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Abstract—Bikebot manipulation has advantages of the
single-track robot mobility and manipulation dexterity. We
present a coordinated pose control of mobile manipulation
with the stationary bikebot. The challenges of the bikebot
manipulation include the limited steering balance capability
of the unstable bikebot and kinematic redundancy of the
manipulator. We first present the steering balance model to
analyze and explore the maximum steering capability to bal-
ance the stationary platform. A balancing equilibrium man-
ifold is then proposed to describe the necessary condition
to fulfill simultaneous platform balance and posture con-
trol of the end-effector. A coordinated planning and control
design is presented to determine the balance-prioritized
posture control under kinematic and dynamic constraints.
Extensive experiments are conducted to demonstrate the
mechatronic design for autonomous plant inspection in
agricultural applications. The results confirm the feasibility
to use the bikebot manipulation for plant inspection with
end-effector position and orientation errors about 5 mm and
0.3 degs, respectively.

Index Terms—Balance control, bicycle control, mobile
manipulation, task priority planning, underactuated robots.

I. INTRODUCTION

M
OBILE manipulation integrates a mobile robot with

an onboard multilink manipulator to expand workspace

and improve capability for complex manipulation tasks [1]–[3].

Mobile manipulation can be built on wheeled, legged, or aerial

platforms and the applications include agriculture harvesting

[4], mobile cranes [5], underwater archaeology [6], and aerial
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manipulation [7], [8], etc. The advantages of the mobile manip-

ulation come at the cost of coordinated planning and control [9].

The coupled dynamics of the mobile platform and manipulator is

one of the design challenges [10]. Unknown or uncertain robot-

environment interactions bring additional complexity for control

of mobile manipulation [5], [11]. For instance, a wheeled/legged

mobile robot would fall down when moving on a steep or rocky

field [12]. For aerial manipulation, interaction forces generates

large disturbances for robot motion and control due to limited

actuation of the quadrotors [7], [13].

Coordinated planning and control is critical when the mobile

platform is unstable or in complex, dynamic environments.

Balance control of unstable platform is among the highest pri-

ority tasks for mobile manipulation. In [14], a model predictive

control was presented for collaborative manipulation, balanc-

ing, and interaction of a ball-based three degree-of-freedom

(DOF) manipulator. In [15], a single spherical wheel-based

“ballbot” was used as the platform for mobile manipulation and

a balance motion control was developed for the underactuated,

nonholonomic robot. For kinematic redundant manipulators,

task-priority control takes advantage of design space in the

null space of the Jacobian matrix. Optimization-based velocity

control was designed to specify tasks from the highest to lowest

priorities [16]–[18].

In this article, we present a mobile manipulation system that

is built on a bikebot (i.e., autonomous bicycle). A six-DOF

lightweight manipulator is mounted on the bikebot and the

system was developed for agricultural applications, such as

autonomous plant inspection and scouting [19]. All existing

agricultural robots are built on double-track mobile platform

and their energy consumption is much higher than that of single-

track mobile robots, such as bikebot [20]. It is challenging for

double-track robots to navigate in narrow, cluttered spaces and

to actively probe and flexibly inspect objects under the canopy

of densely grown, tall plants. Light-weight bikebot provides

additional advantages for small footprints that potentially avoid

potential severe soil compaction [21]. Steering and speed control

of autonomous one-wheel-steered bikebot has been reported

(e.g., [22], [23]), but balance control of two-wheel steered-

bikebot for manipulation has not been studied. Because of the

unstable platform and limited actuation, assistive devices were

used to generate additional balance torque [24]–[27]. However,

the additional balance actuators increase the systems complexity

and operation cost. In this work, steering is used as the only

actuation for balancing the stationary platform.
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Fig. 1. (a) Prototype of the two-wheel steered bikebot mobile manipulation system. (b) Side-view configuration of the bikebot manipulation system.
(c) Fron-view schematic of the bikebot roll motion.

We focus on stationary balance of the bikebot manipulation

for several reasons. First, it is more challenging to balance a

stationary bikebot than a moving platform. With front wheel

steering actuation, the bikebot can be only balanced within a

small range of roll motion at stationary (i.e., 2–3 degs) [28], [29].

It is desirable to design new mechanisms and control methods

to enlarge the controllable roll motion range for practical appli-

cations. Second, many applications, such as plant inspection

require that the mobile platform stays stationary, while the

onboard manipulator conducts the visual inspection or sample

manipulation tasks. Therefore, robotic applications require the

stationary balance capability.

