 must be lower than a
threshold ~y, which is set to 50% in our implementation. If we
set M to be 4, then after applying these constraints, we can get
the output [0 AM, 10 AM), [10 AM, 4 PM), [4 PM, 6 PM),
and [6 PM, 0 AM). Such division captures the time periods of
early morning, noon, afternoon rush hour, and evening time.
A better result could be possible if we form the timeline into
a circle so that the first interval does not necessarily start from
00:00 AM, and the last one does not necessarily end at 11:59
PM. We will keep this study as future work.

3) Final Output of HGCN: After we obtain the M sep-
aration points of the timeline, we use Eq. (8) to construct
the adjacency matrices. For each of the adjacency matrix,
we construct a Graph Convolutional Network cell, denoted as
GCNy, following the same process described in Section III-C.
For each input sample, we aggregate its outputs of all GCNs
based on the distance between this sample and the corre-
sponding time interval of each GCN, cell. This weighted sum
along with the output of the GCN constructed based on road
geographic distance form the final output of HGCN.

E. Recurrent Imputation

Since traffic data X; of road network collected at time ¢
may have missing values, it cannot be used directly as input
of a prediction model. Thus we fill in the missing values in
X} to obtain a complement matrix X; as follows,

X, =M;oX; + (1—M,;)oXy, (3)

where X; € RV*P is the estimated value matrix for traffic
measurements at current time ¢ of all nodes, and M; is
the masking matrix at time t. The matrix X; is estimated
recurrently using spatial correlations in the graph and temporal
correlations in the sequences. At the initial timestamp, we set
elements in X to zeros. The complement matrix X; is used
as the input of HGCN as below,

S, = HGON(X,), 4)

where S; = [s},s?,---,sN]T € RM*P is the embedding
of N nodes at time t. Here p is the embedding dimension
and si € R? is the embedding vector for the n-th node. On
top of HGCN, we use a recurrent layer to capture temporal
correlations of the series for each node n in the graph. At
each timestamp ¢, the recurrent layer combines the information
at this timestamp and previous timestamps to jointly generate
new data representations. Here we use an LSTM [45] structure
to implement the recurrent layer, as follows,

o(Wylsi'smi'] + Ushi’  +by),
iy —U( i[s;my] + Ushiy +by),
o = o(W,[st; m}] + Ush’ ; +b,),
¢, = tanh(W,[s?; m}'| + U:h} | +b,),
¢ =ff oc  +if O ¢,
= oy © tanh(c}'),

=
-3
|

where [;] is a concatenation operation, h} € R? is a hidden
vector for the m-th node, ¢ is the hidden dimension, and
m? € RP is a masking vector indicating the missing pattern of
current collected data x7* of node n. f, i, and o are forget, input,
and output gates’ activation vectors, respectively, ® stands for
Hadamard product, and W,, U, and b, (x € {f,i,0,c}) are
learnable parameters. For simplicity, we allow all nodes in the
graph to share the same LSTM parameters. Therefore, we ob-
tain a hidden state matrix H; = [h}, hZ ... hMN]T € RV*q,
which captures historical information before the current time ¢
for all the nodes. To mitigate the gradient vanishing problem,
we concatenate S; and H; to obtain an enhanced represen-
tation Z; = [S;; Hy] € RVN*(P+9) which captures complex
spatio-temporal dependencies of historical measurements in
the roa(i network. Based on Z;, we can obtain an estimated
matrix X;; 1 € RV*P for the next timestamp ¢+ 1 by a linear
transformation, as follows,

Xi11=W.Z, + b, (5)

where W, and b, are learnable parameters. Similar to Eq. (3),
we replace missing values in Xy with the corresponding
estimated values in Xt+1 to obtain Xt+1, which is used as
input for learning block at time ¢ 4 1. After performing the
above process recurrently, we obtain a hidden state tensor
Z = 21,2, ,Zr] € RT*N*(P+4) that captures spatio-
temporal correlations of all nodes across time.

