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Abstract 

We developed and applied a model-driven feedforward control approach to mitigate 

thermal-induced flaw formation in laser powder bed fusion (LPBF) additive manufacturing 

process. The key idea was to avert heat buildup in a LPBF part before it is printed by adapting 

process parameters layer-by-layer based on insights from a physics-based thermal simulation 

model. The motivation being to replace cumbersome empirical parameter optimization with a 

physics-guided strategy. The approach consisted of three steps: prediction, analysis, and 

correction.  First, the temperature distribution of a part was predicted rapidly using a graph theory-

based computational thermal model. Second, the model-derived thermal trends were analyzed to 

isolate layers of potential heat buildup. Third, heat buildup in affected layers was corrected before 

printing by adjusting process parameters optimized through iterative simulations. The 

effectiveness of the approach was demonstrated experimentally on two separate build plates.  In 

the first build plate, termed fixed processing, ten different nickel alloy 718 parts were produced 

under constant processing conditions. On a second identical build plate, called controlled 

processing, the laser power and dwell time for each part was adjusted before printing based on 

thermal simulations to avoid heat buildup. To validate the thermal model predictions, the surface 

temperature of each part was tracked with a calibrated infrared thermal camera. Post-process the 

parts were examined with non-destructive and destructive materials characterization techniques. 

Compared to fixed processing, parts produced under controlled processing showed superior 

geometric accuracy and resolution, finer grain size, increased microhardness, and reduced surface 

roughness.  

 

Keywords: Feedforward process control; laser powder bed fusion; thermal history simulations; 

graph theory; physics-based parameter optimization.  
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1 Introduction 

1.1 Goal and Motivation 

The goal of this work is to develop and apply a model-driven feedforward control approach 

for mitigating thermal-induced flaw formation in metal parts made using laser powder bed fusion 

(LPBF) process. In this work, temperature predictions from a physics-based computational 

simulation model are used to adjust the processing parameters layer-by-layer before the part is 

printed with the intent of avoiding heat buildup and subsequently reducing thermal-induced flaw 

formation. The motivation is to replace cumbersome and expensive build-and-test empirical 

optimization with a physics-guided strategy.    

In LPBF, as shown in Figure 1(left), metal powder is raked or rolled onto a build plate and 

selectively melted layer-by-layer using energy from a laser [1]. Despite its demonstrated potential 

to reduce lead time and overcome design-related constraints, LPBF has yet to displace 

conventional manufacturing, particularly in precision-driven industries, owing to its tendency to 

create flaws, which eventually leads to large variability in functional properties [2–5].  

 
Figure 1: (Left) Schematic of the laser powder bed fusion (LPBF) metal additive manufacturing 

process (Right) The LPBF process is prone to flaw formation despite extensive empirical 

optimization of processing parameters. For example, the same part when built under identical 

parameters in different orientations results in various types of flaws, such as warping, cracking, 

poor surface finish, and recoater crash.    
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The spatiotemporal temperature distribution in the part during the LPBF process, also called 

the thermal history, is reported to be the major cause of such flaw formation scenarios as sub-

standard geometric integrity; poor surface finish; build failures, e.g., recoater crashes and collapse 

of supports; cracking and distortion; inconsistent microstructure, among others [2,3,6–9].   

Recently, Sames et al. [7] provided a comprehensive review of research efforts linking 

thermal history to flaw formation and physical properties of LPBF parts. For example, Li et al. 

[10] associated heat buildup with grain coarsening, which in turn results in reduced microhardness. 

Likewise, Paulson et al. [11] established the effect of heat buildup in single track deposits on 

keyhole porosity. Similarly, Yavari et al. [9]  correlated excessive heat buildup in samples to part 

warpage leading to recoater crashes, microstructure heterogeneity, and porosity. Therefore 

understanding, predicting, and controlling the thermal history is essential to ensure industrial-scale 

viability of the LPBF process [12].   

The thermal history of LPBF parts is influenced by several factors such as: processing 

parameters; part design; part orientation, layout and build plan; other parts on the build plate; and 

feedstock materials aspects [7,8]. Moreover, the thermal history of a part may vary substantially 

from layer-to-layer due to the changing surface area of the part [9]. Hence, thermal-induced flaw 

formation can occur despite using empirically optimized processing conditions.  

The causal effect of thermal history on part quality is illustrated in Figure 1(right), which 

shows a LPBF build plate consisting of seven identical stainless steel parts printed under 

manufacturer-optimized processing conditions.  The parts differ only in their orientation and were 

made under the same processing conditions that remained constant throughout the build. Out of 

the seven parts printed, only two were observed to be nominally flaw-free, the rest of the five parts 

were afflicted with thermal-induced flaws, such as cracking and warping.  
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The flaws exemplified in Figure 1(right) can be attributed to the existing empirical approach 

to process optimization. In current LPBF practice, simple cuboid-shaped coupons are deposited 

under different processing conditions (e.g., laser power, velocity, hatch spacing, scan pattern). 

Subsequently, the test coupons are examined post-process, typically with non-destructive X-ray 

computed tomography and destructive metallographic analysis [13–15]. Based on these empirical 

tests, practitioners identify optimal processing parameters for obtaining a desired physical 

characteristic, such as porosity, part density, surface finish. or mechanical property, e.g., tensile 

strength [16,17].  

While specific flaws, such as porosity, may be prevented with optimized processing 

conditions, other types of non-conformities such as distortion and inconsistent microstructure often 

occur in intricate parts due to underlying complex process physics, part design and orientation 

interactions [18]. Therefore once processing parameters are optimized for a particular material, 

experienced practitioners further adapt these parameters for making complex geometries [6].  

Such subjective geometry-specific empirical optimization is expensive and laborious given 

there are over 50 critical-to-quality LPBF process variables, prohibitive cost of powder feedstock 

materials, and small production batch sizes [19]. Consequently, there is an urgent need to supplant 

empirical process parameter optimization with a physics-guided strategy that encompasses the 

causal relationship between parameters, part design,  thermal history and part quality [12,20–22].  
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1.2 Objective and Approach 

1.2.1 Concept of model-based feedforward control 

The objective of this work is to demonstrate that model-driven feedforward process control 

mitigates thermal-induced flaw formation in LPBF parts. The key idea of feedforward control 

implemented in this work is to avert heat buildup in an LPBF part by optimizing the process 

parameters layer-by-layer before printing based on insight from a computational thermal 

simulation model.  The approach consists of three steps, as summarized in Figure 2.  

(Step 1) Predict the thermal history (temperature distribution) of a LPBF part using a fast and 

computationally tractable graph theory approach [9,23,24]. 

(Step 2) Analyze the predicted thermal history trends and identify layers where excessive heat 

buildup is likely to occur. The control target is the rate of change, or slope, of end-of-

cycle surface temperature. The end-of-cycle temperature is the surface temperature of the 

part after a layer is deposited and a fresh layer of powder is placed above, but prior to 

melting of the next layer. The goal is to maintain the slope at 0 °C per layer. Control is 

only initiated when the rate of change of end-of-cycle temperature exceeds 20 °C per 

layer.    

The threshold of 20 °C per layer was determined based on our previous work detailed 

in Ref. [9,25] for identical material and LPBF system. In these previous studies an 

increase in end-of-cycle surface temperature greater than 20 °C between successive 

layers was correlated with build failures, such as distortion and recoater crashes [9].  

(Step 3) Correct heat buildup in layers identified in Step 2 by adjusting the laser power layer-by-

layer or by increasing the dwell time between layers, thus allowing the part to cool.  These 

processing conditions are optimized through iterative simulation of the thermal history 

using the graph theory approach.   
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Figure 2: This model-driven feed forward control of additive manufacturing approach consists of 

three steps. (Step 1) Prediction of thermal history using the graph theory computation model. (Step 

2) Analysis of the predicted thermal history trends to identify heat buildup. (Step 3) Correction of 

heat buildup by adjusting process parameters layer-by-layer optimized through iterative 

simulation of the thermal history.  

The prediction of thermal history and changes to process parameters are guided by a 

experimentally validated graph theory thermal simulation approach detailed in prior publications 

[9,23,25–28]. This mesh-free computational thermal modeling approach converges approximately 

7 to 10 times faster than existing non-commercial finite element-based LPBF simulations on a 

desktop PC, and the thermal history is predicted with error less than 10% [9,23,25–28].  

The computational advantage of the graph theory approach allows practitioners to rapidly 

iterate and simulate the effect of changing processing conditions on the thermal history before a 

part is printed. Thus, this model-driven feedforward control strategy can significantly reduce the 

need for extensive empirical optimization and testing to mitigate flaw formation, and thereby 

accelerate the time-to-market of LPBF parts.  
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To demonstrate the effectiveness of the feedforward approach two identical build plates were 

used. Each build plate consisted of 16 parts encompassing 10 types of geometries parts made from 

Nickel Alloy 718 material. In the first build plate ‒ fixed processing ‒ all parts are printed under 

identical, powder manufacturer-recommended processing parameters, and these parameters are 

maintained constant throughout the process for all layers of the part.  In the literature, fixed 

processing is also referred to as traditional processing [29]. 

The second build plate ‒ controlled processing ‒ has identical parts printed under matching 

conditions except the laser power was changed layer-wise depending on the geometry of each part, 

and the dwell time between layers was increased to mitigate heat buildup. Preventing heat buildup 

was the target of the feedforward control approach presented in this work due to its correlation 

with flaw formation The parameter changes for the controlled processing case are optimized a 

priori through thermal simulations.  Each part on the controlled processing build plate is printed 

with a unique, build strategy aimed at minimizing heat buildup specific to the part geometry.  

Post-process the physical properties of parts built under fixed and controlled processing 

conditions are compared using a variety of ex-situ non-destructive and destructive characterization 

techniques. Specifically, non-destructive X-ray computed tomography was used for measurement 

of porosity, surface texture and geometric accuracy. The Archimedes method was used for relative 

density measurements. Destructive metallography characterization involved optical and scanning 

electron microscopy, and measurement of microhardness. 

