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Projective duality identifies the moduli spaces Bn and X(3, n) parametrizing linearly

general configurations of n points in P2 and n lines in the dual P2, respectively. The

space X(3, n) admits Kapranov’s Chow quotient compactification X(3, n), studied also by

Lafforgue, Hacking, Keel, Tevelev, and Alexeev, which gives an example of a KSBA moduli

space of stable surfaces: it carries a family of certain reducible degenerations of P2 with

n “broken lines”. Gerritzen and Piwek proposed a dual perspective, a compact moduli

space parametrizing certain reducible degenerations of P2 with n smooth points. We

investigate the relation between these approaches, answering a question of Kapranov

from 2003.

1 Introduction

Projective duality associates to a configuration of n points in P2 a configuration of n

lines in the dual P2 and conversely. Our motivating question is how does projective dual-

ity between points and lines in the plane behave in families and under degenerations?

More precisely, denote by Bn and X(3, n) the moduli spaces of n general points in P2 and
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Compactifications of Moduli 17001

n general lines in the dual (P2)∨, respectively. Projective duality gives an identification

Bn = X(3, n),

but these moduli spaces carry distinct P2-bundles, one with n points (sections) and

another with n lines (divisors). The problem is to find their modular compactifications,

that is, to extend the P2-bundles to universal families over the compactifications. For

X(3, n), a modular compactification is given by Kapranov’s Chow quotient X(3, n) [16],

which carries a family of reducible degenerations of P2 with n “broken lines”. This is an

example of the moduli space of stable pairs (varieties with divisors) of Kollár, Shepherd-

Barron, and Alexeev [2, 12]. There are no comparable moduli spaces for varieties with

marked points.

We start by studying the Gerritzen–Piwek compactification Bn. Although defined

differently in [10], Bn is isomorphic to the Zariski closure of the image of the map

Bn ↪→
∏

Qn

P1,

where Qn is the set of ordered quintuples of distinct labels v1, . . . , v5 ∈ {1, . . . , n}. Every

map Bn → P1 sends (p1, . . . , pn) to the cross-ratio of four points obtained by projecting

pv1
, . . . , pv4

from pv5
∈ P2. The analogous construction for points in P1 instead of P2

yields M0,n
∼= X(2, n) [13, Theorem 9.18]. It follows from Luxton’s [22, Proposition

3.2.8] (see the proof of Theorem 1.2) that a similar result holds for lines in P2 up to

normalization:

Theorem 1.1. There exists a finite birational morphism X(3, n) → Bn. In particular,

we have X(3, n)ν ∼= Bν
n. (For a reduced scheme X, we denote by Xν its normalization.)

For n = 6, Luxton proves that in fact X(3, 6) ∼= B6, [22, Theorem 4.1.15]. We prove

a very general result in combinatorial matroid theory (see Section 2) and combine it with

the theory of Lafforgue’s varieties !
Q

([20], see Section 3), which generalize Kapranov’s

construction of X(3, n) to arbitrary matroids, to prove perhaps the most general result

in this direction.

Theorem 1.2. Let !
Q

be the Lafforgue variety corresponding to a matroid polytope Q

of rank r and dimension n − 1 such that r ≥ 3, or r = 2 and n ≥ 5. The product of face
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17002 L. Schaffler and J. Tevelev

maps

!
Q →

∏

F∈F
!

F =
∏

F∈F
P1 (1)

is a finite morphism and its restriction to the main stratum of !
Q

is birational onto its

image if the matroid is framed. Here F is the collection of faces of Q in the boundary of

the hypersimplex #(r, n) that are equivalent to #(2, 4).

Next we investigate the claim from [10] that Bn is a modular compactification

which parametrizes certain degenerations of P2 with configurations of n points. As

common in moduli theory, to construct the family over a compactification, the 1st step

is to identify potential central fibers in one-parameter degenerations. Formally, if k is

an algebraically closed field, R = k[[t]], and K = k((t)) is the field of fractions of R, then

given Spec(K) → Bn, we need to construct a family over Spec(R). We recall the definition

of Mustafin join [24].

Definition 1.3. For a free R-submodule L ⊆ K3 of rank 3, let P(L) = Proj(Sym(L∨)).

The submodule L is called a lattice. Given a finite set of lattices $ = {L1, . . . , Lm}, the

corresponding Mustafin join P($) is the Zariski closure of the diagonal embedding

P2
K ↪→ P(L1) ×R . . . ×R P(Lm).

We denote by P($)k the central fiber of P($), a degeneration of P2
K . The Bruhat–

Tits building B0
3 is the set of equivalence classes of lattices modulo rescaling by

λ ∈ K∗. The Mustafin join P($) only depends on the equivalence classes of lattices

[L1], . . . , [Lm] ∈ B0
3.

Mustafin joins were used to determine special fibers of various families of

compactified moduli spaces. One of the 1st examples is [10], where Gerritzen and Piwek

constructed a Mustafin join associated to a one-parameter degeneration of n points in

P2 (see below). Kapranov showed in [17] that an analogous construction for n points in

P1 gives all fibers of the universal family over M0,n. The interpretation of the family of

visible contours over X(3, n) in terms of Mustafin joins was obtained in [19]. This work

was based on [6, 20], where Mustafin joins were also studied. In [3, 4], it was shown that

the central fibers of arbitrary Mustafin joins are reduced and Cohen–Macaulay.
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Compactifications of Moduli 17003

Definition 1.4. ([10]).

Let a1, . . . , an ∈ P2(K) be points in general linear position. We call a = (a1, . . . , an)

an arc. Given a lattice L, the valuative criterion of properness gives unique extensions

aL
1, . . . , aL

n ∈ P(L)(R), which are sections of the P2-bundle P(L) → Spec(R). We say that L

is a stable lattice with respect to an arc a if at least four of the limits aL
1(0), . . . , aL

n(0) in

the central fiber P(L)k ⊆ P(L) are in general linear position. Let

$a ⊆ B0
3

be the set of stable lattice classes with respect to a. This is a finite set [19, Lemma

5.19]. We call P($a) the Mustafin join for an arc to distinguish it from arbitrary

Mustafin joins. The valuative criterion of properness gives n sections a1, . . . , an of

P($a) → Spec(R).

By Theorem 6.9, the Mustafin join P($a) → Spec(R) for an arc is smooth along

n disjoint sections a1, . . . , an. The central fiber P($a)k is reduced and Cohen–Macaulay

by [4].

Remark 1.5. In [10], the authors claimed that Bn is the moduli space for Mustafin joins

for arcs, that is, there exists a family Fn → Bn with the following universal property.

Let a : Spec(K) → Bn be an arc and let a : Spec(R) → Bn be its unique extension. Then

the pullback of Fn via a is isomorphic to P($a). However, we found a mistake in the

argument and the statement is also wrong, as there exist arcs a, b : Spec(K) → Bn with

a(0) = b(0) ∈ Bn such that the central fibers of P($a) and P($b) are not isomorphic (see

Example 7.1).

In Section 7, we construct the correct modular compactification of Bn and

the universal Mustafin join of point configurations over it using multigraded Hilbert

schemes [14].

Theorem 1.6. There exists a compactification Bn ⊆ XGP(3, n) with a proper flat family

M → XGP(3, n) smooth along n disjoint sections satisfying the following universal

property. If a : Spec(K) → Bn and a : Spec(R) → XGP(3, n) is the unique extension, then

a∗M is isomorphic to the Mustafin join P($a) with n sections.

In Proposition 7.10, we construct forgetful morphisms XGP(3, n) → XGP(3, n−1),

the analogues of forgetful morphisms M0,n → M0,n−1. We further show that there exists
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17004 L. Schaffler and J. Tevelev

a birational morphism XGP(3, n) → Bn. In Theorem 7.9, we show that

XGP(3, 5) ∼= X(3, 5) ∼= B5
∼= M0,5.

However, XGP(3, 6) is different from Kapranov’s Chow quotient compactification

X(3, 6). In [22], Luxton showed that X(3, 6) is a tropical compactification of X(3, 6)

inside the toric variety whose fan $(3, 6) is the tropical Grassmannian of Speyer and

Sturmfels [27]. The 15 singular points of X(3, 6) correspond to non-simplicial bipyramid

cones in $(3, 6).

Theorem 1.7. XGP(3, 6)ν is the blow up of X(3, 6) given by the minimal refinement of

$(3, 6) induced by splitting each bipyramid cone into 12 subcones as illustrated in Table

10. The 6-pointed degenerations of P2 parametrized by XGP(3, 6)ν are listed in Tables

13–16.

The main difficulty in dealing with X(3, n) is that its singularities are hard to

control. In Theorem 11.2, we show that X(3, n)ν has a natural open locus U(3, n) with

toroidal singularities. Moreover, its preimage UGP(3, n) in XGP(3, n)ν is also toroidal. We

call U(3, n) and UGP(3, n) planar loci because they correspond to limits of arcs with all

stable lattices in one apartment of the Bruhat–Tits building. Planar loci are covered by

charts that are isomorphic to (non-toric) open subsets in toric varieties with fans that

we denote by Qm and Q̃m (here n = m + 3). While Qm is nothing but the quotient fan of

Kapranov–Sturmfels–Zelevinsky [18], see Section 8, the fan Q̃m is new, see Section 9.

For n = 6, U(3, 6) nearly describes all of X(3, 6) (including its singular locus),

which allows us to immediately describe UGP(3, 6) by toric geometry. This leaves a few

closed subsets, which we deal with an ad hoc analysis.

2 A Result in Matroid Theory

This section is elementary and we only use standard terminology and facts in matroid

theory that can be found in [25]. We use the notation [n] = {1, . . . , n} throughout the

paper. Recall that an example of a matroid on [n] is a configuration of n hyperplanes

in Pr−1. Matroids of this form are called realizable.

Definition 2.1. Let M be a matroid on [n] and let i0 ∈ [n].

(1) The contraction M/i0 is the matroid on [n] \ {i0} such that I ⊆ [n] \ {i0} is

independent provided I ∪ {i0} is independent for M;
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Compactifications of Moduli 17005

(2) The deletion M \ i0 is the matroid on [n] \ {i0} such that I ⊆ [n] \ {i0} is

independent provided I is independent for M.

(3) M is called disconnected if there exists a partition [n] = E1+E2 and matroids

M1, M2 on E1, E2, respectively, such that I is an independent set for M if and

only if I = I1 + I2, where Ii is an independent set for Mi, i = 1, 2. A matroid is

connected provided it is not disconnected.

For realizable matroids, deletion corresponds to removing a hyperplane from the

arrangement and contraction corresponds to intersecting the arrangement with one of

its hyperplanes.

Definition 2.2. ([28]).

Let M and M ′ be two matroids on [n]. Then we say that M is more constrained

than M ′ provided every independent set for M is independent for M ′, but there exists an

independent set for M ′ that is dependent for M.

The goal of this section is to prove the following:

Theorem 2.3. Let M and M ′ be two matroids on [n] of the same rank r. Suppose that

r ≥ 3 or r = 2 and n ≥ 5. Then the following statement (CD) holds:

(CD) If M is connected and more constrained than M ′, then there exists i0 ∈ [n]

such that either the contraction M/i0 is connected and more constrained

than M ′/i0 or the deletion M \ i0 is connected and more constrained than

M ′ \ i0.

Before we plunge into the proof, we recast the theorem in the language of

matroid polytopes. Let {e1, . . . , en} be the basis of Rn. The hypersimplex #(r, n) is the

lattice polytope

#(r, n) = ConvHull

(
∑

i∈I

ei | I ⊆ [n] and |I| = r

)

⊆ Rn.

A matroid polytope P in Rn is a lattice polytope whose vertices are
∑

i∈B ei,

where B varies among the bases of a matroid on [n]. If the matroid has rank r, then

the vertices of P are also vertices of the hypersimplex #(r, n). The hypersimplex is the

matroid polytope of the uniform matroid. Recall that M is connected if and only if P

has dimension n − 1, see [20, Theorem 1.11] or [7, Proposition 2.4]. If a matroid M is
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17006 L. Schaffler and J. Tevelev

more constrained than a matroid M ′, then we have P ! P′ for the corresponding matroid

polytopes. The converse holds if we assume M and M ′ have the same rank. So we have

Corollary 2.4. Let P, P′ ⊆ #(r, n) be matroid polytopes of rank r and dimension n − 1

such that r ≥ 3 or r = 2 and n ≥ 5. Assume P ! P′. Then there exists a facet F ⊆ #(r, n)

such that P|F and P′|F are facets of P and P′, respectively, and P|F ! P′|F .

Proof. Let M, M ′ be the matroids corresponding to P, P′. By Theorem 2.3, there exists

i0 ∈ [n] such that either M/i0 is connected and more constrained than M ′/i0 or M \ i0
is connected and more constrained than M ′ \ i0. In the former case, let F be the facet

of #(r, n) given by the hyperplane xi0 = 1. Then P|F and P′|F are the matroid polytopes

corresponding to M/i0 and M ′/i0, respectively. Therefore, P|F ! P′|F . In the latter case,

we consider the facet of #(r, n) given by the hyperplane xi0 = 0. !

Next we consider matroid polytope subdivisions of a matroid polytope.

Corollary 2.5. Let Q ⊆ #(r, n) be a matroid polytope of rank r and dimension n − 1

such that r ≥ 3 or r = 2 and n ≥ 5. Let P, P ′ be two subdivisions of Q into matroid

polytopes such that P ′ is coarser than P. Then there exists a facet F ⊆ #(r, n) such

that E = Q|F is a facet of Q and P ′|E is coarser than P|E .

Proof. Since P ′ is coarser than P, we can find maximal dimensional polytopes P ∈ P

and P′ ∈ P ′ such that P ! P′. By Corollary 2.4, there exists a facet F ⊆ #(r, n) such

that P|F and P′|F are facets of P and P′, respectively, and P|F ! P′|F . If we set E = Q|F , it

follows that the subdivision P ′|E is coarser than P|E . !

The rest of this section is dedicated to the proof of Theorem 2.3.

Lemma 2.6. Let M and M ′ be two matroids on [n]. Assume that M is more constrained

than M ′ and let I ′ be an independent set for M ′, which is dependent for M. Then

(a) If i0 ∈ I ′, then M/i0 is more constrained than M ′/i0;

(b) If j0 ∈ [n] \ I ′, then M \ j0 is more constrained than M ′ \ j0.

Proof. If I is independent for M/i0, then I ∪ {i0} is independent for M by definition.

Hence, I ∪ {i0} is independent for M ′, implying that I is independent for M ′/i0. Moreover,

I ′\{i0} is independent for M ′/i0 but dependent for M/i0. If I is independent for M\j0, then

I is independent for M. Hence, I is independent for M ′, implying that I is independent
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Compactifications of Moduli 17007

for M ′ \ j0 because j0 /∈ I. Moreover, I ′ is independent for M ′ \ j0 but dependent

for M \ j0. !

Proposition 2.7. Let M and M ′ be two matroids on [n] of the same rank. Assume that

at least two distinct independent sets I ′
1, I ′

2 for M ′ are dependent for M. Then (CD) holds.

Proof. Up to switching I ′
1 with I ′

2, let e ∈ I ′
1 \ I ′

2. If M/e is connected, then we are done

by Lemma 2.6 (a). Otherwise, by [25, Theorem 4.3.1], we have that M \e is connected, and

by Lemma 2.6 (b) we have that M \ e is more constrained than M ′ \ e. !

Proposition 2.8. Let M and M ′ be two matroids on [n] of the same rank. Assume that

M has no size two cocircuit. Then (CD) holds.

Proof. By Proposition 2.7, we can assume there is a unique independent set I ′ for M ′

that is dependent for M. Observe that I ′ must be a basis of M ′, hence |I ′| = r, where

r is the common rank of M and M ′. From the connectedness of M, we have that M

has no coloops: M connected implies that the dual matroid M∗ is also connected by

[25, Corollary 4.2.5], and a connected matroid has no loops, so M∗ has no loops, implying

that M has no coloops. Moreover, by hypothesis, M has no size two cocircuits; hence, M

is a cosimple matroid (by definition, a matroid is cosimple provided it has no coloops

and no size two cocircuits). This implies that the dual matroid M∗ is simple and

connected. Hence, there are at least r + 1 elements e such that M∗/e is connected by

[25, Section 4.3, Exercise 10 (e)]. In particular, we can find one of such e in the

complement of I ′. Since M∗/e is connected, also (M∗/e)∗ = M \ e is connected (here we

used [25, Section 3.1, Exercise 1 (b)] and (M∗)∗ = M), and by Lemma 2.6 (b) we have that

M \ e is more constrained than M ′ \ e. !

Lemma 2.9. Let M and M ′ be two matroids on [n] of the same rank. Assume

that M is more constrained than M ′. Then the dual matroid M∗ is more constrained

than (M ′)∗.

Proof. Let I be an independent set for M∗. Then there exists a basis B for M disjoint

from I. But B is also a basis for M ′ because M is more constrained than M ′ and they have

the same rank. So I is also independent for M ′. Let I ′ be an independent set for M ′ that

is dependent for M. Let B′ be a basis for M ′ containing I ′. Then B′ is also dependent for

M. It follows that (B′)c is a basis for (M ′)∗ and (B′)c is dependent for M∗, proving that

M∗ is more constrained than (M ′)∗. !
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17008 L. Schaffler and J. Tevelev

Proof of Theorem 2.3. Suppose first that r ≥ 3. By Lemma 2.9, we have that the dual

matroid M∗ is connected and more constrained than (M ′)∗. If there exists i0 ∈ [n] such

that M∗/i0 is connected and more constrained than (M ′)∗/i0, or M∗ \ i0 is connected

and more constrained than (M ′)∗ \ i0, then M \ i0 is connected and more constrained than

M ′\i0, or M/i0 is connected and more constrained than M ′/i0, respectively. Therefore, by

Proposition 2.8 applied to M∗ and (M ′)∗, we can assume that M∗ has a size two cocircuit

C, which is a size two circuit of M.

By Proposition 2.7, we can assume that there exists a unique independent set

for M ′ that is dependent for M. Recall that I ′ must be a basis of M ′; hence, |I ′| = r and in

particular I ′ -= C (here is where we used the assumption that r ≥ 3). Therefore, C must

be dependent for M ′; otherwise, we would contradict the uniqueness of I ′. In particular,

C -⊆ I ′; hence, we can find an element c ∈ C \ I ′. By Lemma 2.6 (b), we only need to show

that M \ c is connected. But this follows from Lemma 2.10 below.

Finally, suppose r = 2 and n ≥ 5. First of all, observe that M (and similarly M ′) is

realized by a point arrangement in P1 (over the complex numbers). Let H = {p1, . . . , pn},
and declare pi = pj for i -= i provided {i, j} is a circuit of M. Then the matroid associated

to H is isomorphic to M. Similarly, define H′ = {p′
1, . . . , p′

n}.
For point configurations on P1, saying that H is more constrained than H′ means

that if some points coincide in H′, then the corresponding points in H coincide as well,

but not vice versa. In what follows, we analyze an exhaustive list of possibilities where

in each one we determine an appropriate index i0.