In the model, X; is treated as a trainable variable in the
computational flow. This is different from standard LSTM-
based imputation models [46] that use zero/mean ﬁlled X
directly as the input and treat the predicted variable X, as a
constant during backpropagation. Besides, although temporal
convolution [16] and self-attention [17] have been used in
replace of LSTM in some traffic prediction methods, they
greatly suffer from imperfect spatial and temporal correlations
learned from incomplete data trajectories, and also they cannot
be easily modified to impute missing data using their original
structures. In contrast, by using the recurrent imputation
process, our method provides a more accurate version of input
(X4) to the model. The proposed method also allows delayed
error to pass through X; to refine estimated values in previous
timestamps.

F. Joint Training

In practice, we use bi-directional recurrent process to cap-
ture the dependencies from traffic data in past and future
timestamps, the hidden state Z; is denoted as Z, = [Z]; Z?!]
where Zf and Z? are obtained from forward and backward
directions respectively. We use mean absolute error (MAE) to
estimate the imputation loss £,, as below,

1 Z
L= Mio|X,— X+ (1—My)o|X] - X]|, (6)
T t=1

where Xf and Xb are the estimated values at ¢ from forward
and backward directions, respectively, and X; = (Xf +XD).
In Eq.(6), the first term measures the error between estimated



values and observed values, and the second term enforces the
estimation in each step to be consistent in both directions for
missing values. Meanwhile, we calculate the traffic prediction
error as below,

T+T’

Lo== Y |Y,—FC(2)] (7)

t=T+1

where FC(+) is a fully-connected layer. We can concatenate
hidden states Z; in Z or use attention mechanism to obtain
a weighted sum of hidden states. During the training, we
optimize the total loss £ = L. + AL,,, where ) is a
hyperparameter. Through joint training with imputation as an
auxiliary task, we obtain high-quality imputed data which
facilitate the learning of spatio-temporal denpendencies of
traffic data, and thus could be helpful for the prediction task.

IV. EXPERIMENTS

In this section, we first describe two real-world datasets that
are used in our experiments. Then we propose a few research
questions to be answered in our experiments, and introduce
our experimental designs, baselines and model implementation
details. Finally, we discuss the experimental results to answer
the proposed research questions.

A. Datasets

We evaluate the model performances on two real-world
datasets: PeMS [41] which is a public dataset collected from
static sensors, and Stampede which is collected by our roving
sensor system.

1) PeMS: 1t includes traffic data of California highway that
are collected by the Caltrans Performance Measurement Sys-
tem (PeMS) every 30 seconds. The traffic data are aggregated
into several different intervals, e.g., 5 minutes and 30 minutes.
We collect PeMS traffic speed data of 5 minutes interval in
district 07 from January 1, 2020 to April 30, 2020. Four
measurements are chosen, including the average speed of all
lanes, and lane speeds for the first three lanes.

2) Stampede: We have developed an Android application
that can acquire and save real time GPS location at about 1Hz.
We installed this application on 15 Android smartphones and
deployed the smartphones on 15 shuttles named “Stampede”,
that run among different locations in the city. The phone is
connected to the bus DC power with an adapter so that it
can get charged properly. The application starts automatically
when the shuttle turns on and shuts down when it loses power.
The collected data is first saved onto device’s internal storage.
When the Stampede is running on campus, the on-board
smartphone will connect to the campus WiFi automatically
and upload the data to our server.

Here we use collected data of 12 road segments from
February 1, 2019 to June 30, 2019. Travel time is collected
for each road segment. Road network information, including
the number of lanes per direction, number of traffic lights,
speed limits, and the GPS location of the center point of each
road segment, is used to calculate the adjacency matrix for the
geographic graph.

3) Data Preprocessing: Each dataset is divided into train-
ing, validation, and test subsets in 7:2:1. The data is nor-
malized using Z-score. The adjacent matrix is calculated as
follows,

d2 . d2 .
A exp (=), if exp(——44) > ¢
ij = ) , )
0, otherwise

where d; ; is the distance between node i and j, o is the
standard deviation, and ¢ is the threshold to control the sparsity
of the adjacency matrix. € is set to 0.1 in the following ex-
periments. Note that d; ; is calculated differently for different
graphs in HGCN.

