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Projective duality identifies the moduli spaces B,, and X(3,n) parametrizing linearly
general configurations of n points in P? and n lines in the dual P?, respectively. The
space X (3, n) admits Kapranov's Chow quotient compactification X(3, n), studied also by
Lafforgue, Hacking, Keel, Tevelev, and Alexeev, which gives an example of a KSBA moduli
space of stable surfaces: it carries a family of certain reducible degenerations of P? with
n “broken lines”. Gerritzen and Piwek proposed a dual perspective, a compact moduli
space parametrizing certain reducible degenerations of P? with n smooth points. We
investigate the relation between these approaches, answering a question of Kapranov
from 2003.

1 Introduction

Projective duality associates to a configuration of n points in P? a configuration of n
lines in the dual P? and conversely. Our motivating question is how does projective dual-
ity between points and lines in the plane behave in families and under degenerations?

More precisely, denote by B,, and X(3, n) the moduli spaces of n general points in P? and
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Compactifications of Moduli 17001

n general lines in the dual (P?)Y, respectively. Projective duality gives an identification
B, = X(3,n),

but these moduli spaces carry distinct P?-bundles, one with n points (sections) and
another with n lines (divisors). The problem is to find their modular compactifications,
that is, to extend the P?-bundles to universal families over the compactifications. For
X(3,n), a modular compactification is given by Kapranov's Chow quotient X(3,n) [16],
which carries a family of reducible degenerations of P? with n “broken lines”. This is an
example of the moduli space of stable pairs (varieties with divisors) of Kollar, Shepherd-
Barron, and Alexeev [2, 12]. There are no comparable moduli spaces for varieties with
marked points.

We start by studying the Gerritzen-Piwek compactification B,,. Although defined

differently in [10], B, is isomorphic to the Zariski closure of the image of the map
B, — H]P’l,
On

where Q,, is the set of ordered quintuples of distinct labels vy,...,v5 € {1,...,n}. Every
map B, — P! sends (p;,...,p,) to the cross-ratio of four points obtained by projecting
Py,:--- /Dy, from p,. € P2 The analogous construction for points in P! instead of P2
yields Mo,n =~ X(2,n) [13, Theorem 9.18]. It follows from Luxton’s [22, Proposition
3.2.8] (see the proof of Theorem 1.2) that a similar result holds for lines in P? up to

normalization:

Theorem 1.1. There exists a finite birational morphism X(3,n) — B,,. In particular,

we have X(3,n)" = B,,. (For a reduced scheme X, we denote by X" its normalization.)

For n = 6, Luxton proves that in fact X(3, 6) = By, [22, Theorem 4.1.15]. We prove
a very general result in combinatorial matroid theory (see Section 2) and combine it with
the theory of Lafforgue’s varieties @ ([20], see Section 3), which generalize Kapranov's
construction of X (3, n) to arbitrary matroids, to prove perhaps the most general result

in this direction.

Theorem 1.2. Let 2" be the Lafforgue variety corresponding to a matroid polytope Q

of rank r and dimension n — 1 such that r > 3, or r = 2 and n > 5. The product of face
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maps

[ =[] (1)

FeF FeF

. . . . o . =Q. .. . .
is a finite morphism and its restriction to the main stratum of " is birational onto its
image if the matroid is framed. Here F is the collection of faces of Q in the boundary of

the hypersimplex A(r, n) that are equivalent to A(2,4).

Next we investigate the claim from [10] that B, is a modular compactification
which parametrizes certain degenerations of P? with configurations of n points. As
common in moduli theory, to construct the family over a compactification, the 1st step
is to identify potential central fibers in one-parameter degenerations. Formally, if k is
an algebraically closed field, R = k[[t]], and K = k((t)) is the field of fractions of R, then
given Spec(K) — B,,, we need to construct a family over Spec(R). We recall the definition
of Mustafin join [24].

Definition 1.3. For a free R-submodule L € K2 of rank 3, let P(L) = Proj(Sym(L")).
The submodule L is called a lattice. Given a finite set of lattices ¥ = {L;,...,L,,}, the

corresponding Mustafin join P(X) is the Zariski closure of the diagonal embedding
P2 < P(L;) Xg ... Xg P(L,,).

We denote by P(X), the central fiber of P(X), a degeneration of IP’IZ{. The Bruhat-—
Tits building %g is the set of equivalence classes of lattices modulo rescaling by
A € K*. The Mustafin join P(X¥) only depends on the equivalence classes of lattices
[L,],...,[L,,] € BY.

Mustafin joins were used to determine special fibers of various families of
compactified moduli spaces. One of the 1st examples is [10], where Gerritzen and Piwek
constructed a Mustafin join associated to a one-parameter degeneration of n points in
P2 (see below). Kapranov showed in [17] that an analogous construction for n points in
P! gives all fibers of the universal family over Mo,n- The interpretation of the family of
visible contours over X(3, n) in terms of Mustafin joins was obtained in [19]. This work
was based on [6, 20], where Mustafin joins were also studied. In [3, 4], it was shown that

the central fibers of arbitrary Mustafin joins are reduced and Cohen-Macaulay.
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Compactifications of Moduli 17003

Definition 1.4. ([10]).

Leta,,...,a, € P2(K) be points in general linear position. We calla = (a,, ..., a,)
an arc. Given a lattice L, the valuative criterion of properness gives unique extensions
5%, e ,Ef;l € P(L)(R), which are sections of the P?-bundle P(L) — Spec(R). We say that L
is a stable lattice with respect to an arc a if at least four of the limits 6% 0,... ,Efl(O) in

the central fiber P(L), € P(L) are in general linear position. Let
¥, € B

be the set of stable lattice classes with respect to a. This is a finite set [19, Lemma
5.19]. We call P(X,) the Mustafin join for an arc to distinguish it from arbitrary
Mustafin joins. The valuative criterion of properness gives n sections a;,...,a, of
P(X,) — Spec(R).

By Theorem 6.9, the Mustafin join P(X,) — Spec(R) for an arc is smooth along
n disjoint sections a, ..., a,. The central fiber P(X,), is reduced and Cohen-Macaulay
by [4].

Remark 1.5. In[10], the authors claimed that B,, is the moduli space for Mustafin joins
for arcs, that is, there exists a family F,, — B,, with the following universal property.
Let a: Spec(K) — B,, be an arc and let a: Spec(R) — §n be its unique extension. Then
the pullback of F, via a is isomorphic to P(X,). However, we found a mistake in the
argument and the statement is also wrong, as there exist arcs a,b: Spec(K) — B,, with
a0) = b(0) € B,, such that the central fibers of P(Z,) and P(X}) are not isomorphic (see
Example 7.1).

In Section 7, we construct the correct modular compactification of B, and
the universal Mustafin join of point configurations over it using multigraded Hilbert

schemes [14].

Theorem 1.6. There exists a compactification B,, € X;p(3, n) with a proper flat family
M — X;p(3,n) smooth along n disjoint sections satisfying the following universal
property. If a: Spec(K) — B,, and a: Spec(R) — X¢p(3,n) is the unique extension, then

a* M is isomorphic to the Mustafin join P(X,) with n sections.

In Proposition 7.10, we construct forgetful morphisms XGP 3,n) —> XGP 3,n—1),

the analogues of forgetful morphisms M, ,, — M, ,,_,. We further show that there exists
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17004 L. Schaffler and J. Tevelev
a birational morphism X;p(3,n) — B,,. In Theorem 7.9, we show that
Xp(3,5) = X(3,5) = Bs = My 5.

However, X;p(3, 6) is different from Kapranov's Chow quotient compactification
X(3,6). In [22], Luxton showed that X(3,6) is a tropical compactification of X(3,6)
inside the toric variety whose fan X (3, 6) is the tropical Grassmannian of Speyer and
Sturmfels [27]. The 15 singular points of X(3, 6) correspond to non-simplicial bipyramid

cones in X (3, 6).

Theorem 1.7. X;p(3,6)" is the blow up of X(3,6) given by the minimal refinement of
¥ (3,6) induced by splitting each bipyramid cone into 12 subcones as illustrated in Table
10. The 6-pointed degenerations of P? parametrized by Xp(3,6)" are listed in Tables
13-16.

The main difficulty in dealing with X(3,n) is that its singularities are hard to
control. In Theorem 11.2, we show that X(3,n)" has a natural open locus U(3,n) with
toroidal singularities. Moreover, its preimage Ugp(3, 1) in XGP(3, n)" is also toroidal. We
call U(3,n) and U;p(3, n) planar loci because they correspond to limits of arcs with all
stable lattices in one apartment of the Bruhat-Tits building. Planar loci are covered by
charts that are isomorphic to (non-toric) open subsets in toric varieties with fans that
we denote by Q,, and @m (here n = m + 3). While Q,, is nothing but the quotient fan of
Kapranov-Sturmfels—Zelevinsky [18], see Section 8, the fan @m is new, see Section 9.

For n = 6, U(3,6) nearly describes all of X(3,6) (including its singular locus),
which allows us to immediately describe Ugp (3, 6) by toric geometry. This leaves a few

closed subsets, which we deal with an ad hoc analysis.

2 A Result in Matroid Theory

This section is elementary and we only use standard terminology and facts in matroid
theory that can be found in [25]. We use the notation [n] = {1,...,n} throughout the
paper. Recall that an example of a matroid on [n] is a configuration of n hyperplanes

in P™!, Matroids of this form are called realizable.

Definition 2.1. Let M be a matroid on [r] and let i € [n].

(1) The contraction M/i, is the matroid on [n] \ {iy} such that I C [n]\ {iy} is

independent provided I U {i;} is independent for M;
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(2) The deletion M \ i is the matroid on [n] \ {i;} such that I < [n]\ {i,} is
independent provided I is independent for M.

(3) Mis called disconnected if there exists a partition [n] = E, IE, and matroids
M,,M, on E,, E,, respectively, such that I is an independent set for M if and
only if I = I, L1 I,, where I; is an independent set for M;, i = 1, 2. A matroid is

connected provided it is not disconnected.

For realizable matroids, deletion corresponds to removing a hyperplane from the
arrangement and contraction corresponds to intersecting the arrangement with one of

its hyperplanes.

Definition 2.2. ([28]).
Let M and M’ be two matroids on [n]. Then we say that M is more constrained
than M’ provided every independent set for M is independent for M’, but there exists an

independent set for M’ that is dependent for M.
The goal of this section is to prove the following:

Theorem 2.3. Let M and M’ be two matroids on [n] of the same rank r. Suppose that
r>3orr=2andn > 5. Then the following statement (CD) holds:

(CD) If M is connected and more constrained than M’, then there exists i, € [n]
such that either the contraction M/i, is connected and more constrained
than M'/i, or the deletion M \ i, is connected and more constrained than
M\ i.

Before we plunge into the proof, we recast the theorem in the language of
matroid polytopes. Let {e;,...,e,} be the basis of R". The hypersimplex A(r,n) is the
lattice polytope

A(r,n) = ConvHull (Z e;|IC[n]and|I| = r) C R™,

iel

A matroid polytope P in R" is a lattice polytope whose vertices are >, pe;,
where B varies among the bases of a matroid on [n]. If the matroid has rank r, then
the vertices of P are also vertices of the hypersimplex A(r,n). The hypersimplex is the
matroid polytope of the uniform matroid. Recall that M is connected if and only if P

has dimension n — 1, see [20, Theorem 1.11] or [7, Proposition 2.4]. If a matroid M is
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17006 L. Schaffler and J. Tevelev

more constrained than a matroid M’, then we have P C P’ for the corresponding matroid

polytopes. The converse holds if we assume M and M’ have the same rank. So we have

Corollary 2.4. Let P,P' C A(r,n) be matroid polytopes of rank r and dimension n — 1
such that r > 3 or r = 2 and n > 5. Assume P C P'. Then there exists a facet F C A(r, n)

such that P|; and P'|; are facets of P and P/, respectively, and P| C P'|z.

Proof. Let M,M’ be the matroids corresponding to P, P’. By Theorem 2.3, there exists
ig € [n] such that either M/i, is connected and more constrained than M’'/i, or M \ i,
is connected and more constrained than M’ \ i,. In the former case, let F be the facet
of A(r,n) given by the hyperplane x; = 1. Then P|; and P'|; are the matroid polytopes
corresponding to M/i, and M'/i,, respectively. Therefore, P|; C P'|p. In the latter case,

we consider the facet of A(r,n) given by the hyperplane x; = 0. |
Next we consider matroid polytope subdivisions of a matroid polytope.

Corollary 2.5. Let Q C A(r,n) be a matroid polytope of rank r and dimension n — 1
such that r > 3 orr = 2 and n > 5. Let &, %' be two subdivisions of Q into matroid
polytopes such that &’ is coarser than &. Then there exists a facet F C A(r,n) such
that E = Q| is a facet of Q and #'|; is coarser than Z|.

Proof. Since £’ is coarser than &2, we can find maximal dimensional polytopes P € &2
and P’ € &’ such that P C P'. By Corollary 2.4, there exists a facet F C A(r,n) such
that P|; and P'|; are facets of P and P/, respectively, and P|; C P'|5. If we set E = Q|p, it

follows that the subdivision &?'| is coarser than Z|. u
The rest of this section is dedicated to the proof of Theorem 2.3.

Lemma 2.6. Let M and M’ be two matroids on [n]. Assume that M is more constrained
than M’ and let I’ be an independent set for M’, which is dependent for M. Then

(a) Ifiy eI, then M/ij, is more constrained than M'/iy;

(b) Ifj, € [n]\ I, then M\ j, is more constrained than M’ \ j.

Proof. IfI is independent for M/i,, then I U {i;} is independent for M by definition.
Hence, I U {iy} is independent for M’, implying that I is independent for M'/i,. Moreover,
I'\{i,} is independent for M’/i, but dependent for M/i,. If I is independent for M\j,, then
I is independent for M. Hence, I is independent for M’, implying that I is independent
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for M’ \ j, because j, ¢ I. Moreover, I' is independent for M’ \ j, but dependent
for M \ j,. [

Proposition 2.7. Let M and M’ be two matroids on [n] of the same rank. Assume that
at least two distinct independent sets I;, I, for M’ are dependent for M. Then (CD) holds.

Proof. Up to switching I} with I, let e € I} \ I,. If M/e is connected, then we are done
by Lemma 2.6 (a). Otherwise, by [25, Theorem 4.3.1], we have that M \ e is connected, and

by Lemma 2.6 (b) we have that M \ e is more constrained than M’ \ e. |

Proposition 2.8. Let M and M’ be two matroids on [n] of the same rank. Assume that

M has no size two cocircuit. Then (CD) holds.

Proof. By Proposition 2.7, we can assume there is a unique independent set I’ for M’
that is dependent for M. Observe that I’ must be a basis of M’, hence |[I'| = r, where
r is the common rank of M and M’. From the connectedness of M, we have that M
has no coloops: M connected implies that the dual matroid M* is also connected by
[25, Corollary 4.2.5], and a connected matroid has no loops, so M* has no loops, implying
that M has no coloops. Moreover, by hypothesis, M has no size two cocircuits; hence, M
is a cosimple matroid (by definition, a matroid is cosimple provided it has no coloops
and no size two cocircuits). This implies that the dual matroid M* is simple and
connected. Hence, there are at least r + 1 elements e such that M*/e is connected by
[25, Section 4.3, Exercise 10 (e)]. In particular, we can find one of such e in the
complement of I'. Since M*/e is connected, also (M*/e)* = M \ e is connected (here we
used [25, Section 3.1, Exercise 1 (b)] and (M*)* = M), and by Lemma 2.6 (b) we have that

M \ e is more constrained than M’ \ e. [ |

Lemma 2.9. Let M and M’ be two matroids on [n] of the same rank. Assume
that M is more constrained than M’. Then the dual matroid M* is more constrained
than (M")*.

Proof. Let I be an independent set for M*. Then there exists a basis B for M disjoint
from I. But B is also a basis for M’ because M is more constrained than M’ and they have
the same rank. So I is also independent for M’. Let I’ be an independent set for M’ that
is dependent for M. Let B’ be a basis for M’ containing I'. Then B’ is also dependent for
M. It follows that (B)¢ is a basis for (M")* and (B')¢ is dependent for M*, proving that

M* is more constrained than (M')*. |
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Proof of Theorem 2.3. Suppose first that r > 3. By Lemma 2.9, we have that the dual
matroid M* is connected and more constrained than (M’)*. If there exists i; € [n] such
that M*/i, is connected and more constrained than (M')*/i;, or M* \ i, is connected
and more constrained than (M')*\ iy, then M\ i, is connected and more constrained than
M'\i,, or M /i, is connected and more constrained than M’'/i,, respectively. Therefore, by
Proposition 2.8 applied to M* and (M')*, we can assume that M* has a size two cocircuit
C, which is a size two circuit of M.

By Proposition 2.7, we can assume that there exists a unique independent set
for M’ that is dependent for M. Recall that I’ must be a basis of M’; hence, |I'| = r and in
particular I’ # C (here is where we used the assumption that r > 3). Therefore, C must
be dependent for M’; otherwise, we would contradict the uniqueness of I'. In particular,
C Z I'; hence, we can find an element ¢ € C \ I'. By Lemma 2.6 (b), we only need to show
that M \ c is connected. But this follows from Lemma 2.10 below.

Finally, suppose r = 2 and n > 5. First of all, observe that M (and similarly M’) is
realized by a point arrangement in P! (over the complex numbers). Let H = {p;,...,p,},
and declare p; = p; for i # i provided {i,} is a circuit of M. Then the matroid associated
to A is isomorphic to M. Similarly, define %' = {p},...,p,}.

For point configurations on P!, saying that # is more constrained than #’ means
that if some points coincide in #’, then the corresponding points in H coincide as well,
but not vice versa. In what follows, we analyze an exhaustive list of possibilities where
in each one we determine an appropriate index i,.

If there exist i,j € [n] with i # j such that p; = pJ/., then one can take iy =i and the
claim follows. So let us assume all points in #’ are distinct. Under this assumption, what
we need to show is that we can always find i € [n] such that #\ i is automorphism-free
and it contains points appearing multiple times.