1.2.2 Limitations 

A limitation with the feedforward control approach developed in this work stems from the 

objective of mitigating heat buildup at the bulk part-scale. Controlling the heat buildup at the part-

scale was successful at reducing various types of scale-transcending flaw formation, such as 
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microstructure grain size, surface finish, and geometric accuracy. However, an alternative, and 

more focused approach, would be to target scale-specific outcomes, e.g., type and texture of 

microstructure evolved, residual stresses, and feature resolution, among others. These could be 

achieved by controlling certain thermal phenomena, such as cooling rate and spatial thermal 

gradients. A second drawback of the presented approach is that heat buildup in the part is mitigated 

between layers, and not within a layer due to limited resolution of the model.  

Further, in this work, the adjustment of process parameters are identified through trial-and-

error iterative simulation of the thermal history trends from the graph theory model. The mitigation 

of heat buildup is achieved by adjusting only two process parameters in the model, namely, laser 

power and dwell time between layers. In other words, the control design is heuristic and based on 

observation. In our future work, the process parameter adjustment will be automated through 

purpose-built optimization algorithms.        

1.3 Prior Work and Novelty 

A brief literature review concerning process control for LPBF is provided herewith. Review 

articles detailing process control strategies are available in Ref. [30–33]. As summarized in Figure 

3, approaches for process control in LPBF can be categorized into two broad classes – closed-loop 

feedback control, and open-loop feedforward control.  

 
Figure 3: There are two approaches for process control in LPBF implemented in the literature: 

(left) closed-loop feedback control, and (right) open-loop feedforward control. The present work 

employs part-level model-based feedforward control. 
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1.3.1 Review of Prior Work in Closed-loop Feedback Control in LPBF 

In closed-loop control, the process dynamics, e.g., meltpool temperature or part temperature, 

are observed using a sensor, such as a pyrometer or thermal camera, and process drifts are corrected 

based on data acquired from the sensor [29,34–36]. For example, Renken et al. [37], installed a 

pyrometer in the LPBF machine to measure the intensity of the meltpool during processing. 

Subsequently, a data-driven control algorithm was used to maintain the meltpool intensity within 

a tight window by adjusting the laser power. The control schema described above falls under the 

category of empirical sensor-based closed-loop control, since the correction strategy was not 

guided by a physics-based model.   

In the same work, Renken et al. [37] implemented a hybrid empirical and physics-guided 

closed-loop control strategy wherein a finite element (FE) model is used to guide the process 

corrections. In other words, the meltpool intensity tracked by the pyrometer is used as an input to 

an FE model which, in turn, determines the control action, i.e., reduce or increase laser power.  

Renken et al. [37] report, based on experiments with bridge-shaped parts (similar to one of the 

parts studied in this work, see Table 2, Sec. 2.2.1), that the hybrid feedback control approach 

outperforms sensor-based feedback control, in that the meltpool temperature has a smaller 

deviation when processing certain overhang features of the part.  

 Recently, Vasileska et al.[38] successfully demonstrated a feedback control approach based 

on real-time imaging of the meltpool in LPBF. The aim was to control the meltpool shape and size 

by changing the duty cycle of a pulsed laser, which in turn resulted in improved feature resolution 

of overhang bridge-shaped parts.  

From a bulk part temperature perspective, Zhong et al. [29]  developed a neural network 

machine learning-based feedback mechanism for controlling the thermal history in LPBF parts. 



10 

 

The inputs to the neural network were surface temperature images from a thermal camera and 

certain derived process signatures.  Similar to this work, the aim was to minimize heat buildup in 

the part by altering the laser power layer-by-layer. Zhong et al. [29] demonstrated the utility of the 

feedback control approach in the context of tensile test specimens and a large (1 m × 1.65 m) LPBF 

part. The authors reported that the feedback control mechanism reduced the variation in tensile 

strength across coupons to within 10%, compared to over 30% for fixed processing.  Notably, 

Zhong et al.’s [29] work was carried out on a quad-laser LPBF system, and the material used was 

resin-coated sand. 

There are two challenges in applying closed-loop feedback control strategies to LPBF. First, 

there is an inherent delay in the sensing and feedback loop which can potentially hinder early 

detection and correction of process drifts. Second, sensors for temperature measurement in LPBF, 

such as imaging pyrometers or thermal cameras, only provide surface temperature information and 

cannot capture the temperature distribution of the entire part beyond the top layer.  

1.3.2 Review of Prior Work in Open-loop Feedforward Control in LPBF 

In the open-loop feedforward control category, the process state is not adjusted online based 

on feedback from a sensor. Instead, changes are made to the process parameters before printing to 

compensate for predicted process deviations based on model-derived predictions [39–47]. 

Feedforward control is, therefore, proactive in nature. These feedforward process models can be 

empirically derived [39–41], physics-based [42–44,46], or a hybrid of physics and empirically 

derived models [45]. This work is an example of open-loop feedforward control with process 

parameter optimization executed offline via a physics-based model before the part is built. 

As an example of empirical feedforward control in LPBF,  Heung et al. [40] used a shape-

related factor called the geometric correction factor (GCF) to reduce the laser power when 
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scanning a part with overhang regions. As a consequence, Hueng et al. [40] demonstrated that the 

overhang regions are not overheated, which resulted in improved surface finish [40]. A drawback 

with such an empirical feedforward control strategy is that the model is restricted to certain shapes 

and features representative of the available data, i.e., application of the GCF to other features 

beyond overhangs, such as thin walls, remains to be investigated.   

From the perspective of model-driven feedforward control, a physics-based computational or 

analytical model is used to adjust the process parameters. In the literature, feedforward control 

based on physical thermal models both at the bulk part-level [44] and track-level have been 

implemented [46]. Further, approaches that couple high-fidelity simulations with a low-resolution 

empirical model have also been proposed [47]. 

To reduce the computational burden involved with physics-guided feedforward control, 

researchers often employ a simplified abstraction of a high-fidelity model. For example, Ramani 

et al. [46] used radial basis functions to approximate the heat transfer simulations at the scan-level 

obtained from a finite difference model. Based on one-layer thick scans of area 600 mm × 600 

mm, Ramani et al. [46] show that a scanning pattern derived from their model-based approach 

(termed SmartScan) significantly reduced distortion compared to conventional, empirically 

derived strategies, such as chessboard and rectilinear scanning patterns.  

Druzgalski et al. [44] optimized the laser power and velocity settings at the hatch-level using 

a physics-based model. For this purpose, Druzgalski et al. [44] leveraged the ALE3D FE code 

developed by Lawrence Livermore National Laboratory [48]. Hatch-level thermal simulations 

were used to prevent heat buildup within a layer by changing the laser scanning parameters in a 

heuristic manner.  To demonstrate the effectiveness of their approach, Druzgalski et al. built a 

complex geometry with internal channels and overhang features with fixed conditions, and their 
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model-optimized layer scan strategy. Through post-process characterization, Druzgalski et al. [44] 

demonstrated that compared to fixed processing, model-optimized processing resulted in parts 

with superior resolution and improved surface integrity.   

Our work differs from Druzgalski et al.’s approach in two ways: (i) in contrast to hatch-level 

temperature control, the current work is concerned with avoiding heat buildup at the overall bulk 

part-level by adjusting the laser power and dwell time between layers;  (ii) Druzgalski et al.'s 

approach relies on high-resolution hatch-level FE simulations to optimize the laser parameters 

within a layer. This work, by contrast, uses a rapid and relatively low-resolution graph theory 

approach. Moreover, the current work demonstrates the advantages of feedforward control in the 

context of four different part shapes with post-process measurements ranging from quantification 

of microstructure in terms of grain size, surface finish, dimensional integrity, and microhardness.   

A data- and model-driven hybrid feedforward process control strategy is implemented in the 

work of Ogoke et al. [45], who use an empirical machine learning model (deep reinforcement 

learning) to optimally adjust the process parameters at the hatch- or track-level. The machine 

learning model is user trained from theoretical finite element simulations. Recently, Wang et al. 

[43] used an analytical model to predict and control the meltpool depth for avoiding keyhole and 

lack-of-fusion porosity in LPBF.  

In closing this section, we note that a hybrid feedforward and feedback control of the LPBF 

process is being studied as part of our future work. The concept is to augment sensor-based 

feedback control to correct local within layer heat buildup based on data from an in-line sensor, 

with model-based feedforward control to mitigate between layer heat buildup.   
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1.3.3 Novelty 

This work has two unique aspects that differentiate it from the existing model-based 

feedforward process control approaches reported in the literature. First, previous work in the 

literature employed computationally demanding part-scale FE-based thermal simulation models 

that require several hours to converge, this work uses a mesh-free graph theory model that 

converges within minutes (< 15 minutes) on a desktop PC [9,49,50]. Although commercial FE-

based solutions for thermal modeling can drastically reduce the computation time, they do not 

currently incorporate the ability to automatically prescribe adjustment of parameters to compensate 

for potential heat buildup and related process drifts [51]. However, we note that certain commercial 

solutions (ANSYS Additive Print) do provide the ability to modify the part design to compensate 

for thermal-induced distortion [51].  

Second, current efforts in feedforward control in LPBF are largely restricted to single track 

and meltpool-scale process control, with a few focusing on part-scale thermal modeling [43–46]. 

The presented approach is scalable to a variety of relatively complex and large, multi-layer parts. 

Within this context, the thermal model and effect of feedforward control are validated through in-

situ thermography measurements.  

1.4 Organization of the paper 

The rest of this paper is organized as follows. In Sec. 2, we describe the experimental 

methodology and graph theory simulation approach. Results are reported in Sec. 3 which includes 

model validation, and comparison of physical properties, such as part resolution, surface finish, 

microstructure, and microhardness for multiple parts built with and without model-based 

feedforward control. Finally, the conclusions and avenues for future research are summarized in 

Sec. 4. 
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2 Methodology 

This section is organized as follows. Sec. 2.1 details the experimental LPBF setup. Sec. 2.2 

reports the build plan and provides the rationale for choosing the various test parts studied in this 

work, as well as details the post-processing steps used for characterization of part properties. Sec. 

2.3 explains the procedure for measurement and calibration of the in-process temperature 

measurements obtained from the thermal camera. Finally, Sec. 2.4 elucidates the graph theory-

based feedforward process control approach implemented in this work. 