B. Experimental Settings

1) Evaluation Strategies: We evaluate the proposed method
on real-world datasets with the aim to answer the following
research questions (RQs):

RQ 1: Does RIHGCN outperform other competitors in the
traffic prediction task?

RQ 2: Does it perform data imputation effectively?

RQ 3: Does the heterogeneous graph structure help enhance
the learning of traffic patterns?

RQ 4: How does the prediction and imputation performance
change w.r.t. the weight of imputation loss in the
optimization process?

In particular, for the evaluation of traffic prediction and
imputation, we use mean absolute error (MAE) and root mean
squared error (RMSE). Smaller MAE/RMSE indicates better
performance.

2) Baseline Approaches: We compare our method with
various traffic prediction models, including:

o Historical Average (HA): We calculate the average traf-
fic information for each time series, and use it as the
predicted value for future timestamps.

o Vector Autoregression (VAR) [47]: It is a statistical model
for multivariate time series analysis. Each variable is
predicted as a linear function of past lags of itself and
the other variables. The number of lags is set to 3.

e« ASTGCN [3]: It applies attention and convolution on
both spatial and temporal dimensions to capture spatial-
temporal dependencies. The Chebyshev polynomial order
K is set to 3. For lengths of periodic segments, we set
them as 7y = 12 and T, = 24 for days and weeks
respectively, and we set 1}, = 12 in accordance with the
lookback length of other models.

o Graph WaveNet [24]: It learns an adaptive dependency
matrix to capture spatial dependency and stacked tempo-
ral convolution to handle long sequences.

e FC-LSTM: We use LSTM to capture temporal correla-
tions for prediction, and aggregates hidden states across
time using an FC layer to perform prediction.

o FC-GCN: We use GCN to capture spatial correlations at
each timestamp, and aggregate the hidden state of each
node for prediction.



TABLE I: Performance on PeMS dataset w.r.t. different missing rates (upper table) and different prediction lengths (lower).

[ ‘ Methods ‘ 20% 40% 60% 80%
| | | MAE RMSE MAE RMSE MAE RMSE MAE RMSE |
HA 2.2539 4.2306 2.2893 4.2966 2.4295 4.5270 3.1846 5.5498
VAR 8.1122 32.7502 8.1139 32.8293 8.1120 32.7412 8.1139 32.8293
Missing Rate FC-LSTM 44152 6.5582  4.4472  6.5720  4.6029 6.6994  4.8813 6.9652
ssing FC-GCN 2.7651 4.3245 2.8936 44826  3.0595 4.6905 3.3236 5.0278
GCN-LSTM 2.2073 3.7735 2.3750 3.9873 27792 44430  3.2553 5.0007
ASTGCN 3.6935 5.5691 3.7658 5.6405 3.7687 5.6447 3.9723 5.8757
Graph WaveNet | 2.6757 42416  2.8288  4.3083 2.9081 44120  3.0958 4.6799
FC-LSTM-1 4.2205 6.3957 42322 64278  4.3279 6.5532  4.8064 6.8940
FC-GCN-I 2.4611 4.0206  2.4475 4.0455 27644  4.3866 3.0110 4.6979
GCN-LSTM-1 2.1607 3.7381 2.2134 3.8232 24777 4.1450  3.0127 47521
RIHGCN 2.0848 3.6598 2.1698 3.7266 2.3304 3.9483 2.8145 4.5136
[ 15 min 30 min 45 min 60 min
Methods
| | | MAE RMSE MAE RMSE MAE RMSE MAE RMSE |
HA 2.8647 5.1024 2.9837 5.2618 3.0864 5.4084 3.1846 5.5498
VAR 57164 24.6579 7.0335 28.6984 7.6454 30.8039 8.1139 32.8293
Prediction Leneth FC-LSTM 4.6815 6.8133 49416 7.0741 45118 6.7570 4.8813 6.9652
g FC-GCN 3.0308 4.5916 3.1387  4.7455 3.2126  4.8651 3.3236 5.0278
GCN-LSTM 2.5142 4.0778 2.8027 4.4303 2.9428 4.6177 3.2553 5.0007
ASTGCN 3.4943 5.2039 3.9955 5.8913 3.9343 5.8382 3.9723 5.8757
Graph WaveNet | 2.7600 3.8223 2.7981 4.3126 2.9400 4.4727 3.0958 4.6799
FC-LSTM-I 4.5618 6.6704 44642  6.6932 4.3941 6.6118 4.8064 6.8940
FC-GCN-I 2.4282 3.9395 27176  4.3042 2.8971 45420 3.0110 4.6979
GCN-LSTM-1 2.3466 3.8782 2.4873 4.0804 25736  4.2324 3.0127 4.7521
RIHGCN 2.1436  3.6081 24834 4.0520 2.5412 4.1685 2.8145 4.5136