If p; € H appears at least three times, then we can set i, = i. Otherwise, assume
each point in H appears at most two times. If p; € H is the only point appearing
twice, then let iy € [n] \ {i} (in this case the hypothesis n > 4 guarantees that H \ i,
is automorphism-free). If there exist two distinct points p;, p; € H appearing twice, then

we can set i, = i. Since we considered all the possibilities, this concludes the proof. W

Lemma 2.10. Let M be a connected matroid and let C be a size two circuit of M. Then

for all ¢ € C we have that M \ c is connected.

Proof. Let C = {c;,c,}. Let us show M \ c; is connected (connectedness of M \ c, is

proved analogously). We show that for each x # c;, ¢, in the ground set, there exists a
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circuit of M\ ¢, containing both x and c,, so that x and ¢, belong to the same connected
component. Since M is connected, there exists a circuit D of M containing x and c,.
Observe that ¢; ¢ D because C € D by the minimality of D. Hence, D is also a circuit
of M\ c;. [

Remark 2.11. The assumption n > 5 if r = 2 cannot be removed. Let M' = U, , be the
uniform matroid of rank 2 with ground set [4]. Let M = 52,4 be the matroid with the

same ground set and with bases
{172}V {1’3}I {1f4}l {273}1 {2’4}'

It is easy to check that (CD) does not hold.

3 Cross-ratios on Lafforgue’s Varieties

We recall several definitions and facts from [16, 19, 20]. Let G(r,n) denote the

Grassmannian of r-dimensional linear subspaces in k” embedded in

P:= P(/r\k”)

via the Pliicker embedding. Let G%r,n) C G(r,n) be the subset of points with nonzero
Pliicker coordinates. The torus H = G}},/diag(G,,) acts on G(r, n) via the action of G}}, on
k™ and G%(r, n) is an H-invariant open subset. Denote the quotient by X(r, n) = G°(r, n)/H
(H acts freely). By the Gelfand—MacPherson correspondence [9], X(r, n) is also the moduli
space of n hyperplanes in general linear position in P"~!. Namely, a point of G(r, n) can
be represented as the row space of an r x n matrix, and columns of this matrix give n

hyperplanes in P"~!. Kapranov’'s compactification X(r, n) of X(r, n) is the Chow quotient
X(r,n) = G(r,n)//H.

By [16], X(r, n) is also isomorphic to the Chow quotient of (P"~!)" by PGL,. For example,
X(2,n) is isomorphic to Mo,nr the moduli space of stable genus zero n-pointed curves.
In particular, X(2,4) = P! via the cross-ratio of four points.

For x € P, let Supp(x) be the convex hull of the vertices of A(r, n) corresponding

to nonzero coordinates of x. Given a matroid polytope P C A(r,n), we define the
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17010 L. Schaffler and J. Tevelev

algebraic tori
PP0 = {x e P | Supp(x) =P} and AP :=PPO/H.

For instance, PAT™.0 C P is the maximal torus. We refer to [8] for the theory of
regular subdivisions and secondary polytopes. We define F .. (P) to be the normal fan
to the secondary polytope of P. The union of cones in F .. (P) corresponding to regular
subdivisions of P by matroid polytopes is a subfan denoted by F;_¢(P). The Lafforgue
toric variety AP is the toric variety of AL associated to the fan Fj ,¢(P). We define @ to

be the quotient
QFf — (G(r, n) N IPP'°> /H C AL,

The Lafforgue variety @ is a certain projective subscheme of the toric variety A?, the
precise definition of which we will not need. @ contains @ as an open subset, but in
general @ is reducible [19, Proposition 3.10]. The closure of @F in @ is called the main
stratum. If P = A(r, n), then G(r, n) NPP? = GO(r, n). Therefore, F = X(r,n). By [19, 2.9],

= . . =P e e =
X(r,n) and the main stratum in € have the same normalization X(r, n)".

Remark 3.1. We note that P € A(r,n) is the matroid polytope of a non-realizable
matroid if and only if QP = ¢ (see [19, 2.6]). The main stratum is then of course also
empty but we imagine that @ can still be non-empty, although we do not know an

example.

Definition 3.2. Given a matroid polytope P and a face F € P, we have an induced
morphism of Lafforgue’s toric varieties AP — AF by restricting piece-wise affine

. . . =0 . . .
functions. It is called the face map and restricts to ~ giving a morphism

which we also call a face map. Note that A(r,n) has 2n facets given by hyperplanes

x; = 0 and x; = 1. These facets are equivalent to A(r,n—1) and A(r—1,n—1), respectively.

Lemma 3.3. Let Q € A(r,n) be a matroid polytope of rank r and dimension n — 1 such
that either r > 3 or r = 2 and n > 5. Let F be the collection of facets of Q that are
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contained in the boundary of A(r, n). Then the fibers of the product of face maps

fi A% [T A"

FeF

do not contain any complete subvarieties.

Proof. Let C € A2 be a complete curve. Let S’ C A2 be the minimal closed toric
stratum containing C. More explicitly, we can write S’ = T where T’ € A2 is the closure
of a torus T’ of the appropriate dimension. Since the torus T’ is affine, C is projective,
and CNT’ # ¢ by the minimality of S’, we cannot have that C C T’; hence, C intersects the
closure of another torus orbit T C T'. Then S = T is a toric stratum properly contained
in S’ which intersects C nontrivially. Let p e SNCand p’ € (S'\ S)NC.

The stratum S’ (resp. S) corresponds to a matroid polytope subdivision &’
(resp. &) of Q. Since S C S/, the subdivision %’ is coarser than &?. Then we can apply
Corollary 2.5 and find a facet E € F such that &’|; is coarser than &|;. Then &'|; and
2|y correspond to two toric strata © C X’ of AF. Let f be the face map A2 — AF. Then
fz(@) € ¥\ ¥ and fz(p) € ¥, implying that f(p) # f(p’). Therefore, C is not contracted

by the morphism f. It follows that f does not contract any complete curve. |

Definition 3.4. Let Q C A(r,n) be a matroid polytope of rank r. We say that Q
is framed provided it is realized by a hyperplane arrangement A in P"~! containing
r + 1 hyperplanes in general linear position. Note that such a matroid is automatically

connected.

Proof of Theorem 1.2. We apply Lemma 3.3 to A2 recursively until we map to a
product

f': A% - HAF,

FeF’

where F’ consists of the faces of Q of rank 2 that are contained in the boundary of
A(r,n). We know that the above morphism does not contract any complete curve.

Let M be the matroid associated to F € F’. There are the following two
possibilities:

(1) M is isomorphic to U, 4; hence, F is equivalent to A(2,4);

(2) M is isomorphic to 172,4 (see Remark 2.11).
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Therefore, F is the subset of F’' of facets that are not of type (2). Consider the

composition

Fra L TT 4% & [T A%

FeF' FeF

Then f does not contract any complete curve either. Assume by contradiction € € A2 is
a complete curve contracted by f. We know f” does not contract C, so = contracts f'(C).
Since 7 contracts all the factors A" with F of type (2), then C has to map onto some A*
with F of type (2). But A¥ = G,,, which is a contradiction because C is complete and
AF is affine. Note that Af = G,, because F does not have any proper subdivision into
matroid subpolytopes. Restricting f to the projective variety ﬁa, we obtain the claimed
finite morphism.
Finally, suppose that Q is framed. We claim that the product of face maps (1) is
a locally closed embedding and thus its restriction to the main stratum of @ is a finite
birational morphism. It suffices to show ¢ — [Mrer @ is injective on R-points, where
(R, m) is any local k-algebra with R/m = k. Let p € 2(R) and let (P;_l, ?:1 H;) be the
hyperplane arrangement parametrized by it (the projective bundle is trivial because the
frame gives a section of the associated PGL,-torsor). The images of p under the face
maps (in other words, the cross-ratios of the hyperplane arrangement) are described as
follows. Let a; be the vector of coefficients of the hyperplane H;. Fix distinct indices
Iy,.--1l,_9,1,J, k£ € [n] (these determine a face F € F). Then the corresponding cross-
ratio is given by the point
lla

Qi G aglla .8 L, Ak, Gl A

1
iy @, ailla; . ...a; a5, a0l € P

T AR i1’

We show that the hyperplane arrangement (IE”;{1 , > 1 H;) can be uniquely reconstructed
by the data of these cross-ratios. Since R is local, the determinant of the matrix of
coefficients of any r hyperplanes among H,,...,H, ; is invertible. In particular, up
to PGL,(R)-action, we can assume Hy,...,H, ; are the standard hyperplanes. In other
words, we can assume (a,, ..., a,,;) = (Id,, 1), where Id, is the r x r identity matrix and
1=(1,...,1). We show that any b € {a,_,,...,a,} is uniquely determined by the cross-
ratios. Consider the cross-ratio corresponding to the choice (iy,...,i,_5) =(1,...,r—2),
i=r+1,a;=bk=r—1,{=r whichis given by [b,_; — b, : b._,]. This fixes bl:—il e PL.
In general, by letting (iy,...,i,_,) = (1,...,5 ... t....n,i=r+ l,aj =bk=st=s5+1,
we can fix the ratio g—:, hence also b—i. Therefore, to determine b, let b, be one of the

nonzero coordinates of b (there exists at least one because b represents the coefficients
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of a hyperplane). Then all the ratios Z—;, o, b—: are fixed; hence, the coefficients by, ..., b,

are uniquely determined up to a common scalar, proving what we wanted. |

Corollary 3.5. Letr > 2 and n > r+ 2. The product of forgetful morphisms

X(r,n) — H X(r,I)

re(l

and the rational map X(r,n) — I1 P! are finite birational morphisms onto
V1 Vrg2€{l,...,n}

their image. For r > 3, each map X(r,n) — P! is the cross-ratio of four points obtained
by intersecting hyperplanes H, ,H,,, H,,, H,, with thelineH, N...NH, .
Proof. Consider the product [[y & in Theorem 1.2 for Q = A(r,n). Each @ = M4
and the face F can be described as follows. Choose distinct indices i,j,k,¢,i;,...,
i,_p € [n]. Then F is the convex hull of the set {e, +e, +e;, +...+¢; ,1a,belijk (}}
This gives the following identification:

T T1 Mou=]]2"
FeF

Ie (7"[1]2) Je (riz)

For each I € (r[fz), we have isomorphisms X(r,I) = X(2,I) = Mo,z- We claim

that f: X(r,n) — I, () Mo,z is finite and birational onto its image. Given I ¢ (r[fz),
the product of forgetful morphisms M,; — HJG( 1 )MOI\J is a closed embedding
: L) o,

[13, Theorem 9.18]. Now consider the following commutative diagram:

X(rn)" —— X(r.n) L T, ) Mo

| |

5@, 50 9 oF
(€7) Q [rer

Since g is finite and birational onto its image by Theorem 1.2, the morphism f

also is. [ |

4 Gerritzen and Piwek's Cross-ratio Variety B,

We start by recalling the definition of the Gerritzen-Piwek’s compactification B,, [10].

Let U, C (P?)" be an open subset parametrizing configurations (x;, ..., x,) of n distinct
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17014 L. Schaffler and J. Tevelev

points in P? in general linear position and let B,, be the moduli space, the quotient of U,,
by the free action of PGL;. We have the quotient morphism U,, — B,,. If we normalize
the points x;,x,,x3,x, tobee; =[1:0:0],e, =[0:1:0],e3=[0:0:1], e, =[1:1:1]

applying a unique projective transformation, we obtain a section
s: B, —> U,.

To “symmetrize” this map, let Q,, be the set of ordered 5-tuples of points and let v € Q,,.
Define the map g,: B,, — P? as the image of the point Xy, under a unique projective
, € PGLg that sends x, ,x,, ,Xx

transformation U, vy Xvyr Xyyr Xy, 10 €1, €5, €3, €4, Tespectively.

The product morphism

H q,: B, - H]PZ

ve Qn Qn

is an open immersion onto a closed subscheme of [[go P2. The Gerritzen-Piwek
compactification B,, is the closure of B, in [[o P? under the above immersion. (Note
that in [10], the compact moduli space is denoted by B,, and its interior is denoted by Bj},.)

A slightly more economical embedding can be obtained as follows.

Lemma 4.1. Let Q) denote the set of ordered 5-tuples in [n] where the 1st four
elements are in increasing order. B, is isomorphic to the closure of the image of B,

in HQ/n P2 under the product of forgetful maps.

Proof. There is a map p: Q, — Q, sending v = (vy,...,V5) t0 (Vo yyr- -+ Veqry(ayr Vs)
where 7: Q,, — S, is the map that associates to v € Q,, the unique permutation t(v) € S,
such that v, ,)q) < ... < V(@) Given o € S, let ¢, be the unique projective linear
transformation of P> such that ¢, (e;) = e,; foralli=1,...,4. Let f: [[g P? — []o, P?
be the map (P,)yco, — @rw)@uw)veg,- Let 7: [1g, P> — [lg, P? be the natural
product of projection maps. Then f is a section of 7 and we have a commutative diagram

The result follows. [ |
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Next we prove Theorem 1.1: there exists a finite birational morphism
X@3,n) — ﬁn.
Proof of Theorem 1.1. Consider the following commutative diagram:

n) — X(3,n) — H,e([g])i(?),f) = Hze([n]) Mo, s

5

ﬂ

n ¢ B, « HQ,’” P2

TRl
Uj%oo

Recall that the morphism X(3,n) — HIe([’”) X(3,1) is finite and birational onto its image
5
by Corollary 3.5. The embedding Hze([’”) My = [lo P? is obtained by applying Lemma
e 5 ! m _ —
4.2 to each copy of My ;. This gives a finite birational morphism X(3,n) — B,,. [ |

For the next lemma, recall that the i-th Kapranov’s map [17] is a birational

morphism M, , — P2 given by the linear system |v;].
Lemma 4.2. The product of Kapranov's maps My 5 — [15_, P? is a closed embedding.

Proof. The boundary of MO,S consists of 10 irreducible curves isomorphic to P!. These
are denoted by D;, where I C [5] is a subset of size 2. Moreover, two distinct boundary
divisors D;,D; intersect if and only if I C J° For i € [5], the Kapranov's map o;
contracts the boundary divisors D; such that i € I, and away from these divisors o;
is an isomorphism. Given this description, it is clear that for all x € Mo,sr there exists
an open subset U € M 5 containing x and i € [5] such that o;|;; is an isomorphism onto
its image. This implies that the product of Kapranov's maps Mo,s — H?:l P? is a closed
embedding. [ |

Remark 4.3. The product of Kapranov's maps Mg — [12., P® is not injective. Indeed,
the curve C = D, N Dy, N Dgg N D7g < Moyg is contracted by o, because o, (D;,) is a point.

Analogously, o,, ..., 04 contract C. Hence, the product of Kapranov's maps contracts C.

Remark 4.4. We have a commutative diagram of closed embeddings

B, HQ& P?

T

Hle([gl) Mg [1g, P',
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and we can embed []o, P! < [lo, P! using a strategy analogous to the proof of Lemma
4.1. In conclusion, we can view B,, as a closed subvariety of [[o P' and the embedding
can be interpreted as follows: given an ordered quintuple v € Q,, define B, — P!
by sending (py,...,p,) to the cross-ratio of four points in P! obtained by projecting

Dy, Dy, from p, . As a consequence of this discussion, B, = MO,S = X(3,5).

5 Mustafin Joins: General Theory

Mustafin joins were defined in the Introduction. Here we collect some basic facts.

Remark 5.1. ([3, §2])

Let ¥ = {L,,...,L;} C BJ. Fix a K-basis e, e,, e; for K®. Foreachj =1,...,s, let
L;i = fi;R + f,jR + f3;R and let g; € GL3(K) be the matrix with columns f;, f,;, f3;. Denote
by X the matrix (x;;);-;<3,1<j<s, Where we interpret the j-th column as homogeneous
coordinates on the j-th copy of P2. Let g(X) be the matrix obtained by applying g; to the
j-th column of X for all j. Then P(X) is isomorphic to the subscheme of (]P’%)S cut out by
the multihomogeneous ideal I,(g(X)) N R[X], where I, denotes the ideal generated by the

2 x 2 minors. For example, let ¥ = {[L,], [L,]}, where
Ll = elR + 82R + e3R, L2 = telR + 62R + €3R.

The ideal of P(X) C P(L,) xg P(L,) is generated by the 2 x 2 minors of the matrix

Xy Xy
X21  X22
X371  X32

The special fiber P(X), is defined by the following equations:

X11Xpp = 0, X11X3p = 0, Xp1X35 — X31Xpp = 0.
Its irreducible components are given by V(x,,, X35) = P? and V(x,,, Xy, X35 — X3, X95) = F;.
These are glued along a line in P? and the exceptional divisor in F; as shown in

Figure 1.

Remark 5.2. For a lattice L, we can define PY(L) as Proj(SymL), and given a finite
subset ¥ C B9, we can define PV(X) accordingly. In general, the Mustafin joins P(X)
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IP)Z

Fig. 1. Central fiber of the Mustafin join P(X) in Remark 5.1.

and PY(X) have non-isomorphic central fibers. For instance, consider ¥ = {e;R + e;R +
esR,te;R +e,R + t?e3R, e; R + te,R + t?e3R}. Then P(X), can be found in [3, Figure 6 (iii),
1st picture], and PY(X), is in [3, Figure 6 (i), 1st picture].

Remark 5.3. An apartment A C B9 corresponding to a basis e, e,, e; of K° is the

subset consisting of all lattice classes of the form
[t“e;R + tﬂezR + t"e3Rl,

for o, B,y € Z. Given a finite subset ¥ C A, the central fiber of the Mustafin join P(X)
can be computed as follows [3, Section 4]. The apartment A is identified with the tropical

torus R3/R1, where 1 = (1,1, 1), under the following bijection:
[t"e;R + tPe,R 4 t"e3Rl — (—a, —B, —7).
To each point p € R3/R1, one can associate a tropical line (a spider with three legs)
t,={ve R?’/RI | iI:Ii?z},(s{Vi — p;} is achieved at least twice}.

Under the identification A = R3/R1, a lattice class [L] € £ determines a tropical line
¢(z;- The union of the bounded regions determined by the tropical lines £[;;, [L] € X, gives
a tropical polytope Py, which is the min-convex hull of ¥. Consider the set of points
p € Ps, which correspond to a lattice class in ¥, or p is the intersection of at least two
tropical lines ¢, [L] € X. Such a point p determines a projective toric variety whose
polytope has edges orthogonal to the rays generating from p. Gluing all these polytopes,
we obtain a regular mixed polyhedral subdivision of mA,, where m = |X| and A, is
the standard 2D simplex, which determines the central fiber of P(X). We illustrate this

procedure in Figure 2.
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+(0,0,1)

Fig. 2. Illustration of the procedure described in Remark 5.3 to compute P(Z)y, where ¥ = {[e;R+
esR + e3R], [t3e; R + eaR + tesRI).