If there exist i, j ∈ [n] with i -= j such that p′
i = p′

j, then one can take i0 = i and the

claim follows. So let us assume all points in H′ are distinct. Under this assumption, what

we need to show is that we can always find i0 ∈ [n] such that H\i0 is automorphism-free

and it contains points appearing multiple times.

If pi ∈ H appears at least three times, then we can set i0 = i. Otherwise, assume

each point in H appears at most two times. If pi ∈ H is the only point appearing

twice, then let i0 ∈ [n] \ {i} (in this case the hypothesis n > 4 guarantees that H \ i0
is automorphism-free). If there exist two distinct points pi, pj ∈ H appearing twice, then

we can set i0 = i. Since we considered all the possibilities, this concludes the proof. !

Lemma 2.10. Let M be a connected matroid and let C be a size two circuit of M. Then

for all c ∈ C we have that M \ c is connected.

Proof. Let C = {c1, c2}. Let us show M \ c1 is connected (connectedness of M \ c2 is

proved analogously). We show that for each x -= c1, c2 in the ground set, there exists a
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Compactifications of Moduli 17009

circuit of M \ c1 containing both x and c2, so that x and c2 belong to the same connected

component. Since M is connected, there exists a circuit D of M containing x and c2.

Observe that c1 /∈ D because C -⊆ D by the minimality of D. Hence, D is also a circuit

of M \ c1. !

Remark 2.11. The assumption n ≥ 5 if r = 2 cannot be removed. Let M ′ = U2,4 be the

uniform matroid of rank 2 with ground set [4]. Let M = Ũ2,4 be the matroid with the

same ground set and with bases

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}.

It is easy to check that (CD) does not hold.

3 Cross-ratios on Lafforgue’s Varieties

We recall several definitions and facts from [16, 19, 20]. Let G(r, n) denote the

Grassmannian of r-dimensional linear subspaces in kn embedded in

P := P(

r∧
kn)

via the Plücker embedding. Let G0(r, n) ⊆ G(r, n) be the subset of points with nonzero

Plücker coordinates. The torus H = Gn
m/diag(Gm) acts on G(r, n) via the action of Gn

m on

kn and G0(r, n) is an H-invariant open subset. Denote the quotient by X(r, n) = G0(r, n)/H

(H acts freely). By the Gelfand–MacPherson correspondence [9], X(r, n) is also the moduli

space of n hyperplanes in general linear position in Pr−1. Namely, a point of G(r, n) can

be represented as the row space of an r × n matrix, and columns of this matrix give n

hyperplanes in Pr−1. Kapranov’s compactification X(r, n) of X(r, n) is the Chow quotient

X(r, n) = G(r, n)//H.

By [16], X(r, n) is also isomorphic to the Chow quotient of (Pr−1)n by PGLr. For example,

X(2, n) is isomorphic to M0,n, the moduli space of stable genus zero n-pointed curves.

In particular, X(2, 4) = P1 via the cross-ratio of four points.

For x ∈ P, let Supp(x) be the convex hull of the vertices of #(r, n) corresponding

to nonzero coordinates of x. Given a matroid polytope P ⊆ #(r, n), we define the
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17010 L. Schaffler and J. Tevelev

algebraic tori

PP,0 = {x ∈ P | Supp(x) = P} and AP
0 := PP,0/H.

For instance, P#(r,n),0 ⊆ P is the maximal torus. We refer to [8] for the theory of

regular subdivisions and secondary polytopes. We define Fsec(P) to be the normal fan

to the secondary polytope of P. The union of cones in Fsec(P) corresponding to regular

subdivisions of P by matroid polytopes is a subfan denoted by FLaf(P). The Lafforgue

toric variety AP is the toric variety of AP
0 associated to the fan FLaf(P). We define !P to

be the quotient

!P =
(
G(r, n) ∩ PP,0

)
/H ⊆ AP

0.

The Lafforgue variety !
P

is a certain projective subscheme of the toric variety AP, the

precise definition of which we will not need. !
P

contains !P as an open subset, but in

general !
P

is reducible [19, Proposition 3.10]. The closure of !P in !
P

is called the main

stratum. If P = #(r, n), then G(r, n)∩PP,0 = G0(r, n). Therefore, !P = X(r, n). By [19, 2.9],

X(r, n) and the main stratum in !
P

have the same normalization X(r, n)ν .

Remark 3.1. We note that P ⊆ #(r, n) is the matroid polytope of a non-realizable

matroid if and only if !P = ∅ (see [19, 2.6]). The main stratum is then of course also

empty but we imagine that !
P

can still be non-empty, although we do not know an

example.

Definition 3.2. Given a matroid polytope P and a face F ⊆ P, we have an induced

morphism of Lafforgue’s toric varieties AP → AF by restricting piece-wise affine

functions. It is called the face map and restricts to !
Q

giving a morphism

!
Q → !

F
,

which we also call a face map. Note that #(r, n) has 2n facets given by hyperplanes

xi = 0 and xi = 1. These facets are equivalent to #(r, n−1) and #(r−1, n−1), respectively.

Lemma 3.3. Let Q ⊆ #(r, n) be a matroid polytope of rank r and dimension n − 1 such

that either r ≥ 3 or r = 2 and n ≥ 5. Let F be the collection of facets of Q that are
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Compactifications of Moduli 17011

contained in the boundary of #(r, n). Then the fibers of the product of face maps

f : AQ →
∏

F∈F
AF

do not contain any complete subvarieties.

Proof. Let C ⊆ AQ be a complete curve. Let S′ ⊆ AQ be the minimal closed toric

stratum containing C. More explicitly, we can write S′ = T ′ where T ′ ⊆ AQ is the closure

of a torus T ′ of the appropriate dimension. Since the torus T ′ is affine, C is projective,

and C∩T ′ -= ∅ by the minimality of S′, we cannot have that C ⊆ T ′; hence, C intersects the

closure of another torus orbit T ! T ′. Then S = T is a toric stratum properly contained

in S′ which intersects C nontrivially. Let p ∈ S ∩ C and p′ ∈ (S′ \ S) ∩ C.

The stratum S′ (resp. S) corresponds to a matroid polytope subdivision P ′

(resp. P) of Q. Since S ! S′, the subdivision P ′ is coarser than P. Then we can apply

Corollary 2.5 and find a facet E ∈ F such that P ′|E is coarser than P|E . Then P ′|E and

P|E correspond to two toric strata $ ! $′ of AE . Let fE be the face map AQ → AE . Then

fE(p′) ∈ $′ \ $ and fE(p) ∈ $, implying that f (p) -= f (p′). Therefore, C is not contracted

by the morphism f . It follows that f does not contract any complete curve. !

Definition 3.4. Let Q ⊆ #(r, n) be a matroid polytope of rank r. We say that Q

is framed provided it is realized by a hyperplane arrangement H in Pr−1 containing

r + 1 hyperplanes in general linear position. Note that such a matroid is automatically

connected.

Proof of Theorem 1.2. We apply Lemma 3.3 to AQ recursively until we map to a

product

f ′ : AQ →
∏

F∈F ′
AF ,

where F ′ consists of the faces of Q of rank 2 that are contained in the boundary of

#(r, n). We know that the above morphism does not contract any complete curve.

Let M be the matroid associated to F ∈ F ′. There are the following two

possibilities:

(1) M is isomorphic to U2,4; hence, F is equivalent to #(2, 4);

(2) M is isomorphic to Ũ2,4 (see Remark 2.11).
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17012 L. Schaffler and J. Tevelev

Therefore, F is the subset of F ′ of facets that are not of type (2). Consider the

composition

f : AQ f ′
−→

∏

F∈F ′
AF π−→

∏

F∈F
AF .

Then f does not contract any complete curve either. Assume by contradiction C ⊆ AQ is

a complete curve contracted by f . We know f ′ does not contract C, so π contracts f ′(C).

Since π contracts all the factors AF with F of type (2), then C has to map onto some AF

with F of type (2). But AF ∼= Gm, which is a contradiction because C is complete and

AF is affine. Note that AF ∼= Gm because F does not have any proper subdivision into

matroid subpolytopes. Restricting f to the projective variety !
Q

, we obtain the claimed

finite morphism.

Finally, suppose that Q is framed. We claim that the product of face maps (1) is

a locally closed embedding and thus its restriction to the main stratum of !
Q

is a finite

birational morphism. It suffices to show !Q → ∏
F∈F !

F
is injective on R-points, where

(R, m) is any local k-algebra with R/m ∼= k. Let p ∈ !Q(R) and let (Pr−1
R ,

∑n
i=1 Hi) be the

hyperplane arrangement parametrized by it (the projective bundle is trivial because the

frame gives a section of the associated PGLr-torsor). The images of p under the face

maps (in other words, the cross-ratios of the hyperplane arrangement) are described as

follows. Let ai be the vector of coefficients of the hyperplane Hi. Fix distinct indices

i1, . . . , ir−2, i, j, k, ' ∈ [n] (these determine a face F ∈ F ). Then the corresponding cross-

ratio is given by the point

[|ai1 , . . . , air−2
, ai, aj||ai1 , . . . , air−2

, ak, a'| : |ai1 , . . . , air−2
, ai, ak||ai1 , . . . , air−2

, aj, a'|] ∈ P1.

We show that the hyperplane arrangement (Pr−1
R ,

∑n
i=1 Hi) can be uniquely reconstructed

by the data of these cross-ratios. Since R is local, the determinant of the matrix of

coefficients of any r hyperplanes among H1, . . . , Hr+1 is invertible. In particular, up

to PGLr(R)-action, we can assume H1, . . . , Hr+1 are the standard hyperplanes. In other

words, we can assume (a1, . . . , ar+1) = (Idr, 1), where Idr is the r × r identity matrix and

1 = (1, . . . , 1). We show that any b ∈ {ar+2, . . . , an} is uniquely determined by the cross-

ratios. Consider the cross-ratio corresponding to the choice (i1, . . . , ir−2) = (1, . . . , r − 2),

i = r + 1, aj = b, k = r − 1, ' = r, which is given by [br−1 − br : br−1]. This fixes br
br−1

∈ P1.

In general, by letting (i1, . . . , ir−2) = (1, . . . , ŝ, . . . , t̂, . . . , r), i = r + 1, aj = b, k = s, ' = s + 1,

we can fix the ratio bt
bs

, hence also bs
bt

. Therefore, to determine b, let bs be one of the

nonzero coordinates of b (there exists at least one because b represents the coefficients
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Compactifications of Moduli 17013

of a hyperplane). Then all the ratios b1
bs

, . . . , br
bs

are fixed; hence, the coefficients b1, . . . , br

are uniquely determined up to a common scalar, proving what we wanted. !

Corollary 3.5. Let r ≥ 2 and n ≥ r + 2. The product of forgetful morphisms

X(r, n) →
∏

I∈( [n]
r+2)

X(r, I)

and the rational map X(r, n) → ∏
v1,...,vr+2∈{1,...,n}

P1 are finite birational morphisms onto

their image. For r ≥ 3, each map X(r, n) → P1 is the cross-ratio of four points obtained

by intersecting hyperplanes Hv1
, Hv2

, Hv3
, Hv4

with the line Hv5
∩ . . . ∩ Hvr+2

.

Proof. Consider the product
∏

F∈F !
F

in Theorem 1.2 for Q = #(r, n). Each !
F ∼= M0,4

and the face F can be described as follows. Choose distinct indices i, j, k, ', i1, . . . ,

ir−2 ∈ [n]. Then F is the convex hull of the set {ea + eb + ei1 + . . . + eir−2
| a, b ∈ {i, j, k, '}}.

This gives the following identification:

∏

I∈( [n]
r+2)

∏

J∈( I
r−2)

M0,I\J
∼=

∏

F∈F
!

F
.

For each I ∈
( [n]
r+2

)
, we have isomorphisms X(r, I) ∼= X(2, I) ∼= M0,I . We claim

that f : X(r, n) → ∏
I∈( [n]

r+2)
M0,I is finite and birational onto its image. Given I ∈

( [n]
r+2

)
,

the product of forgetful morphisms M0,I → ∏
J∈( I

r−2)
M0,I\J is a closed embedding

[13, Theorem 9.18]. Now consider the following commutative diagram:

Since g is finite and birational onto its image by Theorem 1.2, the morphism f

also is. !

4 Gerritzen and Piwek’s Cross-ratio Variety Bn

We start by recalling the definition of the Gerritzen–Piwek’s compactification Bn [10].

Let Un ⊆ (P2)n be an open subset parametrizing configurations (x1, . . . , xn) of n distinct
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17014 L. Schaffler and J. Tevelev

points in P2 in general linear position and let Bn be the moduli space, the quotient of Un

by the free action of PGL3. We have the quotient morphism Un → Bn. If we normalize

the points x1, x2, x3, x4 to be e1 = [1 : 0 : 0], e2 = [0 : 1 : 0], e3 = [0 : 0 : 1], e4 = [1 : 1 : 1]

applying a unique projective transformation, we obtain a section

s : Bn → Un.

To “symmetrize” this map, let Qn be the set of ordered 5-tuples of points and let v ∈ Qn.

Define the map qv : Bn → P2 as the image of the point xv5
under a unique projective

transformation ψxv1 ,...,xv4
∈ PGL3 that sends xv1

, xv2
, xv3

, xv4
to e1, e2, e3, e4, respectively.

The product morphism

∏

v∈Qn

qv : Bn →
∏

Qn

P2

is an open immersion onto a closed subscheme of
∏

Qn
P2. The Gerritzen–Piwek

compactification Bn is the closure of Bn in
∏

Qn
P2 under the above immersion. (Note

that in [10], the compact moduli space is denoted by Bn and its interior is denoted by B∗
n.)

A slightly more economical embedding can be obtained as follows.

Lemma 4.1. Let Q′
n denote the set of ordered 5-tuples in [n] where the 1st four

elements are in increasing order. Bn is isomorphic to the closure of the image of Bn

in
∏

Q′
n

P2 under the product of forgetful maps.

Proof. There is a map µ : Qn → Q′
n sending v = (v1, . . . , v5) to (vτ (v)(1), . . . , vτ (v)(4), v5),

where τ : Qn → S4 is the map that associates to v ∈ Qn the unique permutation τ (v) ∈ S4

such that vτ (v)(1) < . . . < vτ (v)(4). Given σ ∈ S4, let ϕσ be the unique projective linear

transformation of P2 such that ϕσ (ei) = eσ (i) for all i = 1, . . . , 4. Let f :
∏

Q′
n

P2 → ∏
Qn

P2

be the map (pv)v∈Q′
n

0→ (ϕτ (v)(pµ(v)))v∈Qn
. Let π :

∏
Qn

P2 → ∏
Q′

n
P2 be the natural

product of projection maps. Then f is a section of π and we have a commutative diagram

The result follows. !
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Compactifications of Moduli 17015

Next we prove Theorem 1.1: there exists a finite birational morphism

X(3, n) → Bn.

Proof of Theorem 1.1. Consider the following commutative diagram:

Recall that the morphism X(3, n) → ∏
I∈([n]

5 ) X(3, I) is finite and birational onto its image

by Corollary 3.5. The embedding
∏

I∈([n]
5 ) M0,I ↪→ ∏

Q′
n

P2 is obtained by applying Lemma

4.2 to each copy of M0,I . This gives a finite birational morphism X(3, n) → Bn. !

For the next lemma, recall that the i-th Kapranov’s map [17] is a birational

morphism M0,n → Pn−3 given by the linear system |ψi|.

Lemma 4.2. The product of Kapranov’s maps M0,5 → ∏5
i=1 P2 is a closed embedding.

Proof. The boundary of M0,5 consists of 10 irreducible curves isomorphic to P1. These

are denoted by DI , where I ⊆ [5] is a subset of size 2. Moreover, two distinct boundary

divisors DI , DJ intersect if and only if I ⊆ Jc. For i ∈ [5], the Kapranov’s map σi

contracts the boundary divisors DI such that i ∈ I, and away from these divisors σi

is an isomorphism. Given this description, it is clear that for all x ∈ M0,5, there exists

an open subset U ⊆ M0,5 containing x and i ∈ [5] such that σi|U is an isomorphism onto

its image. This implies that the product of Kapranov’s maps M0,5 → ∏5
i=1 P2 is a closed

embedding. !

Remark 4.3. The product of Kapranov’s maps M0,8 → ∏8
i=1 P5 is not injective. Indeed,

the curve C = D12 ∩ D34 ∩ D56 ∩ D78 ⊆ M0,8 is contracted by σ1 because σ1(D12) is a point.

Analogously, σ2, . . . , σ8 contract C. Hence, the product of Kapranov’s maps contracts C.

Remark 4.4. We have a commutative diagram of closed embeddings
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17016 L. Schaffler and J. Tevelev

and we can embed
∏

Q′
n

P1 ↪→ ∏
Qn

P1 using a strategy analogous to the proof of Lemma

4.1. In conclusion, we can view Bn as a closed subvariety of
∏

Qn
P1 and the embedding

can be interpreted as follows: given an ordered quintuple v ∈ Qn, define Bn → P1

by sending (p1, . . . , pn) to the cross-ratio of four points in P1 obtained by projecting

pv1
, . . . , pv4

from pv5
. As a consequence of this discussion, B5

∼= M0,5
∼= X(3, 5).

5 Mustafin Joins: General Theory

Mustafin joins were defined in the Introduction. Here we collect some basic facts.

Remark 5.1. ([3, §2])

Let $ = {L1, . . . , Ls} ⊆ B0
3. Fix a K-basis e1, e2, e3 for K3. For each j = 1, . . . , s, let

Lj = f1jR + f2jR + f3jR and let gj ∈ GL3(K) be the matrix with columns f1j, f2j, f3j. Denote

by X the matrix (xij)1≤i≤3,1≤j≤s, where we interpret the j-th column as homogeneous

coordinates on the j-th copy of P2. Let g(X) be the matrix obtained by applying gj to the

j-th column of X for all j. Then P($) is isomorphic to the subscheme of (P2
R)s cut out by

the multihomogeneous ideal I2(g(X)) ∩ R[X], where I2 denotes the ideal generated by the

2 × 2 minors. For example, let $ = {[L1], [L2]}, where

L1 = e1R + e2R + e3R, L2 = te1R + e2R + e3R.

The ideal of P($) ⊆ P(L1) ×R P(L2) is generated by the 2 × 2 minors of the matrix





x11 tx12

x21 x22

x31 x32



 .

The special fiber P($)k is defined by the following equations:

x11x22 = 0, x11x32 = 0, x21x32 − x31x22 = 0.

Its irreducible components are given by V(x22, x32) ∼= P2 and V(x11, x21x32 −x31x22) ∼= F1.

These are glued along a line in P2 and the exceptional divisor in F1 as shown in

Figure 1.

Remark 5.2. For a lattice L, we can define P∨(L) as Proj(SymL), and given a finite

subset $ ⊆ B0
3, we can define P∨($) accordingly. In general, the Mustafin joins P($)
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Compactifications of Moduli 17017

Fig. 1. Central fiber of the Mustafin join P($) in Remark 5.1.

and P∨($) have non-isomorphic central fibers. For instance, consider $ = {e1R + e2R +
e3R, te1R + e2R + t2e3R, e1R + te2R + t2e3R}. Then P($)k can be found in [3, Figure 6 (iii),

1st picture], and P∨($)k is in [3, Figure 6 (i), 1st picture].