This article presents the coordinated control of the bikebot

and manipulator to enhance the stationary balance and posture

control. The use of two-wheel steering and onboard manipulator

enhances the balance capability. We first present a dynamic

model of the system. A steering balance model is presented

to analyze the steering configuration and maximize the balance

capability. The balance condition is captured by an extended bal-

ance equilibrium manifold (BEM) of the mobile manipulation

system. A BEM-enabled coordinated trajectory planning and

control design is presented to achieve a balance-prioritized pos-

ture control. We conduct extensive experiments to validate and

demonstrate the performance of the mechatronic and control de-

sign. The main contributions of this work are twofold. First, the

presented two-wheel steering actuation analysis and model are

innovative and provide a guidance on how to use the two-wheel

steering design to increase balance capability of single-track

mobile robots. It further explains the steering-induced balance

capability differences between the single-track robot, such as bi-

cycles and other two-wheel Segway-like balance robots. Second,

the proposed coordinated motion control integrates the dynamic

balance requirements with the task priority-based planning of a

kinematic redundant manipulator. The extended BEM provides

a new control approach to integrate the dynamic and kinematic

constraints for mobile manipulation.

The rest of this article is organized as follows. Section II

presents the problem statement and the systems dynamics. In

Section III, we analyze the two-wheel steering mechanism and

discuss the balance torque model. Section IV presents the coor-

dinated pose control of the mobile manipulation. Experimental

results are presented in Section V. Finally, Section VI concludes

this article.

II. PROBLEM STATEMENT AND SYSTEMS DYNAMICS

A. System Configuration and Problem Statement

Fig. 1(a) shows the prototype of the bikebot manipulation.

Fig. 1(b) illustrates the side-view schematic of the kinematic

configuration and Fig. 1(c) for a front-view of the system. An

n-link lightweight manipulator with end-effector E is mounted

on the bikebot body frame at point S. The two wheel/ground

contact points are denoted as C1 and C2 and the wheelbase is

denoted as l. Two sets of coordinate frames are introduced:

Inertial frame I and body frame Fi for the ith manipulator

link, i = 1, . . . , n. Frame Fi is constructed by following the

DH parameter convention [30]. F0 and Fn are for the base

(platform) and end-effector frames, respectively. The horizontal

and vertical distances from the bikebot’s mass centerG toC1 are

denoted as l/2 and hG, respectively. The front and rear steering

mechanisms are symmetric with same caster angle ε.

The bikebot’s steering and roll angles are denoted as φ and

ϕb, respectively. For both front and rear steering angles, the

positive direction is defined as the counterclockwise about the

steering axis. We define Θ = [θ1 · · · θn]
T as the manipulator

joint angles. The generalized coordinates of the system are

denoted as q = [ϕb Θ
T]T ∈ Q ⊂ R

n+1, where Q is admissible

set for q. We denote the pose (i.e., position and orientation) of

end-effector E in I as ξe ∈ R
6.

Problem Statement: Given a set of Nξ desired poses {ξke}
Nξ

k=1,

Nξ ∈ N, the goal is to design a planning and control method for

the bikebot manipulation (i.e., steering and joint angles control)

to let end-effector E go through and hold stationary for short

time at each ξke , k = 1, . . . , Nξ .

B. Systems Dynamics

We use DH parameters (θi, di, ai, αi) for the ith link of the

manipulator, i = 1, . . . , n. The homogeneous transformation

matrix from Fi to F0 is written as [31]

Ti(q) = A0
1A

1
2 · · · A

i−1
i (1)
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where Ai−1
i denotes the transformation from Fi to Fi−1 as

Ai−1
i =

[

Ri−1
i pi

01×3 1

]

. (2)

Ri−1
i = Rz(θi)Rx(αi), Rj(β) ∈ SO(3), j = x, y, z, denotes

the rotational matrix about j-axis with angle β, pi =
[ai cos θi ai sin θi di]

T is the corresponding position vector in

Fi−1. With (1), we write the pose of end-effector E in F0 as

ξF0

e = ξF0

e (Tn(q)).
We denote the mass center position of the ith link in F0 as

p0
ic

and its position in I is pic = RI
0 (p0 + p0

ic
), where p0 is

the position vector of point S in I. The linear velocity v0
ic

and

angular velocity ω0
ic

of the ith link in F0 are obtained as

ξ̇
F0

ic
=

[

(

v0
ic

)T (

ω0
ic

)T
]T

= J icΘ̇ (3)

where J ic ∈ R
6×n is the Jacobian from Fi and F0. Therefore,

the linear velocity vic and angular velocity ωic in I are

vic = ωb ×RI
0 (p0 + p0

ic
) +RI

0v
0
ic
,ωic = ωb +RI

0ω
0
ic

(4)

where ωb = [ϕ̇b 0 0]T is the platform roll angular velocity in

F0.