2.1 Experimental Setup 

Parts were manufactured using the open architecture LPBF system at Edison Welding Institute 

(EWI, Ohio). A schematic and picture of the sensor instrumented LPBF system is presented in 

Figure 4(a) and (b) respectively; its specifications are provided in Table 1. This LPBF system 

allows critical processing parameters, such as laser power, dwell time between layers, scan path, 

and laser velocity among others to be independently altered, layer-by-layer, for each part on the 

build plate.  

The system is equipped with a SCANLABS HurryScan20 galvanometer-mirror scanner, a 700 

W 1062 nm Yb-fiber laser (IPG Photonics YLR – 700WC) and a precision motion control system 

(Aerotech A3200) driven by CNC G-code that can be edited by an operator. The system produces 

a nominal spot size of 68 µm at 370 W – measured by a laser beam profiling system (Ophir 

BeamWatchAM).  

A Micro-Epsilon model µε thermoIMAGE TIM 640 longwave infrared (LWIR) thermal 

camera with an operating wavelength of 8 to 14 μm is installed inside the machine chamber. The 

camera is inclined at 80° to the horizontal and acquired data at 10 Hz.  The optical resolution of 

the camera is 640 pixels × 480 pixels. The camera settings are also summarized in Table 1. The 

thermal camera was positioned to capture an approximately 125 mm × 125 mm central area of the 
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build plate resulting in a spatial resolution ~20 pixels per mm2. The camera was triggered by a G-

code command before the laser began scanning a layer and was stopped after the laser completed 

that layer. Hence, data was only acquired when the laser was actively melting material.  

As will be detailed in Sec. 2.3.1, the IR camera measurements are calibrated offline using an 

industry-standard approach to absolute temperature with reference contact thermocouple readings. 

Recently, Wang, et al. [52] developed a similar approach to measure the top surface temperature 

using infrared thermography.  

Additionally, a Hall effect current sensor is connected to the recoater to capture the recoater 

motion. This sensor provides an estimate of the recoating time and detects load on the recoater 

blade, which is valuable for detecting recoater impact. The time for recoating a layer with fresh 

powder is measured to be 15 seconds and remained fixed irrespective of the process conditions or 

number of parts on the build plate. In this work, no recoater impact was detected by the Hall effect 

sensor.  

 
Figure 4: (a) Schematic, and (b) photograph of the open architecture LPBF system at Edison 

Welding Institute (EWI). An infrared thermal camera inclined at 80° to the horizontal was installed 

in the chamber to monitor the surface temperature of the parts during processing.  
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2.2 Build Plan 

2.2.1 Test Parts 

Two build plates with identical parts were created in this work, one termed fixed processing 

and the other termed controlled processing. The nominal settings for the build plate with fixed 

processing conditions are reported in Table 1. For fixed processing, nominal process parameter 

settings for Nickel Alloy 718 material were implemented based on recommendations from the 

powder manufacturer. These process parameters were optimized to avert porosity. Nickel Alloy 

718 was chosen given its wide use in the aerospace and energy generation industries [53].  

As shown in Figure 5, each build plate consists of 16 parts encompassing 10 unique types of 

geometries. All the parts are 25 mm tall to prevent abrupt change in the time between layers 

resulting from early completion of certain parts, which can cause flaw formation [9,54]. Parts were 

placed near the center of the build plate to prevent flaw formation from lens aberrations, and a 

spacing of ~10 mm was maintained between parts to reduce the potential for inter-part thermal 

interaction. Total build time was approximately 15 hours. Additionally, the build plate was 

preheated to 85°C to mitigate residual stresses.     

Four representative parts were selected for analysis in this work. Referring to Figure 5, the 

parts selected are labeled: cone, vase, frame, and bridge. These four parts were selected for further 

analysis because their relatively compact size was conducive for post-process X-ray CT analysis 

and metallurgical characterization. The rationale for the design of these parts is described in Table 

2, along with their respective post-processing steps.  

After the fixed processing build plate was completed, the IR data from the cone-shaped part 

was used to calibrate the graph theory model. The model predictions are subsequently used to alter 

the processing conditions for the controlled processing build plate. The model calibration steps 
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along with the approach for altering process parameters for the controlled processing build plate 

are explained in Sec. 2.4.  

 
Figure 5: (a) Top view of the build plate with detailed view of the 16 geometries created in this 

work. Four geometries (cone, vase, frame, and bridge) are analyzed in depth. (b) Actual fixed 

processing build plate upon completion. 
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Table 1: Nominal process parameter settings and material properties. Also included are the 

settings used for the IR thermal camera.  

Process Parameter [Units] Values  

Laser type and wavelength. Ytterbium fiber, wavelength 1070 nm continuous 

mode (manufacturer IPG), 700 W max power 

Nominal Laser Power (P0) [W] 285  

Scanning Speed (V) [mm‧s-1] 960  

Hatch spacing (H) [mm] 0.1  

Layer thickness (T) [mm] 0.04  

Stripes overlap [mm] 0.08  

Stripe width [mm] 10  

Volumetric global energy density Ev [W/mm3]  73  
Laser spot size [μm] 68 

Scanning strategy Meander-type scanning strategy with 45 degree 

rotation of scan path between layers.  

Build atmosphere Argon 

Build plate Preheat temperature [°C] 85 

Recoater Cycle Time [sec] 15 

Powder Material Properties Values [units] 

Material type Nickel Alloy 718 (Ni718); corresponding to 

UNS N07718 (Carpenter Additive) 

Particle size range [μm] 15 - 45 (D10 – D90) 

IR Thermal Camera Specifications Values 

Brand and model Micro Epsilon – thermoIMAGER TIM 640 

Resolution [pixels], [pixel per mm2] 640 × 480, 20 

Frame rate [Hz] 10  

Spectral range [μm] 8 to 14  

Spatial resolution of object in image [μm/pixel] 20  
Camera On trigger event Laser Start 

Image size [mm] 125 × 125  

Table 2: The four parts selected for analysis, their underlying rationale, and post-process 

characterization  
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2.2.2 Time between Layers (TBL) or Inter-layer Time (ILT) 

The X-Y area scanned by the laser varies substantially over the course of the build. The time 

between layers (TBL), also called inter-layer time (ILT), varies in proportion to the scanned 

surface area. The ILT is defined as the time elapsed between the beginning of melting one layer to 

the beginning of the succeeding layer.  

The ILT is obtained from the slicing software before starting the build and verified with data 

from the recoater current sensor. Figure 6 tracks the ILT as a function of build height and layers. 

The ILT varies from 80 ± 5 seconds for the first 5 mm (125 layers) to 70 ± 5 seconds thereafter. 

The ILT is a critical input, represented as τ [s], in the graph theory model, (Eqn. 4, Sec. 2.4). The 

ILT includes the 15 second constant time to recoat a fresh layer of powder. 

In Figure 6, the first sharp decrease in ILT occurs at 3 mm (layer 75). This decrease was 

caused by the completion of the large bases of several parts. Another decrease occurs at 10 mm 

(layer 250), where the surface area of several large parts was reduced. Beyond 20 mm build height 

(layer 500) the surface area of the cone increases in relation to the other parts, which proportionally 

increases the time to scan the layer. Therefore, the ILT gradually increases from layer 500 until 

the build was completed (Layer 625).  
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Figure 6: The time between layers (TBL), or inter-layer time (ILT) changes significantly during 

the build. The ILT varies continually throughout the 625 layers (25 mm), from 85 seconds at the 

start of the build to 70 seconds at the end, reaching a minimum of ~65 seconds near 20 mm. The 

total build time was 15 hours. 

2.2.3 Post-process Part Characterization  

After processing, the parts were examined ex-situ using a variety of non-destructive and 

destructive metallurgical characterization techniques. Non-destructive analysis included X-ray 

computed tomography (X-ray CT, Nikon XTH-225) for nominal-to-actual metrological analysis, 

and porosity measurements. The X-ray CT scanning resolution for these parts was 10 µm per 

voxel. The CT Pro 3D software was used to reconstruct the 3D volumes from the 2D projections 

acquired from the X-ray CT. The Volume Graphics software (VGSTUDIOMAX 3.3.4) was used 

for nominal-to-actual part comparison (NAC) and porosity analysis. The porosity content in each 

part is reported in terms of defect volume ratio (DVR).  

 In addition, the relative density of the parts was quantified using Archimedes measurements. 

Relative density is the ratio of the density of the sample compared to a fully dense sample of the 

same material. Samples with a relative density less than 100% are likely to be affected by porosity 
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or other flaws [55]. The surface roughness of as-built parts was measured using laser scanning 

microscopy (Keyence VK-X200K). The surface roughness is quantified in terms of the average 

areal surface roughness (Sa), and is reported as the mean of 6 different sample regions, each of 

area 1 mm × 1.4 mm. 

For microstructure characterization, the parts were cross-sectioned using wire electro-

discharge machining. The cross-sectioned samples were ground using silicon carbide abrasive 

paper, polished using diamond paste (3, 1, 0.5 µm) and etched with aqua regia for ~ 10 seconds. 

Subsequently, optical and scanning electron microscopy (Helios 660 NanoLab, FEI) were used to 

analyze the microstructure.  Microhardness measurements (Vickers, HV0.5) were then acquired at 

0.5 kg and dwell time of 10 seconds (Tukon 2500 Hardness Tester).   

2.3 Temperature Measurement 

2.3.1 Calibration of IR Thermal Camera Measurements 

It is necessary to calibrate the thermal camera readings because IR thermography provides a 

relative measurement and not an absolute temperature reading [52,56,57]. The temperature 

measurements captured by the IR camera consider thermal emissivity to be constant. However, 

emissivity is not constant, but depends on the temperature of the body, angle of inclination of the 

body to the IR camera, and surface finish of the body [56]. In LPBF, the surface temperature varies 

considerably, and the surface texture transforms as the material changes from powder to a 

consolidated part. Accordingly, LPBF researchers have created rigorous calibration procedures to 

convert temperature readings obtained by the IR thermal camera to an absolute scale [57].   