Remark 5.3. An apartment A ⊆ B0
3 corresponding to a basis e1, e2, e3 of K3 is the

subset consisting of all lattice classes of the form

[tαe1R + tβe2R + tγ e3R],

for α, β, γ ∈ Z. Given a finite subset $ ⊆ A, the central fiber of the Mustafin join P($)

can be computed as follows [3, Section 4]. The apartment A is identified with the tropical

torus R3/R1, where 1 = (1, 1, 1), under the following bijection:

[tαe1R + tβe2R + tγ e3R] 0→ (−α, −β, −γ ).

To each point p ∈ R3/R1, one can associate a tropical line (a spider with three legs)

'p = {v ∈ R3/R1 | max
i=1,2,3

{vi − pi} is achieved at least twice}.

Under the identification A = R3/R1, a lattice class [L] ∈ $ determines a tropical line

'[L]. The union of the bounded regions determined by the tropical lines '[L], [L] ∈ $, gives

a tropical polytope P$ , which is the min-convex hull of $. Consider the set of points

p ∈ P$ , which correspond to a lattice class in $, or p is the intersection of at least two

tropical lines '[L], [L] ∈ $. Such a point p determines a projective toric variety whose

polytope has edges orthogonal to the rays generating from p. Gluing all these polytopes,

we obtain a regular mixed polyhedral subdivision of m#2, where m = |$| and #2 is

the standard 2D simplex, which determines the central fiber of P($). We illustrate this

procedure in Figure 2.
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17018 L. Schaffler and J. Tevelev

Fig. 2. Illustration of the procedure described in Remark 5.3 to compute P($)k, where $ = {[e1R+
e2R + e3R], [t3e1R + e2R + te3R]}.

Definition 5.4. Let [L0], [L] ∈ B0
3. Let z ∈ Z be a unique integer such that tL0 ⊆ tzL, but

L0 " tzL. Following [3, Section5], we define a linear subspace induced by [L] as

WL0
(L) = P

(
(tzL ∩ L0)/tL0

)
⊆ P(L0)k.

Remark 5.5. Let $ = {[L1], [L2]}, L1 -= L2. Consider the diagram

where the morphisms from P($)k ⊆ P(L1)k ×P(L2)k are induced by the usual projections.

There are two options for the central fiber P($)k:

(1) P($)k is the gluing of P2 and F1 along a line and the exceptional divisor,

respectively;

(2) P($)k is the union of two copies of P2 and F0. Each P2 is glued along a line

to a ruling of F0, these two rulings intersect.

A comprehensive list of possibilities for the induced linear subspaces WL1
(L2) ⊆ P(L1)k

and WL2
(L1) ⊆ P(L2)k is shown in Figure 3, where WL1

(L2) and WL2
(L1) are the images of

appropriate irreducible components of P($)k in P(L1)k and P(L1)k, respectively. To prove

these claims, we can assume that [L1], [L2] lie in the same apartment [29, Proposition

4.11]

L1 = e1R + e2R + e3R, L2 = tαe1R + tβe2R + tγ e3R,
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Compactifications of Moduli 17019

Fig. 3. The linear subspaces WL1(L2) and WL2(L1) in relation to P($)k.

for some K-basis e1, e2, e3 of K3. If two among {α, β, γ } are equal, then without loss of

generality 0 = α = β -= γ . In this case, P($)k is as in (1) above. Moreover,

• If γ < 0, then WL1
(L2) is point, and WL2

(L1) is a line;

• If γ > 0, then WL1
(L2) is a line, and WL2

(L1) is a point.

If α, β, γ are all distinct, then without loss of generality 0 = α < β < γ . Then P($)k is as

in (2) and the induced linear spaces WL1
(L2) and WL2

(L1) are both lines.

Definition 5.6. ([3])

An irreducible component of the central fiber P($)k is primary if it projects

birationally onto one of the P(L)k, L ∈ $. Other components are secondary.

Lemma 5.7. Let s = [v] ∈ P2(K) and let $ be a finite subset of B0
3. We can write

$ = {[L1], . . . , [Lm]}

for a unique choice of lattices if we assume that v ∈ Lj \ tLj for all j. Suppose that one

of the lattices Li0 ⊆ L1 ∩ . . . ∩ Lm. Then s(0) ∈ P($)k is a smooth point contained in

the primary component corresponding to Li0 . In other words, P($) is smooth along the

section s.
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17020 L. Schaffler and J. Tevelev

Proof. For each j -= i0, fix an integer zj such that tLi0 ⊆ tzjLj \ tzj+1Lj. We have zj > 0.

Otherwise, if zj ≤ 0, then Li0 ⊆ Lj ⊆ tzjLj, which gives a contradiction. By [3, Section5],

the primary component corresponding to Li0 is obtained by blowing up P(Li0)k along the

proper linear subspaces WLi0
(Lj) for j -= i0 (in particular, it is smooth). So, we would be

done if we can show that the image of v in Li0/tLi0 is not contained in (tzjLj ∩Li0)/tLi0 for

all j -= i0. But this is clear because tzjLj ⊆ tLj and v /∈ tLj by hypothesis. !

Finally, we study how the Mustafin join changes when we add a lattice to the

configuration.

Lemma 5.8. Let $ = {[L1], . . . , [Lm]} ⊆ B0
3 and $′ = $ ∪ {[L0]}. Let C̃ ⊆ P($′)k be the

primary component corresponding to [L0]. Let ' ⊆ P(L0)k be a line and denote by '̃ its

strict transform in C̃. Then '̃ is contracted by the projection π : P($′) → P($) if and only

if ' intersects every linear subspace WL0
(Lj) ⊆ P(L0)k. Otherwise, π |'̃ is injective.

Proof. Suppose ' intersects every linear subspace WL0
(Lj). For every j, let

/ = {[L0], [Lj]}, and consider the diagram P(L0)k ← P(/)k → P(Lj)k. After inspecting

all the possibilities for P(/)k (see Remark 5.5) and WL0
(Lj) (which is a point or a line),

we can see that the image of '̃ in P(Lj)k of '̃ is a point. Since this is true for every j, π

contracts '̃.

Conversely, if ' does not intersect a linear space WL0
(Lj) for some j then by

considering the same diagram (where now we only have to consider the case where

WL0
(Lj) is a point), we see that the image of '̃ in P(Lj)k is not contracted, in fact π |'̃ is

injective. !

Remark 5.9. An almost identical statement appears in [3, Lemma 5.10, Proposition

5.11], but with stronger hypotheses: we do not require that π |C̃ is birational onto its

image.

6 Stable Lattices of Arcs and Their Mustafin Joins

Here we focus on Mustafin joins for arcs considered in [10]. Consider K-points

a1, . . . , an ∈ P2(K)

in general linear position, that is, an arc a = (a1, . . . , an) : Spec(K) → Bn. We denote

by $a the subset of B0
3 of stable lattice classes with respect to a. Recall from the
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introduction that a lattice / is stable if at least four of the limits aL
1(0), . . . , aL

n(0) in

the central fiber P(L)k ⊆ P(L) are in general linear position. There exists a unique

lattice class stabilizing any given quadruple [19], although the same lattice can stabilize

several quadruples. The Mustafin join P($a) has extra structure, namely n sections

a1, . . . , an which are defined as follows. Every component ai can be viewed as a section

of P($a)K → Spec(K) using an isomorphism P($a)K
∼= P2

K . By the valuative criterion of

properness, ai admits a unique extension ai : Spec(R) → P($a), which is the claimed

section.

Lemma 6.1. The sections a1, . . . , an of the Mustafin join P($a) are pairwise disjoint.

Proof. It suffices to check the claim on the central fiber P($a)k. Let 1 ≤ i < j ≤ n.

Write $a = {L1, . . . , Lm}. By the definition of stable lattices, there exists h ∈ {1, . . . , m}
such that ai(0), aj(0) ∈ P(Lh)k are distinct. Then from the commutativity of the following

diagram:

we can conclude that ai(0), aj(0) ∈ P($a)k are also distinct. !

Example 6.2. Let (a1, . . . , a5) = ([1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], [t2 : 1 : t]). Then

$a = {[e1R + e2R + e3R], [t2e1R + e2R + te3R], [te1R + e2R + te3R]}.

To prove this, we list all possible quadruples i1, . . . , i4 and the corresponding stable

lattice

{1234}, {1345} e1R + e2R + e3R,

{1235}, {2345} t2e1R + e2R + te3R,

{1245} te1R + e2R + te3R.

Using the procedure of Remark 5.3, the central fiber P($a)k with sections is shown in

Figure 4.
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17022 L. Schaffler and J. Tevelev

Fig. 4. The lattice classes in $a (in the apartment corresponding to the basis e1, e2, e3) and the

central fiber of the Mustafin join P($a) of Example 6.2.

In the remainder of Section 6, we will show that the Mustafin join of stable

lattices P($a) → Spec(R) is smooth along the sections a1, . . . , an, that is, a1(0), . . . , an(0)

are smooth points on the central fiber P($a)k. This was claimed in [10, Section4.2], but

no proof was given. We fix vectors

v1, . . . , vn ∈ K3

such that ai = [vi] ∈ P2(K) are in general linear position. After reordering, it suffices to

prove this for the 1st section a1. We start by introducing canonical normalizations of

vectors v1, . . . , vn as well as lattices / for all lattice classes [/] in the building.

Definition 6.3. We call a lattice / normalized with respect to v1 if v1 ∈ / \ t/.

Lemma–Definition 6.4. For any quadruple I ⊆ {1, . . . , n}, write
∑

i∈I
kivi = 0, ki ∈ K \{0}.

The lattice LI := ∑

i∈I
kiviR stabilizes the quadruple {ai | i ∈ I}. After rescaling the

coefficients ki, we can assume that all the lattices LI are normalized with respect to v1.

Proof. Since the vectors {vi | i ∈ I} are linearly dependent, we can write
∑

i∈I
kivi = 0

for some ki ∈ K not all equal to 0. In fact ki -= 0 for all i because any three vectors

are linearly independent. In the basis k1v1, k2v2, k3v3 of LI , the limits ai(0), i ∈ I, are

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], respectively. Thus, LI stabilizes the quadruple

{ai | i ∈ I}. !

Definition 6.5. Fix an isomorphism ϕ :
∧3 K3 ∼=−→ K and let val : K \ {0} → Z be the

usual valuation. For three linearly independent vectors u, v, w in K3, consider the log
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volume

‖u, v, w‖ = val(ϕ(u ∧ v ∧ w)).

Lemma–Definition 6.6. We can rescale v2, . . . , vn uniquely by tp2 , . . . , tpn so that

(1) For any quadruple 1, i, j, k, we have ‖vi, vj, vk‖ ≥ ‖v1, vj, vk‖;

(2) For all i -= 1, there exists a quadruple 1, i, j, k such that ‖vi, vj, vk‖ =
‖v1, vj, vk‖.

In this case, we say that v1, . . . , vn are normalized with respect to v1.

Proof. Let i ∈ {2, . . . , n} and define pi to be the least integer such that

‖tpivi, vj, vk‖ = pi + ‖vi, vj, vk‖ ≥ ‖v1, vj, vk‖,

for all distinct j, k -= 1, i. Note that the inequality depends not on vj, vk but only on the

corresponding points aj, ak ∈ P2(K). By minimality of pi, equality is achieved for at least

one pair j, k. Therefore, tp2v2, . . . , tpnvn satisfy properties (1) and (2). !

Lemma 6.7. Assume v1, . . . , vn are normalized with respect to v1. If 1 ∈ I ∈
([n]

4

)
, then

/I = {u ∈ K3 | ‖u, vj, vk‖ ≥ ‖v1, vj, vk‖ for all j, k ∈ I \ {1}}

is a lattice normalized with respect to v1 and stabilizing the quadruple ai, i ∈ I.

Proof. Assume I = {1, . . . , 4}. Write v1 = c2v2 +c3v3 +c4v4 for c2, c3, c4 ∈ K. By Lemma–

Definition 6.4, the lattice LI = c2v2R + c3v3R + c4v4R stabilizes a1, . . . , a4. By Cramer’s

rule,

c2 = ϕ(v1 ∧ v3 ∧ v4)

ϕ(v2 ∧ v3 ∧ v4)
, c3 = −ϕ(v1 ∧ v2 ∧ v4)

ϕ(v2 ∧ v3 ∧ v4)
, c4 = ϕ(v1 ∧ v2 ∧ v3)

ϕ(v2 ∧ v3 ∧ v4)
. (2)

Let u ∈ LI . Then u = r2c2v2 + r3c3v3 + r4c4v4 for some r2, r3, r4 ∈ R. By Cramer’s rule,

r2c2 = ϕ(u ∧ v3 ∧ v4)

ϕ(v2 ∧ v3 ∧ v4)
, r3c3 = − ϕ(u ∧ v2 ∧ v4)

ϕ(v2 ∧ v3 ∧ v4)
, r4c4 = ϕ(u ∧ v2 ∧ v3)

ϕ(v2 ∧ v3 ∧ v4)
. (3)

Since val(rici) ≥ val(ci), (2) and (3) imply that ‖u, vj, vk‖ ≥ ‖v1, vj, vk‖. Thus, LI ⊆ /I .

For the other containment, let u ∈ /I and write u = d2v2 + d3v3 + d4v4 for some

d2, d3, d4 ∈ K. Since ‖u, vj, vk‖ ≥ ‖v1, vj, vk‖ for all j, k ∈ I \ {1}, we have val(di) ≥ val(ci)
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17024 L. Schaffler and J. Tevelev

for all i = 2, 3, 4 by Cramer’s rule. Thus, di = rici for some ri ∈ R, implying that

u ∈ LI . !

Corollary 6.8. Assume v1, . . . , vn are normalized with respect to v1. Write $a = {[Lj]},
where every Lj is normalized with respect to v1. Then

/ =
⋂

[Lj]∈$a

Lj = {u ∈ K3 | ‖u, vj, vk‖ ≥ ‖v1, vj, vk‖ for all j, k ∈ [n] \ {1}}.

Proof. We use the notation of Lemma–Definition 6.4. By Lemma 6.7, it suffices to prove

that
⋂

I∈([n]
4 )

LI = ⋂

1∈I∈([n]
4 )

LI .

Let I ∈
([n]

4

)
, 1 -∈ I. It suffices to show that there exists J ∈

([n]
4

)
such that 1 ∈ J

and LJ ⊆ LI . By assumption, v1 ∈ LI ; hence, we can write

v1 =
∑

i∈I

rikivi,

for some ri ∈ R. Let j ∈ I be arbitrary and write kjvj = ∑
i∈I\{j}(−ki)vi. By substituting

into the previous expression for v1, we obtain

v1 =
∑

i∈I\{j}
(ri − rj)kivi. (4)

Let / = ∑
i∈I\{j}(ri − rj)kiviR. Since / is contained in LI , it suffices to show that

L(I\{j})∪{1} = /. By Lemma–Definition 6.4 and (4), this is true up to rescaling, so we only

have to show that / is normalized with respect to v1. By (4), we have that v1 ∈ /, so we

just need to show that t−1v1 /∈ /. But this is true because t−1v1 /∈ LI . !

Theorem 6.9. Let a = (a1, . . . , an) ∈ (P2)n(K) be in general linear position. Then the

Mustafin join P($a) → Spec(R) is smooth along the n disjoint sections a1, . . . , an.

Proof. We need to show that the sections determine smooth points of the central fiber.

Up to permuting the indices, it suffices to show that a1(0) ∈ P($a)k is a smooth point.

Write

a1 = [v1], . . . , an = [vn],
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where v1, . . . , vn are normalized with respect to v1 (Lemma–Definition 6.6). Using

Lemma 6.7, we can write the set of stable lattices with respect to a as

$a =
{

[/I ]
∣∣∣∣ I ∈

(
[n]
4

)}
,

where /I is normalized with respect to v1 and stabilizes the quadruple ai, i ∈ I. If the

set $a has a minimal element with respect to inclusion of lattices then we are done by

Lemma 5.7.

Suppose there is no minimal element in $a and consider / of Corollary 6.8, the

intersection of all the /Is. Then [/] -∈ $a. Define $′
a = $a ∪ {[/]}. Let C̃ be the primary

component of P($′
a)k corresponding to [/]. Recall that C̃ is the blow up of P(/)k at the

linear subspaces W/(/I) for I ∈
([n]

4

)
(see [3, Proposition 5.6]). By Lemma 5.7, ai(0) ∈

P($′
a)k is a smooth point, and C̃ is the primary component containing a1(0) ∈ P($′

a)k. In

particular, a1(0) ∈ P(/)k is not contained in any of the linear subspaces W/(/I), I ∈
([n]

4

)
.

We have a morphism π : P($′
a) → P($a). We will show later on in the proof that

π |C̃ is birational onto its image. For now, let us assume it. If ' ⊆ P(/)k is a line, then

we denote by '̃ ⊆ C̃ its strict transform. By [3, Lemma 5.10], '̃ is contracted by π if and

only if ' intersects all linear subspaces W/(/I). Moreover, by [3, Proposition 5.11], the

union of all contracted '̃s is the exceptional locus of π |C̃. So it suffices to show that

there is no line ' ⊆ P(/)k such that a1(0) ∈ '̃ and ' intersects all the linear subspaces

W/(/I), I ∈
([n]

4

)
. Arguing by contradiction, suppose ' exists. Since π |C̃ is birational,

there exist /J , /K inducing two distinct points W/(/J), W/(/K) ∈ P(/)k. These points

lie on '. By Lemma 6.10, W/(/J) = aj(0) and W/(/K) = ak(0) for some sections aj and

ak. Therefore, a1(0), aj(0), ak(0) are three distinct limit points on '. By Lemma 6.11, ' is

a linear subspace of P(/)k induced by a stable lattice. But this is a contradiction, since

we know that a1(0) ∈ P(/)k cannot lie on any of the linear spaces W/(/I).

To conclude the proof, it remains to show that π |C̃ is birational onto its image.

For any i ∈ {2, . . . , n}, there is a quadruple I = {1, i, j, k} such that ‖vi, vj, vk‖ = ‖v1, vj, vk‖
(Lemma–Definition 6.6). We claim that ai(0) ∈ P(/)k is disjoint from W/(/I) = P((tzI /I ∩
/)/t/), where zI is that unique integer such that t/ ⊆ tzI /I and / " tzI /I . Note that

zI > 0. It is enough to show that vi /∈ tzI /I ⊆ t/I . Assume by contradiction that vi ∈ t/I .

So vi = tu, where u ∈ K3 satisfies ‖u, vj, vk‖ ≥ ‖v1, vj, vk‖ (see Lemma 6.7). Hence,

‖u, vj, vk‖ ≥ ‖v1, vj, vk‖ = ‖vi, vj, vk‖ = ‖tu, vj, vk‖ = 1 + ‖u, vj, vk‖,
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17026 L. Schaffler and J. Tevelev

which is impossible. Next we claim that W/(/I) is a point. If not, then both a1(0), ai(0) ∈
P(/)k lie outside the line W/(/I). On the other hand, the limits a1(0), ai(0) ∈ P(/I)k are

distinct because /I stabilizes a1, ai, aj, ak. Analyzing both possible diagrams P(/)k ←
P(/, /I)k → P(/I)k of Figure 3, we arrive at a contradiction. Since W/(/I) is a point, by

Lemma 6.10 it is equal to ah(0) for some h ∈ [n] \ {1}. Now repeat the same argument

above with i replaced by h to find a 2nd induced linear subspace, which is a point

distinct from a1(0) and W/(/I). By Lemma 5.8, this implies that π |C̃ is birational onto

its image. !