Definition 5.4. Let [Ly], [L] € ‘Bg. Let z € Z be a unique integer such that tL, C t’L, but

L, g t?L. Following [3, Section5], we define a linear subspace induced by [L] as
Wy, (L) = P ((t°L N Ly)/tLy) S P(Lg)y.

Remark 5.5. Let ¥ = {[L,],[L,]}, L, # L,. Consider the diagram

P(%)k

PN

P(Ly )y P(La)y,

where the morphisms from P(X), € P(L,), x P(L,), are induced by the usual projections.

There are two options for the central fiber P(X);:

(1) P(X), is the gluing of P? and F! along a line and the exceptional divisor,
respectively;
(2) P(X), is the union of two copies of P? and F,. Each P? is glued along a line

to a ruling of F, these two rulings intersect.

A comprehensive list of possibilities for the induced linear subspaces Wy, (L,) € P(L)
and Wy, (L;) € P(L,)y is shown in Figure 3, where W} (L,) and Wy, (L,) are the images of
appropriate irreducible components of P(X), in P(L,), and P(L, )y, respectively. To prove
these claims, we can assume that [L;],[L,] lie in the same apartment [29, Proposition
4.11]

2202 1aquiaAoN |z Uo Jasn jsiayuwy - spasnyoessely 10 Alsisalun Aq 089%+£9/000/ L/12/2Z0Z/21onie/ulwi/woo dno-olwspeoe//:sdiy Wolj) peapeojumoq



Compactifications of Moduli 17019

P(L)e NS P(Lo)k

WL2 (Ll)

|/ \ WLQ(Ll)

WLI (LQ)

Fig. 3. The linear subspaces Wy, (Lz) and W, (L) in relation to P(X)y.

for some K-basis e;, e,, e5 of K3. If two among {«, B, y} are equal, then without loss of
generality 0 = o = 8 # y. In this case, P(X), is as in (1) above. Moreover,

e Ify <O, then W (L,) is point, and W, (L,) is a line;

e Ify >0, then W (L,) is a line, and W;_(L,) is a point.
If o, B, y are all distinct, then without loss of generality 0 =« < 8 < . Then P(X), is as
in (2) and the induced linear spaces Wy (L,) and W;,(L,) are both lines.

Definition 5.6.  ([3])
An irreducible component of the central fiber P(X), is primary if it projects

birationally onto one of the P(L),, L € X. Other components are secondary.

Lemma 5.7. Lets = [v] € P2(K) and let X be a finite subset of ‘Bg. We can write

for a unique choice of lattices if we assume that v € L; \ ¢tL; for all j. Suppose that one
of the lattices L; < L; N...N Ly,. Then s(0) € P(¥)y is a smooth point contained in
the primary component corresponding to L; . In other words, P(X) is smooth along the

section s.

2202 1aquiaAoN |z Uo Jasn jsiayuwy - spasnyoessely 10 Alsisalun Aq 089%+£9/000/ L/12/2Z0Z/21onie/ulwi/woo dno-olwspeoe//:sdiy Wolj) peapeojumoq



17020 L. Schaffler and J. Tevelev

Proof. For each j # iy, fix an integer z; such that tL; < ¢%L;\ tZJ'“Lj. We have z; > 0.
Otherwise, if z; < 0, then L, CL; tZJ'Lj, which gives a contradiction. By [3, Section5],
the primary component corresponding to L;, is obtained by blowing up P(L; ), along the
proper linear subspaces WLi0 (L;) for j # i, (in particular, it is smooth). So, we would be
done if we can show that the image of v in L; /¢L; is not contained in (¢%L; NL; )/tL; for
all j # iy. But this is clear because tZJ'LJ- C tL;j and v ¢ tL; by hypothesis. [ |

Finally, we study how the Mustafin join changes when we add a lattice to the

configuration.

Lemma 5.8. Let I = {[L,],...,[L,]} € B and &' = ¥ U {[Ly]}. Let C € P(T'), be the
primary component corresponding to [Ly]. Let £ € P(Ly), be a line and denote by 7 its
strict transform in C. Then ¢ is contracted by the projection 7 : P(X') — P(Z) if and only

if ¢ intersects every linear subspace Wi, (L) € P(Lg)y. Otherwise, 7|; is injective.

Proof. Suppose ¢ intersects every linear subspace W (L;). For every j, let
A = {[LO],[L]-]}, and consider the diagram P(Ly), <« P(A), — P(L)y - After inspecting
all the possibilities for P(A), (see Remark 5.5) and W (L) (which is a point or a line),
we can see that the image of ¢ in P(Z;), of ¢ is a point. Since this is true for every j, =
contracts .

Conversely, if ¢ does not intersect a linear space Wy (L;) for some j then by
considering the same diagram (where now we only have to consider the case where
Wy, (L;) is a point), we see that the image of 7 in IP’(Lj)k is not contracted, in fact = |; is

injective. [ |

Remark 5.9. An almost identical statement appears in [3, Lemma 5.10, Proposition
5.11], but with stronger hypotheses: we do not require that 7| is birational onto its

image.

6 Stable Lattices of Arcs and Their Mustafin Joins

Here we focus on Mustafin joins for arcs considered in [10]. Consider K-points
2
a,..., a, €P(K)

in general linear position, that is, an arc a = (a;,...,a,): Spec(K) — B,. We denote

by X, the subset of %g of stable lattice classes with respect to a. Recall from the
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introduction that a lattice A is stable if at least four of the limits 5%(0), .. ,E];l(O) in
the central fiber P(L), € P(L) are in general linear position. There exists a unique
lattice class stabilizing any given quadruple [19], although the same lattice can stabilize
several quadruples. The Mustafin join P(X,) has extra structure, namely n sections
a;,...,a, which are defined as follows. Every component a; can be viewed as a section
of P(X,)x — Spec(K) using an isomorphism P(X,)x = IP’IZ{. By the valuative criterion of
properness, a; admits a unique extension a@;: Spec(R) — P(X,), which is the claimed

section.
Lemma 6.1. The sections a,...,a, of the Mustafin join P(X,) are pairwise disjoint.

Proof. It suffices to check the claim on the central fiber P(X,),. Let 1 < i < j < n.
Write ¥, = {L,...,L,,}. By the definition of stable lattices, there exists h € {1,...,m}
such that a;(0), a;(0) € P(Ly), are distinct. Then from the commutativity of the following

diagram:
P(3.) —— P(Ly) x -+ x P(Ly,)
Spec(R) —————— P(Ly),
we can conclude that Ei(O),Ej(O) € P(X,); are also distinct. |

Example 6.2. Let(a;,...,a5)=(1:0:0],[0:1:0],[0:0:1],[1:1: 11,[t? : 1: t]). Then

¥, = {le;R + e,R + 3R], [t?e;R + e,R + tegR], [te;R + e,R + tesRl}.

To prove this, we list all possible quadruples i;,...,i, and the corresponding stable
lattice

{1234}, {1345} e,R + e,R + e;R,

{1235}, {2345} t?e;R + e,R + tesR,

{1245} te;R + e,R + tegR.

Using the procedure of Remark 5.3, the central fiber P(X,), with sections is shown in

Figure 4.
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Fig. 4. The lattice classes in X3 (in the apartment corresponding to the basis e;, e2, e3) and the

central fiber of the Mustafin join P(X3) of Example 6.2.

In the remainder of Section 6, we will show that the Mustafin join of stable
lattices P(X,) — Spec(R) is smooth along the sections a,, ..., a,, that is, a,(0),...,a,(0)
are smooth points on the central fiber P(X,),. This was claimed in [10, Section4.2], but

no proof was given. We fix vectors

Vl,...,vneK3

such that a; = [v;] € P?(K) are in general linear position. After reordering, it suffices to
prove this for the 1st section a;. We start by introducing canonical normalizations of

vectors vy,..., v, as well as lattices A for all lattice classes [A] in the building.
Definition 6.3. We call a lattice A normalized with respect to v, if v| € A\ tA.

Lemma-Definition 6.4. For any quadrupleI C {1,...,n}, write > k;v; =0, k; € K \{0}.
iel

The lattice L; := > k;v;R stabilizes the quadruple {a; | i € I}. After rescaling the

l
iel
coefficients k;, we can assume that all the lattices L; are normalized with respect to v;.

Proof. Since the vectors {v; | i € I} are linearly dependent, we can write Zkivi =0
for some k; € K not all equal to 0. In fact k; # O for all i because any thll“:{a vectors
are linearly independent. In the basis k,v;, k,vy, kgvy of L;, the limits a;(0), i € I, are
[1:0:0],[0:1:0[,[0:0:1],[1:1:1], respectively. Thus, L; stabilizes the quadruple

{a; i€l u

Definition 6.5. Fix an isomorphism ¢: /\‘O’K3 = K and let val: K\ {0} — Z be the

usual valuation. For three linearly independent vectors u, v, w in K2, consider the log
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volume
lu, v, w| = val(p(u A v Aw)).

Lemma-Definition 6.6. We can rescale vy, ..., v, uniquely by 2, ..., tP» so that

(1) For any quadruple 1,1i,J, k, we have ||Vi,Vj,Vk|| > ||V1,VJ-,Vk||;
(2) For all i # 1, there exists a quadruple 1,i,j,k such that |v;, v;, vill =

vy, v, vl

In this case, we say that v, ..., v, are normalized with respect to v,.
Proof. Letie€{2,...,n}and define p, to be the least integer such that

1tPiv;, vy viel = Py + vy v viell = llvy, vy, vl
for all distinct j, k # 1,i. Note that the inequality depends not on v;, vy but only on the
corresponding points a;, a € P2(K). By minimality of p;, equality is achieved for at least
one pair j, k. Therefore, tP2v,, ..., tP7v, satisfy properties (1) and (2). [ |
Lemma 6.7. Assume v,...,V, are normalized with respect to v;. If 1 € I € (7)), then

Ar={uek®||u,v;, vl = |lv),vj, v forall j,k eI\ {1}

is a lattice normalized with respect to v, and stabilizing the quadruple a;, i € I.

Proof. Assumel ={1,...,4}. Write v; = c,v, +cC3v3+c,4v, for ¢y, c3, ¢4 € K. By Lemma-—
Definition 6.4, the lattice L; = c,v,R + c3v3R + ¢, V4R stabilizes a,,...,a,. By Cramer's
rule,
_o(vy AV A V) B _go(v1 A Vg AVy) oV AVy A V) @)
NS D P(Vy AVa AV 2T 0(vy AVa AT

Let u € L;. Then u = ryCyvy + 1r3¢3v3 + 1r4C,v, for some ry, 13,7, € R. By Cramer’s rule,

(U A Vz AVy) (U N Vy AVy) (U A Vy AVy)

raCy = ryCq = (3)

7‘202 -

P(Vy AV AVy)' P(Vy AV AV P(Vy AV AVy)

Since val(r;c;) > val(c;), (2) and (3) imply that |u, VJ-,Vk|| > ||V1,VJ-,Vk||. Thus, L; C A;.
For the other containment, let u € A; and write u = d,v, + d3vs + dyv, for some

d,,ds,d, € K. Since ||u, Vi, Vil = vy, v, vl for all j, k € I'\ {1}, we have val(d;) > val(c;)
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for all i = 2,3,4 by Cramer’s rule. Thus, d; = r;c; for some r; € R, implying that
u € L. [

Corollary 6.8. Assume vy,...,V, are normalized with respect to v;. Write X, = {[L;]},

where every L; is normalized with respect to v;. Then

A= () Ly={uek®||u,v; vl = llv,,v; vl forallj,k € [nl\ {1}}.
[Lj]EEa

Proof. We use the notation of Lemma-Definition 6.4. By Lemma 6.7, it suffices to prove
1e("y) tere('y)
LetI e ([Z]), 1 ¢ I. It suffices to show that there exists J € ([Z]) such that 1 € J

and L; C L;. By assumption, v; € L;; hence, we can write
v, = > rikv,
iel

for some r; € R. Let j € I be arbitrary and write k;v; = > ;.\ (;;(—k;)v;. By substituting

into the previous expression for v;, we obtain

vy = Z (r; —rpk;v;. (4)
iel\{j}

Let A = >cn (i — rpk;v;R. Since A is contained in Lj, it suffices to show that
Lnjpupy = A. By Lemma-Definition 6.4 and (4), this is true up to rescaling, so we only

have to show that A is normalized with respect to v,. By (4), we have that v; € A, so we

just need to show that t~!v; ¢ A. But this is true because t~lv; ¢ L;. u
Theorem 6.9. Leta = (a;,...,a,) € (P2)"(K) be in general linear position. Then the
Mustafin join P(X,) — Spec(R) is smooth along the n disjoint sections a,...,a,.

Proof. We need to show that the sections determine smooth points of the central fiber.
Up to permuting the indices, it suffices to show that a,(0) € P(X,), is a smooth point.
Write

al = [VI],. ,CLn - [Vn]l
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where vy,...,v, are normalized with respect to v; (Lemma-Definition 6.6). Using

Lemma 6.7, we can write the set of stable lattices with respect to a as

= ()]

where A; is normalized with respect to v; and stabilizes the quadruple a;, i € I. If the

Ea = {[AI]

set ¥, has a minimal element with respect to inclusion of lattices then we are done by
Lemma 5.7.

Suppose there is no minimal element in ¥, and consider A of Corollary 6.8, the
intersection of all the A;s. Then [A] ¢ ;. Define £ = X, U {[A]}. Let C be the primary
component of P(X)), corresponding to [A]. Recall that C is the blow up of P(A), at the
linear subspaces W, (A;) for I e ([Z]) (see [3, Proposition 5.6]). By Lemma 5.7, @;(0) €

P(X)) is a smooth point, and C is the primary component containing @, (0) € P(X)),. In

[21).

We have a morphism r: P(2)) — P(X,). We will show later on in the proof that

particular, a, (0) € P(A), is not contained in any of the linear subspaces W, (A;), I € (

7|z is birational onto its image. For now, let us assume it. If £ C P(A), is a line, then
we denote by ¢ C C its strict transform. By [3, Lemma 5.10], ¢ is contracted by = if and
only if ¢ intersects all linear subspaces W, (A;). Moreover, by [3, Proposition 5.11], the
union of all contracted fs is the exceptional locus of 7|z. So it suffices to show that
there is no line ¢ € P(A), such that @;(0) € ¢ and ¢ intersects all the linear subspaces
W,(Ap, I € ([Z]). Arguing by contradiction, suppose ¢ exists. Since 7|z is birational,
there exist A, Ax inducing two distinct points W, (A;), W, (Ag) € P(A),. These points
lie on ¢. By Lemma 6.10, W, (A;) = a;(0) and W, (Ag) = a;(0) for some sections a; and
ay. Therefore, a, (0),a;(0), a;(0) are three distinct limit points on ¢. By Lemma 6.11, £ is
a linear subspace of P(A), induced by a stable lattice. But this is a contradiction, since
we know that @, (0) € P(A), cannot lie on any of the linear spaces W, (A;).

To conclude the proof, it remains to show that 7| is birational onto its image.
For anyi € {2,...,n}, there is a quadruple I = {1,1,J, k} such that vy, v Vil = llvy, v, vl
(Lemma-Definition 6.6). We claim that a;(0) € P(A), is disjoint from W, (A;) = P((t*7A;N
A)/tA), where z; is that unique integer such that tA C t“7A; and A ¢ t? A;. Note that
z; > 0. It is enough to show that v; ¢ t?? A; C tA;. Assume by contradiction that v; e tA;.

So v; = tu, where u € K3 satisfies ||u, Vi Vil = vy, vy vl (see Lemma 6.7). Hence,

1w, vy, viell = vy, vy vigll = vy, vy viell = litw, vy, viell = 1+ [lw, vy, vl
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which is impossible. Next we claim that W, (A;) is a point. If not, then both @, (0), @;(0) €
P(A) lie outside the line W, (A;). On the other hand, the limits a,(0), a;(0) € P(A;), are
distinct because A; stabilizes a,, a;, a;, a;. Analyzing both possible diagrams P(A), «
P(A, Ap), — P(Ap), of Figure 3, we arrive at a contradiction. Since W, (A;) is a point, by
Lemma 6.10 it is equal to a;(0) for some h € [n] \ {1}. Now repeat the same argument
above with i replaced by & to find a 2nd induced linear subspace, which is a point
distinct from @, (0) and W, (A;). By Lemma 5.8, this implies that 7|z is birational onto

its image. u

Lemma 6.10. Leta = (a;,...,a,) € (P?)"(K) be in general linear position and let
[Ly] € BY be arbitrary. Let [L] € T, be a stable lattice class and assume that the linear

subspace W, (L) € P(Lg), is a point. Then there exist distinct i,j € [n] such that
a;(0) = Wy (L) = a;(0).

Proof. Up to relabeling the indices, assume that a,, ..., a, is the quadruple stabilized
by [L]. We show that at least two among a;(0),...,a,(0) € P(Ly), equal Wy, (L). Let
¥ = {[Lyl, [L]} and consider the diagram P(Lj), <« P(X), — P(L),. Since Wy, (L) is a
point, by Remark 5.5, P(X), is isomorphic to the gluing of P? and F, along a line and
the exceptional divisor, respectively. The morphism P(X), — P(Ly), is the blow up
at the point Wy (L), and the morphism P(X), — P(L), contracts [, along the ruling.
Therefore, if no two points among a;(0),...,a,(0) € P(Ly), are equal to Wy, (@), then

a,(0),...,a,4(0) € P(L), would not be in general linear position. |

Lemma 6.11. Leta = (a;,...,a,) € (P?)*(K) be in general linear position and let
(Lol € %g be arbitrary. If three limit points a;(0),a;(0),ax(0) € P(Ly)y are distinct and
contained in a line ¢, then any [L] € X, stabilizing a;, a;, a; has the property that
Wy, (L) = L.