In this work, we conducted an offline two-point calibration after the parts were built to offset 

emissivity differences between un-melted powder and solid metal parts.  The temperature readings 

from the IR camera were converted to an absolute scale through direct correlation to temperature 

recorded by a contact thermocouple welded to two of the five cube-shaped parts which was 
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selected for calibration (see Figure 5). This industry-standard procedure, used in previous 

publications, is summarized as follows [23,58,59]. The following procedure is similar to the 

calibration methods recently reported by Wang et. al [52]. 

After completing the first fixed processing build, two of the cube-shaped parts (Figure 5) were 

removed from the build plate and a K-type thermocouple was resistance spot-welded to the surface 

of each part. The parts were placed on a fixture with a cartridge heater, which was bolted on the 

build plate of the machine. The calibration setup is shown in the inset of Figure 7(b).  

The build plate was lowered to place the top surfaces of the cubes at the level of the processing 

plane and the parts were placed in the same location as would be seen by the IR camera during the 

actual build, essentially recreating the process conditions inside the chamber during the build. 

Metal powder was deposited on top of the part to simulate the state of the process before laser 

melting. This is because the thermal emissivity values of an as-printed LPBF surface and a surface 

with powder spread on top differ significantly [9,26]. The temperature of the parts was gradually 

raised using the cartridge heater and the absolute temperature response of the thermocouple as well 

as the relative temperature response of the IR camera were recorded.  The process was repeated 

without powder on top of the part to simulate the condition after a layer has been processed. 

A calibration function was obtained by fitting a regression function to the recorded data for 

both the bare-metal and powder-deposited conditions. The result of the calibration and the fitted 

regression function are presented in Figure 7(a) and Figure 7(b) for the powder-deposited and bare-

metal conditions, respectively. To reduce the effect of measurement noise, the IR reading was 

averaged over a 9 pixel × 9 pixel (180 μm × 180 μm) region, centered on each cube. The calibration 

functions shown in Figure 7 range from 25 °C to 250 °C. Temperature measurements over the 
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upper limit would be inaccurate as it would saturate the IR camera readings. These obtained 

calibration functions were applied to all IR measurements for this work.  

We note that the calibration curves in Figure 7 are valid for fixed intrinsic and extrinsic status 

of the IR camera.  A change in the intrinsic state of the IR camera, i.e., the various software settings 

of the camera, such as exposure time, would void the calibration. Likewise, a change in the 

extrinsic state of the IR camera, i.e., angle of inclination, position, stand-off distance from the build 

plate, would also invalidate the calibration functions. Given the sensitivity of the sensor to both 

internal and external settings, using a part-level infrared thermal camera for closed-loop feedback 

control would further compound measurement errors. 

In this work, measurement of the liquidus temperature was not attempted, as the focus is to 

predict and control the end-of-cycle temperature gradient after solidification, as opposed to local 

melting phenomena, and moreover, the temperature of the liquid state metal was beyond the 

saturation range of the camera sensor. 

 
Figure 7: Calibration functions for converting the IR thermal camera readings to absolute 

temperature measurements. (a) The calibration function for powder deposited on the part. (b) 

Calibration function for the bare-metal condition. Inset: The fixture used for calibration of the 

temperature readings. 
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2.3.2 End-of-Cycle Surface Temperature 

An example of the IR thermal camera images acquired during the fixed processing build are 

shown at select intervals in Figure 8. The temperature scale bar in Figure 8 is obtained after 

applying the calibration function discussed in Sec. 2.3.1. These IR images, taken at the end of each 

layer, visually depict the variation in surface temperature observed in the various parts. For 

example, despite printing under identical processing conditions, Figure 8 shows the prominent 

increase in surface temperature throughout deposition for the cone-shaped part compared to the 

other parts. Thus, the thermal history varies layer-to-layer for the same part, as well as between 

parts at the same layer. Hence, to avoid heat buildup, it is necessary to tailor the processing 

conditions both part-by-part and layer-by-layer. 

 
Figure 8: Surface temperature images obtained from the IR camera during the fixed processing 

build. These images are taken after a layer is melted.  Despite processing with constant processing 

conditions, the surface temperature during the build varies between parts at the same layer, as 

well as layer-to-layer for the same part.  The scale bar is calibrated to absolute temperature. 

The thermal history of the parts is quantified in terms of the end-of-cycle surface temperature. 

The end-of-cycle surface temperature, visually explained in Figure 9, has been used in our previous 

works [9]. It is the average of the IR camera thermal readings after calibration over a 3 pixel × 3 
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pixel (60 µm × 60 µm) region on each part. The end-of-cycle surface temperature is plotted in 

Figure 10 for each of the four parts studied in this work. 

 
Figure 9: Obtaining the end-of-cycle surface temperature from the IR camera. (a) a 60 × 60 µm 

(3 × 3 pixel) region of interest is selected for each part. (b) The temperature trends for each part 

are plotted. In this case, the trends for the cone are shown. (c) A zoomed-in view shows a prominent 

spike (A) caused due to laser events depicted in the two pictures. (d) The end-of-cycle temperature 

(B) is plotted across all layers. End-of-cycle temperature is extracted after a fresh  layer of powder 

is deposited but 0.5 seconds before the next laser strike (A)  



26 

 

Figure 9(a) shows an example of the selected 3 pixel × 3 pixel (60 μm × 60 μm) region of 

interest for the cone part. The surface temperature response for this region of interest over all 625 

layers is shown in Figure 9(b). We note that the temperature readings in Figure 9(b) are obtained 

after converting the IR temperature readings to an absolute temperature scale using the two 

calibration functions described in Sec. 2.3.1.  

On closer examination of the data from Figure 9(b), periodic spikes are observed. In Figure 

9(c), spikes labeled (A) are caused by the laser scanning over the region of interest on the part. 

This is followed by a rapid cooling and slight increase after the powder bed is lowered and a new 

layer of powder is deposited. The rationale is explained in the schematic pictures on the last row 

of Figure 9. The end-of-cycle temperature, demarcated at the temporal location (B) in Figure 9(c), 

is recorded 0.5 seconds before the laser strikes a new layer of powder. The end-of-cycle 

temperature (B) is plotted as a function of the build layer for the cone-shaped part in Figure 9(d). 

The end-of-cycle temperature reported over the 60 μm × 60 μm region of interest for each of 

the four parts is shown in Figure 10. This region of interest was chosen to enable measurement of 

thin cross-section regions in the vase and frame parts. Measurements near part edges were avoided 

to preclude errors due to image blurring between the part and surrounding powder. In Figure 10, 

the temperature for the first 5 mm (125 layers) is not reported since the IR thermal camera readings 

are affected by transients from the cartridge heater used to preheat the build plate. 

In Figure 10(a), the end-of-cycle surface temperature for the cone-shaped part increases 

significantly due to the 45° overhang on the edge. In Figure 10(b) for the vase part, the surface 

temperature increases after the narrow neck region due to the insulating nature of the powder 

trapped in the narrow internal cavity, the increase in overall surface area being consolidated, and 

the thin-wall nature of the part. Similar rapid increases in the end-of-cycle surface temperature for 
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the frame part is evident in Figure 10(c) at the overhanging section at the end of the build from ~ 

22 mm build height (layer 550) until completion. In the bridge-shaped part (Figure 10(d)), the 

surface temperature increases sharply after a build height of 15 mm (layer 375) as the relatively 

thin legs are poor pathways for conduction of heat trapped by unmelted powder in the gaps.  

We note that the surface temperatures reported in Figure 10 do not exceed 200 °C, which is 

well below the melting point of the material (Nickel Alloy 718, 1600°C). This is because, as 

explained in the context of Figure 9, the end-of-cycle surface temperature is obtained after a new 

layer of fresh powder has been deposited by the recoater, and 0.5 seconds before this new layer is 

melted. Since the inter-layer time (ILT) in this work (Figure 6) was between 65 and 85 seconds, 

and given the rapid cooling rates observed in LPBF, the end-of-cycle surface temperatures are well 

under the melting point of the material. 

 
Figure 10: Observed surface temperature from IR camera plotted as a function of layer height for: 

(a) cone, (b) vase, (c) frame, and (d) bridge. Also shown are corresponding locations where 

surface temperature are reported. A 60 μm × 60 μm region of interest corresponding to 3 pixel × 

3 pixel in the IR camera image is selected for tracking the surface temperature across the layers.   
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2.4 Model-Driven Feedforward Process Control 

2.4.1 Graph Theory Thermal Modeling 

(a) Background – Solving the heat diffusion equation with graph theory 

To predict the thermal history, it is necessary to solve the heat diffusion equation (Eqn (1)) 

[12,49,50,60]. In the heat diffusion equation, the temperature T at a point (x,y,z) at time (t) is, 

𝜌𝑐𝑝
∂T(𝑥, 𝑦, 𝑧, 𝑡) 

∂𝑡
− 𝑘 (

∂2

∂𝑥2
+
∂2

∂𝑦2
+
∂2

∂𝑧2
)

⏞            
𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

T(𝑥, 𝑦, 𝑧, 𝑡)  =
P

v ∙ h ∙ d ∙ t0
 

(1) 

The right-hand side of the heat diffusion equation captures the effect of processing parameters 

such as scan speed (v, [m·s-1]), hatch spacing (h, [m]), laser power (P, [W]), layer height (d, [m]), 

and characteristic time (t0, [s]). The characteristic time is the pulse time of the laser.  

The right-hand side is further simplified as E𝑉 = 
𝑃

v×h×t×t0
 [W·mm-3], which is called the 

volumetric energy density and is defined as magnitude of energy supplied by the laser to melt a 

unit volume of powder [55,61,62]. This form of the heat diffusion equation is commonly used for 

thermal modeling in LPBF [50].   

The left-hand side of the heat diffusion equation includes material properties: density (ρ 

[kg·m-3]), specific heat (cp [J·kg-1·°K-1]) and thermal conductivity (k [J·m-1·s-1·°K-1]). The second 

derivative term in the heat equation, 
∂2

∂𝑥2
+

∂2

∂𝑦2
+

∂2

∂𝑧2
, called continuous Laplacian operator, is 

expressed in terms of spatial coordinates of the body, and thus captures the effect of part shape on 

the heat flow.  