Lemma 6.10. Let a = (a1, . . . , an) ∈ (P2)n(K) be in general linear position and let

[L0] ∈ B0
3 be arbitrary. Let [L] ∈ $a be a stable lattice class and assume that the linear

subspace WL0
(L) ⊆ P(L0)k is a point. Then there exist distinct i, j ∈ [n] such that

ai(0) = WL0
(L) = aj(0).

Proof. Up to relabeling the indices, assume that a1, . . . , a4 is the quadruple stabilized

by [L]. We show that at least two among a1(0), . . . , a4(0) ∈ P(L0)k equal WL0
(L). Let

$ = {[L0], [L]} and consider the diagram P(L0)k ← P($)k → P(L)k. Since WL0
(L) is a

point, by Remark 5.5, P($)k is isomorphic to the gluing of P2 and F1 along a line and

the exceptional divisor, respectively. The morphism P($)k → P(L0)k is the blow up

at the point WL0
(L), and the morphism P($)k → P(L)k contracts F1 along the ruling.

Therefore, if no two points among a1(0), . . . , a4(0) ∈ P(L0)k are equal to WL0
(L), then

a1(0), . . . , a4(0) ∈ P(L)k would not be in general linear position. !

Lemma 6.11. Let a = (a1, . . . , an) ∈ (P2)n(K) be in general linear position and let

[L0] ∈ B0
3 be arbitrary. If three limit points ai(0), aj(0), ak(0) ∈ P(L0)k are distinct and

contained in a line ', then any [L] ∈ $a stabilizing ai, aj, ak has the property that

WL0
(L) = '.

Proof. Let [L] ∈ $a be any stable lattice class stabilizing a quadruple that includes

ai, aj, ak. Define $ = {[L0], [L]} and consider the diagram P(L0)k ← P($)k → P(L)k, where

in P(L0)k the three limit points ai(0), aj(0), ak(0) are aligned, but the same limits in P(L)k
are in general linear position. By Remark 5.5, there are two possibilities for P($)k.

Considering all the possible ways the three aligned limit points in P(L0)k can be related

with respect to WL0
(L), and considering that these limits are in general linear position

in P(L)k, we see that WL0
(L) is a line and ai(0), aj(0), ak(0) ∈ WL0

(L). !
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7 Universal Mustafin Join for Arcs

Example 7.1. We start with a counter-example to the claim [10, Section4, Proposition

1] that Bn is the moduli space of Mustafin joins for arcs. Define arcs a, b : Spec(K) → B6,

a(t) = ([1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], [1 : t : t2], [t : 1 : t2]),

b(t) = ([1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], [1 : t2 : t3], [t : 1 : t3]).

We claim that the limit points a(0), b(0) ∈ B6 are equal. Recall from Section 4 that

B6 can be embedded in
∏

Q′
6

P2, where Q′
6 is the set of ordered quintuples v = (v1, . . . , v5)

of distinct indices in {1, . . . , 6} such that v1 < . . . < v4. We claim that for all 30 quintuples

v ∈ Q′
6,

lim
t→0

ψav1 (t),...,av4 (t)(av5
(t)) = lim

t→0
ψbv1 (t),...,bv4 (t)(bv5

(t)),

where the morphism ψ is defined in Section 4. The limits are computed in Table 1.

Next we compute P($a)k and P($b)k. The respective stable lattices are given by

$a = {[e1R + e2R + e3R], [te1R + e2R + t2e3R], [e1R + te2R + t2e3R],

[e1R + e2R + t2e3R], [e1R + te2R + te3R], [te1R + e2R + te3R]},

$b = {[e1R + e2R + e3R], [te1R + e2R + t3e3R], [e1R + t2e2R + t3e3R],

[te1R + e2R + te3R], [e1R + t2e2R + t2e3R], [e1R + e2R + t3e3R]}.

We compute the central fibers P($a)k -∼= P($b)k using Remark 5.3 (see Figure 5).

The surfaces are illustrated in Figure 6, where P($a)k is on the left and P($b)k is on the

right.

Let us also pinpoint a mistake in the proof of [10, Section4, Proposition 1] and

then explain how to construct the correct moduli space of Mustafin joins. Consider the

diagram

(5)
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17028 L. Schaffler and J. Tevelev

Fig. 5. The lattice classes in $a and $b in the standard apartment.

Fig. 6. Example of P($a)k and P($b)k with a(0) = b(0) ∈ B6.

where the horizontal map 0 sends

((p1, . . . , pn), p) 0→ ((p1, . . . , pn), (ψpv1 ,...,pv4
(p))v).

(Recall from Section 4 that, for any quadruple v1, . . . , v4, ψpv1 ,...,pv4
is the unique element

of PGL3 sending pv1
, . . . , pv4

to the standard frame.) Let Fn be the closure of the image of

0 in Bn × (P2)(
n
4) and consider a morphism µ : Fn → Bn. It was assumed in [10, Section

4, Proposition 1] that formation of µ commutes with arbitrary base-changes S → Bn.

However, this is wrong (Example 7.1), in particular µ is not flat. A remedy is provided

by the Grothendieck’s universal flattening morphism as in [26]. Consider the morphism

1 : Bn → Bn × Hilb
(
(P2)(

n
4)

)
,

where the 1st component is the inclusion and the 2nd component sends (p1, . . . , pn) ∈ Bn

to 0((p1, . . . , pn) × P2). By Hilb
(
(P2)(

n
4)

)
, we mean the connected component of the

Hilbert scheme of closed subschemes in (P2)(
n
4), which parametrizes the diagonally
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TABLE 1 Coordinates of the limit a(0) = b(0) ∈ B6 ⊆ ∏
Q6 ′ P2

Quintuple Limit in P2 Quintuple Limit in P2

12345 [1 : 0 : 0] 13465 [1 : 0 : 0]

12346 [0 : 1 : 0] 13562 [1 : 1 : 1]

12354 [0 : 0 : 1] 13564 [0 : 1 : 0]

12356 [0 : 1 : 0] 14562 [1 : 1 : 1]

12364 [0 : 0 : 1] 14563 [0 : 1 : 0]

12365 [1 : 0 : 0] 23451 [1 : 1 : 1]

12453 [0 : 0 : 1] 23456 [1 : 0 : 0]

12456 [0 : 1 : 0] 23461 [0 : 1 : 1]

12463 [0 : 0 : 1] 23465 [0 : 1 : 1]

12465 [1 : 0 : 0] 23561 [0 : 0 : 1]

12563 [1 : 0 : 1] 23564 [0 : 1 : 0]

12564 [1 : 0 : 1] 24561 [0 : 0 : 1]

13452 [0 : 1 : 1] 24563 [0 : 1 : 0]

13456 [0 : 1 : 1] 34561 [0 : 0 : 1]

13462 [1 : 1 : 1] 34562 [1 : 1 : 1]

embedded P2 in (P2)(
n
4). The correct moduli space is the closure of the image of 1

and the universal Mustafin join for arcs is the pullback of the universal family of the

Hilbert scheme. We will analyze this construction in detail, although we will use the

multigraded Hilbert scheme of (P2)(
n
4) instead of the usual Hilbert scheme in order to

have Proposition 7.10.

Definition 7.2. ([14]).

For a commutative ring k, let S = k[x1, . . . , xn] be a polynomial ring with a

grading by an abelian group A given by a semigroup homomorphism deg: Nn → A.

Fix a function

h : A → N.

The multigraded Hilbert scheme Hh
S parametrizes all ideals in S homogeneous with

respect to deg and with Hilbert function h, that is, such that

dimk Sa/Ia = h(a) for every a ∈ A.
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17030 L. Schaffler and J. Tevelev

For every k-algebra R, the set of R-points Hh
S(R) is the set of homogeneous ideals

I ⊆ R ⊗k S such that (R ⊗ S)a/Ia is a locally free R-module of rank h(a) for every a.

The scheme Hh
S is quasi-projective over k, in fact projective if 1 ∈ S is the only monomial

of degree 0.

Example 7.3. We are interested in the multigraded Hilbert scheme of (P2)N . Here

S = k[xij | i = 1, 2, 3, j = 1, . . . , N],

where k is our algebraically closed base field and [x1j : x2j : x3j] are homogeneous

coordinates of the j-th copy of P2, with the usual multigrading by ZN . The numerical

function h is the Hilbert function of the diagonally embedded P2 ↪→ (P2)N . A detailed

study of this case can be found in [4]. The authors prove that Hh
S is connected and all

ideals parametrized by it are radical and Cohen–Macaulay. The morphism from Hh
S to the

Hilbert scheme of (P2)N given by taking Proj(R ⊗k S)/I is injective on k-points, although

it is not clear if it is a closed embedding. It follows that

Lemma 7.4. The projection from (P2)N to (P2)N−1 induces a morphism of multigraded

Hilbert schemes (with the Hilbert function of the diagonal).

Proof. Let S and S′ be multigraded coordinate rings of (P2)N and (P2)N−1. The natural

transformation of functors of points takes a multihomogeneous ideal I ⊆ R ⊗k S to

the ideal of the projection, which is I ∩ (R ⊗k S′). Its numerical function is h′ =
h(a1, . . . , aN−1, 0). !

Definition 7.5. Let Hh
S be the multigraded Hilbert scheme of (P2)(

n
4) as in Example 7.3

(with N =
(n

4

)
). The diagram (5) induces an embedding

1 : Bn ↪→ Bn × Hh
S .

Let XGP(3, n) be the Zariski closure of the image of 1. Let M → XGP(3, n) be the pullback

of the universal family of the (usual, not multigraded) Hilbert scheme.

Theorem 7.6. The family M is the universal Mustafin join for point configurations.

Concretely, take an arc a : Spec(K) → Bn and its unique extension a : Spec(R) →
XGP(3, n). Then a∗M is isomorphic to the Mustafin join P($a), where $a is the set of

stable lattices with respect to a.
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Proof. Recall that P($a) → Spec(R) is flat and proper, and that P($a) is the Zariski

closure of Spec(K) × P2 inside
∏

L∈$a

P(L). Therefore, we have the following commutative

diagram:

The horizontal map comes from the fact that for each quadruple, there is a unique stable

lattice L ∈ $a stabilizing it. The diagram induces a morphism from Spec(R) to the (usual)

Hilbert scheme of (P2)(
n
4). By its universal property, we have that P($a) ∼= a∗M. !

Remark 7.7. The corresponding R-point of Hh
S , that is, the multi-homogeneous ideal

of P($a), can be computed as in Remark 5.1.

Corollary 7.8. We have a birational morphism XGP(3, n) → Bn. In particular, we have

a morphism of normalizations XGP(3, n)ν → Bν
n

∼= X(3, n)ν .

Proof. This follows from Definition 7.5. As XGP(3, n) ⊆ Bn × Hh
S , we have a morphism

XGP(3, n) → Bn given by the restriction of the projection onto the 1st factor. This

morphism is birational as it restricts to the identity on Bn. !

Theorem 7.9. We have an isomorphism XGP(3, 5) ∼= B5
∼= M0,5.

Proof. Since B5
∼= M0,5 is normal (in fact smooth), it suffices to exhibit a family of

Mustafin joins for point configurations over M0,5 inducing a morphism to Hilb
(
(P2)(

5
4)

)
.

The space M0,5 is isomorphic to Hassett’s moduli space M0,( 1
2 )5 [15]. This gives a

smooth conic bundle π : C → M0,5 with sections s1, . . . , s5 such that at most two sections

are equal on each fiber. The relative anti-canonical divisor −Kπ induces an embedding

of C into the P2-bundle P ′′′
with an associated vector bundle the pushforward of −Kπ .

So we have a P2-bundle P ′′′ → M0,5 with five sections. Its fibers over a general point of

a 1-stratum (resp. over a 0-stratum) of M0,5 are illustrated in the left picture of Figure 7

(resp. the left picture of Figure 8).

For distinct i, j ∈ {1, . . . , 5}, the curves Cij = im(si) ∩ im(sj) are smooth and

pairwise disjoint. Let P ′′
be the blow up of P ′′′

along these curves. The fibers of
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17032 L. Schaffler and J. Tevelev

Fig. 7. Fibers of families over a general point of the 1-strata.

Fig. 8. Fibers of families over the 0-strata.

P ′′ → M0,5 over a general point of a 1-stratum (resp. over a 0-stratum) of M0,5 are

illustrated in the right picture of Figure 7 (resp. the 2nd picture from the left in Figure 8).

Given distinct i, j, k, ' ∈ {1, . . . , 5}, let p ∈ M0,5 be the 0-stratum such that si(p) =
sj(p), sk(p) = s'(p), and let Lij,k' ⊆ P ′′′

be the line in the P2 over p passing through these

two points. Let P ′
be the blow up of P ′′

along the strict transforms of the lines Lij,k'.

This blow up affects the fibers over the 0-strata, and the fiber X of P ′ → M0,5 over a

0-stratum is illustrated in the 3rd picture from the left in Figure 8. The (−1)-curve E ⊆ X

on the F1 component is also a (−1)-curve in Bl2P2 (this is the curve dashed in Figure 8).

We claim that E can be contracted. Up to relabeling, we can assume s1(p) = s2(p) and

s3(p) = s4(p). Endow the family P2
M0,5

→ M0,5 with the relative effective Cartier divisor

D ⊆ PM0,5
giving on the general fiber the line arrangement shown on the left of Figure 9.

The Zariski closure D ⊆ P ′
specializes to X giving the line arrangement Dp shown on the

right of Figure 9.

The pair (X, Dp) is semi-log canonical and KX + Dp is nef but not ample: its

intersection with E is 0. Applying the relative minimal model program to (P ′
, K + D) →

M0,5 in the neighborhood of p gives a morphism contracting exactly E over an open

neighborhood of p. Similarly, we can construct the contractions of the remaining 14

curves of type E and glue them to obtain a small contraction P ′ → P. A priori, P is
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Fig. 9. In red, a fiber of D over a point in M0,5 (left) and a 0-stratum (right).

Fig. 10. Effect of the contractions c1, c2 on the fiber γ −1(p) for p in the interior of a 1-stratum of

M0,5.

an algebraic space, but, as we are going to see later, it is actually a projective variety.

The fibers of γ : P → M0,5 over the 0-strata are described by the rightmost picture

in Figure 8. We denote by s̃1, . . . , s̃5 : M0,5 → P the strict transforms of the sections

s1, . . . , s5.

To define a morphism M0,5 → XGP(3, 5), we first construct a commutative

diagram

We claim that the rational map ϕ : P ""# M0,5 × (P2)(
5
4), defined over M0,5 = B5 in

Definition 7.5, is regular. In other words, each of the
(5
4

)
maps from P to P2 is regular.

Let C ⊆ M0,5 be the open part of a 1-stratum, for example, the one corresponding to the

degeneration where s1(C) = s2(C). The fibers of γ over C are illustrated at the top of

Figure 10.
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17034 L. Schaffler and J. Tevelev

Fig. 11. Contractions c1, c2, c3 on the fiber γ −1(p).

Let U = M0,5 ∪ C be an open neighborhood of C in M0,5. We have contractions c1

and c2 defined on γ −1(U) such that, over C, c1 fiberwisely collapses the P2 component

to a point, and c2 contracts F1 along the ruling. The effect of these contractions on

the fibers over C is represented in Figure 10. These contractions are constructed by

applying the relative K + D minimal model program for an appropriate divisor D on

γ −1(U). Namely, on the fiber P2 over a point in M0,5, we consider the lines 13, 14, 35, 45

(resp. 12, 13, 14, 15), and the divisor D is their closure in γ −1(U). The induced contraction

is c1 (resp. c2). We define ϕU : γ −1(U) → U × (P2)(
5
4) as follows. Given x ∈ γ −1(U), let

ϕU(x) = (γ (x), (qi)
5
i=1), where the qi are defined as follows. For exactly one j ∈ {1, 2},

the four points cj (̃s1(x)), . . . , ̂cj (̃si(x)), . . . , cj (̃s5(x)) ∈ P2 are in general linear position.

So define qi to be the image of cj(x) under the unique projective linear transformation

sending cj (̃s1(x)), . . . , ̂cj (̃si(x)), . . . , cj (̃s5(x)) ∈ P2 in standard position.

Let p be a 0-stratum of M0,5, for example suppose it corresponds to a degenera-

tion where s1(p) = s2(p) and s3(p) = s4(p). The fiber γ −1(p) is in the top right corner

of Figure 11. The points s̃1(p), s̃2(p) are contained in one copy of F1, s̃3(p), s̃4(p) are

contained in the other copy of F1, and s̃5(p) ∈ F0. Let U ⊆ M0,5 be an open neighborhood

of p avoiding all the strata of M0,5 not specializing to p. Using the relative minimal model

program as above, we can construct three contractions of γ −1(U), which we label c1 (use

the lines 14, 15, 23, 35), c2 (use the lines 14, 15, 34, 35), and c3 (use the lines 12, 15, 23, 35).

See Figure 11 for the effect of these contractions on the fiber over p. The fibers over the

adjacent 1-strata are contracted accordingly. We define ϕU(x) = (γ (x), (qi)
5
i=1) as in the

previous case.
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The morphisms ϕU glue giving a morphism ϕ : P → M0,5 × (P2)(
5
4), which is

an embedding. Indeed, by Nakayama’s lemma, it suffices to show that the restriction

to each fiber is a closed embedding into (P2)(
5
4), which follows from the fact that the

fibers of γ are central fibers of Mustafin joins (see Remark 5.5). Let X′
GP(3, 5) be the

Zariski closure of the image of B5 in B5 × Hilb
(
(P2)(

5
4)

)
. The morphism ϕ induces

a birational morphism M0,5 → X′
GP(3, 5). Since we also have a birational morphism

X′
GP(3, 5) → B5

∼= M0,5, we have X′
GP(3, 5) ∼= M0,5. By [4, Proposition 3.1], the morphism

XGP(3, 5) → X′
GP(3, 5) is bijective. Since M0,5 is normal, XGP(3, 5) ∼= X′

GP(3, 5) ∼= M0,5 by

Zariski’s main theorem. !

Proposition 7.10. For each i = 1, . . . , n, there exists a forgetful morphism

XGP(3, n) → XGP(3, n − 1)

extending the obvious forgetful map Bn → Bn−1 that forgets the i-th point.

Proof. Say i = n. Following the definition of XGP(3, n) as the closure of Bn in the

product of Bn and the multigraded Hilbert scheme and the definition of Bn as the

closure of Bn in (P1)Qn , we need to show two things. Firstly, the projection from (P1)Qn

to (P1)Qn−1 induces the forgetful morphism Bn → Bn−1, which is clear. Secondly, the

projection from (P2)(
n
4) to (P2)(

n−1
4 ) induces a morphism of multigraded Hilbert schemes

(with the Hilbert function of the diagonal), which is Lemma 7.4. !