The dynamic model of the mobile manipulation system is

obtained through Lagrange’s equations. The system’s kinetic

and potential energies are

T = Tb +

n
∑

i=1

Ti, U = Ub +

n
∑

i=1

Ui (5)

where Tb =
1
2
ωT

bIbωb +
1
2
mbv

T
GvG is the kinetic energy for

the bikebot and for the ith link of the manipulator Ti =
1
2
miv

T
ic
vic +

1
2
ωT

ic
RI

i Ii(R
I
i )

Tωic ; mb and mi are, respec-

tively, the masses for the bikebot and the ith link, vG is the

velocity of the mass center G; Ib ∈ R
3×3 and Ii ∈ R

3×3 are

the inertia matrices for the bikebot about G and the ith link

about its mass center, respectively. For potential energy terms

in (5), for the bikebot, Ub = mbg(pG · ez +∆hG) and for the

ith link, Ui = migpic · ez , where pG is the position vector of

G in I, g = 9.8 m/s2 is the gravitational constant, unit vector

ez = [0 0 1]T, and∆hG is the height change ofG due to steering

actuation [32].

The dynamic model is obtained by the Lagrangian method as

D (q) q̈ +C (q, q̇) q̇ +G (q) = τ

where D(q) ∈ R
(n+1)×(n+1), C(q, q̇) ∈ R

(n+1)×(n+1), and

G(q) ∈ R
n+1 are the inertia, Coriolis, and gravitational ma-

trices, respectively. We omit the details for these lengthy ma-

trices. The generalized force τ = [τb τ
T
θ ]

T ∈ R
n+1 includes the

controlled steering-induced balance torque τb and joint torque

vector τ θ ∈ R
n for the manipulator. We further write the above

model in the following block matrix form:
[

Dbb Dbθ

Dθb Dθθ

][

ϕ̈b

Θ̈

]

+

[

Cb

Cθ

]

q̇ +

[

Gb

Gθ

]

=

[

τb

τ θ

]

(6)

where the block matrices are in appropriate dimensions and their

dependencies on q and q̇ are dropped for presentation brevity.

Fig. 2. Illustration of the steering mechanism and analysis. (a) Wheel
plane geometry under steering angle increment δ. Wheel contact point
changes from C to C ′. (b) Wheel contact points C1C2 move to C ′

1 C ′
2 un-

der a small steering angle increment δ and the geometric relationships
between Gg and wheelbase line C ′

1C
′
2.

We will derive the steering-induced torque model for τb in the

next section.

III. STEERING BALANCE MODEL

In this section, we analyze the steering mechanism and de-

rive a model to obtain the configuration that produces maxi-

mum steering-induced balance torque. Fig. 2(a) illustrates the

schematic of the steering effect. We denote the wheel frame as

FO with wheel centerO and the zO-axis is along the steering axis

and the yO-axis is perpendicular to the wheel plane. The projec-

tion of O on the ground is denoted as Og and the wheel/ground

contact point as C. We consider quasi-static steering motion

such that steering angle φ is built on an initial steering angle φ0

with a small increment δ, namely, φ = φ0 + δ. Increment δ is

small and the position change of point G under δ is negligible.

The orientation of the wheel plane with respect to frame I is

approximately obtained by three successive rotations: First −φ
about the zO-axis, then −ϕb about the xO-axis, and finally −ε
about the yO-axis. With this observation, we obtain the rotational

transformation from FO to I as

RI
FO

= Ry(−ε)Rx(−ϕb)Rz(−φ). (7)

We denote the angle between the wheel plane and the ground as

γ and it is straightforward to obtain

cos γ = RI
FO

ey · ez = sinφ sin ε− cosφ cos ε sinϕb (8)

where unit vector ey = [0 1 0]T. To simplify the two-wheel

steering design, both the front and rear steering angles, denoted,

respectively, by φf and φr, are controlled and kept at sym-

metric position (i.e., same amplitude but opposite directions)

for all time, namely, φf = −φr = φ, with φf = φf0 + δ, φr =
φr0 − δ, and φf0 = −φr0. For brevity, we only use φ and δ in

the following discussion. Fig. 2(b) illustrates the wheel/ground

contact points. Under small δ, wheel/ground contact points

C1 and C2 move to C ′
1 and C ′

2, respectively. With the above

configuration, points C1 and C ′
1 (C2 and C ′

2) are located on a

circular arc that is centered aroundOf
g (Or

g), projected pointsOf

(Or) on the ground. The radii of the circular arc Ĉ1 C ′
1 (Ĉ2 C ′

2)
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and the bikebot wheel are denoted as r andR, respectively. From

the geometric relationship and (8), we obtain

r = R cos γ = R sinφ sin ε−R cosφ cos ε sinϕb. (9)