The heat diffusion equation is solved by adding the following boundary and initial conditions, 

and by replacing the heat source term E𝑉  with an initial temperature distribution T0(𝑥, 𝑦, 𝑧).  In 

Eqn. (2), below, the continuous Laplacian operator is represented as ∇2 and the thermal diffusivity 

as  𝛼 =
𝑘

𝜌𝑐𝑝
 [m2 

·s
-1]. 
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∂T (𝑥,𝑦,𝑧,𝑡) 

∂𝑡
− 𝛼∇2T(𝑥, 𝑦, 𝑧, 𝑡)   = 0 (For one heating cycle) 

T(𝑥, 𝑦, 𝑧, 𝑡 = 0) = T0(𝑥, 𝑦, 𝑧) 
∂T (𝑥,𝑦,𝑧,𝑡) 

∂𝑛
= 0   (On boundary) 

(2) 

Shifting the heat source to the initial condition is reasonable for the LPBF where the laser scan 

is rapid compared to the long dwell time before the next layer is melted.  The initial temperature 

distribution T0(𝑥, 𝑦, 𝑧) contains the melting temperature of the material, and the initial temperature 

in the remainder of the body is the temperature distribution from the previous heating cycle. Initial 

node temperatures are assumed to be the preheat temperature of the build plate (85 °C).  

Lastly, the boundary condition implies no heat is lost to the surroundings from the boundaries 

of the body; 
∂T (𝑥,𝑦,𝑧,𝑡) 

∂𝑛
 is the outward normal vector.  Heat loss at the boundaries is addressed in a 

separate step (Step 3) during practical implementation as discussed later in Sec 2.4.2. We note that 

the forgoing simplification is common to thermal modeling in LPBF [50].  

The graph theory approach approximates the continuous Laplacian with the graph Laplacian 

matrix L, in effect, ∇2= −L as discussed in depth in our previous work [28]. The solution is 

obtained by discretizing the heat diffusion equation over N nodes and by replacing the continuous 

temperature with a discrete temperature vector (T),   

∂T(𝑥, 𝑦, 𝑧, 𝑡) 

∂𝑡
+ αLT(𝑥, 𝑦, 𝑧, 𝑡)  = 0  

(3) 

The above first-order ordinary linear differential equation has the following solution, 
 

T(𝑥, 𝑦, 𝑧, τ) = ϕ𝑒−𝛼𝑔Λτϕ′T0(𝑥, 𝑦, 𝑧) (4) 

Eqn. (4) frames the heat diffusion equation in terms of eigenvalues Λ and eigenvectors ϕ of 

the graph Laplacian L; T0 [K] is the input temperature of the model, which is determined by the 

laser heating and temperature of previously deposited layers; τ [s] is the inter-layer time (ILT, 

Figure 6); and g is a tunable gain factor [unitless], which controls the rate of heat diffusion and is 

discussed in depth by Cole et al. in[28].  
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The graph theory solution in Eqn. (4) is semi-analytic in nature, it is analytic in time and 

numeric in space. To avoid truncation errors, the entire eigen spectrum consisting of N (number 

of nodes) eigenvectors (ϕ) and eigenvalues (Λ) are considered. The input temperature (T0(𝑥, 𝑦, 𝑧)) 

is estimated as a function of the laser power (P) as follows.  

T0(𝑥, 𝑦, 𝑧)  = Tnom ×
Pnew
P0

β (5) 

Where Tnom = 1600 °C is the melting temperature of nickel alloy 718 at the nominal laser power 

of P0 = 285 W; Pnew is the altered laser power, and β = 0.95 is a constant. The value of β was 

obtained through tuning of the graph theory model; it remains constant for all parts on both the 

fixed and controlled build plates. The value for Pnew is bounded between 200 W to 370 W. The 

rationale, as described in Sec. 2.4.4, is to avoid lack-of-fusion porosity on the lower end and 

keyhole melting on the higher end of the laser power.  

The variable for time τ in Eqn. (4) serves as the effective time for cooling between laser strikes 

over the course of the build. Time is bounded from the time of laser strike τ = 0 to the interlayer 

time for the experiment (Figure 6, Sec. 2.2.2) for a single layer. The gain factor (g) is added to 

calibrate the model for the specific machine and material. The value of g = 1.7 is functionally 

identical to our previous works, and its significance is discussed in detail in Yavari et. al. [26,63]. 

The graph theory approach to thermal modeling has the following advantages compared to 

traditional finite element analysis (FEA) based techniques in the context of LPBF  [27].  

(1) Mesh-free Modeling. The graph theory technique discretizes the part geometry into point nodes 

and does not need to mesh the part into volumetric elements. Whereas FEA requires repeated 

meshing and remeshing to simulate layer-by-layer deposition of LPBF, the graph theory model 

activates discrete nodes, saving computation time. 
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(2) Matrix inversion-free computation. Unlike FEA, the graph theory solution does not involve 

cumbersome matrix inversion steps. Instead, the eigenvalues (Λ) and eigenvectors (ϕ) of the 

Laplacian matrix (L) are used, which further reduces computation time. 

(3) Time-step free calculation. The FE approach is a fully numeric computational solution which 

requires time steps to be small for the solution to converge. The graph theory solution is 

analytic in time, hence the time step (τ) in the graph theory solution, shown in Eqn. (4) can be 

set to any value without losing precision [27,28]. Thus, the graph theory simulation does not 

require stepping through time. 

(b) Prior Work in Graph Theory Thermal Modeling 

Our prior publications have compared the computational accuracy and efficiency of the graph 

theory approach in relation to exact Green’s function-based analytical solutions, finite element, 

and finite difference methods for benchmark 1D and 3D heat transfer problems [24,28]. These 

prior works also delineate the effect of number of nodes and influence of boundary conditions. 

From a computational perspective, the approach typically converges to within 1% of the exact 

analytical solution approximately 2.5 to 5 times faster than finite element models.  

Prior work has also involved practical application of the graph theory approach to thermal 

modeling of the LPBF process, including: (1) verification of the graph theory model predictions 

with proprietary (Netfabb) and non-proprietary FE software [27]; (2) validation of model 

predictions with experimental temperature observations for several part shapes, including large 

complex LPBF parts [23,26]; and (3) correlation of thermal history predictions with porosity, 

microstructure evolved, and thermal-induced failures [9,25]. Recently, the graph theory approach 

was extended to thermal modeling of the directed energy deposition process [64]. These prior 
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works affirm that the graph theory solution converges in ~1/10th of the time of non-proprietary FE 

models, with error less-than 3%.  

2.4.2 Thermal modeling of LPBF Parts Using Graph Theory 

Figure 11 shows the four steps in the application of the graph theory approach to model the 

thermal history of LPBF parts. In Step 1, the part geometry is discretized into point nodes. These 

nodes are sampled with a uniform random distribution throughout the part geometry.  

The node density (n, nodes·mm-3) impacts the convergence of the model as shown in previous 

work [26–28]. A higher node density (n) results in a more accurate convergence, albeit at the 

expense of computation time. The computation scales exponentially (n3) to the number of nodes 

[23,27,28]. 

 
Figure 11: Application of graph theory thermal modeling in LPBF showing four steps in 

simulating the thermal history of the frame part. A 2D map is shown here for explanation purposes, 

a 3D temperature distribution is obtained in practice for each layer.  

In Step 2, the nodes are connected by edges, whose weight depends on the Euclidean distance 

to neighboring nodes. From this connectivity information, the Laplacian matrix (L) is obtained, 

wherefrom the eigenvectors (ϕ) and eigenvalues (Λ) are computed. In step 3, the deposition 

process is simulated for each layer. Step 3 involves solving the heat conduction equation in Eqn. 

(1) for a layer using the graph theory approach (Eqn. (4)). 
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After heat diffusion via conducted, heat loss at nodes on the boundary of the part due to 

convection and radiation from the part to the surrounding powder, and from the part to the substrate 

is accounted by applying lumped capacitive theory to the temperature, as follows [9].  

T𝑏 = 𝑒
−ℎ∆𝑡 (T𝑏𝑖 − T𝑝) + T𝑝 (6) 

Here,  the temperature of the surroundings T𝑝 is considered as constant, T𝑏𝑖 is the boundary 

node temperature obtained by the heat diffusion alone in Eq. (4), T𝑏 is the resulting boundary node 

temperature  incorporating  convection and radiation heat loss, ∆𝑡 is the time step between the 

calculation of the heat diffusion within a layer, and h [W·m-2·°C-1] is the bulk coefficient of heat 

loss for convection (via Newton’s law of cooling)  and radiation (via Stefan-Boltzmann law) from 

the boundary nodes to the surrounding powder and air. The heat loss coefficient is stratified 

between part to surrounding powder (hw), and part to substrate (hs). In addition to convection and 

radiation, heat loss via conduction between the part and the substrate is also included in hs. After 

convection and radiation are adjusted at boundary nodes, the temperature at various nodes obtained 

from graph theory at each node located at position (x, y, z) at time step 𝛥𝑡 is T(𝑥, 𝑦, 𝑧, 𝛥𝑡).  

Lastly, in Step 4, Steps 1 – 3 are repeated as required to simulate the layer-by-layer process. 

At the end of each iteration, the temperature of the previous layers is carried forward. In other 

words, residual heat from deposition of previous layers is retained in the nodes. The simulation 

parameters used in this work are reported in Table 3. At the end of Step 4, the thermal history of 

all node locations is obtained and recorded. The result is a 3D rendering of the thermal history. 

The graph theory thermal model used here makes the following simplifying assumptions: 

(1) Several layers are deposited at once to reduce computation time. This so-called super layer or 

meta layer assumption is commonly used in both research and commercial FE-based thermal 

simulation implementations [49,51]. 
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(2) The entire super layer is assumed to be deposited at the input (melting) temperature T0. The 

shape and temperature distribution of the laser beam is ignored, and the laser is considered as a 

point source. 

(3) Each part is considered independent from the others on the build plate, and parts are considered 

insulated from one another. In other words, the temperature of one part does not affect others. 

(4) Heat loss through conduction, convection both free and forced, and radiation are considered, 

however, the effect of latent heat of fusion due to transformation of material from solid to liquid 

and back to solid is ignored. In other words, meltpool-scale phenomena are ignored. 

Table 3: Simulation parameters used in the graph theory thermal simulation [9].  