Proof. Let [L] € ¥, be any stable lattice class stabilizing a quadruple that includes
a; aj, a. Define ¥ = {[Ly], [L]} and consider the diagram P(Lg), < P(X), — P(L),, where
in P(Ly); the three limit points a; (O)ﬁj(O),Ek(O) are aligned, but the same limits in P(L);
are in general linear position. By Remark 5.5, there are two possibilities for P(X),.
Considering all the possible ways the three aligned limit points in P(Ly), can be related
with respect to Wy, (L), and considering that these limits are in general linear position
in P(L),, we see that Wi, (L) is a line and a;(0),a;(0), a;(0) € W (L). |
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7 Universal Mustafin Join for Arcs

Example 7.1. We start with a counter-example to the claim [10, Section4, Proposition

1] that B,, is the moduli space of Mustafin joins for arcs. Define arcs a, b: Spec(K) — B,
a@)=((1:0:0,[0:1:0],[0:0:1],[1:1:1],[1: t:t?,[t:1: tz]),
b(t)=([1:0:0],[0:1:01,[0:0:1],[1:1:1],[1:¢%:¢],1¢t:1:¢3).

We claim that the limit points a(0), b(0) € B, are equal. Recall from Section 4 that

Es can be embedded in H% P2, where Qg is the set of ordered quintuples v = (vy,..., v5)
of distinct indices in {1,...,6} suchthat v, < ... < v,. We claim that for all 30 quintuples
ve Qg

%i_{% Vay, ®),...av, ) (@vs (D) = %1_{% by, (0),... by, (1) Py (D),

where the morphism v is defined in Section 4. The limits are computed in Table 1.

Next we compute P(X,), and P(%;),. The respective stable lattices are given by

¥, = {le;R + e,R + e3R], [te, R + e,R + t?e3R], [e; R + te,R + t?e;R],

[e;R + e,R + t*e3R], [e; R + te,R + tegR], [te, R + e,R + teyRl},

¥, = {le;R + e,R + e3R], [te;R + e,R + t3esR], [e; R + t?e,R + t3e3R],
[te,R + e,R + teyR], [e;R + t>e,R + t?e5R], [e; R + e,R + t2e3RI).
We compute the central fibers P(X,), # P(X}), using Remark 5.3 (see Figure 5).

The surfaces are illustrated in Figure 6, where P(X,), is on the left and P(%;)), is on the

right.

Let us also pinpoint a mistake in the proof of [10, Section4, Proposition 1] and
then explain how to construct the correct moduli space of Mustafin joins. Consider the

diagram

B,, (5)
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Fig. 5. The lattice classes in X5 and X, in the standard apartment.

]Fl II:Tl
Bl, Fy Bl F, Bl Fy Bl, F,
F
Bl P2 LR
NGNS
Bl F,

Fig. 6. Example of P(Za); and P(Tp);, with a(0) = b(0) € Bg.

where the horizontal map W sends

((pl""lpn)rp) = ((pl"“'pn)r(wpvl pV4(p))V)-

lllll

.....

of PGL, sending p,, ..., p,, to the standard frame.) Let F,, be the closure of the image of
W in B, x (%)@ and consider a morphism x: F, — B,. It was assumed in [10, Section
4, Proposition 1] that formation of u commutes with arbitrary base-changes S — B,,.
However, this is wrong (Example 7.1), in particular u is not flat. A remedy is provided

by the Grothendieck’s universal flattening morphism as in [26]. Consider the morphism
®: B, — B, x Hilb ((PZ)(Z)) ,

where the 1st component is the inclusion and the 2nd component sends (p;,...,p,) € B,
to W((py,....pP,) X P?). By Hilb ((PZ)(Z)>, we mean the connected component of the

Hilbert scheme of closed subschemes in (IP’Z)(Z), which parametrizes the diagonally
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TaBLE 1 Coordinates of the limit a(0) = b(0) € Bg C HQG’ P2

Quintuple Limit in P2 Quintuple Limit in P2
12345 [1:0:0] 13465 [1:0:0]
12346 [0:1:0] 13562 [1:1:1]
12354 [0:0:1] 13564 [0:1:0]
12356 [0:1:0] 14562 [1:1:1]
12364 [0:0:1] 14563 [0:1:0]
12365 [1:0:0] 23451 [1:1:1]
12453 [0:0:1] 23456 [1:0:0]
12456 [0:1:0] 23461 [0:1:1]
12463 [0:0:1] 23465 [0:1:1]
12465 [1:0:0] 23561 [0:0:1]
12563 [1:0:1] 23564 [0:1:0]
12564 [1:0:1] 24561 [0:0:1]
13452 [0:1:1] 24563 [0:1:0]
13456 [0:1:1] 34561 [0:0:1]
13462 [1:1:1] 34562 [1:1:1]

embedded P? in (IP’Z)(Z). The correct moduli space is the closure of the image of ®
and the universal Mustafin join for arcs is the pullback of the universal family of the
Hilbert scheme. We will analyze this construction in detail, although we will use the
multigraded Hilbert scheme of (]P’Z)(Z) instead of the usual Hilbert scheme in order to

have Proposition 7.10.

Definition 7.2.  ([14]).
For a commutative ring k, let S = klx;,...,x,] be a polynomial ring with a
grading by an abelian group A given by a semigroup homomorphism deg: N* — A.

Fix a function

h: A — N.

The multigraded Hilbert scheme Hg parametrizes all ideals in S homogeneous with

respect to deg and with Hilbert function A, that is, such that

dim; S,/I, = h(a) forevery acA.
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For every k-algebra R, the set of R-points H}Sl(R) is the set of homogeneous ideals
I € R ®; S such that (R ® S),/I, is a locally free R-module of rank h(a) for every a.
The scheme H’Sf is quasi-projective over k, in fact projective if 1 € S is the only monomial

of degree 0.
Example 7.3. We are interested in the multigraded Hilbert scheme of (P?)V. Here

S:k[XlJ|l=1,2,3,]= 1,...,N],

where k is our algebraically closed base field and [x;; : x,;
coordinates of the j-th copy of P?, with the usual multigrading by Z¥. The numerical
function A is the Hilbert function of the diagonally embedded P? — (P?)Y. A detailed

study of this case can be found in [4]. The authors prove that H’S’ is connected and all

: X3;] are homogeneous

ideals parametrized by it are radical and Cohen—-Macaulay. The morphism from H}S’ to the
Hilbert scheme of (P?)" given by taking Proj(R ®, S)/I is injective on k-points, although

it is not clear if it is a closed embedding. It follows that

Lemma 7.4. The projection from (P?)" to (P?)~! induces a morphism of multigraded
Hilbert schemes (with the Hilbert function of the diagonal).

Proof. Let S and S’ be multigraded coordinate rings of (P?)Y and (P?)V~!. The natural
transformation of functors of points takes a multihomogeneous ideal I € R ®; S to
the ideal of the projection, which is I N (R ®; S’). Its numerical function is h' =
h(a,,...,ay_,,0). [

Definition 7.5. Let H}S’ be the multigraded Hilbert scheme of (IP’Z)(Z) as in Example 7.3
(with N = (})). The diagram (5) induces an embedding

®: B, < B, x HL.

Let Xp(3, n) be the Zariski closure of the image of ®. Let M — Xp(3, n) be the pullback

of the universal family of the (usual, not multigraded) Hilbert scheme.

Theorem 7.6. The family M is the universal Mustafin join for point configurations.
Concretely, take an arc a: Spec(K) — B, and its unique extension a: Spec(R) —
X;p(3,n). Then a*M is isomorphic to the Mustafin join P(Z,), where ¥, is the set of

stable lattices with respect to a.
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Proof. Recall that P(X,) — Spec(R) is flat and proper, and that P(X,) is the Zariski

closure of Spec(K) x P? inside [T P(L). Therefore, we have the following commutative
LeX,
diagram:

P(a) — Spec(R) x (B2)()

| —

Spec(R).

The horizontal map comes from the fact that for each quadruple, there is a unique stable
lattice L € X, stabilizing it. The diagram induces a morphism from Spec(R) to the (usual)
Hilbert scheme of (]PZ)(Z). By its universal property, we have that P(X,) = a*M. [ |

Remark 7.7. The corresponding R-point of H?, that is, the multi-homogeneous ideal

of P(X,), can be computed as in Remark 5.1.

Corollary 7.8. We have a birational morphism X;p(3,n) — B,,. In particular, we have

a morphism of normalizations XGP 3,n)" — E,‘; >~ X(3,n)".

Proof. This follows from Definition 7.5. As Xp(3,n) C B,, x HZ, we have a morphism
Xcp(3,n) — B, given by the restriction of the projection onto the 1st factor. This

morphism is birational as it restricts to the identity on B,,. |
Theorem 7.9. We have an isomorphism Xp(3,5) = Bs = M 5.

Proof. Since By = M5 is normal (in fact smooth), it suffices to exhibit a family of
Mustafin joins for point configurations over M0,5 inducing a morphism to Hilb ((Pz)@).

The space Moﬁ is isomorphic to Hassett’s moduli space M, [15]. This gives a

0,(3)
smooth conic bundle 7 : C — M, 5 with sections sy, ..., s such that at most two sections
are equal on each fiber. The relative anti-canonical divisor —K; induces an embedding
of C into the P2-bundle 7" with an associated vector bundle the pushforward of —K.
So we have a P2-bundle P — M, 5 with five sections. Its fibers over a general point of
a 1-stratum (resp. over a 0-stratum) of Mo,s are illustrated in the left picture of Figure 7
(resp. the left picture of Figure 8).

For distinct i,j € {1,...,5}, the curves Cy = im(s;) N im(sj) are smooth and

pairwise disjoint. Let ?" be the blow up of P" along these curves. The fibers of
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Fig. 7. Fibers of families over a general point of the 1-strata.

, i
A :
‘ N
k0 bk k

Fig. 8. Fibers of families over the 0-strata.

/’Néﬁ
>

—//

P — M5 over a general point of a 1-stratum (resp. over a O-stratum) of M, are
illustrated in the right picture of Figure 7 (resp. the 2nd picture from the left in Figure 8).

Given distinct i,/,k, € € {1,...,5}, let p € My 5 be the 0-stratum such that s;(p) =
s;(p), sg(p) = sy(p), and let L;;;, < 7?" be the line in the P2 over p passing through these
two points. Let 7 be the blow up of P along the strict transforms of the lines Lij -
This blow up affects the fibers over the O-strata, and the fiber X of P — MO,S over a
O-stratum is illustrated in the 3rd picture from the left in Figure 8. The (—1)-curve E C X
on the F, component is also a (—1)-curve in Bl,P? (this is the curve dashed in Figure 8).
We claim that E can be contracted. Up to relabeling, we can assume s;(p) = s,(p) and
S3(p) = s4(p). Endow the family IP’IZ\,[OI5 — M, 5 with the relative effective Cartier divisor
D € Py, giving on the general fiber the line arrangement shown on the left of Figure 9.
The Zariski closure D C P specializes to X giving the line arrangement D, shown on the
right of Figure 9.

The pair (X, Dy,) is semi-log canonical and Ky + D, is nef but not ample: its
intersection with E is 0. Applying the relative minimal model program to (7_3/,K +D) —
M0,5 in the neighborhood of p gives a morphism contracting exactly E over an open
neighborhood of p. Similarly, we can construct the contractions of the remaining 14

curves of type E and glue them to obtain a small contraction P > P.A priori, P is
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\

Fig. 10. Effect of the contractions c, ¢y on the fiber y ~!(p) for p in the interior of a 1-stratum of
Mo 5.

an algebraic space, but, as we are going to see later, it is actually a projective variety.
The fibers of y: P — Moﬁ over the O-strata are described by the rightmost picture
in Figure 8. We denote by 5),...,55: Mys — 7P the strict transforms of the sections
S1/--1 855

To define a morphism M,s — Xgp(3,5), we first construct a commutative
diagram

5
4

ﬁ — M075 X (Pz)( )

”l/

M075.

We claim that the rational map ¢: P --» Myg X (P2)@, defined over Mys = Bg in
Definition 7.5, is regular. In other words, each of the (2) maps from P to P? is regular.
Let C C M0,5 be the open part of a 1-stratum, for example, the one corresponding to the
degeneration where s,(C) = s,(C). The fibers of y over C are illustrated at the top of

Figure 10.
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3,4 do
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3

Fig. 11. Contractions cy, cg, c3 on the fiber y~Lp).

Let U = M 5 U C be an open neighborhood of C in Mo,s- We have contractions ¢,
and c, defined on y ~!(U) such that, over C, ¢, fiberwisely collapses the P? component
to a point, and ¢, contracts [F; along the ruling. The effect of these contractions on
the fibers over C is represented in Figure 10. These contractions are constructed by
applying the relative K + D minimal model program for an appropriate divisor D on
y ~1(U). Namely, on the fiber P? over a point in M, 5, we consider the lines 13,14, 35,45
(resp. 12,13, 14, 15), and the divisor D is their closure in y ~}(U). The induced contraction
is ¢; (resp. ¢,). We define @y: y~1(U) — U x (P2)@) as follows. Given x ¢ y~HO), let
oyx) = (y(X),(qi)?zl), where the g; are defined as follows. For exactly one j € (1,2},
the four points Cj(§1 (X)),...,Cj/(Ei(\X)), e ,CJ-(§5(X)) e P? are in general linear position.
So define g; to be the image of ¢;(x) under the unique projective linear transformation
sending Cj(§1 x),..., Cj/(S"i(\X)), e Cj(§5 (x)) € P? in standard position.

Let p be a 0-stratum of M 5, for example suppose it corresponds to a degenera-
tion where s;(p) = s,(p) and s3(p) = s,(p). The fiber y~!(p) is in the top right corner
of Figure 11. The points §,(p),S,(p) are contained in one copy of F;, S3(p),S,(p) are
contained in the other copy of F, and 55(p) € Fy. Let U € M 5 be an open neighborhood
of p avoiding all the strata of M 5 not specializing to p. Using the relative minimal model
program as above, we can construct three contractions of y ~!(U), which we label c, (use
the lines 14, 15, 23, 35), ¢, (use the lines 14, 15, 34, 35), and c¢; (use the lines 12, 15, 23, 35).
See Figure 11 for the effect of these contractions on the fiber over p. The fibers over the
adjacent 1-strata are contracted accordingly. We define ¢ (x) = (y(x), (qi)?zl) as in the

previous case.
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The morphisms g glue giving a morphism @: P — MO,S X (IP’Z)(Z), which is
an embedding. Indeed, by Nakayama's lemma, it suffices to show that the restriction
to each fiber is a closed embedding into (Pz)(i), which follows from the fact that the
fibers of y are central fibers of Mustafin joins (see Remark 5.5). Let X/GP(S,S) be the
Zariski closure of the image of By in By x Hilb ((IP’Z)(Z)). The morphism @ induces
a birational morphism Mo,5 — X’GP(B,S). Since we also have a birational morphism
Xgp(3,5) — Bg = M5, we have Xgp(3,5) = M, 5. By [4, Proposition 3.1], the morphism
Xgp(3,5) — Xgp(3,5) is bijective. Since My 5 is normal, Xgp(3,5) = Xgp(3,5) = M5 by

Zariski's main theorem. [ |
Proposition 7.10. Foreachi=1,...,n, there exists a forgetful morphism

Xcp(3,n) — Xgp(3,n—1)

extending the obvious forgetful map B,, — B,,_; that forgets the i-th point.

Proof. Say i = n. Following the definition of X;p(3,n) as the closure of B, in the
product of B, and the multigraded Hilbert scheme and the definition of B, as the
closure of B,, in (P1)©n, we need to show two things. Firstly, the projection from (P!)<n

to (P1)©n-1 induces the forgetful morphism B, > B which is clear. Secondly, the

n—1

projection from (P2)®) to (P2)("s) induces a morphism of multigraded Hilbert schemes
(with the Hilbert function of the diagonal), which is Lemma 7.4. [ |

Definition 7.11. LetI e ([g]), i € I. Consider the composition of forgetful morphisms

Xep(3,m) > Xp(3,1) = My 5,

and denote by f; ; the composition of this map with the i-th Kapranov's map M, 5 — PZ.
Givenk e {1,...,n},let ([Z])k C ([Z]) be the subset of quadruples J = {j; < ... < Jj,}

[n]

containing k. Then define y;: ()

>k — P? to be the following function:

[1:0:0]if k=,
[0:1:0]ifk=]j
X ) = L
[0:0:1]if k=,
[1:1:1]if k= j,.
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Finally, for k = 1,...,n, consider the morphism

Sk: XGP(3I n) —> XGP(SI n) X (]PZ)(Z)

defined as
Sk = 1dg ,(3,n) X H Froimy x % H X (J).
Te(), Te(),
k] keJ
Theorem 7.12. The morphisms s;,...,s, are sections X:p(3,n) — M of the universal

Mustafin join of point configurations. They give n smooth distinct points on each fiber.

Proof. Since we already know that s; maps the interior of X;p(3, n) into M, the image
of s; is contained in M by continuity. Let x € XGP(& n). Let a: Spec(K) — B,, be an arc
such that the unique extension a: Spec(R) — XGP(&n) satisfies a(0) = x. Then M —
KGP(S,n) and s;,...,s; pullback to Spec(R) giving the Mustafin join P(X,) — Spec(R)
with the sections a,...,a,. The points a,(0),...,a,(0) € P(X,), are distinct by Lemma

6.1 and smooth by Theorem 6.9, implying the theorem. [ |

Finally, we give a criterion to establish which n-pointed degenerations of P2

arise as fibers of the universal Mustafin join M — X;p(3, n) of point configurations.

Lemma 7.13. Let X be a projective surface with smooth points p,,...,p,, € X such
that
(1) There exists ¥ = {[L,],...,[L,]} € %g such that X = P(X), (recall that if ¥ is
contained in an apartment, then P(X), can be easily computed using Remark
5.3);

[n]
4

indices i,j, k, h € [n] a lattice class [L,] € £ such that the images of the points

(2) There exists a surjective map ( ) — ¥ associating to a quadruple of distinct

Pi: Pj. P, Py, under the composition X = P(X), — P(L,), are in general linear
position.
Then there exists a € (P?)*(K) in general linear position such that X = P(%,)y, and

Py, --.,p, correspond, respectively, to a,(0), ..., a,(0) under this isomorphism.