As shown in Fig. 2(b), under the same front and rear steering

angles, wheelbase lines C1C2 and C ′
1C

′
2 are parallel. The cor-

responding projected steering angles are φg = ∠AOr
gxog and

φ′
g = ∠AOr

gx
′
og (for the rear wheel). Let L denote the distance

from the C1C2 to Of
gO

r
g and L is obtained by the geometry

relationship as

L = r cosφg. (10)

The relationship between φg and φ is captured by [32]

φg = arctan

(

cos ε

cosϕb
tanφ

)

. (11)

Given a fixed φ0, from (9), r = rφ0
is considered a constant

value for a small roll angle (e.g., ϕb ≈ 0) and, therefore, plug-

ging (9) and (11) into (10), we obtain

L = rφ0

cosϕb
√

cos2 ϕb + cos2 ε tan2 φ
= L (ϕb, φ0, δ)

where L is considered as a function of ϕb, φ0, and δ.

We approximate the gravity-induced balance torque by using

the above calculatedL as the distance betweenGg (the projected

point of G on the ground) to C ′
1 C ′

2 and obtain

τb ≈ mbgL = mgL (ϕb, φ0, δ) . (12)

It is helpful to find φ∗
0 at which the increment δ generates the

largest torque increase of τb. Thus, we introduce the steering

torque sensitivity at ϕb = 0 as

Sτ (φ0) =

∣

∣

∣

∣

∂τb
∂δ

∣

∣

∣

∣

δ=0
ϕb=0

= mbgrφ0

cos2 ε tanφ0(tan
2 φ0 + 1)

(

cos2 ε tan2 φ0 + 1
)3/2

.

From the above equation, it is clear that at φ0 = 0, Sτ (φ0) = 0

and this implies that the commonly used zero steering angle has

the minimum steering torque sensitivity.

We further calculate that at φ∗
0 = π

2
, Sτ (φ0) reaches its max-

imum value as Sτ (φ
∗
0) = mbgR tan ε. Therefore, we focus on

using φ∗
0 = π

2
for mobile manipulation control since it generates

the largest balance torque per unit of steering angle. In this case,

φ = π
2
+ δ and φg = π

2
+ δg , the steering torque is calculated

as

τb90 = mbgr90 cosφg = −mbgR sin ε cos δ sin
(

δ
cos ε

)

(13)

where r90 = R sin ε cos δ is from (9) with ϕb ≈ 0 and δg cos
ε ≈ δ is taken from (11). It is clear that a large caster angle

configuration helps increase the steering-induced balance torque

and, therefore, improve balance capability. For any other initial

steering angle φ0, the radius is calculated by (9) and the steering

torque τb is obtained by (12).

It is interesting to note that under φ0 = π
2

, the steering con-

figuration is different with commonly used zero steering angle

φ0 = 0. Indeed, the configuration is similar to double-track

balance robot, such as Segway. This observation implies that

double-track steering configuration, such as Segway-like robots

helps provide more steering-induced balance torques than the

single-track configuration, such as bicycles. We, therefore, use

φ0 = π
2

in implementation.

IV. COORDINATED BALANCE CONTROL DESIGN

A. Balance Equilibrium Manifold

The kinematics redundancy of the multi-DOFs manipulator

enables the end-effector to reach the target poses with the bal-

anced bikebot platform. If we consider the manipulator moves

quasi-statically (i.e., slowly), the balanced bikebot roll angle

ϕb and manipulator joint angles Θ should satisfy an intrinsic

relationship that is captured by BEM. From (6), the equation of

motion of the bikebot is written as

Dbbϕ̈b +DbθΘ̈+Cbq̇ +Gb(q) = τb (14)

where Gb(q) is the total gravitational torque from the bike-

bot and the manipulator. Considering the quasi-static motion,

namely, q̈ = q̇ = 0, we define the BEM as

E = {qe = [ϕe
b Θ

T
e ]

T : Gb(qe) = τb, q ∈ Q}. (15)

The BEM captures all configurations that satisfy the static equi-

librium constraint. Using BEM, we estimate the static maximum

roll angle ϕmax
b under the maximum balance steering τmax

b .