Simulation Parameters Values 

Heat loss coefficient part to powder, hw [W·m-2· °C] 2.8  

Heat loss coefficient part to substrate, hs [W·m-2· °C] 80 

Thermal Conductivity (k) [W·m-1·°C] 19.47  

Density (ρ) [kg·m-3] 8,193  

Specific Heat (cp) [J·Kg-1·°C-1] 435 

Melting Point (T0) [°C] 1,600  

Ambient chamber temperature, T𝑝 [°C] 85 

Characteristic length [mm] 2  

Neighborhood distance (ε) [mm] 5 

Maximum number of nearest neighbors (n) 6 

Superlayer thickness [mm] 0.5 (12.5 actual layers)  

Gain factor (g) [unitless] 1.7  

Computational hardware 
AMD Ryzen 3970X CPU, @3.70 

GHz with 128 GB RAM. 

2.4.3 Model Calibration 

To utilize the graph theory thermal modeling approach (Eqn. 4), three modeling parameters 

must be calibrated, these are the gain factor (g), the number of nodes (n), and super-layer thickness 

(s). The super layer or meta layer assumption, where several layers are assumed to be deposited at 

once, is used commonly in thermal simulations of LPBF to speed computation [12]. The data 

obtained for the cone-shaped part was chosen for model calibration. Based on previous work for 

the same material, the gain factor was fixed as g = 1.7 [unitless] [9].  
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The graph theory solution was obtained for various values of node density (n) and super layer 

thickness (s) and compared with the IR data. The error with respect to the IR data is reported in 

Table 4 in terms of the mean absolute percentage error (MAPE, %), and root mean squared error 

(RMSE, °C). The values of n and s resulting in the least MAPE, and RMSE are selected. The effect 

of node density (n) with s = 0.5 mm on convergence is shown in Figure 12(a) and Table 4(a). 

Likewise, the effect of layer thickness (s) with node density n = 0.5 nodes·mm-3 is shown in Figure 

12(b) and Table 4(b).  

Referring to Figure 12(a) and Table 4(a), increasing the node density (n) results in accurate 

convergence at the cost of computation time. Similarly, from Figure 12(b) and Table 4(b), reducing 

the super layer thickness (s) improves the model accuracy, but involves a tradeoff in computation 

speed. Based on extensive offline tuning, in this work we select n = 0.5 nodes·mm-3 and s = 0.5 

mm (Table 3). With these settings, the MAPE and RMSE with respect to the end-of-cycle surface 

temperature measurements for the cone-shaped part are 1.16% and 4.5 °C, respectively, and the 

simulated thermal history was computed in under five minutes on the desktop computer specified 

in Table 3. 

Table 4: (a) Convergence results for the graph theory model as a function of node density (n), the 

super layer height was fixed at s = 0.5 mm. (b) Convergence results for the graph theory model as 

a function of super layer thickness with node density was fixed at n = 0.5 node·mm-3.  The number 

in parenthesis is the std. dev over 10 iterations. 

(a) Node Density (n) (node·mm-3) n = 0.2 n = 0.3 n = 0.4 n = 0.5 (selected) 

MAPE (%) 5.42 (1.05) 4.73 (1.24) 3.44 (0.95) 1.16 (1.01) 

RMSE [°C] 24.0 (4.6) 19.7 (5.4) 13.2 (3.8) 4.5 (3.5) 

Average Run Time [s] 83 140 221 305 

(b) Layer Size (s (mm) 
s = 0.5 

(selected) 
s = 0.6 s = 0.8 s = 1.0 

MAPE (%) 1.16 (1.01) 2.46 (2.93) 5.50 (2.93) 5.67 (3.05) 

RMSE [°C] 4.5 (3.5) 14.5 (15.3) 62.7 (16.3) 39.2 (19.9) 

Average Run Time [s] 305 208 184 141 
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Figure 12: Calibration of graph theory parameters, node density (n) and super layer thickness (s)   

using the cone part as reference. The IR measurements are used as ground truth, and plotted in in 

black. (a) The effect of changing node density (n) with super layer thickness fixed at s = 0.5 mm. 

(b) Effect of super layer thickness (s) with number of node n = 0.5 nodes·mm-3. 

2.4.4 Implementation of Feedforward Process Control  

(a) Control Design  

This work implements a heuristic feedforward control approach. The approach has three 

steps, namely, (Step 1) predict; (Step 2) analyze; and (Step 3) correct. The approach is summarized 

in Figure 13 in the context of the cone-shaped part.  

First, in Step 1, the thermal history of the part is predicted using nominal processing 

conditions. As depicted in Figure 13(a), it is observed that the end-of-cycle surface temperature 

increases rapidly after 12 mm of build height (layer 350).  In this work, an increase in end-of-cycle 

surface temperature greater than 20 °C between successive super layers was considered as a 

potential onset of heat buildup [9]. This threshold was selected based on previous work with the 

same material and LPBF system. Based on this criteria, in Step 2 (analyze, Figure 13(b)), the 

surface temperature after 12 mm (300 layers) is flagged as a point of heat buildup.   
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In Step 3, the steep rise in end-of-cycle surface temperature was remedied by reducing the 

laser power and increasing the dwell time between layers. For this purpose, the thermal history 

was simulated iteratively using the reduced laser power as an input for the graph theory model 

(Sec. 2.4.1).  An increase in dwell time is considered and tested in the simulation, only if decreasing 

the laser power to 185 W does not mitigate heat buildup. 

 
Figure 13: The model-driven feedforward control of additive manufacturing approach applied to 

the cone-shaped part. (Step 1) Prediction - The graph theory thermal model is used to predict the 

thermal history of the part. (Step 2) – Instances of rapid increases in temperature (heat buildup) 

are identified from analysis of the thermal history predictions. (Step 3) – Thermal history is 

corrected to avoid steep temperature gradients and heat buildup by changing the laser power.  

(b) Parameter Bounds 

For this work, it was determined that the laser power should be maintained within ±30% of 

the nominal laser power (P0 = 285 W) to ensure suitable levels of consolidation and density; these 

limits translate to 200 W (-30% P0) and 380 W (+30% P0). These bounds were based on the 

porosity and relative density analysis results from five cube-shaped parts (10 × 10 × 25 mm) shown 

in Figure 5.  

Each of the cubes were printed with varying laser power levels while the rest of the processing 

parameters were identical to the parameters listed in Table 1. The laser power levels tested were, 

385 W (+35% P0), 342 W (+20% P0), 285 W (P0), 228 W (-20% P0), 185 W (-35% P0). The parts 

were examined using X-ray CT and validated using the Archimedes method of density 
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measurement. The porosity in the samples, in terms of the defect volume ratio (DVR), and the 

results of the Archimedes relative density measurements (ρrel), are presented in Figure 14.   

Lack-of-fusion porosity was observed when the laser power was set to 228 W (-20% P0), 

resulting in a 0.87% DVR and ρrel = 95.3%; the lack-of-fusion porosity becomes severe at 185 W 

(-35% P0) with a DVR of 1.37% and ρrel = 93.6%. Consequently, to avoid severe lack-of-fusion 

porosity during the model-driven feed forward control approach, the lower limit for laser power 

was found to be -30% P0 = 200 W. To reduce overheating and keyhole mode operation, the upper 

limit for laser power was found to be +30% P0 = 370 W [65].  

As evidence of the suitability of these laser power bounds and other constant processing 

parameters, none of the parts studied in this work, either produced under fixed or controlled 

processing conditions, showed evidence of lack-of-fusion porosity when examined with non-

destructive X-ray CT and destructive metallography.  

 

Figure 14: Porosity levels (DVR) from X-ray CT and relative density (ρrel) from Archimedes 

measurements are plotted as a function of laser power (P) used for five the parameter cubes 

(Figure 5). The nominal laser power, P0 = 285 W. Severe lack-of-fusion porosity is observed when 

reducing laser power to 185 W (-35% P0). Hence in this work, the minimum allowable laser power 

reduction for controlled processing was set to 200 W (-30% P0). The maximum allowable power 

was set to 380 W (+30% P0) to avoid overheating and keyhole melting. None of the four parts 

studied in this work, created either in fixed or controlled conditions, showed presence of porosity. 
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(c) Application 

Having established the upper and lower limits of laser power for Nickel Alloy 718 in the 

context of porosity, each part was simulated iteratively as a function of laser power and dwell time. 

The control target is the rate of change of end-of-cycle temperature, and is set at 0 °C/layer. The 

control is initiated when the rate of change (slope) exceeds 20 °C/layer.  For ease of practical 

implementation, the dwell time and laser power were changed only once for each of the four parts, 

since these parameter changes are manually implemented by altering the G-code. The laser power 

and dwell time alterations for controlled processing of each of the four parts is unique and 

summarized in Figure 15. 

As an example, referring to Figure 13(c), in the graph theory simulations the laser power for 

the cone-shaped part was reduced to 200 W from 285 W beginning at layer 300 (build height 12 

mm). The reduced laser power was maintained until the end of layer 625 (25 mm). However, it 

was predicted that the steep increase in temperature of the cone-shaped part would not overcome 

despite reducing the laser power to 200 W (-30% P0).  

Decreasing the laser power below 200 W would risk severe lack-of-fusion porosity. 

Consequently, a 10 second dwell time was added to the inter-layer time (ILT) after the first 12 mm 

(300 layers) of build height. Likewise, for the vase and bridge-shaped parts, the power is reduced 

to 228 W from layer 375 onwards (15 mm). Similarly, the laser power for the frame was reduced 

to 228 W from layer 500 (20 mm) onwards.   
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While addition of a dwell time between layers can mitigate heat buildup, it also affects the 

thermal history of all the parts on the build plate. Moreover, increasing dwell time increases the 

production time. For example, adding a 10 second dwell time after each layer from layer 300 

onwards until layer 625 increased the build time by 1 hour to approximately 16 hours. Hence, from 

a productivity perspective the addition of the dwell time must be utilized sparingly. The thermal 

history, as a result of reduced laser power (200 W) and increased dwell time, is shown in Figure 

13(c).  

 
Figure 15: Summary of process parameters adjusted for controlled processing of the four parts. 