Proof. Sincep,,...,p, are smooth points of X (and hence smooth points of P(X),), by

the infinitesimal lifting property we can find a € (P?)"(K) in general linear position
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Fig. 12. Maps to the primary components in Example 7.14.

such that a,(0),...,a,(0) € P(X), correspond, respectively, to p;,...,p, under the
isomorphism P(X), = X. By the definition of stable lattices and by our assumptions,
we have that ¥, = . [

Example 7.14. Let (X;p,,...,pg) be the 6-pointed reducible surface #8 in Table 14. We
claim that it arises as (P(X,); @,(0),...,ag(0)) for some arca € (P?)8(K) in general linear

position. Lemma 7.13 (1) is satisfied by choosing ¥ = {[L,], [L,], [L5]}, where

Figure 12 shows that the assumption (2) is satisfied as well.

8 Analogue of the Losev-Manin Space for Moduli of Points in P?

The Grothendieck-Knudsen moduli space M, ,, = X(2, n) of stable rational curves has a
toric analogue, the Losev—Manin space [5, 21], which parametrizes chains of rational
curves with m light and two heavy points (one at each end of the chain). The light
points can coincide with each other but not with the nodes or the heavy points. The
Losev—Manin space is a toric variety associated with the permutohedron. In this and the

next sections we will discuss analogues of the Losev—Manin space for moduli spaces of
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points and lines in P?2. We start with a toric analogue of the Kapranov Chow quotient
space X(3,n) = (P?)"//PGL;, which will be the Chow quotient (P?)"//G2, for n = m + 3.

Denote by Y the toric variety associated to a fan F. Let T C Y be the dense
open torus. By [18], the Chow quotient Y //H by a subtorus H C T is a toric variety (not
necessarily normal) of the quotient torus T/H. The associated fan of the normalization
is called the quotient fan. We recall its description in our case: Y = (P?)™ and H is
the dense open torus in P? acting diagonally on (P?)™. The Chow quotient parametrizes
translates (pl_l, e ,p,‘nl) -P?2 C (P?)™ of the diagonally embedded P? c (P?)™ and their
limits in the Chow variety, where (p;,...,p,,) € (G2)™.

Let NV be the lattice of 1-parameter subgroups of H and let P be the fan of P? in
Ny = R?. The product fan P™ in Ng' gives the toric variety (P2)™. In what follows, we
identify NJ* with R?™ and we view R? as diagonally embedded in R*™. Given v € R*™,

define
PM={oc eP™|oN(v+R? #0).

Vectors v, w € R?™ are called equivalent provided P = P. The closures of equivalence
classes are rational convex cones in R?"” invariant under translations by R?. The images

of these cones under the quotient map
q: R¥" — R*™/R?

form the fan Q,, called the quotient fan. We call Y, the toric Kapranov space. It is a
normalization of the Chow quotient and the (multigraded) Hilbert quotient of (P?)™ by
H (the closure of T/H in the (multigraded) Hilbert scheme of (P?)™), see Example 7.3.

We would like to describe cones in Q,, explicitly.

Definition 8.1. Given (v, V') € R?, a spider S(v, V') is the union of three rays in R?:
Sw,v)={(-v+t,-v) [t eRJU{(—v,—V +t) [t e RgJU{(-v —t,—V —1t) [t € R_g}.

It induces a fan X (v, v’) centered at (—v, —v’) with seven cones of various dimensions.
Let v.= (V{,V], ...V, V) € R2™, The union of the spiders U;LS(VL'IV;)
subdivides R? into the union of 0, 1, and 2D convex cells (some of these cells are

unbounded). We denote this convex subdivision of R? by S(v).
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TABLE 2 In the top row, an example of combinatorially equivalent subdivisions S(v) and S(w)

3 4
2 _—

NENE
N\

Corresponding 2-cells are labeled with the same number. In the 2nd row, an
example of not combinatorially equivalent subdivisions.

Let v, w € R?™, We say that S(v) and S(w) are combinatorially equivalent if for
all choices of cones 0; € X(v;,v)), 7; € X(w;, w)) such that o; + (v;, v)) = 1; + (w;, w}), we
have N, 0; # ¢ if and only if N, 7; # @. We denote by [S(v)] the equivalence class of

i=1"1
S(v). If [S(v)] = [S(w)], then we say that two cells in S(v) and S(w) are corresponding

m o

if they can be written as NI, 0; and N | 7

Table 2).

where o; + (v;, V) = 7; + (w;, w;) for all i (see

Lemma 8.2. Intersections of cones o € P}'* with v+ R? = R? give the subdivision S(v).
In particular, if v, w € R?™ then [S(v)] = [S(w)] if and only if [v], [w] € R?™/R? lie in the

relative interior of the same cone of the quotient fan Q,,.

Proof. Let C C R? be an arbitrary cell in S(v). Then fori = 1,..., m there exist cones
o; € X(v;, v;) such that C = N 0;. Note that

T=((vy, V) +07) X X (Vy,, Vi) +0py)

is a cone in the product fan PJ*. It is clear that v+ C = (v + R3)Nrt. |
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Definition 8.3. Next we define the family over Y4 . Let R,, be the fan in R*™ with
cones n=q ()Nt foré € Q,, and t € P™.

Proposition 8.4. We have a commutative diagram of morphisms of toric varieties:

Yr,, —— Yo, x (P*)"

|

Yo

m*

The top row is an embedding, and the toric morphism Y — Y, is flat with

reduced fibers.

Proof. Consider the injective linear map given by
R?™ < (R?™/R?) x R?™, v ([V], V).

Then R,, is the restriction to R?™ of the product fan Q,, x P™. By [23, Theorem 2.1.4],

in order to show that Y ~— Y, is flat with reduced fibers, we need to check that

(1) Every cone n € R,, surjects onto a cone o € Q,,;

(2) Whenever q(n) = o, the lattice points in 5 surject onto the lattice points in o.

Let n € R,,. Then n = g (&) Nt for some cones & ¢ Q,, and v € P™. Thus,
q(n) = £ N q(r). By [18, Sectionl], the quotient fan Q,, is the common refinement of the
images in IRZ’”/]R2 of cones in P™. For this reason, we have that £ N g(r) is a cone in Q,,,
proving part (1).

For part (2), let n € R,,, and let [w] € q(n) be a lattice point, which means that
we can assume w has integral coordinates. Write n = g '(§) Nt for & e QT € P,
implying that [w] € £ and [w] € q(r). Thus, w € g~ '(¢) and w + (x,X/,...,x,x)) € t for
some (x,x") € R2.

Write T = 1) X - - - X Tp,. Then (x,x') € 7;— (w;, w)) for all i. So (x, x) is a point in the
cell C =Nt (r; — (wy, wg)) of the subdivision S(w) of R2. Notice that C always contains
a point (y, y’) with integral coordinates. This is because, by the geometry of the fan P, C
is a convex polytope with integral vertices and sides with slopes 0, 1, or vertical.

It follows that w+(y,y’,...,y,¥’) € t and therefore w+(y,y’,...,y,¥) € g 1 ()N

7 = 5 is a lattice point mapping to [w]. [ |
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TABLE 3 All combinatorial types of Mustafin triangles (up to symmetries) enumerating all cones

in Q3

a b o d

»)é);
JELE s | g U
LA e A
a3

The table is from [3, Figure 6].

N )
¥

s

Il
AN
N

Remark 8.5. One could adapt the above results for Y™, where Y is an arbitrary
projective toric surface, except for Proposition 8.4, which used specific properties of
the fan of P2. The conclusion of Proposition 8.4 holds for any projective toric surface
such that the slopes of the rays of its associated fan are in the set {0, 1, oo}, that is, for a

toric del Pezzo surface.
Lemma 8.6. Forie {1,...,m}, we have “forgetful” toric morphisms of toric varieties
YQm - YQm—l

induced by linear maps p;: R*™ — R*™ 2, v > (v, V],..., Vi 1,Vi_1, Vi1, Viiq/ -1 Vi, Vi)
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Proof. Letv,w € R?™ We claim that if [S(v)] = [S(w)] then [S(p;(v)] = [S(p;(w))] for
all i. But this is immediate from Definition 8.1: for j € {1,...,m} \ {i}, consider cones
o; € X(vj, VJ/.), 7 € Z(wj, WJ/.) such that o; + (v;, VJ/.) =7, + (wj, W]/.). Assume that N;_;o; # ¥.
We want to show that N, ;7; # #. There exists o; € £(v;, v;) such that No; # ¥ because
X (v;, v;) covers the entire R2. Let 7; € X(w;, w;) such that o; + (v;, v) = 7; + (w;, w}). Since

[S(v)] = [S(w)], we know that also N7y # 0,80 Nyt # Y, proving what we want. [ |

Next we give a modular interpretation of Y, as the moduli space of reducible
surfaces with marked points. The torus (G2)™ is a configuration space of m points
Pi1,---, Py € G2,. These light points are allowed to coincide. If we add three heavy points
e;, e, e3, the quotient torus (G2Z)™ /G2, becomes isomorphic to the PGL,-orbit space for

m + 3 points

2
€1,85,83,P1,...,Dyp €P

such that any of the m quadruples of the form (p; e;,e,, e;) is in linearly general
position. To reduce to the torus action, we normalize ey, e,, e; to be the standard basis
vectors. Given K-points py,...,p,, € G2,(K), we have m lattices L, for i = 1,...,m that
stabilize quadruples of the form (e, e,;, e3,p;) (some of these lattices can coincide).
Notice that these lattices are in the same apartment that corresponds to the basis

€1, €y, es.

Proposition 8.7. The family Y ~— Yg is the pullback of the universal family of
the Hilbert scheme of (P?)™. Let a: Spec(R) — Yo, be a morphism such that a(SpecK)
is contained in the quotient torus. Then a*Yy is isomorphic to the Mustafin join
P(L,,...,L,).
Proof. The 1st part follows from Proposition 8.4. For the 2nd part, write a(SpecK) =
@, ..., a,) mod G2, an element of (G2)™/G2,(K). We have that @lspeck)* YR, = P2 is
embedded in (]P%)m by the diagonal embedding of ]PIZ{ followed by the automorphism
of (P2)™ induced by the action of (a;’,...,a;}!). The morphism Yr, — Yo is flat
by Proposition 8.4, so 5*YRm equals the Zariski closure of IF’IZ{ in ([P;%)m under the
above embedding. This shows that a* Yr,, is equal to the Mustafin join of the lattices
L.

. = a;eR + ae,R + a;;e;R, where we view a; as the point in P? given by

[ail . aiz . aiS]. [ ]
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Definition 8.8. Let A; to be the map of lattices Z?™/Z? — Z?™ given by

WVl (v =V, V] — Voo Vi — Vy, Uy — V).

Each of these maps is a section of the quotient map q: Z*™ — 7™ /7Z2.

Proposition 8.9. The family Yz — Y, admits m “light” sections ¢,,...,¢,,, which

’ m!
are toric morphisms induced by the linear maps A;,...,4,,, and three “heavy” constant
sections ty,t,,t3 given by t; = Yo x {e;} x ... x {e;} € Y5 X (P?)™ fori = 1,2,3 (see

Proposition 8.4).

Proof. We need to show that each of the maps A; induces a map of fans from Q,,
to R,,. Suppose [v],[w] € R?"/R? are contained in the relative interior of a cone o
of Q,,. In order to show that A;(0) is contained in a cone of R,,, it suffices to show
that 2;([v]), 2;(Iw]) are contained in the same cone of P™, i.e. that (v; — v;, v; — v;) and

J

(w; — wy, WJ/- — w;) are contained in the same cone of P for every j. Note that the cone of

L / / /
P containing (v; — v;, v; — v;) (resp. (w; — w;, w; —

relative position of the spiders S(v;, v;) and S(v;, VJ/.) (resp. S(w;, w;) and S(wy, WJ/.)). Since

w;)) is completely determined by the

S(v) and S(w) are combinatorially equivalent, the claim follows. [ |

Corollary 8.10. Fibers of the family Yz ~— Y, can be computed as in Remark
5.3. A spider decomposition S(v) induces a regular mixed polyhedral subdivision of
mA,. The corresponding fiber is a broken toric variety with irreducible components
that correspond to 2-cells of the subdivision of mA,. Three heavy sections correspond
to vertices of mA,. Every light section ¢; lies in the irreducible component that

corresponds to the spider S(v;, v;).

Proof. After our discussion so far, the only claim needing proof is the one about light
sections. We can reduce this claim to considering a one-parameter family a: Spec(R) —
Yy, with a(Spec(K)) contained in the quotient torus. Let us prove the statement for
¢, which, without loss of generality, we can assume equal to [1 : 1 : 1]. In particular,
we have that L; = e;R + e;R + e3R. Let us rescale the points [a;; : aj, : aj3l, j = 2, so
that val(ajl),val(ajz),val(aj3) < 0, with equality achieved at least once for each j. Then
v=(,1,1) € L; \ tL; for allj = 1,...,m. Moreover, L; is contained in the intersection

LyN...NL,,. Therefore, by Lemma 5.7, we have that the limit of ¢; in the central fiber of
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€] & €2
a1(0)
IP)Q [ ] FQ
a2(0)
p2\°
D C3

Fig. 13. Fiber of Y, — Yo, over a(0) in Example 8.11.

the Mustafin join P(L,...,L,,) is a smooth point contained in the primary component

corresponding to L,, which is the one corresponding to the i-th spider. |

Example 8.11. Let us consider the arc

a=(e; =[1:0:0,e,=[0:1:0l,e=[0:0:1],a, =[1:1:1],a, =[t*:1:1¢).

We studied the 5-pointed degeneration of P? parametrized by a(0) € X;p(3,5) in Example
6.2. We now compute the 5-pointed fiber of Yz, — Yy, over the limit point a(0) € Yy, .
By Proposition 8.7, such fiber is the central fiber of the Mustafin join of the following

two lattices:

L, =e;R+e,R+e3R, L, = t>e;R + e,R + tesR.

We can compute P(L;, L,), using Remark 5.3, and the result is pictured in Figure 13.
Note that the limit of g; lies in the primary component corresponding to L; by Corollary
8.10.

9 Toric Analogue of X, (3,n)

We will use the toric Kapranov spaces Y in Section 11 to construct open patches of the
Kapranov space X(3,n) that cover an open planar locus with toroidal singularities. Its
preimage in the Gerrizen-Piwek space X;p(3,n) will be described using toric Gerrizen—
Piwek spaces Y5 introduced in this section. While the same arc gives different fibers
of the family Y = (see Example 8.11) and the Gerrizen-Piwek family (see Example 6.2),
under some conditions, which we investigate in this and the following sections, the

Gerrizen-Piwek fiber can be reconstructed from the fiber in Yy . To motivate the

2202 1aquiaAoN |z Uo Jasn jsiayuwy - spasnyoessely 10 Alsisalun Aq 089%+£9/000/ L/12/2Z0Z/21onie/ulwi/woo dno-olwspeoe//:sdiy Wolj) peapeojumoq



Compactifications of Moduli 17045

Fig. 14. Intersection point of dashed dual spiders S(a,b)" and S(c,d)".
construction, write n = m + 3 and take an arc
a=(e, ey esa,... ay, c PH"K)

in linearly general position. Consider an apartment A that corresponds to the basis
e;,e,, e3. By Remark 5.3, a lattice t“e; R+ t?e,R + t” e3R in the apartment corresponds to
a lattice point (—a, —b) = (y — a, y — B) € R2. It is the 0-cell of the spider S(a, b).

Definition 9.1. The dual spider is defined as follows:

S@ b)Y ={(—a—t,-b) |t eR.gU{(—a,~b—t) [teRgJU{(—a+t,~b+1)|teR )

Lemma 9.2. Consider the stable lattices L; (resp. L,z ;) stabilizing quadruples

apij
(e1,€5,€5,a;) fori = 1,...,m (resp. (e,, e4,a;,a)) fora,p =1,2,3,i,j = 1,...,m). The
lattices L; belong to the apartment A and are given by the integral points (—v;, —v;) in
R2. A lattice L

lattice L

i does not have to be in the apartment A, but if it does, then it is the

«p,ij that corresponds to the integral point (—x,g;;, —X,, ;) from Table 4. If this

point is different from (-v;, —v;) and (—v;, —VJ’.), then it is the intersection point (—a, —b)
of the dual spiders S(v;, v;)" and S(v;, VJ/.)V.

Proof. Leti,j € {1,...,m} be distinct indices and consider the stable lattices L; L.

All their possible reciprocal positions as points (—v;, —v}), (=v;, —vJ/.) in R? are listed in
Table 4. Let us determine the integral points (X, ;;, X5 ;:)-

Assume that the reciprocal position of L;, L; is as shown in the 1st entry of the
1st row of Table 4. Then the limits of the points p,, p,, ps,a;, a; in the central fiber of

the Mustafin join P(L;, L;) are shown in the left side of Figure 15. We can then directly

1
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€1 €9
(
E]‘ 0
N Ly
61 62 '63
ai(0) e. l
es €3 > e1,a(0)

.‘ €2
€3

Fig. 15. In the proof of Lemma 9.2, the central fibers of the Mustafin joins P(L;, Lj), P(L;, Ly, L;j)
and the limits of e}, e, e3, a;, a;.

compute that
/ / /
K120 X12,49) = (V5 Vi), Kug o X135 = (Vin Vi)r (Rag 45 Xa3,5) = (V) V).

An analogous argument applies to the remaining cases in the 1st two rows of
Table 4.

Now assume that the reciprocal position of L;, L; is as shown in the 1st entry of
the 3rd row of Table 4 instead. Define L;; as the lattice corresponding to the intersection
point (—a, —b) of the dual spiders S(v;, v;)" and S(v;, VJ/.)V. Then the limits of the points
P1:P2:P3,G;: G in the central fiber of the Mustafin join ]P’(Li,Lj,Lij) can be found in the

right side of Figure 15. From this, we can directly compute that
g g Yy p
/ / / /
(Xlz,ij,Xllzlij) = (Vi,Vi), (Xls,ier13,ij) = (a,b), (X23,ij,X23,ij) = (Vj, Vj)-

The remaining cases in the last two rows of Table 4 are handled in an analogous

way. |

Definition 9.3. We let
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TaBLE4 The red dot (intersection of dual spiders) is in position (—a, —b) € R?