e GCN-LSTM: It combines GCN and LSTM and feeds
hidden states through an FC layer to perform prediction.
Since these methods are designed to learn from complete
traffic data and do not handle missingness directly, we first
fill the missing values with corresponding mean of observed
values, which is a commonly used way in existing traffic
prediction models [17] to handle missingness, and then per-
form prediction using these baseline approaches. To evaluate
the contribution of different components in the proposed
framework, we conduct the following ablation study.

e FC-LSTM-I: It recurrently imputes missing values for
each node using LSTM and aggregates the learned hid-
den states to perform prediction for future timestamps.
Considering the bi-directional recurrent imputation pro-
cess, it is similar to the time series imputation method
BRITS [32]. We compare with this method to investigate
the contribution of capturing temporal correlations alone.

o FC-GCN-I: It uses GCN to estimate missing values at the
next timestamp, and aggregates node embeddings across
time to perform prediction on each node. This method
utilizes only spatial correlations.

e GCN-LSTM-I: It imputes missing values by combining
GCN and LSTM, and then performs prediction using the
spatio-temporal representations. It has a similar structure
as the proposed model RIHGCN, but only uses geo-
graphic graph without temporal graphs.

To evaluate how accurate our method can recover the missed

traffic data, we evaluate the imputation performance of our
method by comparing with widely-used imputation approaches
including last observed (Last), k-nearest neighbors (KNN),
matrix factorization (MF) and tensor decomposition (TD) [10].

For all the deep learning based models, we use Adam
optimizer with learning rate of 0.001, and batch size is 64.
Early stopping is adopted when the validation performance
does not improve for 6 epochs.

3) Experimental Details: All methods are implemented
using PyTorch 1.15 with Python 3.7. Adam optimizer [48§]
is used as the optimization method with learning rate of 0.001
and with gradient clipping. Following previous works [7], we
use 12 historical timestamps, i.e., 1 hour, to predict the traffic
information for the following up to 12 timestamps. Chebyshev
polynomial order K is set to 3. LSTM hidden layer size is 128.
The number of GCN filters is 64.

C. Experimental Results

Here we will discuss the experimental results to answer to
four RQs raised in Section IV-B1.

1) Prediction Performance (RQ1): We evaluate model per-
formances on traffic prediction with respect to missing rates
and prediction lengths. The results on PeMS dataset is shown
in Table I. We compare results under different missing rates,
i.e., 20%, 40%, 60% and 80%, which indicate the percentage
of values that have been randomly dropped in historical data.
The prediction length is 60 min, i.e., 12 timestamps. From the



TABLE II: Performance on Stampede dataset w.r.t. different prediction lengths.