Once the laser power is reduced at a layer it is maintained until the end of processing.  
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3 Results and Discussion 

3.1 Cone 

3.1.1 Thermal History  

In Figure 16(a) and (b), respectively, the model-derived end-of-cycle surface temperature 

trends are compared to the IR-measured end-of-cycle surface temperature measurements for the 

cone-shaped part produced under fixed and controlled processing. The significant increase in the 

end-of-cycle top surface temperature for the fixed-processed cone beyond layer 300 (12 mm), 

evident in Figure 16(a), is accurately predicted by the graph theory model (MAPE 1.6%, RMSE 7 

°C). Moreover, the simulation required approximately 4 minutes (234 seconds) of computation 

time.  

 

 
Figure 16: (a) Predicted surface temperature trends overlaid on IR derived observation of the 

cone for: (a) fixed processing, (b) controlled processing. Note the steep increase in temperature 

in (a) compared to (b) after ~12 mm build height (layer 300). These simulations required less than 

4 minutes of computation time with error less than 2% (MAPE). The graph theory simulation is 

repeated 10 times and the ± 1σ prediction bands are plotted. The gray area in the background 

represents the shape of the part in terms of the build height.  
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The controlled processing of the cone involved reducing the laser power at layer 300 (12 mm 

build height) to 200 W from 285 W. Further, the recoater dwell time is increased by 10 seconds 

from layer 300 onwards. In Figure 16(b), these two aspects substantially arrested the end-of-cycle 

surface temperature increase for controlled processing. Consequently, the end-of-cycle surface 

temperature is restricted to a maximum of 150 °C (Figure 16(b)) for the controlled processing 

condition, compared to 200 °C for fixed processing (Figure 16(a)).  

The simulated spatial temperature distribution for the fixed and controlled processing of the 

cone-shaped parts at select layers is graphically compared in Figure 17. In accordance with the 

temporal thermal history trends discussed in the context of Figure 16, controlled processing 

significantly reduced the heat buildup in the bulk part. Further, the spatial temperature gradient of 

the controlled-processed part is relatively smaller compared to its fixed-processed counterpart.  

 
Figure 17: Spatial temperature distribution for the cone part predicted using the graph theory 

thermal model for fixed processing (top) and controlled processing (bottom). In controlled 

processing heat buildup and spatial temperature gradients are significantly reduced by decreasing 

the laser power to 200 W from layer 300 onwards.  
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3.1.2 Part Quality – Surface Roughness, Microstructure Evolution, and Microhardness 

The reduction in surface temperature, as well as the spatial temperature gradient achieved on 

account of controlled processing (Figure 16 (b)) has a significant impact on: part surface finish, 

microstructure grain size, and microhardness. For example, shown in Figure 18 is an X-ray CT 

slice of the two cones, along with an optical microscope image of the slanted overhang edges. Both 

samples had no detectable levels of porosity using X-ray CT, resulting in a DVR of 0.00%. In the 

case of the fixed-processed cone, Figure 18(a), the excessive heat buildup caused partially melted 

satellite powder particles to adhere to the overhang edge. However, the occurrence of satellite 

powder particles is mitigated for the controlled-processed cone (Figure 18(b)).  

As a result of partially melted powder adhered to the surface, the average areal surface 

roughness (Sa) at the overhang edge for the fixed-processed cone was assessed to be Sa ≈ 52 μm 

compared to Sa ≈ 34 μm for the controlled-processed cone. The foregoing areal surface roughness 

measurements are averaged over 6 sample regions spaced along the overhang section (demarcated 

with Sa in Figure 18), each region having an area of 1 mm × 1.4 mm.  We also note that no lack-

of-fusion porosity was observed in Figure 18 for either the fixed-processed or controlled-processed 

cone.  

 
Figure 18: X-ray CT and optical images of the cone-shaped parts. (a) Fixed processing resulted 

in a rougher surface finish (Sa ≈ 52 µm) due to partially fused particles (satellites) attached to the 

overhang edge. (b) Controlled-processed cone has a smoother surface finish (Sa ≈ 37 µm) without 

satellite particles.  
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The effect of temperature distribution on the microstructure of the fixed and controlled 

processing cone-shaped parts is presented in Figure 19. It was anticipated that heat buildup and an 

increased spatial temperature gradient in the fixed-processed cone-shaped part would result in 

larger grain size compared to the controlled processing parts. After cross-sectioning the parts with 

electro-discharge machining and polishing and etching the surface as described in Sec. 2.2.3, the 

microstructure was examined at different locations using scanning electron microscopy (SEM).  

To quantify the grain size, the primary dendritic arm spacing (λ1) was measured. The primary 

dendritic arm spacing (λ1) is inversely proportional to the cooling rate, and hence provides an 

indirect means to verify the effectiveness of the controlled processing [9,66].  These measurements 

were made over a length of 20 µm, perpendicular to the dendrite growth direction. Four of the 

locations where the primary dendritic arm spacing (λ1) was measured is visualized in Figure 19. 

These locations are demarcated as A, B, C, and D.  

Until the 300-layer mark (12 mm), both the controlled and fixed-processed samples were 

measured to have λ1 ~ 0.68 µm. However, after the laser power is changed from 285 W to 200 W 

at layer 300 (12 mm), λ1 at locations for the controlled samples were consistently smaller than their 

fixed-processed counterparts. The λ1 for the controlled-processed samples (200 W) was measured 

to be 0.49 µm ± 0.02 µm (Figure 19(b)). By contrast, for fixed processing (285 W), Figure 19(a), 

λ1 = 0.69 µm ± 0.02 µm. Indeed, enlarged images of  the overhang locations in Figure 19(a) show 

the presence of secondary dendrites in the fixed-processed samples, symptomatic of excessive heat 

buildup [67]. 

Continuing with the analysis, λ1 measured for the four locations A, B, C, D are plotted in 

Figure 20(a). The λ1 measurements are significantly different for the fixed and controlled-

processed samples at locations B, C, and D. This difference in λ1, in turn, translates to a large 
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difference in microhardness. As evident in Figure 20(b) the smaller grain size  of the controlled-

processed samples results in a significantly higher average microhardness (HV05 > 320) compared 

to the fixed-processed cone part (HV05 ~ 290).  

 
Figure 19: Primary dendritic arm spacing (λ1) measured along the build height for the (a) fixed, 

and (b) controlled processing cone-shaped parts at four locations (A), (B), (C), and (D). The 

mean primary dendritic arm spacing (λ1) for the fixed processing part was λ1~0.65 μm compared 

to λ1 ~ 0.50 μm for controlled processing after the laser power was reduced to 200 W at layer 

300 (12 mm) and a dwell time was increased by 10 seconds.  
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Figure 20: (a) Primary dendritic arm spacing (λ1) for controlled processing (blue) and fixed 

processing (red) conditions at the four positions A-D demarcated in Figure 19. Reduction in laser 

power for sections B-D during controlled processing results in finer grain structure (smaller λ1) . 

(b) The microhardness (HV0.5) is inversely related to λ1 - the larger the grain size, smaller the 

microhardness.  

3.2 Vase 

3.2.1 Thermal History  

The predicted and IR-observed surface temperature trends for the vase part built under fixed 

and controlled processing are shown in Figure 21(a) and (b), respectively. As evident from Figure 

21(a), a steep increase in the end-of-cycle surface temperature of the fixed-processed cone was 

predicted after 15 mm build height (layer 375). To arrest this heat buildup, in the controlled 

processing vase part, the laser power was reduced to 228 W (from 285 W) after layer 375 until the 

end of the build (layer 625). In Figure 21, the thermal history trends for the vase parts were 

accurately captured by the graph theory approach with MAPE less than 2% and RMSE ranging 

from 4 °C to 6 °C. The graph theory simulation computation time is less than 3 minutes (161 

seconds).  

The spatial temperature distribution at select layers is mapped in Figure 22. Compared to its 

fixed-processed counterpart,  in the controlled-processed vase, decreasing the laser power to 228 
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W from the nominal 285 W from layer 375 onwards mitigated heat buildup, particularly in the 

narrow neck region, and resulted in a smaller temperature gradient in the bulk part. 

 
Figure 21: Comparison of predicted and observed surface temperature for the vase-shaped 

parts. (a) fixed processing, and (b) controlled processing. The simulation was computed in less 

than 3 minutes with an error of less than 2%. The ±1σ prediction interval is shown for both 

cases. 

 
Figure 22: Visualization of the temperature distribution in the vase parts predicted by the graph 

theory modeling approach for the fixed- and controlled-processed scenarios. In the controlled 

processing scenario, there is a distinctive reduction in the part temperature due to reduction of 

the laser power to 228 W after 15 mm (375 layers). 
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3.2.2 Part Quality – Geometric Integrity and Feature Resolution 

While the difference in end-of-cycle surface temperatures between the fixed and controlled-

processed vases shown in Figure 21 are smaller compared to those between the cone-shaped parts 

(Figure 16), the relatively complex shape of the vase produces a pronounced effect on the 

geometric integrity. In Figure 23(a), it is evident visually, and subsequently affirmed on cross-

sectioning the part parallel to the build direction, that the central cavity of the fixed-processed cone 

is sintered closed. This is because the elevated bulk part temperature, especially in the narrow neck 

region, during fixed processing (Figure 22) fuses the powder trapped within the cavity. By contrast, 

as shown in Figure 23(b) the central cavity for the controlled-processed vase is intact.  

Further, in Figure 23, dimensional analysis conducted from a nominal-to-actual comparison 

of the CAD model and from X-ray CT measurements revealed that the outer surface of the fixed-

processed vase is larger than its nominal CAD model; the deviation exceeds +0.1 mm for the 

majority of the surface. The positive deviation, shown in a red hue on the figure, indicates that the 

part is larger than the CAD model. Also, in Figure 23(a), partially fused satellite powder was 

adhered to the inner, as well as the outer, surfaces of the fixed-processed vase. By contrast, the 

vase produced under controlled processing maintains its geometric integrity (Figure 23(b)) and is 

largely free of partially fused satellite particles adhered to the surface.    