/ /
(Xlzlij'Xlz,ij) = (le VJ)
/ /
(X134 X13,) = (Vi, V)

. / P— . /
(X23,L]1X23,ij) = (VJ/ VJ)

/ /
(Xlzlij'Xlz,ij) = (Vil Vl)
/ /
(X13,ij’X13,ij) = (Vj/ VJ)

. / P— . /
(X23,L]IX23,ij) = (V]r VJ)

/ /
(Xlzlij'Xlz,ij) = (le V_])
. / P— . /
(X13,L]1X13,ij) = (V]/ VJ)

..ol — . )
(X23,l]rX23'ij) = (v;, Vi)

/ /
(X12,4j: X194 = (Vi, V)

/ /
(X13,4j: X13,) = (Vi, V)

. / P— . /
(X23,L]1X23,ij) = (VJ/ V])

/ /
(X121 X19,) = (Vj, V)

/ /
(x13,4j: X13,) = (Vi, V)

..o — . )
(X23,4j: X33 i) = (Vi) V})

/ /
(X12,4j: X19,) = (Vi, V)
/ /
(x13,4j: X13,) = (Vi, V)

. / P— . /
(X23,L]1X23,ij) = (V]/ V])

(X12,ij,X/12,ij) = (vj, v))
/

. / —_— . /
(X23,l]IX23,ij) = (VJ: V_])

/ /
(X124 X19,) = (Vj, V)
/ /
(x13,4j: X13,) = (Vi, V)

(X23,l_]l X/23rl.]) = (al b)

/ /
(X13,4j: X13,) = (Vi, V)

. / —_— . /
(X23,l]rX23,ij) = (VJ/ V_])

(X125, X9 1) = (Vj, V)

.. / —_— . /
(X23,ij: X33 i) = (Vi) V})

(XIZVLJ’X/IZ,I,]) = (al b)
(X13,ij:X,13,ij) = (v}, VJ'-)

.. / —_— . /
(X23,ij: X33 i) = (Vi) V})

/
(Xlzrij’Xlz,ij) = (ar b)

/ /
(X13,4j: X713 ) = (Vi, V)

. / — . /
(XZS"’]'XZPJ,ij) = (VJI V])

that sends a vector v to the vector (v,x) such that the components x

/
aB,ijr Xap,ij

Let : R?M+2N _, R2™M he the projection map and let :: R?™ — R?™+2N he the function

of the

vector x are given in Table 4. The induced maps R?™*+2V /R? — R?™/R? and R?™/R? —
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/s

Fig. 16. Example of S(v) (on the left) and its refinement S (v) (on the right).

R2m+2N /R2 are well defined and we denote them by 7 and 7, respectively. We define
Sw) = Suw)),
see Figure 16 for an example. The subdivision S(v) refines S(v).
We note that the image of « consists of entire cones of the fan Q,, , x:
Lemma 9.4. Letv e R?™, z e RZ™2N If [S(1(v))] = [S(2)], then z = (7 (2)).
Proof. Write ((v) = (v,x),z = (n(2),y), where
x=0(.. 'Xaﬂ,ij'X:xﬁ,ij' L), v=0(.. 'Yotﬂ,ij'y(;ﬁ,ij' ).

Recall that the pairs (x4, X4
indices «, B8 € [3], i,j € [ml], and for simplicity of notation set v = (Vi,Vg,VJ-,VJ/»),Zij =

(zi,z;,zj,z}). Note that the hypothesis [S(:(v))] = [S(2)] implies that

) are defined according to Definition 9.3. Fix distinct

[S(Vij, XoB,ij! X(/xﬁ,ij)] = [S(Zij, Yop,ij Y(/),'g'ij)]- (6)

Based on the definition of ((v), we have the following three cases on (Xaﬂ'ij,x(;ﬂ ij):

If (Xaﬂ,ij’X(/xﬁ,ij) = (v;,v;), then we show that (Yaﬁ,ij'Y&,s,ij) = (z,z,). Up to
symmetries, we have two possibilities for the reciprocal position of the points (—v;, —v;),
(—Vj,—VJ/-) in R2. Say we are in the 1st case of the 1st row of Table 4. Consider the
cones o; = {(—v;, —V))} € X(v;, V), o; € X(vj, VJ’.), o = {(—Xyp,ij: —X(;ﬂ,ij)} € E(Xaﬁ’ij,X(;ﬂ,ij)
such that o; No; N o = {(—v;, —v;)} and o; is a ray. Consider the corresponding cones
ti = {(_Zil _Z;)} € E(Zilz;:)r Tj € E(Zjlz})l T= {(_Yaﬂ’ljl _y(;ﬁ,l])} € E(yaﬂ,lJl y&ﬂ,lj)' Then also
7; N7 N7 # @ by (6), and hence this intersection has to be equal to {(-z;, —z;)}, showing

that (yaﬁ,ij,y;ﬁ ij) = (z;,Z;). The 2nd possibility for the reciprocal position of (-v;, —v}),
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(—v;, —VJ’.), up to symmetry, is the 1st case of the 3rd row of Table 4. Here we use the
same argument as in the previous case, but we take o; to be 2D instead.

If (Xyp,ijr (/xﬂ,ij) = (v}, VJ’.), then we show that (y, i/ foﬁ,ij) = (z;, z}.) by an analogous
argument to the one above.

Finally, assume (Xaﬁ’l], b, U) is the unique intersection point (—a, —b) of the dual
spiders S(v;, v)", S(v;, V/.)V. Consider the cones given by o; € X(v;, V), o; € E(V-,V.),
o= {(—Xaﬂ'ij,— b, lJ)} € XXy, aﬂ U) such that o; NojNo = {(—a,—b)} and oy, o; are rays.
Consider the corresponding cones t; € E(zi,zi), T, € X(z J-,zj), T = {(—Vep, i =Y aﬂ lJ)} €

Z(yaﬂ,ij'y(/xﬁ,ij)' Then 7; N; Nt # # by (6), and hence (—yaﬂ'ij,— ) is the unique

aB,ij
intersection point of the dual spiders S(z;,z)", S(zj,zJ’.)V. [ |

Lemma-Definition 9.5. There is a unique complete fan Q,, in R¥™/R? such that 7 is
linear on every cone o of Q,, and i(0) is a cone of the quotient fan Q,,  , in R¥"+2V /R2,
Vectors [v], [w] € R?™/R? lie in the relative interior of the same cone o of the fan @m
if and only if [S(v)] = [S(w)]. The collection of cones i(c) is a subfan le-ﬁ-N of Q,, y of

cones corresponding to subdivisions S(z), z € RZ"+2N such that S(z) = S(7(2)).

Proof. Given v € R*™ and two distinct indices i,j € [m], then the possible reciprocal
positions for (—v;, —V;), (—vj, —V]/.) € R?, if they are distinct points, are pictured in Table
4. Each possibility is described by a set of inequalities and/or equalities. Therefore,
given v € R?™, for each pair of distinct indices i,j € [m] we have a set of inequalities
and/or equalities, and considering all these together defines a convex cone o, C R2m,
(Clearly, if w is in the relative interior of o, then o, = ,,.) We denote by WV the collection
of all these cones in R?™. We have that ¢ is linear on each cone in W because each

(x ) is linear by its definition. Note that given v € R*™ and (a, b) € R?, then v

aB,ij’ 05,3 ij
and v+ (a,b,...,a,b) satisfy the same set of inequalities. Hence, the collection g(W) of
images of cones in W under the quotient g: R?™ — R?™/R? is a collection of cones on
which 7 is linear.

We now define Q) .
the relative interior of o for some [v] € R¥"/R?. Note that a cone o € Q) ., is entirely

to be the collection of cones o € Q,, y such that 7([v]) is in

contained in the image of 7 by Lemma 9.4. Moreover, I is linear on (i) ~! (o). To prove this,
it is enough to show the following. Let i([v]) be in the relative interior of o and let [Z]
be any other point in the relative interior of 0. We want to show that 7 is linear on the
2D cone generated by 7 ([z]) and [v]. Equivalently, ¢ is linear on the 2D cone generated by
7(z) and v. But this is clear because z = (7 (2)) by Lemma 9.4, and n(z), v belong to the

same cone of W because [S(2)] = [S(t(v))].
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Next, we observe that Q/rrz+N is a fan. Consider o € Q and let ¢ C o be a

/
m+N'
face. By the argument above, o is contained in the image of 7; hence, also ¢ is, so we can

certainly find [v] € R?"/R? such that 7([v]) is in the relative interior of ¢. Combined with

/
m+N-

We then define @m to be the collection of preimages of cones in Q) ., under t.

the fact that ¢ € Q,,, ,y because Q,,, ; is a fan, we can conclude that ¢ € Q

By the discussion above, ém is a fan, and it is clearly complete.

We conclude with the combinatorial interpretation of the cones in Q,,. Let

[v],Iw] € R?™/R? be in the relative interior of the same cone ())"!(c) € Q,,, where

ml
o € Q/erN. Then ¢([v]), 7(lw]) are in the relative interior of o, implying that [S(«(v))] =
[S(t(w))]. Conversely, assume that [S(¢(v))] = [S(¢«(w))]. This means that ([v]), (([w]) are
in the relative interior of the same cone o € Q,,, )y, which by definition is also a cone of

,m—i-N' Hence, [v], [w] € )" (o) € @m, proving the last statement. [ |

Definition 9.6. The variety Y5 is called the toric Gerritzen—-Piwek space.

Proposition 9.7.  There is a birational toric morphism Y5 — Yg . a “forgetful” toric

morphism Y5 — Y5  foreachi=1,...,m and a commutative diagram
Om Qm\fi)

Y; — Y5
Om O\ {5}

.

YQm — YQ[

m\{i}*

Proof. We claim that the fan Q,, refines the fan Q,,. We need to show that if v, w € R?™
and [g(v)] = [g(w)] then [S(v)] = [S(w)]. But this is a consequence of Lemma 8.6.

For the 2nd statement, let v, w € R?™ and consider the projections p;: R?™ — R2m~2
fori = 1,...,m. We claim that if S(v) and S(w) are combinatorially equivalent, then
g(pi(v)) and g(pi(w)) are combinatorial equivalent. Write Swv) = 8(v,x), S(w) = S(w, V)
forx,y e R(2). Notice that g(pi(v)) is obtained from S(v, x) by dropping the pairs (v;, v})

and (x ng) forj # i, and similarly for S~(pi(w)). It remains to apply Lemma 8.6. [

ijr
The next step is to define a refinement R, of the fan R,, of Definition 8.3.

Lemma-Definition 9.8. Let R, be the collection of cones in R?™ in the form

m(Q 'o)Nt) for oeQ, .y veP™V,
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s s
Ay =

where Q: R?+2N _, R2m+2N /R? js the quotient map. This collection is a fan and the

quotient map g: R?™ — R?™/R? induces a map of fans between R,, and Q,,.

Proof. Takeaconen=nm(Q Yo)N1) € ﬁm. Then 7|, is bijective with the inverse (|

Since cones of the form Q~!(¢) Nt form a fan, it follows that ﬁm is a fan as well. Next,

q(n) = q(x(Q (o) N 1)) =7(QQ (o) N 1)) =T(0 N Q1)) C 7 (0),

where 7 (o) € ém by definition. Hence, g induces a map of fans.

7(n)*
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TABLE 6 “Stretching” the decompositions S(v) in Table 5 creates further combinatorial types of

Sy
%

S(v) producing further cones in O3

£

ran
ran
£

—
—

: /4

] l/_ -

Lemma 9.9. Let N = (3)(). We have a commutative diagram of toric morphisms

Yn
YR/ m+N YﬁWL

w

Yo, v T Y5, s
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where y_ and y; are quotients by free G2¥-action. The morphism Y4 is flat with reduced

fibers.

Proof. The morphisms y, and y- are induced by linear maps = and 7 of fans, which
have piece-wise linear inverses ¢ and . This proves the 1st part because every affine
toric chart of the variety on the left is isomorphic (not canonically) to the product of the
corresponding affine toric chart of the variety on the right with G2V. Since y, is flat

with reduced fibers, the same is true for y, by smooth descent. [ |

Proposition 9.10. The family Y5z — Y5 over the toric Gerrizen-Piwek space admits

“light” sections ¢, ..., ¢, induced by linear maps A, ..., 1, of Definition 8.8 and “heavy”

m

constant sections t;, t,, t; defined as in Proposition 8.9.
Proof. The proof is the same as for Proposition 8.9. |

10 Projective Duality and the Quotient Fans Q,, and 9,

In the construction of the quotient fan Q,, and its interpretation in terms of subdivi-
sions of R?, we could have used the fan PV = —7P of the dual projective plane (P?)¥
in place of P. As in Section 8, we define the dual quotient fan Q,,. So we have the

isomorphism

(BH)™) H=Ygy,

where H C P2 is the dense torus. The cones in Q,, can be interpreted combinatorially as
in Lemma 8.2 in terms of polyhedral subdivisions S(v)" of R? induced by dual spiders
S(v;, v))¥ for i = 1,...,m (see Definition 9.1). Notice that the homomorphism R2™ /R?
sending [v] to —[v] maps the cones in Q,, to cones in Q) (for an explicit example,
see Figure 17). This induces a natural toric isomorphism between the Chow quotients
((P?)¥)™// H and (P*)™// H.

A surprising fact is that the fan Qm refines not only Q,,, (Proposition 9.7) but

also Qy,. Before we can prove this fact in Theorem 10.5, we need a little preparation.

Definition 10.1. Given [v] € R?™/R?, for all distinct i,j € [m], let 8;; € T(v;, v;) be the

minimal cone that contains (—v;, —V]’.). We call the collection of cones {5} <j j<m,iz the

cone data of v. If {3;;} and {n;;} are the cone data attached to two subdivisions S(v), S(w),
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Fig. 17. On the left, subdivision of R? given by a cone in Qg, and on the right its image under the

homomorphism [v] — —[v] given by a cone in Q3.

then we say that {85} and {n;;} are equivalent provided for all distinct i,j € [m],

3ij + (Vi’ V;) = nij + (Wi' W;)

Lemma 10.2. Let [v], [w] € R?/R? and consider the respective cone data {83} and {mj}-

If S(v) and S(w) are combinatorially equivalent, then {85} and {n;;} are equivalent.

Proof. Assume that S(v) and S(w) are combinatorially equivalent. By Lemma 8.6, the
subdivisions obtained by dropping all the spiders other than the i-th and the j-th are

also equivalent. This means precisely that the cone data are equivalent. [ |
The next proposition analyzes the converse of the previous lemma when m = 3.

Proposition 10.3. Let [v],[w] € R°/R? and suppose their cone data {5;} and {n;} are
equivalent. Then S(v) is combinatorially equivalent to S(w) unless they are combinato-
rially equivalent to (q) and (u) in Table 3, respectively (or vice versa). The subdivisions

(q) and (u) have equivalent cone data but are not combinatorially equivalent.

Proof. Going through all the cases in Table 3, which we reproduced from [3, Figure 6],
shows that the combinatorial equivalence class of the plane subdivision is uniquely

determined by the cone data except for the subdivisions (q) and (u). [

Using the fans X (v;, v))" instead of X(v;, v;), we can associate the dual cone data
{Sivj}. Analogous results for S(v)” and {SL?J/.} hold. We notice the following property.
Lemma 10.4. Let [v], [w] € R#™/R?. If S(v) is combinatorially equivalent to S(w), then

the dual cone data {(SEJ/.} and {nivj} are equivalent.
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Fig. 18. The fan Z(v;, V;)V and two of its maximal cones.

(_zjv _'UJ,‘)

S(v, v1)Y

(—vj, —%) (=zi5, T2i;) (—vj, —v%)

(—zij, *ﬁcgj)

S(Uia ’U;)

Fig. 19. Possible positions of (—vj, —VJ/-).

Proof. Given a pair of distinct indices, we want to show that

8% + (v;, V) = nivj + (wy, w)).

Let §;; € X(v;, v;) be the minimal cone containing (—v;, —VJ’.). If 8] has dimension

at most 1, then we can immediately determine 3% € X(v;, V;)v, and in each case it holds

that 3% + (v;, V;) = nivj + (w;, w;). Therefore, assume that Sij is 2D, and without loss of

generality assume that §;; is the cone whose two rays form a right angle (an analogous

argument applies to the other 2D cones). Then SiVj can be «, B or « N B in Figure 18,

and this is uniquely determined by the position of (—v;, —V]/.) with respect to (—x;;, —x;;)

(see Definition 9.3). We have three possible cases, which are pictured in Figure 19:

(1)

(Xij,ng) = (v}, V}) if and only if (—v;, —VJ/.) is contained in the relative interior

of a ray in X(v;, VQ)V. If this is the case, then we have that 5ij =aNgp.

— ’ / _
(2) If —x;; = —v; and —Xj; < -V, then §;; = a.
3 ;o / _
(3) Lastly, if —Xj; < —V; and X =V, then 8 = B
In each case, 51.? + (v, V) = ”ivj + (wy, w)). -

Theorem 10.5. The fan Q,, refines the dual quotient fan QY,.
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TABLE 7 Exceptional case for m = 3 in the proof of Theorem 10.5

Sy S(w)Y

~ S
3w (w)

Proof. Let [v],[w] € R?"/R? be two vectors lying in the relative interior of the

same cone of O _, which means that the polyhedral subdivisions S(v) and S(w) are

m
combinatorially equivalent. We want to show that S(v)" and S(w)" are combinatorially
equivalent as well.

If m = 1, then this is true because S(v)" and S(w)" are equal up to a translation
in R2. If m = 2, then the combinatorial equivalence class [S(v)] uniquely determines
[S(v)], which uniquely determines [S(v)V]. So if [S(v)] = [S(w)], then [S(v)V] = [S(w)V].

For m > 3, we argue by induction. Let m = 3. By Lemma 10.4, the dual cone data
{8;;.},{17;/].} associated to [v], [w], respectively, are equivalent. Therefore, by Proposition
10.3 adapted to the dual case, S(v)" is equivalent to S(w)" provided we are away from
the exceptional case in the 1st row of Table 7. However, this case can not occur: S(v)
and S(w) are not combinatorially equivalent as we can see in the 2nd row of Table 7.