{ 15 min 30 min 45 min 60 min
Methods
‘ MAE RMSE MAE RMSE MAE RMSE MAE RMSE ‘
HA 28.4851 38.0368 28.5613 38.1846 28.6079 38.2897 28.6077 38.2821
VAR 29.0215 40.6851 29.1390 41.3184 29.5232 41.4406 29.6419 41.5024
Prediction Length FC-LSTM 259037 34.5826 259342 34.6202 25.9741 34.7271 26.1448 34.9650
FC-GCN 25.8750 34.5702 259442 34.6199 25.8948 347211 26.0231 34.9132
GCN-LSTM 25.8364 34.5307 259016 34.5966 25.8921 34.6834 259502 34.8974
ASTGCN 26.0712 34.6109 26.1855 35.0434 26.0947 349150 26.2375 35.0060
Graph WaveNet | 25.8247 34.5063 259493 345610 25.8991 34.6173 26.0109 35.5515
FC-LSTM-1 25.8809 34.5363 259071 34.6099 25.9337 34.6602 26.0251 34.9601
FC-GCN-I 25.8280 34.5026 25.8975 34.5868 25.9019 34.6526 26.0169 34.8992
GCN-LSTM-I 257727 34.4781 25.8837 345347 25.8785 34.5933 259613 34.8101
RIHGCN 25.7083 34.4347 25.8327 34.4708 25.8581 34.5027 25.9220 34.6614

table we can observe that with the increasing of the missing
rate, the performance of all the methods drops. Methods with
recurrent imputation process (e.g., FC-LSTM-I) generally has
better performances compared with the corresponding models
without handling imputation during training (e.g., FC-LSTM).
so they cannot perform well on data with missingness. This
is because the state-of-the-art traffic prediction approaches
ASTGCN and Graph WaveNet do not perform well on our
datasets. This is because they are originally designed for
complete datasets and thus cannot effectively handle missing
data. The proposed model achieves the best performances
under almost all cases, especially when the missing rate is
high. This is due to the fact that our method can estimate
missing values accurately and extract predictive features from
historical data with missingness.

In the bottom of Table I, we show the prediction perfor-
mance under different prediction lengths where the missing
rate is fixed to 80%. We can observe the similar performance
upgrade from basic prediction models to their imputation-
enhanced variants, e.g., FC-LSTM vs. FC-LSTM-I, and FC-
GCN vs. FC-GCN-I. By comparing with the reduced versions
of our method (i.e., FC-LSTM-I, FC-GCN-I, and GCN-LSTM-
I), we observe that GCN-LSTM-I performs better than using
FC-GCN-I or FC-LSTM-I alone, which indicates the effec-
tiveness of spatio-temporal models for traffic prediction. By
incorporating our proposed HGCN instead of GCN, RIHGCN
further improves the performance over GCN-LSTM-I.

The prediction performance on Stampede dataset is listed
in Table II. Due to the high missing rate which is the
common characteristic for roving sensor collected data as
a result of limited number of sensors, we only study the
performance with respect to different prediction lengths. The
prediction on the Stampede dataset is more challenging due
to the higher missing rate and more variability in local traffic
conditions. Still, the performances of our method are stable
and competitive compared with state-of-the-art methods.

2) Imputation Performance (RQ2): Here we evaluate the
imputation performance under 40% and 80% missing rate.
We also randomly remove 30% of the observed entries and
use them as the groundtruth for evaluation. Comparison re-

sults between imputated and groundtruth values are listed in
Table III. For our methods, since we focus on the prediction
task, we report the imputation errors when the best predic-
tion performance is achieved, rather than reporting the best
imputation performance directly.

We can see that our methods estimate missing values
more accurately compared to other widely-used imputation
methods. The main limitation of these traditional imputation
approaches (e.g., Last, KNN, MF, and TD) is that they cannot
fully capture the complex nonlinear and non-stationary data
dependencies over space and time. RIHGCN performs much
better than other methods when we have a lower missing rate
(40%). As we increase the missing rate for training data,
most methods have increased imputation errors due to the
reduction in available observation data. The GCN model (FC-
GCN-I) performs the best given that it has simpler structure
(i.e., having small number of model parameters) while also
preserving dependencies across road segments. Our method
RIHGCN can still achieve comparable performance the best
model in this case.

TABLE III: Imputation performance on PeMS dataset.