Definition 7.11. Let I ∈
([n]

5

)
, i ∈ I. Consider the composition of forgetful morphisms

XGP(3, n) → XGP(3, I) ∼= M0,5,

and denote by fI,i the composition of this map with the i-th Kapranov’s map M0,5 → P2.

Given k ∈ {1, . . . , n}, let
([n]

4

)
k ⊆

([n]
4

)
be the subset of quadruples J = {j1 < . . . < j4}

containing k. Then define χk :
([n]

4

)
k → P2 to be the following function:

χk(J) =






[1 : 0 : 0] if k = j1
[0 : 1 : 0] if k = j2
[0 : 0 : 1] if k = j3
[1 : 1 : 1] if k = j4.
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17036 L. Schaffler and J. Tevelev

Finally, for k = 1, . . . , n, consider the morphism

sk : XGP(3, n) → XGP(3, n) × (P2)(
n
4)

defined as

sk = idXGP(3,n) ×
∏

J∈([n]
4 ),

k/∈J

fJ∪{k},k ×
∏

J∈([n]
4 ),

k∈J

χk(J).

Theorem 7.12. The morphisms s1, . . . , sn are sections XGP(3, n) → M of the universal

Mustafin join of point configurations. They give n smooth distinct points on each fiber.

Proof. Since we already know that sk maps the interior of XGP(3, n) into M, the image

of sk is contained in M by continuity. Let x ∈ XGP(3, n). Let a : Spec(K) → Bn be an arc

such that the unique extension a : Spec(R) → XGP(3, n) satisfies a(0) = x. Then M →
XGP(3, n) and s1, . . . , sk pullback to Spec(R) giving the Mustafin join P($a) → Spec(R)

with the sections a1, . . . , an. The points a1(0), . . . , an(0) ∈ P($a)k are distinct by Lemma

6.1 and smooth by Theorem 6.9, implying the theorem. !

Finally, we give a criterion to establish which n-pointed degenerations of P2

arise as fibers of the universal Mustafin join M → XGP(3, n) of point configurations.

Lemma 7.13. Let X be a projective surface with smooth points p1, . . . , pn ∈ X such

that

(1) There exists $ = {[L1], . . . , [Lm]} ⊆ B0
3 such that X ∼= P($)k (recall that if $ is

contained in an apartment, then P($)k can be easily computed using Remark

5.3);

(2) There exists a surjective map
([n]

4

)
→ $ associating to a quadruple of distinct

indices i, j, k, h ∈ [n] a lattice class [Lr] ∈ $ such that the images of the points

pi, pj, pk, ph under the composition X ∼= P($)k → P(Lr)k are in general linear

position.

Then there exists a ∈ (P2)n(K) in general linear position such that X ∼= P($a)k, and

p1, . . . , pn correspond, respectively, to a1(0), . . . , an(0) under this isomorphism.

Proof. Since p1, . . . , pn are smooth points of X (and hence smooth points of P($)k), by

the infinitesimal lifting property we can find a ∈ (P2)n(K) in general linear position
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Fig. 12. Maps to the primary components in Example 7.14.

such that a1(0), . . . , an(0) ∈ P($)k correspond, respectively, to p1, . . . , pn under the

isomorphism P($)k ∼= X. By the definition of stable lattices and by our assumptions,

we have that $a = $. !

Example 7.14. Let (X; p1, . . . , p6) be the 6-pointed reducible surface #8 in Table 14. We

claim that it arises as (P($a)k; a1(0), . . . , a6(0)) for some arc a ∈ (P2)6(K) in general linear

position. Lemma 7.13 (1) is satisfied by choosing $ = {[L1], [L2], [L3]}, where

L1 = e1R + e2R + e3R, L2 = te1R + e2R + te3R, L3 = e1R + t2e2R + te3R.

Figure 12 shows that the assumption (2) is satisfied as well.

8 Analogue of the Losev–Manin Space for Moduli of Points in P2

The Grothendieck–Knudsen moduli space M0,n = X(2, n) of stable rational curves has a

toric analogue, the Losev–Manin space [5, 21], which parametrizes chains of rational

curves with m light and two heavy points (one at each end of the chain). The light

points can coincide with each other but not with the nodes or the heavy points. The

Losev–Manin space is a toric variety associated with the permutohedron. In this and the

next sections we will discuss analogues of the Losev–Manin space for moduli spaces of
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17038 L. Schaffler and J. Tevelev

points and lines in P2. We start with a toric analogue of the Kapranov Chow quotient

space X(3, n) = (P2)n//PGL3, which will be the Chow quotient (P2)m//G2
m for n = m + 3.

Denote by YF the toric variety associated to a fan F . Let T ⊆ YF be the dense

open torus. By [18], the Chow quotient YF//H by a subtorus H ⊆ T is a toric variety (not

necessarily normal) of the quotient torus T/H. The associated fan of the normalization

is called the quotient fan. We recall its description in our case: YF = (P2)m and H is

the dense open torus in P2 acting diagonally on (P2)m. The Chow quotient parametrizes

translates (p−1
1 , . . . , p−1

m ) · P2 ⊆ (P2)m of the diagonally embedded P2 ⊆ (P2)m and their

limits in the Chow variety, where (p1, . . . , pm) ∈ (G2
m)m.

Let N be the lattice of 1-parameter subgroups of H and let P be the fan of P2 in

NR ∼= R2. The product fan Pm in Nm
R gives the toric variety (P2)m. In what follows, we

identify Nm
R with R2m and we view R2 as diagonally embedded in R2m. Given v ∈ R2m,

define

Pm
v = {σ ∈ Pm | σ ∩ (v + R2) -= ∅}.

Vectors v, w ∈ R2m are called equivalent provided Pm
v = Pm

w . The closures of equivalence

classes are rational convex cones in R2m invariant under translations by R2. The images

of these cones under the quotient map

q : R2m → R2m/R2

form the fan Qm called the quotient fan. We call YQm
the toric Kapranov space. It is a

normalization of the Chow quotient and the (multigraded) Hilbert quotient of (P2)m by

H (the closure of T/H in the (multigraded) Hilbert scheme of (P2)m), see Example 7.3.

We would like to describe cones in Qm explicitly.

Definition 8.1. Given (v, v′) ∈ R2, a spider S(v, v′) is the union of three rays in R2:

S(v, v′) = {(−v + t, −v′) | t ∈ R≥0} ∪ {(−v, −v′ + t) | t ∈ R≥0} ∪ {(−v − t, −v′ − t) | t ∈ R≥0}.

It induces a fan $(v, v′) centered at (−v, −v′) with seven cones of various dimensions.

Let v = (v1, v′
1, . . . , vm, v′

m) ∈ R2m. The union of the spiders ∪m
i=1S(vi, v′

i)

subdivides R2 into the union of 0, 1, and 2D convex cells (some of these cells are

unbounded). We denote this convex subdivision of R2 by S(v).
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TABLE 2 In the top row, an example of combinatorially equivalent subdivisions S(v) and S(w)

Let v, w ∈ R2m. We say that S(v) and S(w) are combinatorially equivalent if for

all choices of cones σi ∈ $(vi, v′
i), τi ∈ $(wi, w′

i) such that σi + (vi, v′
i) = τi + (wi, w′

i), we

have ∩m
i=1σi -= ∅ if and only if ∩m

i=1τi -= ∅. We denote by [S(v)] the equivalence class of

S(v). If [S(v)] = [S(w)], then we say that two cells in S(v) and S(w) are corresponding

if they can be written as ∩m
i=1σi and ∩m

i=1τi where σi + (vi, v′
i) = τi + (wi, w′

i) for all i (see

Table 2).

Lemma 8.2. Intersections of cones σ ∈ Pm
v with v + R2 ∼= R2 give the subdivision S(v).

In particular, if v, w ∈ R2m then [S(v)] = [S(w)] if and only if [v], [w] ∈ R2m/R2 lie in the

relative interior of the same cone of the quotient fan Qm.

Proof. Let C ⊆ R2 be an arbitrary cell in S(v). Then for i = 1, . . . , m there exist cones

σi ∈ $(vi, v′
i) such that C = ∩m

i=1σi. Note that

τ = ((v1, v′
1) + σ1) × · · · × ((vm, v′

m) + σm)

is a cone in the product fan Pm
v . It is clear that v + C = (v + R2) ∩ τ . !
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17040 L. Schaffler and J. Tevelev

Definition 8.3. Next we define the family over YQm
. Let Rm be the fan in R2m with

cones η = q−1(ξ) ∩ τ for ξ ∈ Qm and τ ∈ Pm.

Proposition 8.4. We have a commutative diagram of morphisms of toric varieties:

The top row is an embedding, and the toric morphism YRm
→ YQm

is flat with

reduced fibers.

Proof. Consider the injective linear map given by

R2m ↪→ (R2m/R2) × R2m, v 0→ ([v], v).

Then Rm is the restriction to R2m of the product fan Qm × Pm. By [23, Theorem 2.1.4],

in order to show that YRm
→ YQm

is flat with reduced fibers, we need to check that

(1) Every cone η ∈ Rm surjects onto a cone σ ∈ Qm;

(2) Whenever q(η) = σ , the lattice points in η surject onto the lattice points in σ .

Let η ∈ Rm. Then η = q−1(ξ) ∩ τ for some cones ξ ∈ Qm and τ ∈ Pm. Thus,

q(η) = ξ ∩ q(τ ). By [18, Section1], the quotient fan Qm is the common refinement of the

images in R2m/R2 of cones in Pm. For this reason, we have that ξ ∩ q(τ ) is a cone in Qm,

proving part (1).

For part (2), let η ∈ Rm and let [w] ∈ q(η) be a lattice point, which means that

we can assume w has integral coordinates. Write η = q−1(ξ) ∩ τ for ξ ∈ Qm, τ ∈ Pm,

implying that [w] ∈ ξ and [w] ∈ q(τ ). Thus, w ∈ q−1(ξ) and w + (x, x′, . . . , x, x′) ∈ τ for

some (x, x′) ∈ R2.

Write τ = τ1×· · ·×τm. Then (x, x′) ∈ τi−(wi, w′
i) for all i. So (x, x′) is a point in the

cell C = ∩m
i=1(τi − (wi, w′

i)) of the subdivision S(w) of R2. Notice that C always contains

a point (y, y′) with integral coordinates. This is because, by the geometry of the fan P, C

is a convex polytope with integral vertices and sides with slopes 0, 1, or vertical.

It follows that w+(y, y′, . . . , y, y′) ∈ τ and therefore w+(y, y′, . . . , y, y′) ∈ q−1(ξ)∩
τ = η is a lattice point mapping to [w]. !
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TABLE 3 All combinatorial types of Mustafin triangles (up to symmetries) enumerating all cones

in Q3

Remark 8.5. One could adapt the above results for Ym, where Y is an arbitrary

projective toric surface, except for Proposition 8.4, which used specific properties of

the fan of P2. The conclusion of Proposition 8.4 holds for any projective toric surface

such that the slopes of the rays of its associated fan are in the set {0, 1, ∞}, that is, for a

toric del Pezzo surface.

Lemma 8.6. For i ∈ {1, . . . , m}, we have “forgetful” toric morphisms of toric varieties

YQm
→ YQm−1

induced by linear maps pi : R2m → R2m−2, v 0→ (v1, v′
1, . . . , vi−1, v′

i−1, vi+1, v′
i+1, . . . , vm, v′

m).
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Proof. Let v, w ∈ R2m. We claim that if [S(v)] = [S(w)] then [S(pi(v))] = [S(pi(w))] for

all i. But this is immediate from Definition 8.1: for j ∈ {1, . . . , m} \ {i}, consider cones

σj ∈ $(vj, v′
j), τj ∈ $(wj, w′

j) such that σj + (vj, v′
j) = τj + (wj, w′

j). Assume that ∩j -=iσj -= ∅.

We want to show that ∩j -=iτj -= ∅. There exists σi ∈ $(vi, v′
i) such that ∩iσi -= ∅ because

$(vi, v′
i) covers the entire R2. Let τi ∈ $(wi, w′

i) such that σi + (vi, v′
i) = τi + (wi, w′

i). Since

[S(v)] = [S(w)], we know that also ∩jτj -= ∅, so ∩j -=iτj -= ∅, proving what we want. !

Next we give a modular interpretation of YQm
as the moduli space of reducible

surfaces with marked points. The torus (G2
m)m is a configuration space of m points

p1, . . . , pm ∈ G2
m. These light points are allowed to coincide. If we add three heavy points

e1, e2, e3, the quotient torus (G2
m)m/G2

m becomes isomorphic to the PGL3-orbit space for

m + 3 points

e1, e2, e3, p1, . . . , pm ∈ P2

such that any of the m quadruples of the form (pi, e1, e2, e3) is in linearly general

position. To reduce to the torus action, we normalize e1, e2, e3 to be the standard basis

vectors. Given K-points p1, . . . , pm ∈ G2
m(K), we have m lattices Li for i = 1, . . . , m that

stabilize quadruples of the form (e1, e2, e3, pi) (some of these lattices can coincide).

Notice that these lattices are in the same apartment that corresponds to the basis

e1, e2, e3.

Proposition 8.7. The family YRm
→ YQm

is the pullback of the universal family of

the Hilbert scheme of (P2)m. Let a : Spec(R) → YQm
be a morphism such that a(SpecK)

is contained in the quotient torus. Then a∗YRm
is isomorphic to the Mustafin join

P(L1, . . . , Lm).

Proof. The 1st part follows from Proposition 8.4. For the 2nd part, write a(SpecK) =
(a1, . . . , am) mod G2

m, an element of (G2
m)m/G2

m(K). We have that (a|SpecK)∗YRm
∼= P2

K is

embedded in (P2
K)m by the diagonal embedding of P2

K followed by the automorphism

of (P2
K)m induced by the action of (a−1

1 , . . . , a−1
m ). The morphism YRm

→ YQm
is flat

by Proposition 8.4, so a∗YRm
equals the Zariski closure of P2

K in (P2
R)m under the

above embedding. This shows that a∗YRm
is equal to the Mustafin join of the lattices

Li = ai1e1R + ai2e2R + ai3e3R, where we view ai as the point in P2 given by

[ai1 : ai2 : ai3]. !
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Definition 8.8. Let λi to be the map of lattices Z2m/Z2 → Z2m given by

[v] 0→ (v1 − vi, v′
1 − v′

i, . . . , vm − vi, v′
m − v′

i).

Each of these maps is a section of the quotient map q : Z2m → Z2m/Z2.

Proposition 8.9. The family YRm
→ YQm

admits m “light” sections '1, . . . , 'm, which

are toric morphisms induced by the linear maps λ1, . . . , λm, and three “heavy” constant

sections t1, t2, t3 given by ti = YQm
× {ei} × . . . × {ei} ⊆ YQm

× (P2)m for i = 1, 2, 3 (see

Proposition 8.4).

Proof. We need to show that each of the maps λi induces a map of fans from Qm

to Rm. Suppose [v], [w] ∈ R2m/R2 are contained in the relative interior of a cone σ

of Qm. In order to show that λi(σ ) is contained in a cone of Rm, it suffices to show

that λi([v]), λi([w]) are contained in the same cone of Pm, i.e. that (vj − vi, v′
j − v′

i) and

(wj − wi, w′
j − w′

i) are contained in the same cone of P for every j. Note that the cone of

P containing (vj − vi, v′
j − v′

i) (resp. (wj − wi, w′
j − w′

i)) is completely determined by the

relative position of the spiders S(vi, v′
i) and S(vj, v′

j) (resp. S(wi, w′
i) and S(wj, w′

j)). Since

S(v) and S(w) are combinatorially equivalent, the claim follows. !

Corollary 8.10. Fibers of the family YRm
→ YQm

can be computed as in Remark

5.3. A spider decomposition S(v) induces a regular mixed polyhedral subdivision of

m#2. The corresponding fiber is a broken toric variety with irreducible components

that correspond to 2-cells of the subdivision of m#2. Three heavy sections correspond

to vertices of m#2. Every light section 'i lies in the irreducible component that

corresponds to the spider S(vi, v′
i).

Proof. After our discussion so far, the only claim needing proof is the one about light

sections. We can reduce this claim to considering a one-parameter family a : Spec(R) →
YQm

with a(Spec(K)) contained in the quotient torus. Let us prove the statement for

'1, which, without loss of generality, we can assume equal to [1 : 1 : 1]. In particular,

we have that L1 = e1R + e2R + e3R. Let us rescale the points [aj1 : aj2 : aj3], j ≥ 2, so

that val(aj1), val(aj2), val(aj3) ≤ 0, with equality achieved at least once for each j. Then

v = (1, 1, 1) ∈ Lj \ tLj for all j = 1, . . . , m. Moreover, L1 is contained in the intersection

L1 ∩ . . . ∩ Lm. Therefore, by Lemma 5.7, we have that the limit of 'i in the central fiber of
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17044 L. Schaffler and J. Tevelev

Fig. 13. Fiber of YR2 → YQ2 over a(0) in Example 8.11.

the Mustafin join P(L1, . . . , Lm) is a smooth point contained in the primary component

corresponding to L1, which is the one corresponding to the i-th spider. !

Example 8.11. Let us consider the arc

a = (e1 = [1 : 0 : 0], e2 = [0 : 1 : 0], e3 = [0 : 0 : 1], a1 = [1 : 1 : 1], a2 = [t2 : 1 : t]).

We studied the 5-pointed degeneration of P2 parametrized by a(0) ∈ XGP(3, 5) in Example

6.2. We now compute the 5-pointed fiber of YR2
→ YQ2

over the limit point a(0) ∈ YQ2
.

By Proposition 8.7, such fiber is the central fiber of the Mustafin join of the following

two lattices:

L1 = e1R + e2R + e3R, L2 = t2e1R + e2R + te3R.

We can compute P(L1, L2)k using Remark 5.3, and the result is pictured in Figure 13.

Note that the limit of ai lies in the primary component corresponding to Li by Corollary

8.10.

9 Toric Analogue of XGP(3, n)

We will use the toric Kapranov spaces YQm
in Section 11 to construct open patches of the

Kapranov space X(3, n) that cover an open planar locus with toroidal singularities. Its

preimage in the Gerrizen–Piwek space XGP(3, n) will be described using toric Gerrizen–

Piwek spaces YQ̃m
introduced in this section. While the same arc gives different fibers

of the family YRm
(see Example 8.11) and the Gerrizen–Piwek family (see Example 6.2),

under some conditions, which we investigate in this and the following sections, the

Gerrizen–Piwek fiber can be reconstructed from the fiber in YRm
. To motivate the
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Fig. 14. Intersection point of dashed dual spiders S(a, b)∨ and S(c, d)∨.

construction, write n = m + 3 and take an arc

a = (e1, e2, e3, a1, . . . , am) ∈ (P2)n(K)

in linearly general position. Consider an apartment A that corresponds to the basis

e1, e2, e3. By Remark 5.3, a lattice tαe1R + tβe2R + tγ e3R in the apartment corresponds to

a lattice point (−a, −b) = (γ − α, γ − β) ∈ R2. It is the 0-cell of the spider S(a, b).