Now assume the conclusion for m — 1 > 3 and let us prove it for m. Consider
cones 0;” € X(v;,v)", 1,/ € T(w;, w))" such that 6,” + (v;,v}) = 1, + (w;, w}) and assume
that N*,0," # #. We want to show that N, 7" is also non-empty, which, by Helly’s
theorem, is equivalent to TimeiZmTiZ # ( for every choice of distinct indices i, i,, i3 € [m].
Since m > 3, it will be enough to show that N;,;r;" # ¢ for each choice of index
J € Im]. So consider the projection map p;: R*” — R?™~2. By Proposition 9.7, we have

that S (pj(v)) is combinatorially equivalent to S (pj(w)). So by the inductive assumption
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we have that S(pj(v))v is combinatorially equivalent to S(pj(w))v. This means that
Nix%; is nonempty because ¥ # N 0,” € N;0;’, concluding the proof. [ |

11 Planar Locus in X(3,n) and Xp(3, n)

Given rational weights b = (b;,...,b,), 0 < b; < 1, satisfying Z?:l b, > 3, by [2]
there exists a projective moduli space M, (3, n) parametrizing stable pairs (P2, > | b,L;),
where L; C P2 are lines, and their stable degenerations. For b = (1,...,1), mb(B,n) =
X(3,n). On the other hand, choose weights such that three of them, say b;, bj, by, are
equal to 1 and the remaining weights are equal to € < 1. By [1, Example 9.6], we have an
isomorphism My (3, n) = ((P?)Vy"=3// H, and so its normalization is isomorphic to YQX_s‘

Setting m = n—3, we obtain a commutative diagram of birational maps and morphisms:

Y,
< Pijk = l

X(3,m + 3)" — My(3,n)” — Yoy,

where the morphism Y5 — Yo exists by Theorem 10.5. In what follows, we focus
on the case (i,j, k) = (1,2, 3). The same results hold for other cases after permuting the

labels. The commutative diagram is a diagram of isomorphisms over B, , ; = X(3, n).

Definition 11.1. Let P = A(3,m + 3) and consider Lafforgue’s toric variety Af. Let
AP, the union of the toric strata of A" corresponding to regular matroid polytope
subdivisions of P whose maximal dimensional polytopes contain the vertex e; + e, + €3,
where e,..., €, is the canonical basis of R™"3. Notice that Af,, is an open subset
because if a polyhedral subdivision has a maximal polytope not containing e; + e, + e5,

then any refinement of it does, so the complement is closed. This induces an open subset

U2 c X(3,m + 3)"

and its preimage UézP3 C X;p(3, m + 3)". We have the following commutative diagram:

R A123
um By,

L 5.

U123 E— YQ’VH.
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17058 L. Schaffler and J. Tevelev

The planar locus U(3,n) € X(3,n)" (resp. Ugp(3,n) € Xp(3,n)") is the union of UYF

(resp. UZIIC,) for all possible triples i, ], k.

Theorem 11.2. The map A,,5 is regular and both maps A,,; and B,,; are open
embeddings. The planar loci U(3,n) € X(3,n)” and Ugp(3,n) € Xp(3,n)" have toroidal
singularities.

m+3

Proof. We start with B,5. Let (X, > L;) be the family of stable pairs over X(@3,m+3)

=1
m+3
and take its fiber (X, > L;) over a point in U223, By [19, Section 8], X is a stable toric

=1
surface with the stable toric boundary given by L, + L, + L4. In particular, Ky +L; +L, +
m+3
L; ~ 0. Concretely, we can realize (X, > L;) as the central fiber of the pullback of the
i=1

family of stable pairs to SpecR via some arc a: SpecR — X(3, m+3) such that a(SpecK) e
X (3, m + 3)(K). Since all maximal-dimensional polytopes in the matroid decomposition
share a vertex e, +e,+e5, all stable lattices for the arc are contained in the corresponding
apartment [19, Section 8], and therefore X is a stable toric surface that corresponds
to a regular mixed polyhedral subdivision of the dual simplex mAJ. The broken lines

L,,...,L, intersect pairwise at smooth points of X [12, Theorem 1.1].
3 m+3
It follows that the pair (X, > L, + > €L;) is semi-log canonical and the Q-line

=1 =4
bundle

m+3 m+3

3
Ky+ > Li+ D elij~e- > L
=1 =4 =4

m+3 m+3
is ample because Ky + > L; ~ > L; is ample. Therefore, the restriction of the family
i=1 i=4

(X, miS L;) to U2 embeds the latter in M, (3, n) as an open subset.
- Next, we consider A ,5. Recall that X;p(3, n) is defined as the closure of B,, in the
multigraded Hilbert scheme of (P2)(2), Write n = 3+m, N = (2) (%) and m+N+M = (32’”).
The pullback to X;p(3, n) of the universal family of the (ordinary) Hilbert scheme
is a flat family M with n sections. For any point x € Xgp(3,n), the fiber M, is
a reduced surface (X;p,,...,p,) with n smooth marked points. For every quadruple
I ={i;,..., 14} € [n], the morphism X — P? induced by the projection onto the I-th

component of (IP’Z)(Z) sends Py /P, tO the points [1: 0:0],[0:1:0],[0:0: 1], and
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[1:1:1]. The surface (X;p,,...,p,) is the special fiber of the Mustafin join P(X,) for
any arc a: SpecK — B, with a given limit point a(0) = x € X;p(3, n).
The open subset Ué%? parametrizes surfaces such that X, is contained in the

apartment that corresponds to a,, a,, a; (for any arc converging to x).

Lemma 11.3. The restriction of the projection (P?)™+N+M _, (P2)m+N to every marked
surface (X;p;., ..., p,) parametrized by U}3} is an isomorphism. Moreover, the restriction

to US4 of the induced morphism from the multigraded Hilbert scheme
H (™M) s Hilb (%))

to the ordinary Hilbert scheme is bijective onto its image, let V be its normalization.

Proof. To prove the 1st statement, we choose an arc a and represent (X;p;,...,p,)
as the special fiber of the corresponding Mustafin join. Since all stable lattices are
contained in the apartment that corresponds to sections a,, a,, a3, the set X, is the set

of lattices L;, L in the notation of Lemma 9.2. Thus, X is isomorphic to a subscheme

aBi
in (P?)"™*V via inj“ojection. To prove the 2nd statement, it suffices to prove that the
morphisms X — IP’I? parametrized by quadruples I indexed by M are uniquely determined
by the morphisms X — ]P’§ parametrized by quadruples J indexed by m + N. Since
¥, is contained in the apartment that corresponds to the sections a;,a,, a5, for every
quadruple I = {i;,...,i,} indexed by M, there exists a quadruple J indexed by m+N such
that the image of the quadruple p; ,...,p;, in IP’?, is in linearly general position. Thus,
the morphism X — P? is a composition of the morphism X — P2 and an isomorphism
IP% — P2 uniquely determined by the marked surface (X;p,,...,p,) and its morphism to
P2. ]

At this point, we can forget about U%;ZI? and work with V instead, which is a
normalization of the partial compactification of B, in the Hilbert scheme of (P?)m+¥
parametrizing limits such that all stable lattices are in the apartment that corresponds
to the 1st three sections (for some choice of an arc). The pullback X — V of the universal
family of the Hilbert scheme is smooth along n disjoint sections giving the same fibers

(X;py,-...,py,) as before. Composing sections with projections gives morphisms

PI,...,PfL:V—>IP’2
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for every quadruple I of the form (1,2,3,i) (Ist type) or («,f,1,j) (2nd type). Note
that the points 73{ (V),Pé(V),Pé(V) are linearly independent for any v € V. Moreover,
for quadruples of the 1st type they are the standard points e, e,, e;. However, for
quadruples of the 2nd type only P (v) and 73/15 (v) are standard points e; and e,, since
by definition (see the Introduction) P} (v) = e; (and Pf(v) =e, =[1:1:1]). For a fixed v
and a quadruple I of the 2nd type, we can find an automorphism of P? that sends e; to
ey, €5 to ey and 737{ (v)toe,, where {«, 8, ¥} = {1, 2,3}. This automorphism is determined

uniquely up to the G2 -action. This gives a G2N-torsor ¥: V — V and an isomorphism
UV x (P2 ¥ x (P3N,

which is defined to be the identity on the 1st factor. Let X — V be the family W (y*X).
Since B,, is an open subset of an algebraic torus G27~2 and v is a torsor, ¥ 1 (B,,)

2m+N)=2 The morphism of ¥ ~1(B,) into the
2(m+N)-2
m

is an open subset of an algebraic torus G
Hilbert scheme of (P2)™+V given by the family X’ agrees with the embedding of G
into this Hilbert scheme as in Section 8. Indeed, note that the 1st three sections of
X are constant sections given by the G2, -invariant points in P?, thus every fiber of
X over l/f_l(Bn) is a P2 embedded into (P2)™*N by torus translates. Therefore, V is a
partial compactification of ¥~1(B,)) in the toric Kapranov space Yo,,.v- BY Lemma 9.2
and Lemma-Definition 9.5, V is an open subset of YQ/WN and therefore, as claimed,

V = V/GZ' is isomorphic to an open subset of Y +N/(anN =Yg, by Lemma 9.9. |
m m

12 Study of X;p(3,6)

In this section, we explicitly describe the compactification Xp(3,6) using the theory
developed in Sections 8-11. We classify the 6-pointed degenerations parametrized by
X;p(3,6), show their relation to the corresponding line arrangement degenerations
parametrized by Kapranov's Chow quotient X(3, 6), and finally prove that X;p(3,6)” is
a tropical compactification of X(3,6) given by a specific polyhedral subdivision of the

tropical Grassmannian X (3, 6).

Proposition 12.1. Up to permuting the labels, the degenerations parametrized by the
planar locus Ugp (3, 6) are listed in Tables 14, 15, and 16.

Proof. @ We first classify all cones in the quotient fan Qj, that is, all possible

decompositions S(v) for integral v e (R?)3. All the possibilities are computed in
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[3, Figure 6], and we list them in Table 3. Then, we need to classify all cones in the
fan @3, that is, all possible subdivisions g(v), which are listed in Tables 5 and 6. From
these, we can determine the corresponding central fibers X of Mustafin joins by Remark
5.3.

Next, we need to put markings p;,...,pg on X. First, we choose three labeled
points p;, p;, py and put them in the three vertices of the degeneration (we do not always
choose just p;, p,, p; for the reason explained in Remark 12.2). These three points are in
general linear position in all primary components. By Proposition 9.10, the remaining
“light” points are arranged according to Proposition 8.10, so that the i-the point belongs
to the component that corresponds to (v;, v;). As a guide, case #8 was already worked
out in Example 7.14. The final result is depicted in Tables 14, 15, and 16. [ |

Remark 12.2. The numbering of the degenerations in Tables 14, 15, and 16 is
determined as follows. Given a € (P?)%(K) in general linear position over K, we have
x = a(0) € X;p(3,6). Interpreting a as a one-parameter family of lines in (P?)V instead,
we obtain another limit y € X(3,6), and x > y under the morphism X;5(3,6) — X(3,6).
Recall that the boundary of Kapranov's compactification X(3, 6) is stratified according
to the regular matroid polytope subdivisions of the hypersimplex A(3,6). These are
listed up to Sg-action in [2, Table 4.4]. Each boundary stratum corresponds to degenerate
KSBA stable pairs listed in [2, Figures 5.11, 5.12, and 5.13] (notice that the degeneration
#16 corresponds to the matroid subdivision no. 16 in [2, Table 4.4] with (3) x;,3, < 2,
X, < 1 instead).

We claim that a degeneration of six points in P? labeled by #N in our tables
is mapped to the interior of the Kapranov's stratum #N. To establish this matching,
let us first look at an example. Assume y belongs to the interior of the Kapranov's
stratum corresponding to the matroid polytope subdivision no. 8 in [2, Table 4.4]. This
gives rise to the degenerate line arrangements in P? in the 1st row of Table 8. The
projective dual of these line degenerations are in the 2nd row of the same table. Now,
the marking of (P(X,),;a;(0),...,ag(0)) parametrized by x must be such that on the
primary components the image of the markings are given in the 2nd row of Table 8. Such
degeneration is given in Figure 12. One can inspect case by case that the degenerations
listed in Tables 14 and 15 match bijectively the matroid subdivisions in [2, Table 4.4].
We deal with the Kapranov’'s stratum #7 separately in Lemma 12.5. Lastly, in Table 16,

the numbering #12.1, #15.1, and so on correspond to the stretches of spiders in Table 6.
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TABLE 8 In the 1st row, degenerate line arrangements corresponding to three matroid polytopes

in subdivision no. 8 in [2, Table 4.4]

2 3 4 5 6
;K 1 N\ 5,6 2,3,4
4 3 2 1
e 6 o o
5,6 2,3,4
e5 ) [ )
®5

In the 2nd row, their respective projectively dual arrangements from Figure 12.

Next we describe the boundary stratification of X(3, 6) and construct its explicit
blow up X(3, 6) based on the analysis of the toroidal morphism of planar loci U;p(3,6) —
U(3,6). Then we will add an ad hoc analysis of the non-planar locus to prove X(3,6) =
XGP(B,G)”. The space X(3,6) = G0(3,6)/G?n is a very affine variety, that is, a closed

subset of the torus
6 J—
r=c¥"/GS.

It was proved in [22] that Kapranov's compactification X(3, 6) can be obtained as
the Zariski closure of X(3, 6) inside the toric variety Yy, 3 5) with dense open subtorus T,
where the fan ¥ (3, 6) is the tropical Grassmannian of Speyer-Sturmfels in [27]. Moreover,

X(3, 6) is tropical, which means that X(3, 6) is proper and the multiplication map
T x X(3,6) > Y53

is faithfully flat ([28, Definition 1.1]). Even better, Luxton proves in [22] that the
multiplication map is smooth (and so X(3, 6) is schon [28, Definition 1.3]). Adopting the
notation in [22], the fan ¥ (3, 6) has three types of rays, which correspond to boundary

divisors of X(3,6). In parentheses, we give the corresponding notation from [27].

(1) For each triple of distinct indices i,j,k € [6], we have a ray (ijk) (rays of
type E).
(2) For each pair of distinct indices i,j € [6], we have a ray (ij) (rays of type F).
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TaBLE9 Correspondence between strata of X(3,6) and cones of X(3,6)

#1 (123) #14 (12)(34)(56), (356)
#2 (123), (456) #15 (12)(34)(56), (12), (56)

#3 (124), (456) #16 (12), (56), (124)

#4 (456), (124), (135) #17 (12)(34)(56), (125), (12)

#5 (56) #18 (12)(34)(56), (356), (12)

#6 (56), (123) #19 (12)(34)(56), (125), (356)

#7 (123), (145), (246), (356) #20 (12)(34)(56), (12)(56)(34), (12), (34), (56)
#8 (56), (156) #21 (12)(34)(56), (34), (56), (256)

#9 (123), (56), (156) #22 (12)(34)(56), (34), (256), (346)

#10 (234), (56), (156) #23 (34), (56), (134), (256)

#11 (12)(34)(56) #24 (34), (56), (134), (156)

#12 (56), (34) #25 (12)(34)(56), (234), (456), (125)

#13 (12)(34)(56), (56)

(3) For each partition {{i,j},{k, ¢}, {m,n}} of [6], we have two distinct rays
denoted by (ij)(k¢)(mn) and (ij)(mn)(k¢) (these are the rays of type G in [27]).

There is a bijective correspondence between the boundary strata of X(3,6) and
the toric strata of Yy 3 ), that is, the cones of X (3, 6). Explicitly, up to Sg-action, consider
the labeling of the strata of X(3,6) given in [2]. Then this correspondence is given in
Table 9.

Note that only the cone #20 (of type FFFGG) is not simplicial. These cones are
known as the bipyramid cones: each one can be obtained by taking the cone over an
appropriate triangular bipyramid, which is the gluing of two tetrahedra along a common

facet.

Definition 12.3. Let o0 € X(3,6) be a bipyramid cone. We write 0 = (e, e,,e3,€4,€,),
where e, ey, e are the vertices of the common base of the two pyramids, and split it

into the following 12-cones
/ /
Ok = (e, e; + e, e+ e + ey, ey), Ok = (e;j, e; + e, e+ e+ ey, ey),

where {i,j, k} = {1,2,3}. By also splitting the cones #21, #23, and #24 as illustrated in
Table 10, we obtain a refinement ¥(3,6) of the fan ¥ (3,6). We define X(3, 6) to be the
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closure of X(3, 6) inside the smooth toric variety Y536 We have a commutative diagram

~

X(3,6) — Y

|

X(3,6) — Yy

Since §(3,6) refines (3, 6), it follows by [28, Proposition 2.5] that X(3,6) is a

tropical compactification of X(3,6) and its morphism to X(3, 6) is toroidal.

Remark 12.4. Kapranov's compactification X(3,6) is singular at exactly 15 isolated
points each locally isomorphic to the cone over P! x P? ([22, Theorem 4.2.4]). The 15
singular points are the strata that correspond to the bipyramid cones in X(3, 6). These
singularities admit two small resolutions related by a flop: let X, (3,6) (resp. X,(3,6))
be the small resolution with an exceptional locus isomorphic to P! (resp. P?). There is
also the blow up X (3, 6) of the cone singularities with exceptional divisor P! x P2. All
these compactifications are tropical and correspond to refinements of X(3,6): £,(3,6)
is obtained by splitting each bipyramid into its two pyramids, ¥,(3,6) is obtained by
adding to each bipyramid the segment that joins the two opposite vertices, and finally,
X'(3,6) is the common refinement of X, (3,6) and %,(3,6). The space X(3, 6) is obtained
from X' (3, 6) by blowing up the codimension 2 strata of type #12. Summarizing, we have

the following commutative diagram:

Proof of Theorem 1.7. Consider the birational map f: X(3,6) --» X:p(3,6)", which

is an isomorphism over X(3,6). We first show that f is an isomorphism over the open
ijk
GP

for all triples of distinct indices, it suffices to show that f is an isomorphism over Ué%e’.

planar locus Ugp(3,6) € Xp(3,6)". Since Ugp(3, 6) is the union of the open subsets U
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TABLE 10 The refinement f(S, 6) of the tropical Grassmannian

(i) (ke)(mn)

(ij)(mn)(kt)

(tjm)

Recall from Section 11 that U3 c X(3, 6) is isomorphic to the open subset V C Yoy Let
U'?® c X(3, 6) be the preimage of U'23 under the morphism X(3, 6) — X(3, 6). Finally, let
VcC Y5, be the open subset A3 (UL3Y) as in Definition 11.1. We claim that f induces an

. L =123 . .
isomorphism U;p =V, so that we have a commutative diagram

1

Y5 (3,6) U»-—v Yoy.