To move the end-effector from one pose to another, a trajectory

should be designed around the BEM at any time, namely, q ∈ E .

A velocity constraint should be enforced given the BEM and

limited steering actuation. Using (13), the steering torque is

τb = −MgR sin ε cos δ sin δg , where M = mb +
∑n

i=1 mi is

the total mass of the entire system. Taking derivative of BEM

condition Gb(q) = τb, we obtain

Ġb =
∂Gb

∂q
q̇ = −MgR sin ε

d

dδ
(cos δ sin δg)δ̇ = h(δ)δ̇

where h(δ) = −MgR sin ε d
dδ (cos δ sin δg). Defining JG =

∂Gb

∂q as a Jacobian-like matrix, the above velocity constraint is

specified as

|JGq̇| ≤ hmaxδ̇max (16)

where hmax = supδ |h(δ)| and δ̇max is the maximum steering

angular rate. Constraint (16) implies that when designing the

trajectory q(t), the allowed motion velocity is restricted by the

steering angular rate.

B. Balance-Prioritized Pose Trajectory Planning

The end-effector pose workspace in I is defined as

X (q) = {ξe : ξe = ξe(Tn+1(q)), q ∈ E , |τb| ≤ τmax
b } (17)

where Tn+1(q) is the homogeneous transformation from Fn

to I. We further define the local end-effector pose workspace

Xϕ0
b
(Θ) ⊆ X (q) under roll angle ϕ0

b, q0 = [ϕ0
b Θ

T]T

Xϕ0
b
(Θ) =

{

ξe : ξe = ξe(Tn+1(q
0)), q0 ∈ E

}

.

The rationale to introduce Xϕ0
b
(Θ) is to specify the bikebot roll

angle ϕ0
b first for balance task and then use the manipulator to

achieve the pose control task. We consider the task priority from

high to low as follows: 1) Bikebot platform balance; 2) pose

control of end-effector E; and 3) collision avoidance during
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arm movement from one desired pose to another. Due to the

redundant kinematics of the manipulator, we use a task-priority

optimization approach to plan the trajectory.

We define the following balance-prioritized inverse kinemat-

ics (BPIK) problem. Given a sequence of desired end-effector

poses ξke , k = 1, . . . , Nξ , the BPIK is to find optimal bikebot

roll and manipulator joint angles q∗
k as

q∗
k = argmin

qk

λ1Γ1 + λ2Γ2 + λ3Γ3 (18a)

Subj. to λ4|Gb| ≤ τmax
b , q ∈ E (18b)

where Γ1 = ‖ξke − ξe(Tn+1(qk))‖
2
2, Γ2 = |Gb(qk)−

Gb(q
∗
k−1)|

2, Γ3 = eT
k−1Pek−1, ek−1 = qk − q∗

k−1,

λ1, λ2, λ3 > 0, and λ4 > 1 are weight parameters, P > 0

is a symmetric positive definite matrix. We initialize with

q∗
−1 = 0 and Gb(q

∗
−1) = 0.

Inequality (18b) is set as a hard constraint such that the

steering output is always within the balance capability, while

the pose regulation becomes a part of the objective function

(i.e.,Γ1). Therefore, balance serves as a higher priority than pose

regulation by the BPIK design. This is similar to the approach

in [3], by projecting the low level priority task into subspace

of solution of high level tasks. Terms Γ2 and Γ3 in (18a) try to

minimize the difference between configurations at the current

and the previous steps. We use the BPIK to obtain q∗
k from ξke .

We first search the solution in local workspace Xϕ0
b
(Θ) to avoid

large bikebot movement. If this is impossible, the BPIK then

searches the solution in the workspace X (q). If the calculated

feasible poses are outside of X (q), (18) returns the closest

results. Once obtaining the desired joint angles {q∗
k}

Nξ

k=1, we

need to design transition trajectory along E between each two

consecutive poses.