Definition 9.1. The dual spider is defined as follows:

S(a, b)∨ = {(−a − t, −b) | t ∈ R≥0} ∪ {(−a, −b − t) | t ∈ R≥0} ∪ {(−a + t, −b + t) | t ∈ R≥0}.

Lemma 9.2. Consider the stable lattices Li (resp. L̄αβ,ij) stabilizing quadruples

(e1, e2, e3, ai) for i = 1, . . . , m (resp. (eα, eβ , ai, aj) for α, β = 1, 2, 3, i, j = 1, . . . , m). The

lattices Li belong to the apartment A and are given by the integral points (−vi, −v′
i) in

R2. A lattice L̄αβ,ij does not have to be in the apartment A, but if it does, then it is the

lattice Lαβ,ij that corresponds to the integral point (−xαβ,ij, −x′
αβ,ij) from Table 4. If this

point is different from (−vi, −v′
i) and (−vj, −v′

j), then it is the intersection point (−a, −b)

of the dual spiders S(vi, v′
i)

∨ and S(vj, v′
j)

∨.

Proof. Let i, j ∈ {1, . . . , m} be distinct indices and consider the stable lattices Li, Lj.

All their possible reciprocal positions as points (−vi, −v′
i), (−vj, −v′

j) in R2 are listed in

Table 4. Let us determine the integral points (xαβ,ij, x′
αβ,ij).

Assume that the reciprocal position of Li, Lj is as shown in the 1st entry of the

1st row of Table 4. Then the limits of the points p1, p2, p3, ai, aj in the central fiber of

the Mustafin join P(Li, Lj) are shown in the left side of Figure 15. We can then directly
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17046 L. Schaffler and J. Tevelev

Fig. 15. In the proof of Lemma 9.2, the central fibers of the Mustafin joins P(Li, Lj), P(Li, Lj, Lij)

and the limits of e1, e2, e3, ai, aj.

compute that

(x12,ij, x′
12,ij) = (vj, v′

j), (x13,ij, x′
13,ij) = (vi, v′

i), (x23,ij, x′
23,ij) = (vj, v′

j).

An analogous argument applies to the remaining cases in the 1st two rows of

Table 4.

Now assume that the reciprocal position of Li, Lj is as shown in the 1st entry of

the 3rd row of Table 4 instead. Define Lij as the lattice corresponding to the intersection

point (−a, −b) of the dual spiders S(vi, v′
i)

∨ and S(vj, v′
j)

∨. Then the limits of the points

p1, p2, p3, ai, aj in the central fiber of the Mustafin join P(Li, Lj, Lij) can be found in the

right side of Figure 15. From this, we can directly compute that

(x12,ij, x′
12,ij) = (vi, v′

i), (x13,ij, x′
13,ij) = (a, b), (x23,ij, x′

23,ij) = (vj, v′
j).

The remaining cases in the last two rows of Table 4 are handled in an analogous

way. !

Definition 9.3. We let

N =
(

3
2

)(
m
2

)
.
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TABLE 4 The red dot (intersection of dual spiders) is in position (−a, −b) ∈ R2

Let π : R2m+2N → R2m be the projection map and let ι : R2m → R2m+2N be the function

that sends a vector v to the vector (v, x) such that the components xαβ,ij, x′
αβ,ij of the

vector x are given in Table 4. The induced maps R2m+2N/R2 → R2m/R2 and R2m/R2 →
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17048 L. Schaffler and J. Tevelev

Fig. 16. Example of S(v) (on the left) and its refinement S̃(v) (on the right).

R2m+2N/R2 are well defined and we denote them by π̄ and ῑ, respectively. We define

S̃(v) = S(ι(v)),

see Figure 16 for an example. The subdivision S̃(v) refines S(v).

We note that the image of ι consists of entire cones of the fan Qm+N :

Lemma 9.4. Let v ∈ R2m, z ∈ R2m+2N . If [S(ι(v))] = [S(z)], then z = ι(π(z)).

Proof. Write ι(v) = (v, x), z = (π(z), y), where

x = (. . . , xαβ,ij, x′
αβ,ij, . . .), y = (. . . , yαβ,ij, y′

αβ,ij, . . .).

Recall that the pairs (xαβ,ij, x′
αβ,ij) are defined according to Definition 9.3. Fix distinct

indices α, β ∈ [3], i, j ∈ [m], and for simplicity of notation set vij = (vi, v′
i, vj, v′

j), zij =
(zi, z′

i, zj, z′
j). Note that the hypothesis [S(ι(v))] = [S(z)] implies that

[S(vij, xαβ,ij, x′
αβ,ij)] = [S(zij, yαβ,ij, y′

αβ,ij)]. (6)

Based on the definition of ι(v), we have the following three cases on (xαβ,ij, x′
αβ,ij):

If (xαβ,ij, x′
αβ,ij) = (vi, v′

i), then we show that (yαβ,ij, y′
αβ,ij) = (zi, z′

i). Up to

symmetries, we have two possibilities for the reciprocal position of the points (−vi, −v′
i),

(−vj, −v′
j) in R2. Say we are in the 1st case of the 1st row of Table 4. Consider the

cones σi = {(−vi, −v′
i)} ∈ $(vi, v′

i), σj ∈ $(vj, v′
j), σ = {(−xαβ,ij, −x′

αβ,ij)} ∈ $(xαβ,ij, x′
αβ,ij)

such that σi ∩ σj ∩ σ = {(−vi, −v′
i)} and σj is a ray. Consider the corresponding cones

τi = {(−zi, −z′
i)} ∈ $(zi, z′

i), τj ∈ $(zj, z′
j), τ = {(−yαβ,ij, −y′

αβ,ij)} ∈ $(yαβ,ij, y′
αβ,ij). Then also

τi ∩ τj ∩ τ -= ∅ by (6), and hence this intersection has to be equal to {(−zi, −z′
i)}, showing

that (yαβ,ij, y′
αβ,ij) = (zi, z′

i). The 2nd possibility for the reciprocal position of (−vi, −v′
i),
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(−vj, −v′
j), up to symmetry, is the 1st case of the 3rd row of Table 4. Here we use the

same argument as in the previous case, but we take σj to be 2D instead.

If (xαβ,ij, x′
αβ,ij) = (vj, v′

j), then we show that (yαβ,ij, y′
αβ,ij) = (zj, z′

j) by an analogous

argument to the one above.

Finally, assume (xαβ,ij, x′
αβ,ij) is the unique intersection point (−a, −b) of the dual

spiders S(vi, v′
i)

∨, S(vj, v′
j)

∨. Consider the cones given by σi ∈ $(vi, v′
i), σj ∈ $(vj, v′

j),

σ = {(−xαβ,ij, −x′
αβ,ij)} ∈ $(xαβ,ij, x′

αβ,ij) such that σi ∩σj ∩σ = {(−a, −b)} and σi, σj are rays.

Consider the corresponding cones τi ∈ $(zi, z′
i), τj ∈ $(zj, z′

j), τ = {(−yαβ,ij, −y′
αβ,ij)} ∈

$(yαβ,ij, y′
αβ,ij). Then τi ∩ τj ∩ τ -= ∅ by (6), and hence (−yαβ,ij, −y′

αβ,ij) is the unique

intersection point of the dual spiders S(zi, z′
i)

∨, S(zj, z′
j)

∨. !

Lemma–Definition 9.5. There is a unique complete fan Q̃m in R2m/R2 such that ῑ is

linear on every cone σ of Q̃m and ῑ(σ ) is a cone of the quotient fan Qm+N in R2m+2N/R2.

Vectors [v], [w] ∈ R2m/R2 lie in the relative interior of the same cone σ of the fan Q̃m

if and only if [S̃(v)] = [S̃(w)]. The collection of cones ῑ(σ ) is a subfan Q′
m+N of Qm+N of

cones corresponding to subdivisions S(z), z ∈ R2m+2N , such that S(z) = S̃(π(z)).

Proof. Given v ∈ R2m and two distinct indices i, j ∈ [m], then the possible reciprocal

positions for (−vi, −v′
i), (−vj, −v′

j) ∈ R2, if they are distinct points, are pictured in Table

4. Each possibility is described by a set of inequalities and/or equalities. Therefore,

given v ∈ R2m, for each pair of distinct indices i, j ∈ [m] we have a set of inequalities

and/or equalities, and considering all these together defines a convex cone σv ⊆ R2m.

(Clearly, if w is in the relative interior of σv, then σw = σv.) We denote by W the collection

of all these cones in R2m. We have that ι is linear on each cone in W because each

(xαβ,ij, x′
αβ,ij) is linear by its definition. Note that given v ∈ R2m and (a, b) ∈ R2, then v

and v + (a, b, . . . , a, b) satisfy the same set of inequalities. Hence, the collection q(W) of

images of cones in W under the quotient q : R2m → R2m/R2 is a collection of cones on

which ι is linear.

We now define Q′
m+N to be the collection of cones σ ∈ Qm+N such that ι([v]) is in

the relative interior of σ for some [v] ∈ R2m/R2. Note that a cone σ ∈ Q′
m+N is entirely

contained in the image of ι by Lemma 9.4. Moreover, ι is linear on (ι)−1(σ ). To prove this,

it is enough to show the following. Let ι([v]) be in the relative interior of σ and let [z]

be any other point in the relative interior of σ . We want to show that ι is linear on the

2D cone generated by π([z]) and [v]. Equivalently, ι is linear on the 2D cone generated by

π(z) and v. But this is clear because z = ι(π(z)) by Lemma 9.4, and π(z), v belong to the

same cone of W because [S(z)] = [S(ι(v))].
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17050 L. Schaffler and J. Tevelev

Next, we observe that Q′
m+N is a fan. Consider σ ∈ Q′

m+N , and let ϕ ⊆ σ be a

face. By the argument above, σ is contained in the image of ι; hence, also ϕ is, so we can

certainly find [v] ∈ R2m/R2 such that ι([v]) is in the relative interior of ϕ. Combined with

the fact that ϕ ∈ Qm+N because Qm+N is a fan, we can conclude that ϕ ∈ Q′
m+N .

We then define Q̃m to be the collection of preimages of cones in Q′
m+N under ι.

By the discussion above, Q̃m is a fan, and it is clearly complete.

We conclude with the combinatorial interpretation of the cones in Q̃m. Let

[v], [w] ∈ R2m/R2 be in the relative interior of the same cone (ι)−1(σ ) ∈ Q̃m, where

σ ∈ Q′
m+N . Then ι([v]), ι([w]) are in the relative interior of σ , implying that [S(ι(v))] =

[S(ι(w))]. Conversely, assume that [S(ι(v))] = [S(ι(w))]. This means that ι([v]), ι([w]) are

in the relative interior of the same cone σ ∈ Qm+N , which by definition is also a cone of

Q′
m+N . Hence, [v], [w] ∈ (ι)−1(σ ) ∈ Q̃m, proving the last statement. !

Definition 9.6. The variety YQ̃m
is called the toric Gerritzen–Piwek space.

Proposition 9.7. There is a birational toric morphism YQ̃m
→ YQm

, a “forgetful” toric

morphism YQ̃m
→ YQ̃[m]\{i} for each i = 1, . . . , m and a commutative diagram

Proof. We claim that the fan Q̃m refines the fan Qm. We need to show that if v, w ∈ R2m

and [S̃(v)] = [S̃(w)] then [S(v)] = [S(w)]. But this is a consequence of Lemma 8.6.

For the 2nd statement, let v, w ∈ R2m and consider the projections pi : R2m → R2m−2

for i = 1, . . . , m. We claim that if S̃(v) and S̃(w) are combinatorially equivalent, then

S̃(pi(v)) and S̃(pi(w)) are combinatorial equivalent. Write S̃(v) = S(v, x), S̃(w) = S(w, y)

for x, y ∈ R(m
2 ). Notice that S̃(pi(v)) is obtained from S(v, x) by dropping the pairs (vi, v′

i)

and (xij, x′
ij) for j -= i, and similarly for S̃(pi(w)). It remains to apply Lemma 8.6. !

The next step is to define a refinement R̃m of the fan Rm of Definition 8.3.

Lemma–Definition 9.8. Let R̃m be the collection of cones in R2m in the form

π(Q−1(σ ) ∩ τ ) for σ ∈ Q′
m+N , τ ∈ Pm+N ,
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TABLE 5 Decompositions S̃(v) obtained from decompositions S(v) of Table 3

where Q : R2m+2N → R2m+2N/R2 is the quotient map. This collection is a fan and the

quotient map q : R2m → R2m/R2 induces a map of fans between R̃m and Q̃m.

Proof. Take a cone η = π(Q−1(σ ) ∩ τ ) ∈ R̃m. Then π |η is bijective with the inverse ι|π(η).

Since cones of the form Q−1(σ ) ∩ τ form a fan, it follows that R̃m is a fan as well. Next,

q(η) = q(π(Q−1(σ ) ∩ τ )) = π(Q(Q−1(σ ) ∩ τ )) = π(σ ∩ Q(τ )) ⊆ π(σ ),

where π(σ ) ∈ Q̃m by definition. Hence, q induces a map of fans. !
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TABLE 6 “Stretching” the decompositions S(v) in Table 5 creates further combinatorial types of

S̃(v) producing further cones in Q̃3

Lemma 9.9. Let N =
(3
2

)(m
2

)
. We have a commutative diagram of toric morphisms
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where yπ and yπ̄ are quotients by free G2N
m -action. The morphism yq is flat with reduced

fibers.

Proof. The morphisms yπ and yπ̄ are induced by linear maps π and π̄ of fans, which

have piece-wise linear inverses ι and ῑ. This proves the 1st part because every affine

toric chart of the variety on the left is isomorphic (not canonically) to the product of the

corresponding affine toric chart of the variety on the right with G2N
m . Since yQ is flat

with reduced fibers, the same is true for yq by smooth descent. !

Proposition 9.10. The family YR̃m
→ YQ̃m

over the toric Gerrizen–Piwek space admits

“light” sections '1, . . . , 'm induced by linear maps λ1, . . . , λm of Definition 8.8 and “heavy”

constant sections t1, t2, t3 defined as in Proposition 8.9.

Proof. The proof is the same as for Proposition 8.9. !

10 Projective Duality and the Quotient Fans Qm and Q∨
m

In the construction of the quotient fan Qm and its interpretation in terms of subdivi-

sions of R2, we could have used the fan P∨ = −P of the dual projective plane (P2)∨

in place of P. As in Section 8, we define the dual quotient fan Q∨
m. So we have the

isomorphism

((P2)∨)m// H ∼= YQ∨
m

,

where H ⊆ P2 is the dense torus. The cones in Q∨
m can be interpreted combinatorially as

in Lemma 8.2 in terms of polyhedral subdivisions S(v)∨ of R2 induced by dual spiders

S(vi, v′
i)

∨ for i = 1, . . . , m (see Definition 9.1). Notice that the homomorphism R2m/R2

sending [v] to −[v] maps the cones in Qm to cones in Q∨
m (for an explicit example,

see Figure 17). This induces a natural toric isomorphism between the Chow quotients

((P2)∨)m// H and (P2)m// H.

A surprising fact is that the fan Q̃m refines not only Qm (Proposition 9.7) but

also Q∨
m. Before we can prove this fact in Theorem 10.5, we need a little preparation.

Definition 10.1. Given [v] ∈ R2m/R2, for all distinct i, j ∈ [m], let δij ∈ $(vi, v′
i) be the

minimal cone that contains (−vj, −v′
j). We call the collection of cones {δij}1≤i,j≤m,i-=j the

cone data of v. If {δij} and {ηij} are the cone data attached to two subdivisions S(v), S(w),
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17054 L. Schaffler and J. Tevelev

Fig. 17. On the left, subdivision of R2 given by a cone in Q∨
3 , and on the right its image under the

homomorphism [v] 0→ −[v] given by a cone in Q3.

then we say that {δij} and {ηij} are equivalent provided for all distinct i, j ∈ [m],

δij + (vi, v′
i) = ηij + (wi, w′

i).

Lemma 10.2. Let [v], [w] ∈ R2m/R2 and consider the respective cone data {δij} and {ηij}.
If S(v) and S(w) are combinatorially equivalent, then {δij} and {ηij} are equivalent.

Proof. Assume that S(v) and S(w) are combinatorially equivalent. By Lemma 8.6, the

subdivisions obtained by dropping all the spiders other than the i-th and the j-th are

also equivalent. This means precisely that the cone data are equivalent. !

The next proposition analyzes the converse of the previous lemma when m = 3.

Proposition 10.3. Let [v], [w] ∈ R6/R2 and suppose their cone data {δij} and {ηij} are

equivalent. Then S(v) is combinatorially equivalent to S(w) unless they are combinato-

rially equivalent to (q) and (u) in Table 3, respectively (or vice versa). The subdivisions

(q) and (u) have equivalent cone data but are not combinatorially equivalent.

Proof. Going through all the cases in Table 3, which we reproduced from [3, Figure 6],

shows that the combinatorial equivalence class of the plane subdivision is uniquely

determined by the cone data except for the subdivisions (q) and (u). !

Using the fans $(vi, v′
i)

∨ instead of $(vi, v′
i), we can associate the dual cone data

{δ∨
ij }. Analogous results for S(v)∨ and {δ∨

ij } hold. We notice the following property.

Lemma 10.4. Let [v], [w] ∈ R2m/R2. If S̃(v) is combinatorially equivalent to S̃(w), then

the dual cone data {δ∨
ij } and {η∨

ij} are equivalent.
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Compactifications of Moduli 17055

Fig. 18. The fan $(vi, v′
i)

∨ and two of its maximal cones.

Fig. 19. Possible positions of (−vj, −v′
j).

Proof. Given a pair of distinct indices, we want to show that

δ∨
ij + (vi, v′

i) = η∨
ij + (wi, w′

i).

Let δij ∈ $(vi, v′
i) be the minimal cone containing (−vj, −v′

j). If δij has dimension

at most 1, then we can immediately determine δ∨
ij ∈ $(vi, v′

i)
∨, and in each case it holds

that δ∨
ij + (vi, v′

i) = η∨
ij + (wi, w′

i). Therefore, assume that δij is 2D, and without loss of

generality assume that δij is the cone whose two rays form a right angle (an analogous

argument applies to the other 2D cones). Then δ∨
ij can be α, β or α ∩ β in Figure 18,

and this is uniquely determined by the position of (−vj, −v′
j) with respect to (−xij, −xij)

(see Definition 9.3). We have three possible cases, which are pictured in Figure 19:

(1) (xij, x′
ij) = (vj, v′

j) if and only if (−vj, −v′
j) is contained in the relative interior

of a ray in $(vi, v′
i)

∨. If this is the case, then we have that δij = α ∩ β.

(2) If −xij = −vj and −x′
ij < −v′

j, then δij = α.

(3) Lastly, if −xij < −vj and −x′
ij = −v′

j, then δij = β.

In each case, δ∨
ij + (vi, v′

i) = η∨
ij + (wi, w′

i). !

Theorem 10.5. The fan Q̃m refines the dual quotient fan Q∨
m.
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17056 L. Schaffler and J. Tevelev

TABLE 7 Exceptional case for m = 3 in the proof of Theorem 10.5

Proof. Let [v], [w] ∈ R2m/R2 be two vectors lying in the relative interior of the

same cone of Q̃m, which means that the polyhedral subdivisions S̃(v) and S̃(w) are

combinatorially equivalent. We want to show that S(v)∨ and S(w)∨ are combinatorially

equivalent as well.