Methods 40% 80%
MAE RMSE MAE RMSE
Last 6.9841 8.9942 6.9811 9.0001
KNN 5.1798 7.7112  6.5500 9.5230
MF 6.4746 8.3086 6.7054 9.0430
TD 47228 6.8110 7.4593  9.9909
FC-LSTM-I 6.2962 8.2106 6.8382 8.8333
FC-GCN-I 5.5202 8.0193 5.8595 8.4615
GCN-LSTM-I  6.3170 8.8719 6.8751 9.5835
RIHGCN 4.2804 6.2702 59915 8.5884

3) Impact of the Number of Graphs (RQ3): In this part,
we study the effectiveness of building multiple heterogeneous
graphs for learning representations. In particular, we measure
the performance of prediction and imputation using different
numbers of graphs. A larger number of graphs indicates finer-
level time intervals, e.g., three graphs can capture the variation
of temporal patterns for every 8 hours while 24 graphs can
capture the change across every hour (if all time intervals



share the same length). We show the prediction performance
and imputation performance in Figure 4. Here we set the
missing rate as 40% and the prediction length as 12. From
the figures we can see that both prediction and imputation
achieve the best performance when the number of graphs is
8. When the number of graphs is too small, the time interval
is too long so that it does not capture the variability of traffic
conditions in a day effectively. When the number of graphs
is too large, we create too many intervals resulting in much
redundancy between consecutive intervals. This also brings
additional complexity and computational cost to our model.
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Fig. 4: Performance of (a) traffic prediction and (b) data
imputation w.r.t. the number of graphs on PeMS dataset.

4) Parameter Study (RQ4): To evaluate the effect of A
which controls the weight of imputation loss, we report both
the imputation and prediction performance with respect to .
Larger A indicates more penalty on imputation. From Figure 5,
we observe that the imputation performance continues to
increase with the increasing value of A. This confirms that
the model can better impute the missing data as we force
the model to pay more attention on the imputation loss. On
the other hand, our proposed method has good prediction
performance when A € (0.001,5). However, the prediction
performance decreases when A is very small (<0.001) or very
large (>5). This is due to the fact that smaller penalty on
imputation could result in a large error in estimating the missed
historical data, and this error would negatively affect the
prediction task. A large A may cause overfitting of imputation,
i.e., focusing too much on details of historical data but lacking
the ability to capture predictive signals.

V. CONCLUSION

In this paper, we propose RIHGCN for traffic prediction
with missing values. Due to the nature of traffic sensors, the
collected traffic data inevitably carry missing values, and the
missingness hampers the performance of various state-of-the-
art traffic prediction methods. We effectively impute missing
values by utilizing the spatio-temporal correlations among
nodes in the road network through a recurrent imputation pro-
cess, and propose a heterogeneous graph structure to capture
dynamic spatial correlations among nodes.

Our contributions mainly lie in two aspects: 1) Different
from standard GCN model which uses a static graph struc-
ture (e.g., created using geographic features), we propose to
create multiple graphs with different types of edges using
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Fig. 5: Performance of (a) data imputation and (b) prediction
w.r.t. the weight of imputation loss on PeMS dataset.

the similarities at different time intervals. These graphs can
help better capture spatial correlations that change over time
in traffic data. 2) We integrate the missing data imputation
and traffic prediction in a unified framework. Indeed, imputing
missing values in traffic prediction is a classic problem, and
we’ve listed related work on this problem in Section II-B.
However, most methods focus on imputation purely, and they
cannot be easily integrated with the downstream task, i.e.,
traffic prediction via an advanced spatio-temporal network, in
a seamless fashion. The errors resulting from the imputation
can be accumulated to the downstream tasks. In contrast, our
proposed unified framework optimizes the two objectives (data
imputation and traffic prediction) simultaneously via capturing
spatio-temporal correlations, and thus alleviates this issue.

Experimental results show that our method outperforms
existing methods by a considerable margin in both prediction
and imputation tasks. Different from existing traffic prediction
methods, we show the superiority of the proposed unified
framework that conducts imputation and prediction simultane-
ously in a complementary fashion. We anticipate this work to
provide solutions to a broad class of spatio-temporal prediction
problems with incomplete data, e.g., air quality prediction with
data collected in different locations of a city.
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