We consider a desired consecutive pair (q∗
k−1, q

∗
k) to position

the end-effector. With user-specified starting and ending times

denoted, respectively, as t0 and tf , we define q(t0) = q∗
k−1 and

q(tf ) = q∗
k. Motion trajectory q∗(t) needs to be designed from

q(t0) and q(tf ) along E . The trajectory planning is formulated

as the following optimization problem:

min
q(t)

∫ tf

t0

eT
k−1W 1ek−1 + q̇TW 2q̇ + (δGb,k)

2dt (19a)

Subj. to q̇(t0) = q̇∗
k−1, q̇(tf ) = q̇∗

k

q̈(t0) = q̈∗
k−1, q̈(tf ) = q̈∗

k (19b)

Dθbϕ̈b +DθθΘ̈+Cθq̇ +Gθ = τ θ (19c)

|JGq̇| ≤ hmaxδ̇max, λ4|Gb| ≤ τmax
b (19d)

|τθ,i| ≤ τmax
θ,i , q ∈ Q, ‖q̇‖ ≤ q̇max, ‖q̈‖ ≤ q̈max (19e)

where δGb,k = Gb(q)−Gb(q
∗
k−1), W 1,W 2 ∈ R

n+1 are pos-

itive diagonal matrices, and τmax
θ,i is the maximum joint torque of

the ith link, i = 1, . . . , n. To consider the quasi-static motion, the

angular velocity and acceleration of the manipulator are bounded

as in (19e). The constraint in (19d) is similar to that in (18) along

with joint torque limits.

To solve (19), we try to avoid integration of the differential

constraint (19c) and Bézier polynomials are used to specify the

Fig. 3. Block diagram of the balance-prioritized trajectory planning and
control scheme.

solution in each dimension of q(t). We use Bézier polynomial

because of its attractive properties [33]. The solution q(t) is

written in term of N th-order Bézier polynomials (N ∈ N) as

ϕb = b(s,pb) =

N
∑

j=0

pbj bj(s), θi = b(s,pθi) =

N
∑

j=0

pθij bj(s)

for i = 1, . . . , n, where bj(s) =
N !

(N−j)!j! (1 − s)N−jsj , pa-

rameters pb = [pb0
· · · pbN ]T and pθi = [pθi0

· · · pθiN ]T. The

normalized progress variable s = t−t0

tf−t0
maps t ∈ [t0, tf ] to

s ∈ [0, 1].
From above formulation, we obtain q(t0) =

[b(0,pb) b(0,pθ0
) · · · b(0,pθn)]

T, q(tf ) =
[b(1,pb) b(1,pθ0

) · · · b(1,pθn)]
T and q(t) is then written as

polynomials of s with parameters p = {pb,pθ1
, . . . ,pθn}.

For q̇(t), we obtain ϕ̇b =
∑N

j=0 pbj b
′
j(s)

ds
dt and θ̇i =

∑N
j=0 pθij b

′
j(s)

ds
dt . Noting that ds

dt = 1
tf−t0

is constant, q̇(t)

and q̈(t) are written in terms of p. Therefore, the trajectory

planning problem (19) is transformed into the s-domain and

the differential constraints are written as algebraic formulation

in polynomials of s and p.

We discretize s ∈ [0, 1] with Ns sampling points and both the

objective and constraint functions in (19) are evaluated at these

points. A sequential quadratic programming (SQP) algorithm

is then used to obtain the optimized trajectory q∗(t) [34]. In

each iteration, a total of 3Ns(n+ 1) evaluations of b(s;p)
(for q, q̇, q̈) and Ns(n+ 2) evaluations of (19c) and (19d) are

needed for (n+ 1)(N − 1) optimization variables. Addition-

ally, the SQP solver has complexity O(N 2n2). Therefore, the

computational complexity for solving (19) by the proposed

approach is O((N +Ns)Nn2). As a comparison, a dynamic

programming (DP) method can be used to solve (19) with com-

plexity O(N 2
sn

2). Because of Ns 
 N , the proposed method is

much faster than the DP method. Algorithm 1 summarizes the

trajectory planning, as described above.

C. Bikebot Steering and Manipulator Control

Fig. 3 illustrates the balance-prioritized trajectory planning

and control design. The previous section discusses the trajectory

planner to obtain q∗(t) for a given set {ξke}
Nξ

k=1. We present the

controller design to follow q∗(t).
We first present the steering control of the bikebot to follow

ϕ∗
b and then the manipulator controller to follow Θ

∗. Using

(14), we define the roll angle error eb = ϕb − ϕ∗
b and a feedback
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linearization control is designed as

τb = Dbbϕ̈
∗
b +DbθΘ̈+Cbq̇ +Gb + kpeb + kdėb (20)

where kp, kd > 0 are the feedback gains. From (20), we use the

steering balance model (12) to obtain the steering angle φ.