If m = 1, then this is true because S(v)∨ and S(w)∨ are equal up to a translation

in R2. If m = 2, then the combinatorial equivalence class [S̃(v)] uniquely determines

[S(v)], which uniquely determines [S(v)∨]. So if [S̃(v)] = [S̃(w)], then [S(v)∨] = [S(w)∨].

For m ≥ 3, we argue by induction. Let m = 3. By Lemma 10.4, the dual cone data

{δ∨
ij }, {η∨

ij} associated to [v], [w], respectively, are equivalent. Therefore, by Proposition

10.3 adapted to the dual case, S(v)∨ is equivalent to S(w)∨ provided we are away from

the exceptional case in the 1st row of Table 7. However, this case can not occur: S̃(v)

and S̃(w) are not combinatorially equivalent as we can see in the 2nd row of Table 7.

Now assume the conclusion for m − 1 ≥ 3 and let us prove it for m. Consider

cones σ∨
i ∈ $(vi, v′

i)
∨, τ∨

i ∈ $(wi, w′
i)

∨ such that σ∨
i + (vi, v′

i) = τ∨
i + (wi, w′

i) and assume

that ∩m
i=1σ∨

i -= ∅. We want to show that ∩m
i=1τ∨

i is also non-empty, which, by Helly’s

theorem, is equivalent to τ∨
i1

∩τ∨
i2

∩τ∨
i3

-= ∅ for every choice of distinct indices i1, i2, i3 ∈ [m].

Since m > 3, it will be enough to show that ∩i-=jτ
∨
i -= ∅ for each choice of index

j ∈ [m]. So consider the projection map pj : R2m → R2m−2. By Proposition 9.7, we have

that S̃(pj(v)) is combinatorially equivalent to S̃(pj(w)). So by the inductive assumption
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Compactifications of Moduli 17057

we have that S(pj(v))∨ is combinatorially equivalent to S(pj(w))∨. This means that

∩i-=jτ
∨
i is nonempty because ∅ -= ∩m

i=1σ∨
i ⊆ ∩i-=jσ

∨
i , concluding the proof. !

11 Planar Locus in X(3, n) and XGP(3, n)

Given rational weights b = (b1, . . . , bn), 0 < bi ≤ 1, satisfying
∑n

i=1 bi > 3, by [2]

there exists a projective moduli space Mb(3, n) parametrizing stable pairs (P2,
∑n

i=1 biLi),

where Li ⊆ P2 are lines, and their stable degenerations. For b = (1, . . . , 1), Mb(3, n) =
X(3, n). On the other hand, choose weights such that three of them, say bi, bj, bk, are

equal to 1 and the remaining weights are equal to ε 7 1. By [1, Example 9.6], we have an

isomorphism Mb(3, n) ∼= ((P2)∨)n−3// H, and so its normalization is isomorphic to YQ∨
n−3

.

Setting m = n−3, we obtain a commutative diagram of birational maps and morphisms:

where the morphism YQ̃m
→ YQ∨

m
exists by Theorem 10.5. In what follows, we focus

on the case (i, j, k) = (1, 2, 3). The same results hold for other cases after permuting the

labels. The commutative diagram is a diagram of isomorphisms over Bm+3
∼= X(3, n).

Definition 11.1. Let P = #(3, m + 3) and consider Lafforgue’s toric variety AP. Let

AP
123 the union of the toric strata of AP corresponding to regular matroid polytope

subdivisions of P whose maximal dimensional polytopes contain the vertex e1 + e2 + e3,

where e1, . . . , em+3 is the canonical basis of Rm+3. Notice that AP
123 is an open subset

because if a polyhedral subdivision has a maximal polytope not containing e1 + e2 + e3,

then any refinement of it does, so the complement is closed. This induces an open subset

U123 ⊆ X(3, m + 3)ν

and its preimage U123
GP ⊆ XGP(3, m + 3)ν . We have the following commutative diagram:
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17058 L. Schaffler and J. Tevelev

The planar locus U(3, n) ⊆ X(3, n)ν (resp. UGP(3, n) ⊆ XGP(3, n)ν ) is the union of Uijk

(resp. Uijk
GP) for all possible triples i, j, k.

Theorem 11.2. The map A123 is regular and both maps A123 and B123 are open

embeddings. The planar loci U(3, n) ⊆ X(3, n)ν and UGP(3, n) ⊆ XGP(3, n)ν have toroidal

singularities.

Proof. We start with B123. Let (X ,
m+3∑

i=1
Li) be the family of stable pairs over X(3, m + 3)

and take its fiber (X,
m+3∑

i=1
Li) over a point in U123. By [19, Section 8], X is a stable toric

surface with the stable toric boundary given by L1 +L2 +L3. In particular, KX +L1 +L2 +
L3 ∼ 0. Concretely, we can realize (X,

m+3∑

i=1
Li) as the central fiber of the pullback of the

family of stable pairs to SpecR via some arc a : SpecR → X(3, m+3) such that a(SpecK) ∈
X(3, m + 3)(K). Since all maximal-dimensional polytopes in the matroid decomposition

share a vertex e1+e2+e3, all stable lattices for the arc are contained in the corresponding

apartment [19, Section 8], and therefore X is a stable toric surface that corresponds

to a regular mixed polyhedral subdivision of the dual simplex m#∨
2 . The broken lines

L1, . . . , Ln intersect pairwise at smooth points of X [12, Theorem 1.1].

It follows that the pair (X,
3∑

i=1
Li +

m+3∑

i=4
εLi) is semi-log canonical and the Q-line

bundle

KX +
3∑

i=1

Li +
m+3∑

i=4

εLi ∼ ε ·
m+3∑

i=4

Li

is ample because KX +
m+3∑

i=1
Li ∼

m+3∑

i=4
Li is ample. Therefore, the restriction of the family

(X ,
m+3∑

i=1
Li) to U123 embeds the latter in Mb(3, n) as an open subset.

Next, we consider A123. Recall that XGP(3, n) is defined as the closure of Bn in the

multigraded Hilbert scheme of (P2)(
n
4). Write n = 3+m, N =

(3
2

)(m
2

)
and m+N+M =

(3+m
4

)
.

The pullback to XGP(3, n) of the universal family of the (ordinary) Hilbert scheme

is a flat family M with n sections. For any point x ∈ XGP(3, n), the fiber Mx is

a reduced surface (X; p1, . . . , pn) with n smooth marked points. For every quadruple

I = {i1, . . . , i4} ⊆ [n], the morphism X → P2 induced by the projection onto the I-th

component of (P2)(
n
4) sends pi1 , . . . , pi4 to the points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], and
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[1 : 1 : 1]. The surface (X; p1, . . . , pn) is the special fiber of the Mustafin join P($a) for

any arc a : SpecK → Bn with a given limit point a(0) = x ∈ XGP(3, n).

The open subset U123
GP parametrizes surfaces such that $a is contained in the

apartment that corresponds to a1, a2, a3 (for any arc converging to x).

Lemma 11.3. The restriction of the projection (P2)m+N+M → (P2)m+N to every marked

surface (X; p1, . . . , pn) parametrized by U123
GP is an isomorphism. Moreover, the restriction

to U123
GP of the induced morphism from the multigraded Hilbert scheme

H
(
(P2)m+N+M

)
→ Hilb

(
(P2)m+N

)

to the ordinary Hilbert scheme is bijective onto its image, let V be its normalization.

Proof. To prove the 1st statement, we choose an arc a and represent (X; p1, . . . , pn)

as the special fiber of the corresponding Mustafin join. Since all stable lattices are

contained in the apartment that corresponds to sections a1, a2, a3, the set $a is the set

of lattices Li, Lαβ,ij in the notation of Lemma 9.2. Thus, X is isomorphic to a subscheme

in (P2)m+N via projection. To prove the 2nd statement, it suffices to prove that the

morphisms X → P2
I parametrized by quadruples I indexed by M are uniquely determined

by the morphisms X → P2
J parametrized by quadruples J indexed by m + N. Since

$a is contained in the apartment that corresponds to the sections a1, a2, a3, for every

quadruple I = {i1, . . . , i4} indexed by M, there exists a quadruple J indexed by m+N such

that the image of the quadruple pi1 , . . . , pi4 in P2
J is in linearly general position. Thus,

the morphism X → P2
I is a composition of the morphism X → P2

J and an isomorphism

P2
J → P2

I uniquely determined by the marked surface (X; p1, . . . , pn) and its morphism to

P2
J . !

At this point, we can forget about U123
GP and work with V instead, which is a

normalization of the partial compactification of Bn in the Hilbert scheme of (P2)m+N

parametrizing limits such that all stable lattices are in the apartment that corresponds

to the 1st three sections (for some choice of an arc). The pullback X → V of the universal

family of the Hilbert scheme is smooth along n disjoint sections giving the same fibers

(X; p1, . . . , pn) as before. Composing sections with projections gives morphisms

P I
1, . . . , P I

n : V → P2
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17060 L. Schaffler and J. Tevelev

for every quadruple I of the form (1, 2, 3, i) (1st type) or (α, β, i, j) (2nd type). Note

that the points P I
1(v), P I

2(v), P I
3(v) are linearly independent for any v ∈ V. Moreover,

for quadruples of the 1st type they are the standard points e1, e2, e3. However, for

quadruples of the 2nd type only P I
α(v) and P I

β(v) are standard points e1 and e2, since

by definition (see the Introduction) P I
i (v) = e3 (and P I

j (v) = e4 = [1 : 1 : 1]). For a fixed v

and a quadruple I of the 2nd type, we can find an automorphism of P2 that sends e1 to

eα, e2 to eβ and P I
γ (v) to eγ , where {α, β, γ } = {1, 2, 3}. This automorphism is determined

uniquely up to the G2
m-action. This gives a G2N

m -torsor ψ : Ṽ → V and an isomorphism

0 : Ṽ × (P2)m+N → Ṽ × (P2)m+N ,

which is defined to be the identity on the 1st factor. Let X̃ → Ṽ be the family 0(ψ∗X ).

Since Bn is an open subset of an algebraic torus G2m−2
m and ψ is a torsor, ψ−1(Bn)

is an open subset of an algebraic torus G2(m+N)−2
m . The morphism of ψ−1(Bn) into the

Hilbert scheme of (P2)m+N given by the family X̃ agrees with the embedding of G2(m+N)−2
m

into this Hilbert scheme as in Section 8. Indeed, note that the 1st three sections of

X̃ are constant sections given by the G2
m-invariant points in P2, thus every fiber of

X̃ over ψ−1(Bn) is a P2 embedded into (P2)m+N by torus translates. Therefore, Ṽ is a

partial compactification of ψ−1(Bn) in the toric Kapranov space YQm+N
. By Lemma 9.2

and Lemma–Definition 9.5, Ṽ is an open subset of YQ′
m+N

and therefore, as claimed,

V = Ṽ/G2N
m is isomorphic to an open subset of YQ′

m+N
/G2N

m = YQ̃m
by Lemma 9.9. !

12 Study of XGP(3, 6)

In this section, we explicitly describe the compactification XGP(3, 6) using the theory

developed in Sections 8–11. We classify the 6-pointed degenerations parametrized by

XGP(3, 6), show their relation to the corresponding line arrangement degenerations

parametrized by Kapranov’s Chow quotient X(3, 6), and finally prove that XGP(3, 6)ν is

a tropical compactification of X(3, 6) given by a specific polyhedral subdivision of the

tropical Grassmannian $(3, 6).

Proposition 12.1. Up to permuting the labels, the degenerations parametrized by the

planar locus UGP(3, 6) are listed in Tables 14, 15, and 16.

Proof. We first classify all cones in the quotient fan Q3, that is, all possible

decompositions S(v) for integral v ∈ (R2)3. All the possibilities are computed in
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[3, Figure 6], and we list them in Table 3. Then, we need to classify all cones in the

fan Q̃3, that is, all possible subdivisions S̃(v), which are listed in Tables 5 and 6. From

these, we can determine the corresponding central fibers X of Mustafin joins by Remark

5.3.

Next, we need to put markings p1, . . . , p6 on X. First, we choose three labeled

points pi, pj, pk and put them in the three vertices of the degeneration (we do not always

choose just p1, p2, p3 for the reason explained in Remark 12.2). These three points are in

general linear position in all primary components. By Proposition 9.10, the remaining

“light” points are arranged according to Proposition 8.10, so that the i-the point belongs

to the component that corresponds to (vi, v′
i). As a guide, case #8 was already worked

out in Example 7.14. The final result is depicted in Tables 14, 15, and 16. !

Remark 12.2. The numbering of the degenerations in Tables 14, 15, and 16 is

determined as follows. Given a ∈ (P2)6(K) in general linear position over K, we have

x = a(0) ∈ XGP(3, 6). Interpreting a as a one-parameter family of lines in (P2)∨ instead,

we obtain another limit y ∈ X(3, 6), and x 0→ y under the morphism XGP(3, 6) → X(3, 6).

Recall that the boundary of Kapranov’s compactification X(3, 6) is stratified according

to the regular matroid polytope subdivisions of the hypersimplex #(3, 6). These are

listed up to S6-action in [2, Table 4.4]. Each boundary stratum corresponds to degenerate

KSBA stable pairs listed in [2, Figures 5.11, 5.12, and 5.13] (notice that the degeneration

#16 corresponds to the matroid subdivision no. 16 in [2, Table 4.4] with (3) x1234 ≤ 2,

x12 ≤ 1 instead).

We claim that a degeneration of six points in P2 labeled by #N in our tables

is mapped to the interior of the Kapranov’s stratum #N. To establish this matching,

let us first look at an example. Assume y belongs to the interior of the Kapranov’s

stratum corresponding to the matroid polytope subdivision no. 8 in [2, Table 4.4]. This

gives rise to the degenerate line arrangements in P2 in the 1st row of Table 8. The

projective dual of these line degenerations are in the 2nd row of the same table. Now,

the marking of (P($a)k; a1(0), . . . , a6(0)) parametrized by x must be such that on the

primary components the image of the markings are given in the 2nd row of Table 8. Such

degeneration is given in Figure 12. One can inspect case by case that the degenerations

listed in Tables 14 and 15 match bijectively the matroid subdivisions in [2, Table 4.4].

We deal with the Kapranov’s stratum #7 separately in Lemma 12.5. Lastly, in Table 16,

the numbering #12.1, #15.1, and so on correspond to the stretches of spiders in Table 6.
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17062 L. Schaffler and J. Tevelev

TABLE 8 In the 1st row, degenerate line arrangements corresponding to three matroid polytopes

in subdivision no. 8 in [2, Table 4.4]

Next we describe the boundary stratification of X(3, 6) and construct its explicit

blow up X̂(3, 6) based on the analysis of the toroidal morphism of planar loci UGP(3, 6) →
U(3, 6). Then we will add an ad hoc analysis of the non-planar locus to prove X̂(3, 6) ∼=
XGP(3, 6)ν . The space X(3, 6) = G0(3, 6)/G5

m is a very affine variety, that is, a closed

subset of the torus

T = G(6
3)−1

m /G5
m.

It was proved in [22] that Kapranov’s compactification X(3, 6) can be obtained as

the Zariski closure of X(3, 6) inside the toric variety Y$(3,6) with dense open subtorus T,

where the fan $(3, 6) is the tropical Grassmannian of Speyer–Sturmfels in [27]. Moreover,

X(3, 6) is tropical, which means that X(3, 6) is proper and the multiplication map

T × X(3, 6) → Y$(3,6)

is faithfully flat ([28, Definition 1.1]). Even better, Luxton proves in [22] that the

multiplication map is smooth (and so X(3, 6) is schön [28, Definition 1.3]). Adopting the

notation in [22], the fan $(3, 6) has three types of rays, which correspond to boundary

divisors of X(3, 6). In parentheses, we give the corresponding notation from [27].

(1) For each triple of distinct indices i, j, k ∈ [6], we have a ray (ijk) (rays of

type E).

(2) For each pair of distinct indices i, j ∈ [6], we have a ray (ij) (rays of type F).
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TABLE 9 Correspondence between strata of X(3, 6) and cones of $(3, 6)

#1 (123) #14 (12)(34)(56), (356)

#2 (123), (456) #15 (12)(34)(56), (12), (56)

#3 (124), (456) #16 (12), (56), (124)

#4 (456), (124), (135) #17 (12)(34)(56), (125), (12)

#5 (56) #18 (12)(34)(56), (356), (12)

#6 (56), (123) #19 (12)(34)(56), (125), (356)

#7 (123), (145), (246), (356) #20 (12)(34)(56), (12)(56)(34), (12), (34), (56)

#8 (56), (156) #21 (12)(34)(56), (34), (56), (256)

#9 (123), (56), (156) #22 (12)(34)(56), (34), (256), (346)

#10 (234), (56), (156) #23 (34), (56), (134), (256)

#11 (12)(34)(56) #24 (34), (56), (134), (156)

#12 (56), (34) #25 (12)(34)(56), (234), (456), (125)

#13 (12)(34)(56), (56)

(3) For each partition {{i, j}, {k, '}, {m, n}} of [6], we have two distinct rays

denoted by (ij)(k')(mn) and (ij)(mn)(k') (these are the rays of type G in [27]).

There is a bijective correspondence between the boundary strata of X(3, 6) and

the toric strata of Y$(3,6), that is, the cones of $(3, 6). Explicitly, up to S6-action, consider

the labeling of the strata of X(3, 6) given in [2]. Then this correspondence is given in

Table 9.

Note that only the cone #20 (of type FFFGG) is not simplicial. These cones are

known as the bipyramid cones: each one can be obtained by taking the cone over an

appropriate triangular bipyramid, which is the gluing of two tetrahedra along a common

facet.

Definition 12.3. Let σ ∈ $(3, 6) be a bipyramid cone. We write σ = 〈e1, e2, e3, e4, e′
4〉,

where e1, e2, e3 are the vertices of the common base of the two pyramids, and split it

into the following 12-cones

σijk = 〈ei, ei + ej, ei + ej + ek, e4〉, σ ′
ijk = 〈ei, ei + ej, ei + ej + ek, e′

4〉,

where {i, j, k} = {1, 2, 3}. By also splitting the cones #21, #23, and #24 as illustrated in

Table 10, we obtain a refinement $̂(3, 6) of the fan $(3, 6). We define X̂(3, 6) to be the
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17064 L. Schaffler and J. Tevelev

closure of X(3, 6) inside the smooth toric variety Y$̂(3,6). We have a commutative diagram

Since $̂(3, 6) refines $(3, 6), it follows by [28, Proposition 2.5] that X̂(3, 6) is a

tropical compactification of X(3, 6) and its morphism to X(3, 6) is toroidal.