Comparison of the thermal history in Figure 21 suggests there is less than a 15 °C difference 

in the end-of-cycle surface temperature between the fixed and controlled processing cases. By 

contrast, the corresponding difference for the cone was more than 50 °C (Figure 16). Despite this 

relatively smaller difference in end-of-cycle surface temperature, the controlled processing sample 

has an intact cavity, while the cavity is blocked for the fixed processing case. As seen from the 

spatial temperature distribution map in Figure 22, reducing the laser power in higher layers beyond 
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15 mm build height (layer 375) during controlled processing not only decreased the surface 

temperature of the current layer, but also diminished the extent of reheating in preceding layers 

and the overall heat flux through the bulk part.  

The increased temperature of the previous layers in fixed processing is evident in Figure 24, 

where the thermal history is tracked at a specific location on the surface of the part at a build height 

of 13 mm (layer 325).  Each peak in Figure 24 corresponds to the melting of the subsequent layers 

above. The image shown in the inset of Figure 24 is the predicted spatial temperature distribution 

at layer 325 when layer 425 is being deposited. In Figure 24(a), the elevated bulk temperature of 

the fixed-processed vase melts the powder trapped in the cavity. Controlled processing (Figure 

24(b)) reduces the bulk temperature, and consequently mitigates over-melting of powder particles 

within the cavity.   

The foregoing observation underscores the importance of controlling the thermal history of 

not just the topmost layer, but also that of the bulk part. Such control of the bulk part temperature 

would not be feasible using purely reactive feedback process control mechanisms based on infrared 

thermal camera measurements of only the part end-of-cycle surface temperature.  
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Figure 23: (Top) Optical cross-section micrographs and (bottom) nominal-to-actual X-ray CT 

dimensional analysis of the vase-shaped parts. (a) In fixed processing the central cavity of the vase 

is fused and has satellite particles adhered to the internal and external surfaces on account of 

overheating. The nominal-to-actual dimensional computation to CAD (from X-ray CT analysis) 

reveals that the fixed-processed vase has a positive deviation larger than 0.1 mm consistent with 

over-melting of powder. (b) The controlled-processed cone has an intact cavity, negligible satellite 

powder is adhered to the surface, and there is minimal deviation from the design dimensions. 

 
Figure 24: Thermal history at a fixed location (13 mm, layer 325) for (a) fixed processing, and 

(b) controlled processing. Controlled processing reduced the temperature in previous layers 

compared to fixed processing thus mitigating melting of powder trapped in the cavity. 
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3.3 Frame 

3.3.1 Thermal History  

The graph theory simulated thermal history prediction and the experimentally observed 

surface temperature trends for the frame parts are shown in Figure 25. For the fixed processing 

condition (Figure 25(a)), a rapid increase in surface temperature was observed towards the last 2 

mm of the frame part (layers 575 to 625) during melting of the horizontal overhang section at the 

top. Heat buildup in the overhang region occurs due to the restricted thermal conduction pathway 

– the powder contained within the hollow frame acts as an insulator and impedes heat transfer to 

the build plate.  

 
Figure 25: Comparison of observed and predicted surface temperature trends for the frame shape 

(a) fixed processing and (b) controlled processing. The steep increase in temperature observed in 

the last 2 mm of build height near the top of the fixed-processing case in (a) is mitigated in the 

controlled processing case (b) by reducing the laser power to 228 W from the nominal 285 W. The 

simulation was calculated within 10 minutes with error less than 2% (MAPE). The ±1σ prediction 

interval is shown for both cases. 
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To counteract this sharp increase in temperature of the overhang region, in the controlled 

processing frame, the laser power is reduced to 228 W for the last 5 mm of processing (layer 500 

to 625). The resulting thermal history derived from the graph theory simulation and observed from 

the infrared thermal camera are shown in Figure 25(b). Wherein the error between the simulated 

and observed thermal history is within 1.5% (MAPE) and the predictions were obtained in less 

than 10 minutes (557 seconds). The steep heat buildup toward the last 2 mm in the fixed-processed 

part is visually corroborated in the spatial thermal simulation snapshots shown in Figure 26. As in 

previous cases, controlled processing reduces the bulk part temperature, and the spatial 

temperature gradient. 

 
Figure 26: Comparison of the temperature distribution between the fixed and controlled 

processing frame parts at select layers. The reduction of laser power to 228 W in the controlled 

processing sample beyond 20 mm build height (layer 500) mitigated heat buildup, and resulted in 

a smaller variation in the spatial temperature gradient. 
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3.3.2 Part Quality – Geometric Integrity and Microstructure Evolution 

The result of the controlled processing strategy on geometric integrity for the frame is shown 

in Figure 27. The increased temperature in the fixed-processed part causes geometric inaccuracies 

and inferior surface finish. From the X-ray CT dimensional analysis of the fixed-processed frame 

in Figure 27(a), the poor resolution of the overhang region is evident.  

Further, satellite particles from partially melted powder are adhered to the inner and outer 

surfaces of the part. For the controlled processing condition, shown in Figure 27(b), these geometry 

and surface flaws are reduced significantly. 

 Further, the wall thickness of the two frame parts was measured from the X-ray CT slices. 

As observed in Figure 28, the mean wall thickness of the fixed-processed frame part is ~1.68 mm, 

viz., 0.18 mm larger than the designed thickness of 1.5 mm. In contrast, the mean wall thickness 

for the controlled processing is ~1.57 mm, i.e., a deviation of only 0.07 mm from the nominal.   

 
Figure 27: X-ray CT nominal-to-actual comparison for (a) fixed and (b) controlled processing. 

In the case of fixed processing (a), the overhang region has satellite particle adhered to the part 

underside, and the external surfaces are symptomatic of heat buildup. These result in relatively 

degraded overall dimensional integrity and rougher surface finish on the underside of the 

overhang. In contrast, the controlled-processed frame (b) has improved surface finish and 

resolution in the overhang region.  
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Figure 28: Effect of fixed and controlled processing on the thickness (width) of the wall of the 

frame. The nominal designed wall width was 1.5 mm. The wall thickness for the controlled-

processed sample was 1.57 mm, and 1.68 mm for the fixed processing case.  

3.4 Bridge 

3.4.1 Thermal History 

The comparison of the predicted and observed thermal history for the fixed and controlled-

processed bridge-shaped part are shown in Figure 29(a) and (b) respectively. The temperature in 

the bridge part after 15 mm build height (layer 375) increases considerably due to the insulating 

properties of the un-melted powder beneath the overhang span regions.  

In the case of the controlled-processed part, at layer 375 and beyond the steep increase in 

temperature is mitigated by reducing the laser power to 228 W (from 285 W). For example, at 

layer 500 (20 mm build height) the steady state end-of-cycle surface temperature for the fixed-

processed bridge exceeds 120 °C (Figure 29 (a)) compared to ~100 °C (Figure 29(b)) for the 

controlled-processed part. These surface temperature trends are accurately predicted by the graph 

theory approach (MAPE < 3% and RMSE ~ 7 °C).  The simulation converged in just over 2 

minutes. 
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The foregoing temporal thermal history trends are corroborated in the spatial temperature 

distribution plots in Figure 30. A significant heat buildup in the bulk part is noted for the fixed 

processing scenario, particularly in the region of the overhang sections of the bridge. Controlled 

processing substantially suppresses the heat buildup in the overhang span. 

 
Figure 29: Comparison of the model derived surface temperature trends and IR data for (a) fixed 

processing, and (b) controlled processing. Note the steep increase in thermal history in (a) beyond 

15 mm (325 layers) due to un-melted powder in the gaps which act as a thermal insulator. This 

steep increase in surface temperature is mitigated by reducing the laser power to 228 W. The 

simulation converged in a little over 2  minutes (122 seconds) with error less than 2.5% (MAPE).  

The ±1σ prediction interval is shown for both cases. 

 
Figure 30: Comparison of the thermal history for fixed and controlled processing for the bridge. 

The laser power is reduced to 228 W at layer 375 (15 mm) for the controlled processing condition, 

and consequently, the steep increase in temperature in the overhang span region is reduced. 
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3.4.2 Part Quality – Geometric Integrity and Feature Resolution 

The differences in the temperature distribution of the bridge part produced under fixed and 

controlled processing, translate into prominent differences in geometric integrity. The gap between 

each of the six spans between the legs is assessed visually using optical microscopy. 

Visual examination of the fixed and controlled-processed parts, as shown in Figure 31, reveals 

that compared to controlled-processing, for the fixed processing condition, the finest 0.5 mm gap 

was smaller than designed and the resolution of the inset lettering is inferior. The reduction in the 

gap in the fixed-processed sample is due to over-melting of powder trapped underneath the span 

(similar to the vase and frame parts) on account of the elevated bulk part temperature.   

 
Figure 31: Comparison of the geometric resolution of (a) fixed and (b) controlled-processed 

bridge part. The geometric resolution of the controlled processing bridges is superior in terms 

the gap between the legs as well as the engraved numbering.  
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4 Conclusions and Future Work 

We developed and applied model-driven feedforward control to mitigate heat buildup and 

prevent subsequent flaw formation in parts made using the laser powder bed fusion (LPBF) 

additive manufacturing process. As opposed to printing the entire part at a constant parameter set, 

the key idea was to adjust two process parameters, namely, laser power and dwell time between 

layers, to mitigate heat buildup based on predictions from a computational thermal model.  

The effectiveness of the process parameters optimized based on the feedforward control 

approach was demonstrated by printing two build plates, each consisting of Nickel Alloy 718 parts 

of 10 different types of geometries. Extensive post-process characterization was conducted on 

these parts to quantify their microstructure, microhardness, surface finish, and geometric integrity. 

It was observed that feedforward control produced parts with finer grain size, increased 

microhardness, improved geometric integrity and resolution, and reduced surface flaws.   

From an industry vista, using this approach, practitioners can anticipate potential quality 

issues due to heat buildup in the part before it is printed, and accordingly modify (optimize) the 

processing parameters or part design. Such a proactive, physics-aided process parameter and 

design optimization approach can significantly reduce the need for expensive build-and-test 

experiments, and thus accelerate the time-to-market of additively manufactured parts. 

In our future research, the feedforward approach will be automated so that potential regions 

of heat buildup are identified and corrected autonomously during the process planning stage 

through purpose-built algorithms. Further, instead of the broad strategy of reducing heat buildup 

across layers, forthcoming research will focus on controlling specific process outcomes, such as 

residual stresses and microstructure heterogeneity. 
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