For the manipulator, we take the velocity control to follow

the desired trajectory Θ
∗ in F0. We recognize Θ̈ ≈ 0 after the

system compensating for the gravitational term (Gθ). We extend

the velocity control in [10] and [35] with additional velocity

correction under bikebot roll motion errors. Defining joint angle

error eΘ = Θ−Θ
∗, the velocity control in the joint workspace

is given by

ėΘ = −KpeΘ + IΘδ̇Θ (21)

where Kp = diag{Kp1, . . . ,Kpn} with Kpi > 0, i = 1, . . . , n
and IΘ = 1 if |eb| > εb; otherwise IΘ = 0, with an error thresh-

old εb > 0. The velocity correction δ̇Θ in (21) is designed as

δ̇Θ = −κ∂δGb

∂Θ = 2κ [Gb(q
∗)−Gb(q)]

(

∂Gb(q)
∂Θ

)T

where δGb = (Gb(q
∗)−Gb(q))

2 denotes deviation from the

BEM and κ > 0 is a scalar.

Under (20), the closed-loop roll error dynamics is

ëb + kdėb + kpeb = 0 (22)

and eb(t) converges to zero exponentially. Without loss of gen-

erality, let k2
d < 4kp and then from (22) we obtain

|eb(t)| ≤ Mbe
−

kd
2
t (23)

where Mb > 0 is a finite constant that is related to eb(0) and

ėb(0). Therefore, for any t ≥ tb :=
2
kd

ln(Mb

εb
), |eb(t)| ≤ εb. To

show the convergence for eΘ, we consider a Lyapunov function

candidate V (t) = eT
ΘeΘ = ‖eΘ‖

2 > 0 for any nonzero error

eΘ. Letting lΘ := sup0≤t≤tb ‖IΘδ̇Θ‖, we have

V̇ (t) = −2eT
ΘKpeΘ + 2IΘe

T
Θδ̇Θ ≤ −2λp‖eΘ‖

2 + 2lΘ‖eΘ‖

Fig. 4. Schematic of the interconnection among sensors, actuators
and embedded systems for the bikebot-manipulator system.

where λp = min1≤i≤n Kpi. We introduce W (t) =
√

V (t) =

‖eΘ(t)‖ and from the above inequality, we obtain Ẇ ≤ −λpW

+ lΘ. Thus, we have d
dt (Weλpt) = Ẇeλpt +Wλpe

λpt ≤
lΘe

λpt and integrating from 0 to t, we obtain

W (t)eλpt −W (0) ≤ lΘ
λp
(eλpt − 1).

Noting W (t) = ‖eΘ(t)‖, the above inequality becomes

‖eΘ(t)‖ ≤ ‖eΘ(0)‖e
−λpt + lΘ

λp
(1 − e−λpt)

≤ ‖eΘ(0)‖e
−λpt + lΘ

λp
. (24)

From the above analysis, V̇ is negative outside of the compact set

S = {eΘ : ‖eΘ(t)‖ ≤ lΘ
λp
} and eΘ(t) exponentially converges

to S . Note that for t ≥ tb, IΘ = 0, eΘ(t) converges to zeros

exponentially due to stable dynamics (21).

With error convergence in (23) and (24), we obtain the error

bound for eq = q − q∗ = [eb e
T
Θ]

T as

‖eq(t)‖ =
√

e2
b(t) + ‖eΘ(t)‖2 ≤ |eb(t)|+ ‖eΘ(t)‖

≤ Mbe
−

kd
2
t + ‖eΘ(0)‖e

−λpt + lΘ
λp
. (25)

Considering eξ = ξe(q)− ξe(q
∗) and q = q∗ + eq , we have

eξ = ξe(q
∗) +

∂ξ

∂q

∣

∣

∣

q∗
eq +∆q − ξe(q

∗) = Je(q
∗)eq +∆q

(26)

where Je(q) ∈ R
6×(n+1) is the Jacobian matrix from Fn to I

and ∆q ∈ R
6 is the higher order term of error eq . From (26), it

is straightforward to obtain that ‖eξ(t)‖ ≤ ‖Je(q
∗)‖‖eq(t)‖+

‖∆q‖. For the higher order term ‖∆q‖ = O(‖eq‖
2), there

exists a finite constant Mδ > 0 such that ‖∆q‖ ≤ Mδ‖eq(t)‖
due to (25) and then ‖eξ(t)‖ ≤ Mq‖eq(t)‖, where Mp =
supq∗ ‖Je(q

∗)‖+Mδ . Therefore, the pose error eξ(t) con-

verges to a small ball near zero exponentially and the robotic

system is stable.