Remark 12.4. Kapranov’s compactification X(3, 6) is singular at exactly 15 isolated

points each locally isomorphic to the cone over P1 × P2 ([22, Theorem 4.2.4]). The 15

singular points are the strata that correspond to the bipyramid cones in $(3, 6). These

singularities admit two small resolutions related by a flop: let X1(3, 6) (resp. X2(3, 6))

be the small resolution with an exceptional locus isomorphic to P1 (resp. P2). There is

also the blow up X′
(3, 6) of the cone singularities with exceptional divisor P1 × P2. All

these compactifications are tropical and correspond to refinements of $(3, 6): $1(3, 6)

is obtained by splitting each bipyramid into its two pyramids, $2(3, 6) is obtained by

adding to each bipyramid the segment that joins the two opposite vertices, and finally,

$′(3, 6) is the common refinement of $1(3, 6) and $2(3, 6). The space X̂(3, 6) is obtained

from X′
(3, 6) by blowing up the codimension 2 strata of type #12. Summarizing, we have

the following commutative diagram:

Proof of Theorem 1.7. Consider the birational map f : X̂(3, 6) ""# XGP(3, 6)ν , which

is an isomorphism over X(3, 6). We first show that f is an isomorphism over the open

planar locus UGP(3, 6) ⊆ XGP(3, 6)ν . Since UGP(3, 6) is the union of the open subsets Uijk
GP

for all triples of distinct indices, it suffices to show that f is an isomorphism over U123
GP .
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TABLE 10 The refinement $̂(3, 6) of the tropical Grassmannian

Recall from Section 11 that U123 ⊆ X(3, 6) is isomorphic to the open subset V ⊆ YQ∨
3
. Let

Û123 ⊆ X̂(3, 6) be the preimage of U123 under the morphism X̂(3, 6) → X(3, 6). Finally, let

V̂ ⊆ YQ̃3
be the open subset A123(U123

GP ) as in Definition 11.1. We claim that f induces an

isomorphism Û123
GP

∼= V̂, so that we have a commutative diagram

Since both spaces are obtained by toroidal blow ups of strata of the same variety
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17066 L. Schaffler and J. Tevelev

TABLE 11 On the left, subdivisions of R2 giving cones in Q∨
3 which correspond to points in V.

These cones are refined by Q̃3 on the right

U123, it suffices to prove that the strata match. We compare the refinements $̂(3, 6) $
$(3, 6) and Q̃3 $ Q∨

3 . The maximal cones in $(3, 6) which are split in $̂(3, 6) and that

correspond to points in U123 are the cones #20, #24, and #21 in Table 9. Under the

isomorphism U123 → V, these cones correspond to the cones of Q∨
3 in the left column

of Table 11. The cones in $(3, 6) are split as in Definition 12.3, which matches the

refinement given by the maximal cones in Q̃3 in the right column of Table 11. The three

thickened segment lengths x1, x2, x3 satisfy x1 > x2 > x3. Different choices of inequality

yield a total of 12 different cones in Q̃3, which match the splitting in $̂(3, 6) of the

bipyramid cone. This implies that Û123 ∼= V̂.

Next we study f over the non-planar locus of XGP(3, 6)ν . Let x ∈ XGP(3, 6) \
UGP(3, 6) and let y ∈ X(3, 6) be the image of x. Then y is in the interior of the strata

#7, #2, #10, or #23 – these are the only degenerations in [2, Figures 5.11, 5.12, and 5.13]

which do not have a triple of lines in general linear position in each primary component.

Each stratum #7 is an isolated point of the non-planar locus. By the description of the

fan $̂(3, 6), the morphism X̂(3, 6) → X(3, 6) is a local isomorphism over this stratum. By
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normality, it suffices to show that XGP(3, 6) contains a unique point over each stratum

#7, which is proved in Lemma 12.5.

Next we study f over the preimage of the closed strata #2 = (ijk), (lmn) in

X(3, 6), which contains the strata #10 and #23 in its interior. By [22, Theorem 4.2.9],

the boundary strata (ijk) are isomorphic to M0,6 and each stratum #2 = (ijk), (lmn)

corresponds to a boundary stratum of M0,6 isomorphic to P1 × P1, which we denote

by S. The boundary divisors of type (ij), (ik), (jk) restrict to S giving three distinct

parallel rulings, which are strata #10. The pairwise intersections of these rulings with

the analogous restrictions of the boundary divisors of type ('m), ('n), (mn) give nine

0-dimensional boundary strata #23. It follows from this analysis and the structure

of the refinement $̂(3, 6) in Table 1 that the preimage Ŝ of S under the blow up

X̂(3, 6) → X(3, 6) is Bl9S, the blow up of S at the nine 0-dimensional boundary strata

#23. Let SGP ⊆ XGP(3, 6) be the preimage of S. By Lemma 12.7, the morphism SGP → S

induces a bijective normalization morphism Ŝ ∼= Bl9S → SGP. Take x ∈ SGP and take any

a : Spec(K) → B6 with limit x. Denote by z ∈ Ŝ ⊆ X̂(3, 6) the corresponding limit of f −1◦a.

In the proof of Lemma 12.7 we showed that x only depends on z and not on the choice of

a. This shows that f is regular at z by [11, Theorem 7.3]. Since f is finite and birational,

XGP(3, 6)ν ∼= X̂(3, 6). !

Lemma 12.5. XGP(3, 6) contains a unique point over each stratum #7 in X(3, 6).

Proof. Consider the following one-parameter family a(t) of six points in P2:

a1(t) = [1 : 0 : 0], a2(t) = [0 : 1 : 0], a3(t) = [0 : 0 : 1], a4(t) = [1 : 1 : 1],

a5(t) = [c1t : 1 : 1 + c2t], a6(t) = [1 + c3t : 1 : c4t],

where c1, . . . , c4 ∈ R \ {0}. Let λ1, . . . , λ4 be the valuations of c1, . . . , c4, respectively. The

limit points for t = 0 are the double points of the line arrangement in Figure 20 given by

the following:

'126 = {x3 = 0}, '145 = {x2 = x3}, '235 = {x1 = 0}, '346 = {x1 = x2}.

The stable lattices and the corresponding stabilized quadruples are the

following:

• L0 = e1R + e2R + e3R stabilizes (1, 2, 3, 4), (1, 3, 5, 6), (2, 4, 5, 6);

• L1 = tλ1+1e1R + e2R + e3R stabilizes (1, 2, 3, 5), (2, 3, 4, 5), (2, 3, 5, 6);

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/21/17000/6344680 by U
niversity of M

assachusetts - Am
herst user on 21 N

ovem
ber 2022



17068 L. Schaffler and J. Tevelev

Fig. 20. Degeneration of six points in P2.

• L2 = e1R + e2R + tλ4+1e3R stabilizes (1, 2, 3, 6), (1, 2, 4, 6), (1, 2, 5, 6);

• L3 = e1R + tλ2+1e2R + (e2 + e3)R stabilizes (1, 2, 4, 5), (1, 3, 4, 5), (1, 4, 5, 6);

• L4 = tλ3+1e1R + (e1 + e2)R + e3R stabilizes (1, 3, 4, 6), (2, 3, 4, 6), (3, 4, 5, 6).

We now compute the 6-pointed degenerate central fiber P($a)k. Let us start by

observing that the induced linear spaces on P(L0)k are given by

WL0
(L1) = {x1 = 0}, WL0

(L2) = {x3 = 0}, WL0
(L3) = {x2 = x3}, WL0

(L4) = {x1 = x2}.

In particular, the primary component in P($a)k corresponding to L0 is isomorphic to

P2. On the other hand, let i, j be distinct nonzero indices. Then WLi
(L0) is a point by

Remark 5.5 (note that Li ⊆ L0 and WL0
(Li) is a line). Moreover, WLi

(Lj) is a line again by

Remark 5.5 (Li " Lj and Lj " Li). So the primary component Si in P($a)k corresponding

to Li is isomorphic to F1. The secondary components of P($a)k can be understood as

follows. If i, j are distinct nonzero indices, then the central fiber P(L0, Li, Lj)k is as shown

in Figure 4, and there is a unique secondary component Tij isomorphic to P1 × P1. Note

that the center of the blow up P($a) → P(L0, Li, Lj) does not intersect Tij. In conclusion,

P($a)k has six secondary components Tij isomorphic to P1×P1, each one glued along two

of its incident rulings to a fiber in each Si, Sj. The components S1, . . . , S4 are then glued

along their exceptional curves to P2 along the lines WL0
(L1), . . . , WL0

(L4), respectively.

The resulting surface P($a)k is pictured in Figure 21. It is independent from c1, . . . ,

c4 ∈ R \ {0}.
Let us determine the limits a1(0), . . . , a6(0) ∈ P($a)k. Under the birational

morphism P($a) → P(L0), the irreducible components of P($a)k mapping to '126 (resp.

'145) are S2, T12, T23, T24 (resp. S3, T13, T23, T34). This implies that the limit point aL0
1 (0) =
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Compactifications of Moduli 17069

Fig. 21. Dual complex of the degeneration discussed in Lemma 12.5.

'126 ∩ '145 is on T23. By the same reasoning, we have that

a1(0) ∈ T23, a2(0) ∈ T12, a3(0) ∈ T14, a4(0) ∈ T34, a5(0) ∈ T13, a6(0) ∈ T24.

Finally, we count the moduli associated to the choice of the six markings on the

Tij components of P($a)k. We show that we can find an appropriate automorphism

of the surface P($a)k that fixes the six markings. Consider S1, which is glued to

T12, T13, T14 along three rulings f12, f13, f14, respectively. The automorphism group of S1

that preserves the (−1)-section and the rulings f12, f13, f14 is three dimensional, and we

can choose one of such automorphisms ϕ1 that fixes the images on S1 of the limits

a2(0) ∈ T12, a3(0) ∈ T14, a5(0) ∈ T13. Consider the analogous automorphisms ϕ2, ϕ3, ϕ4

for S2, S3, S4, respectively. We can choose an appropriate ψij ∈ Aut(Tij) acting on the two

rulings in such a way that ψij, ϕk, idP(L0)k glue to a global automorphism of P($a)k, which

fixes the six markings. !

Next we consider the non-planar locus in XGP(3, 6)ν dominating the closed

stratum #2 in X(3, 6). First, we classify degenerations parametrized by it.
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17070 L. Schaffler and J. Tevelev

TABLE 12 Dual spiders for the degenerations #2, #10, and #23 of six lines in (P2)∨, and the

corresponding spiders for the degenerations of six points P2

Fig. 22. Cross-ratio β in a degeneration of six points in P2 parametrized by a point in XGP(3, 6)ν

over the (closed) stratum #23 in X(3, 6).

Lemma 12.6. The 6-pointed degenerations of P2 parametrized by points in XGP(3, 6)

over the (closed) stratum of type #2 in X(3, 6) are depicted in figures #2, #10, #23, and

#23.1 in Table 13.
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Proof. Let x ∈ XGP(3, 6) be a point over a point y ∈ X(3, 6) in the (closed) stratum

#2. From the possible Kapranov’s degenerations #2, #10, and #23 parametrized by y,

which can be found in [2, Figures 5.12 and 5.13], we conclude that all stable lattices

are contained in one apartment. For clarity, let us point out that this apartment is

not determined by a triple of sections as for degenerations parametrized by the planar

locus. Instead, the point y is in the image of the planar locus in X(3, 7) with respect

to the forgetful map. By considering combinatorial types of the dual spiders giving

the degenerations of (P2)∨ parametrized by y and the corresponding usual spiders,

we compute the resulting degenerations of P2, taking into account that stretching the

spiders may yield different degenerations. This is summarized in Table 12. For each pair,

on the left, we give dual spiders in one apartment for the degenerations #2, #10, and #23

of six lines in (P2)∨, and on the right the corresponding spiders for the degenerations

of six points in P2. Finally, we add to these degenerations of P2 six marked points as

prescribed by Lemma 7.13. !

Lemma 12.7. Let S ⊆ X(3, 6) be a (closed) stratum of type #2 and let SGP ⊆ XGP(3, 6)

be its preimage. The birational morphism SGP → S induces a bijective normalization

morphism Bl9S → SGP, where Bl9S is the blow up of S at the nine double points (strata

#23) of the arrangement of six rulings (strata #10).

Proof. Consider a general one-parameter family of six lines

a(t) = ([1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], [1 : c1 : c2t], [1 : 1 + c3t : c4])

in (P2)∨ limiting to a point y ∈ X(3, 6) in the open stratum #2. Here c1, . . . , c4 ∈ R\{0} and

c1(0), c4(0) -= 0, 1. It can also be viewed as a general one-parameter family of six points

in P2 with limit x ∈ XGP(3, 6)ν . We want to show that x only depends on y, and not on

the choice of the arc a. The degeneration of P2 parametrized by x is pictured in Table 13,

#2, and it only depends on the two cross-ratios we are about to describe. The limits in

P2 of the six points in a lie on the two lines x3 = 0 and x1 − x2 = 0, which intersect at

[1 : 1 : 0]. So consider the quadruple [1 : 0 : 0], [0 : 1 : 0], [1 : c1(0) : 0], [1 : 1 : 0] on the 1st

line, and [1 : 1 : 1], [0 : 0 : 1], [1 : 1 : c4(0)], [1 : 1 : 0] on the 2nd line. Their cross-ratios

are c1(0) and c4(0), respectively. On the other hand, let '1, . . . , '6 be the lines in (P2)∨

corresponding to the six points in a. In the limit, '1, '2, '5 (resp. '3, '4, '6) pass through

[0 : 0 : 1] (resp. [1 : −1 : 0]). Let ' be the line passing through [0 : 0 : 1] and [1 : −1 : 0]. The

stable pair parametrized by y ∈ X(3, 6) is pictured in [2, Figure 5.12], #2 (note that the
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17072 L. Schaffler and J. Tevelev

TABLE 13 Non-planar degenerations parametrized by XGP(3, 6)

labels used for the lines in this proof do not match the ones in the figure), and the limits

of '1, '2, '5, ' and '3, '4, '6, ' determine four points on each one of the two irreducible P1

in the double locus. The degeneration parametrized by y ∈ X(3, 6) only depends on the

cross-ratios of these two quadruples, which are equal to c1(0) and c4(0) respectively. In

conclusion, x only depends on y, and not on the tangent direction of the arc limiting

to y.

We apply the same strategy for a point x ∈ XGP(3, 6)ν in the preimage of the

interior of the stratum #10. The general one-parameter family of six points in P2 with

limit x is

a(t) = ([1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], [1 : c1 : c2t], [1 : 1 + c3t : c4t]),

where c1, . . . , c4 ∈ R \ {0} and c1(0) -= 0, 1. Viewing this as a family of lines, we obtain a

limit y ∈ X(3, 6). The degeneration parametrized by x depends on one cross-ratio, which

is determined by [1 : 0 : 0], [0 : 1 : 0], [1 : c1(0) : 0], [1 : 1 : 0] on the line x3 = 0 and equals

c1(0). Consider the corresponding degeneration of six lines parametrized by y ∈ X(3, 6),

which is pictured in [2, Figure 5.12], #10. This degeneration is determined by the cross-

ratio of four points on the gluing locus between P1 × P1 and F1. These four points are
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TABLE 14 Planar degenerations parametrized by XGP(3, 6)

cut out by another curve in the double locus and the limits of '1, '2, '5. Their cross-ratio

is equal to c1(0).

The general one-parameter family limiting to y ∈ X(3, 6) in the (closed) stratum

#23 is given by

a(t) = ([1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], [1 : 1 + c1t : c2t], [1 : 1 + c3t : c4t]),

where c1, . . . , c4 ∈ R \ {0}. Here we interpret the arc as a one-parameter family of lines

'1, . . . , '6 in (P2)∨. Consider the cross-ratio morphisms γ1, γ2 : X(3, 6) → P1 given by

restricting the lines '1, '2, '5, '6 to '3 and '3, '4, '5, '6 to '1. Then (γ1, γ2) induces a local

isomorphism near y between S and P1×P1. A simple calculation shows that the limits as

t → 0 of the derivatives with respect to t of γ1(a(t)) and γ2(a(t)) are equal to c3(0)−c1(0)
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TABLE 15 Planar degenerations parametrized by XGP(3, 6), continued

and c4(0)−c2(0), respectively. We claim that the limit as t → 0 of the arc a(t) in XGP(3, 6)

is uniquely determined by the point [c1(0)− c3(0) : c4(0)− c2(0)] ∈ P1. In P2, consider the

cross-ratio of the following four points on the line x2 = 0: [1 : 0 : 0], [0 : 0 : 1], [1 : 0 : 1],

and the intersection of x2 = 0 with the line spanned by a5(t), a6(t), which is given by

[c1 − c3 : (c4 − c2) + (c1c4 − c2c3)t]. Denote by β its limit for t → 0.
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TABLE 16 Further planar degenerations that come from the stretches in Table 6
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This cross-ratio manifests itself in the 6-pointed degeneration X of P2

parametrized by the limit x ∈ XGP(3, 6)ν over the (closed) stratum #23 in X(3, 6) as

follows. Assume that the degenerate surface X parametrized by x is obtained by gluing

five copies of F1, three copies of P1 × P1, and one copy of the blow up of P2 at two

points, and that the limit points are as shown in Figure 22. Denote these surfaces by

F1, . . . , F5, P1, P2, P3, B, respectively. On F1 (resp. F5) let f1, f2 (resp. f3, f4) be the rulings

passing through the points marked by 1, 2 (resp. 3, 4). These induce other two rulings

f ′
1, f ′

2 (resp. f ′
3, f ′

4) on F2 (resp. F4). The rulings f ′
1, . . . , f ′

4 intersect F3 in four points

p1, . . . , p4, respectively. Let r5 (resp. r6) be the ruling in P1 (resp. P3) passing through

the point marked by 5 (resp. 6) and intersecting B into a point q5 (resp. q6). There is

a unique line ' in B ∼= Bl2P2 disjoint from the two exceptional divisors, which passes

through q5 and q6. This line ' intersects in a point p the strict transform in B of the line

passing through the two points blown up. The point p lies in the exceptional divisor

of F3, and it is contained in a unique ruling f . Now consider the line '13 (resp. '24)

in F3 spanned by p1 and p3 (resp. p2 and p4). On the line '13, we have four distinct

points p1, p3, '13 ∩ '24, '13 ∩ f , and denote their cross-ratio by β ′ (this construction is

reproduced in Figure 22). Note that F3 is the primary component corresponding to the

standard lattice L0 = e1R+e2R+e3R with respect to which the arc a(t) was given above,

and β was constructed inside P(L0)k ∼= P2 in the same way we did for β ′. Therefore,

β ′ = β -= 0, ∞, and it characterizes the isomorphism type of the 6-pointed degeneration

X. The extreme cases β = 0, ∞ correspond to the following further degenerations of

X in Table 13, #23.1. The surface F3 ⊆ X further breaks into the gluing of a surface

P ∼= P1 × P1, and a surface T ∼= P2 along a ruling of P and a line in T. Without loss

of generality, assume that P is glued with F2. In this case, the line '13 breaks into two

irreducible components, and the analogues of the points p1, p3, '13 ∩ '24, '13 ∩ f split

into two groups {p1, '13 ∩ f }, {p3, '13 ∩ '24}, where p1, '13 ∩ f lie on the surface P and

p3, '13 ∩ '24 on T. This together with the other degeneration where P is glued to F4

instead, correspond, up to order, to the two cross-ratios β = 0, ∞.

This shows that we have morphisms Bl9S → SGP → S, where the 1st morphism

is a bijective normalization. !
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