Since both spaces are obtained by toroidal blow ups of strata of the same variety

2202 1aquiaAoN |z Uo Jasn jsiayuwy - spasnyoessely 10 Alsisalun Aq 089%+£9/000/ L/12/2Z0Z/21onie/ulwi/woo dno-olwspeoe//:sdiy Wolj) peapeojumoq



17066 L. Schaffler and J. Tevelev

TaBLE 11 On the left, subdivisions of R? giving cones in Qy which correspond to points in V.

These cones are refined by O3 on the right

X1 / X1

X3 3

N

AN

U!23, it suffices to prove that the strata match. We compare the refinements ’2\(3, 6) <
¥(3,6) and §3 < Q. The maximal cones in X(3,6) which are split in §(3, 6) and that
correspond to points in U2 are the cones #20, #24, and #21 in Table 9. Under the
isomorphism U!23 — vV, these cones correspond to the cones of Q; in the left column
of Table 11. The cones in X(3,6) are split as in Definition 12.3, which matches the
refinement given by the maximal cones in @3 in the right column of Table 11. The three
thickened segment lengths x,, x,, x5 satisfy x; > x, > x5. Different choices of inequality
yield a total of 12 different cones in @3, which match the splitting in §(3,6) of the
bipyramid cone. This implies that 02 >V,

Next we study f over the non-planar locus of X;p(3,6)". Let x € X;p(3,6) \
U;p(3,6) and let y € X(3,6) be the image of x. Then y is in the interior of the strata
#7, #2, #10, or #23 — these are the only degenerations in [2, Figures 5.11, 5.12, and 5.13]
which do not have a triple of lines in general linear position in each primary component.
Each stratum #7 is an isolated point of the non-planar locus. By the description of the

fan 3(3, 6), the morphism X(3,6) — X(3,6) is a local isomorphism over this stratum. By
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normality, it suffices to show that XGP(B, 6) contains a unique point over each stratum
#7, which is proved in Lemma 12.5.

Next we study f over the preimage of the closed strata #2 = (ijk), Imn) in
X(3,6), which contains the strata #10 and #23 in its interior. By [22, Theorem 4.2.9],
the boundary strata (ijk) are isomorphic to Mo,e and each stratum #2 = (ijk), (Imn)
corresponds to a boundary stratum of Mo,e isomorphic to P! x P!, which we denote
by S. The boundary divisors of type (ij), (ik), (jk) restrict to S giving three distinct
parallel rulings, which are strata #10. The pairwise intersections of these rulings with
the analogous restrictions of the boundary divisors of type (¢m), (¢n), (mn) give nine
0-dimensional boundary strata #23. It follows from this analysis and the structure
of the refinement ¥£(3,6) in Table 1 that the preimage S of S under the blow up
X(3,6) — X(3,6) is BlyS, the blow up of S at the nine 0-dimensional boundary strata
#23. Let Sgp € X;p(3,6) be the preimage of S. By Lemma 12.7, the morphism Sgp — S
induces a bijective normalization morphism S = BlgS — S;p. Take x € Sip and take any
a: Spec(K) — Bg with limit x. Denote by z € S c X(3,6) the corresponding limit of f~!oa.
In the proof of Lemma 12.7 we showed that x only depends on z and not on the choice of
a. This shows that f is regular at z by [11, Theorem 7.3]. Since f is finite and birational,
Xp(3,6)" = X(3,6). [ |

Lemma 12.5. XGP(& 6) contains a unique point over each stratum #7 in X(3, 6).

Proof. Consider the following one-parameter family a(t) of six points in P?:

a, () =[1:0:0], a,(t) =[0:1:0], az(t) =[0:0:1], as(®) =[1:1:1],

as(t) =lc;t:1:14cytl, ag®) =[1+c3t:1:cytl,

where c¢;,...,c, € R\ {0}. Let A,..., A4 be the valuations of ¢}, ..., c,, respectively. The
limit points for t = 0 are the double points of the line arrangement in Figure 20 given by

the following:

lige = {x3 =0}, L1g5 = {Xp = X3}, Logs = {x7 = 0}, L3y = {x; = X5}

The stable lattices and the corresponding stabilized quadruples are the
following:
e Ljy=e;R+e,R+ e3R stabilizes (1,2,3,4),(1,3,5,6),(2,4,5,6);
e L, =t""le;R +e,R + 4R stabilizes (1,2,3,5),(2,3,4,5),(2,3,5,6);
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a1<0)

6346
6126 €235

6145

Fig. 20. Degeneration of six points in P2,

e L,=eR+e,R+t" leyR stabilizes (1,2,3,6),(1,2,4,6),(1,2,5,6);
o Ly=eR+t">"1e,R + (e, + e3)R stabilizes (1,2,4,5),(1,3,4,5),(1,4,5,6);
o L,=1t""leR+ (e; +e,)R + e3R stabilizes (1,3,4,6),(2,3,4,6),(3,4,5,6).

We now compute the 6-pointed degenerate central fiber P(X,),. Let us start by

observing that the induced linear spaces on P(L;), are given by

Wy, (L)) = {x; = 0}, Wy, (Ly) = {x5 = 0}, Wy, (L3) = {x, = X3}, Wy, (Ly) = {x; = X,}.

In particular, the primary component in P(X,), corresponding to L, is isomorphic to
P2, On the other hand, let i,j be distinct nonzero indices. Then Wy, (Ly) is a point by
Remark 5.5 (note that L; € L, and W, (L) is a line). Moreover, Wy, (L;) is a line again by
Remark 5.5 (L; ¢ L; and L; ¢ L;). So the primary component S; in P(X%,); corresponding
to L; is isomorphic to F,. The secondary components of P(X,), can be understood as
follows. If i, j are distinct nonzero indices, then the central fiber P(L,, L;, L,); is as shown
in Figure 4, and there is a unique secondary component T;; isomorphic to P! x P!. Note
that the center of the blow up P(%,) — IP’(LO,Li,Lj) does not intersect T In conclusion,
P(X,)y has six secondary components T;; isomorphic to P! x P!, each one glued along two
of its incident rulings to a fiber in each S;, S;. The components S, ..., S, are then glued
along their exceptional curves to P? along the lines W, (Ly), ..., Wy, (Ly), respectively.
The resulting surface P(X,), is pictured in Figure 21. It is independent from c,...,
c, € R\ {0}.

Let us determine the limits a@,(0),...,a4(0) € P(X,),. Under the birational
morphism P(X,) — P(L,), the irreducible components of P(X,), mapping to ¢, (resp.
0,45) are Sy, Ty9, Tos, Ty, (resp. Sz, T3, Tys, T3,). This implies that the limit point Ef“ 0) =
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P! x P!
P! x P!

P! x P!

Fig. 21. Dual complex of the degeneration discussed in Lemma 12.5.

€196 N Ly45 is on T,5. By the same reasoning, we have that

@,(0) € Tyq, y(0) € Ty, 3(0) € Ty, Gy(0) € Ty, Ts(0) € Tya, Tg(0) € Toy.

Finally, we count the moduli associated to the choice of the six markings on the
T;; components of P(X,),. We show that we can find an appropriate automorphism
of the surface P(X,), that fixes the six markings. Consider S;, which is glued to
Ty5. T3, T14 along three rulings f;,,f13,f14, Tespectively. The automorphism group of S;
that preserves the (—1)-section and the rulings fi,, f3,f14 is three dimensional, and we
can choose one of such automorphisms ¢, that fixes the images on S; of the limits
a,(0) € Ty,,a3(0) € Ty4,a5(0) € T,5. Consider the analogous automorphisms ¢,, @3, ¢4
for S,, S3,S4, respectively. We can choose an appropriate y;; € Aut(T};) acting on the two
rulings in such a way that ¥;;, ¢, idp(;), glue to a global automorphism of P(X,);, which

fixes the six markings. |

Next we consider the non-planar locus in X;p(3,6)" dominating the closed

stratum #2 in X(3, 6). First, we classify degenerations parametrized by it.
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TABLE 12 Dual spiders for the degenerations #2, #10, and #23 of six lines in (IP’Z)V, and the

=

%
—

corresponding spiders for the degenerations of six points P2

ANAN
\

AN

#23 #23.1
1 o h 7
h [ B ®5

0
Fy N2 p o= ¢ |
» B oo
F3 P3
3
P4 ¢
Fy
AN,

Fig. 22. Cross-ratio f in a degeneration of six points in P? parametrized by a point in X¢p(3, 6)"
over the (closed) stratum #23 in X(3, 6).

Lemma 12.6. The 6-pointed degenerations of P? parametrized by points in Xp(3, 6)
over the (closed) stratum of type #2 in X(3,6) are depicted in figures #2, #10, #23, and
#23.1 in Table 13.

2202 1aquiaAoN |z Uo Jasn jsiayuwy - spasnyoessely 10 Alsisalun Aq 089%+£9/000/ L/12/2Z0Z/21onie/ulwi/woo dno-olwspeoe//:sdiy Wolj) peapeojumoq



Compactifications of Moduli 17071

Proof. Let x € X;p(3,6) be a point over a point y € X(3,6) in the (closed) stratum
#2. From the possible Kapranov's degenerations #2, #10, and #23 parametrized by y,
which can be found in [2, Figures 5.12 and 5.13], we conclude that all stable lattices
are contained in one apartment. For clarity, let us point out that this apartment is
not determined by a triple of sections as for degenerations parametrized by the planar
locus. Instead, the point y is in the image of the planar locus in X(3,7) with respect
to the forgetful map. By considering combinatorial types of the dual spiders giving
the degenerations of (P?)Y parametrized by y and the corresponding usual spiders,
we compute the resulting degenerations of P?, taking into account that stretching the
spiders may yield different degenerations. This is summarized in Table 12. For each pair,
on the left, we give dual spiders in one apartment for the degenerations #2, #10, and #23
of six lines in (P?)Y, and on the right the corresponding spiders for the degenerations
of six points in P?. Finally, we add to these degenerations of P? six marked points as

prescribed by Lemma 7.13. ]

Lemma 12.7. Let S C X(3,6) be a (closed) stratum of type #2 and let Sgp € Xp(3,6)
be its preimage. The birational morphism S;p; — S induces a bijective normalization
morphism BlgS — Sip, where BlyS is the blow up of S at the nine double points (strata

#23) of the arrangement of six rulings (strata #10).

Proof. Consider a general one-parameter family of six lines

a(t)=(1:0:0],[0:1:01,[0:0:1],[1:1:1],[1:¢c; :cytl,[1:14czt:cyl)

in (P?)" limiting to a point y € X(3, 6) in the open stratum #2. Here Cy,...,C4 € R\ {0} and
c;(0),c4(0) # 0, 1. It can also be viewed as a general one-parameter family of six points
in P2 with limit x € Xp(3,6)". We want to show that x only depends on y, and not on
the choice of the arc a. The degeneration of P? parametrized by x is pictured in Table 13,
#2, and it only depends on the two cross-ratios we are about to describe. The limits in
P2 of the six points in a lie on the two lines x; = 0 and x; — x, = 0, which intersect at
[1:1:0]. So consider the quadruple[1:0:0],[0:1:0],[1:¢,(0):0],[1:1:0]on the 1st
line,and [1 :1:1],[0:0:1],[1:1:c¢c4(0)],[1:1:0] on the 2nd line. Their cross-ratios
are ¢;(0) and c4(0), respectively. On the other hand, let ¢;,...,¢g be the lines in (P2)V
corresponding to the six points in a. In the limit, ¢,,£,, {5 (resp. €3, €4, {5) pass through
[0:0:1] (resp.[1:—1:0]). Let ¢ be the line passing through [0: 0: 1] and [1 : —1 : O]. The
stable pair parametrized by y € X(3, 6) is pictured in [2, Figure 5.12], #2 (note that the
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TaBLE 13 Non-planar degenerations parametrized by X¢p (3, 6)

1 A 6
\02 g \.5 ol
6e Figure 21 \ 40
#7
#2 5e #10 \ 50

5\06 o2 1 5\06 ®2 1
N k\ ’
#23.1 \

#23

labels used for the lines in this proof do not match the ones in the figure), and the limits
of €;,€,,¢5,¢ and {3, ,, {s, ¢ determine four points on each one of the two irreducible P!
in the double locus. The degeneration parametrized by y € X(3, 6) only depends on the
cross-ratios of these two quadruples, which are equal to ¢, (0) and c,(0) respectively. In
conclusion, x only depends on y, and not on the tangent direction of the arc limiting
toy.

We apply the same strategy for a point x € Xp(3,6)" in the preimage of the
interior of the stratum #10. The general one-parameter family of six points in P? with

limit x is

a(t)=(1:0:01,[0:1:01,[0:0:1],[1:1:1],[1:c; :cytl, [1:14cgt:cytl),

where ¢;,...,¢, € R\ {0} and ¢, (0) # 0, 1. Viewing this as a family of lines, we obtain a
limit y € X(3, 6). The degeneration parametrized by x depends on one cross-ratio, which
is determined by [1:0:0],[0:1:0],[1:¢;(0) : 0], [1: 1:0] on the line x; = 0 and equals
¢,(0). Consider the corresponding degeneration of six lines parametrized by y € X(3, 6),
which is pictured in [2, Figure 5.12], #10. This degeneration is determined by the cross-

ratio of four points on the gluing locus between P! x P! and F,. These four points are
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TaBLE 14 Planar degenerations parametrized by Xgp(3, 6)

4 ®4

cut out by another curve in the double locus and the limits of ¢,, ¢,, £5. Their cross-ratio
is equal to c; (0).
The general one-parameter family limiting to y € X(3,6) in the (closed) stratum

#23 is given by
a(t)=(1:0:0],[0:1:01,[0:0:1],[1:1:1L,[1:14c;t:cytl,[1:14cgt:cytl),

where ¢;,...,¢, € R\ {0}. Here we interpret the arc as a one-parameter family of lines
€q,...,Lg in (P?)V. Consider the cross-ratio morphisms y,,y, : X(3,6) — P! given by
restricting the lines ¢,,¢,, {5, {5 to €5 and {3, £,, {5, {g to ;. Then (y,, y,) induces a local
isomorphism near y between S and P! x P!. A simple calculation shows that the limits as

t — 0 of the derivatives with respect to t of y; (a(t)) and y,(a(t)) are equal to c5(0) — c;(0)

2202 1aquiaAoN |z Uo Jasn jsiayuwy - spasnyoessely 10 Alsisalun Aq 089%+£9/000/ L/12/2Z0Z/21onie/ulwi/woo dno-olwspeoe//:sdiy Wolj) peapeojumoq



17074 L. Schaffler and J. Tevelev

TaBLE 15  Planar degenerations parametrized by Xgp (3, 6), continued

® 1 5 9 3
\06
40

#15 ®

#18 \2
[ J

#21 ®
3

#25

WO ES

and c,(0) — c,(0), respectively. We claim that the limit as ¢ — 0 of the arc a(¢) in XGP(S, 6)
is uniquely determined by the point [c; (0) — c53(0) : ¢,(0) —c,(0)] € P!l. In P?, consider the
cross-ratio of the following four points on the linex, =0:[1:0:0[,[0:0:1],[1:0:1],
and the intersection of x, = 0 with the line spanned by as(t), ag(t), which is given by

[c; —c3: (cy — Cy) + (¢4 — CyC5)t]. Denote by B its limit for t — 0.
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TaBLE 16 Further planar degenerations that come from the stretches in Table 6

5 ®3 5 ®3
et et
4@ \ 40
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1 1
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This cross-ratio manifests itself in the 6-pointed degeneration X of P?
parametrized by the limit x € XGP(B,B)” over the (closed) stratum #23 in X(3,6) as
follows. Assume that the degenerate surface X parametrized by x is obtained by gluing
five copies of F,, three copies of P! x P!, and one copy of the blow up of P? at two
points, and that the limit points are as shown in Figure 22. Denote these surfaces by
F,,...,F5,P;,P,, Py, B, respectively. On F, (resp. F5) let f},f, (resp. f5.f,) be the rulings
passing through the points marked by 1,2 (resp. 3,4). These induce other two rulings
fi.f, (resp. f3,f;) on F, (resp. F,). The rulings f{,...,f, intersect F; in four points
Di.---.Dg, Tespectively. Let ry (resp. rg) be the ruling in P, (resp. P;) passing through
the point marked by 5 (resp. 6) and intersecting B into a point g5 (resp. gg). There is
a unique line ¢ in B = B1,P? disjoint from the two exceptional divisors, which passes
through g5 and gg. This line ¢ intersects in a point p the strict transform in B of the line
passing through the two points blown up. The point p lies in the exceptional divisor
of F;, and it is contained in a unique ruling f. Now consider the line ¢;5 (resp. £,,)
in F; spanned by p, and p; (resp. p, and p,). On the line ¢,5, we have four distinct
points p;,ps. €13 N €y, €153 N f, and denote their cross-ratio by g’ (this construction is
reproduced in Figure 22). Note that F; is the primary component corresponding to the
standard lattice Ly = e;R+e,R +e3R with respect to which the arc a(t) was given above,
and B was constructed inside P(Lj), = P2 in the same way we did for g’. Therefore,
B’ = B # 0,00, and it characterizes the isomorphism type of the 6-pointed degeneration
X. The extreme cases 8 = 0,00 correspond to the following further degenerations of
X in Table 13, #23.1. The surface F; C X further breaks into the gluing of a surface
P = P! x P!, and a surface T = P? along a ruling of P and a line in T. Without loss
of generality, assume that P is glued with F,. In this case, the line ¢,5 breaks into two
irreducible components, and the analogues of the points p;,p;, €13 N €54, €13 N f split
into two groups {p;, %3 N f}, {p3, €13 N £y4}, where p,,£;3 N f lie on the surface P and
P3. 413 N £y, on T. This together with the other degeneration where P is glued to F,
instead, correspond, up to order, to the two cross-ratios g = 0, cc.

This shows that we have morphisms BlgS — S;p — S, where the 1st morphism

is a bijective normalization. [ |
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