V. EXPERIMENTS

A. Experiment Setup

Fig. 1(a) shows the prototype of the two-wheel-steered bike-

bot with an onboard six-DOF robotic manipulator (Jaco2 from

Kinova Inc.). Fig. 4 illustrates the interconnection schematic

of the embedded systems and actuators and sensors. Both the
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TABLE I
VALUES FOR THE MODEL PARAMETERS OF THE BIKEBOT PLATFORM

TABLE II
DH PARAMETER VALUES AND INERTIA PARAMETERS OF THE SIX-DOF

ROBOTIC MANIPULATOR

Fig. 5. Experimental setup for validation of the steering mechanism
and balance torque model.

front and the rear wheels can be steered around 360 degs by

two stepper motors. A real-time low-level embedded system

(Teensy 4.0 microcontroller) is used for the steering motor con-

trol, while the robotic manipulator is controlled by a powerful

small-size computer (Intel NUC module) with robot operating

system (ROS). One inertial measurement unit (IMU) (model 800

from Motion Sense Inc.) is mounted at the upper frame of the

bikebot to measure the roll angle. The front and rear steering

angles are measured by two encoders and the manipulator joint

angles are obtained by the embedded encoders. The real-time

bikebot steering control and data acquisition frequency was

implemented at 100 Hz and the low-level manipulator velocity

control was run at 1000 Hz.

Table I lists the model parameter values for the bikebot,

where Ib is the mass moment of inertia of the bikebot about

the wheelbase. Table II lists the values of the DH parame-

ters and mass moments of inertia of the manipulator links

Ii = diag(Ixx, Iyy, Izz) about their mass centers. The other

physical parameters for each link can be found in [36]. To

validate the steering mechanism and models, we also built and

conducted experiments to measure the tire/ground contacts and

movement and Fig. 5 shows the experimental setup. A motion

capture system (4 Vantage cameras from Vicon Ltd.) was used

to measure the angle and contact points between the wheel plane

and the ground at different angles φ0.

B. Experimental Results

We first present the validation of the steering balance models.

Fig. 6(a) and (b) shows the values of the turning radius rφ0
and

the steering torque sensitivity Sτ , respectively, as steering angle

φ0 increases. The experiment data clearly confirm the model

predictions. It is clear that when φ0 = 90 degs, the projected

radius r90 reaches the maximum value and the increasing trend is

monotonic. The steering sensitivitySτ also reaches its maximum

point around φ0 = 90 degs with Sτ = 0.87 Nm/deg. At φ0 = 0,

the projected radius r0 and steering torque sensitivity Sτ are

near zero. From this observation, an initial steering angle φ0

is chosen around 90 degs for the following experiments. At

φ0 = 90 degs, multiple stationary balancing experiments were

conducted. Fig. 6(c) shows the steering-induced balance torque

τb at different roll angles ϕb and increments δ. Multiple ex-

perimental trials are plotted together with the steering torque

model prediction from (13), i.e., the 3-D surface, as shown in

the figure. The experimental data are scattered around the torque

model prediction with small errors. These results validate the

steering-induced balance torque model.

Fig. 7 shows the bikebot balance control results. The ma-

nipulator was removed from the bikebot in this experiment.

The controller (20) was used with feedback gains kp = 8.5 and

kd = 2. The entire trial is divided into three stages as separated

by the vertical lines in Fig. 7(a). Fig. 7(b) shows the roll angle

tracking errors. Fig. 7(c) illustrates the front and rear wheel

steering angle increments. In the first stage, the initial roll angle

was about 4 degs and it was then regulated around zero. A

chattering phenomenon was observed in the roll angle profile

and this was due to the fact that the IMU angular measurement

resolution was around 0.1 deg, that is, the IMU measurement

was discretized with a minimal resolution of 0.1 deg. This

oscillation also caused a similar chattering behavior in steering

angle increments in Fig. 7(c) since the roll angle measurement

was used in steering control. In the second stage starting at

around t = 60 s, the bikebot was commanded to move around

zero with the maximum roll angles around 4.5 degs. The change

of the reference roll angle was slow to meet the quasi-static

movement. The tracking error approached to zero. In the third

stage starting around t = 270 s, multiple disturbances were

applied by manually pushing the upper frame of the bikebot. The

roll angle errors caused by the disturbances reached 6 degs and

the steering actuation compensated for the disturbances. These

results demonstrate the steering balance control performance.

Since the design enforced symmetrical steering commands, the

front and rear steering angles responses showed highly similar

behaviors.

Using the BEM and model parameters, we estimate the max-

imum stationary balance roll angles. With one-wheel steering

control, the maximum balanced roll angle is around 3.4 degs;

with two-wheel steering control, around 5.6 degs; and addition-

ally, if the manipulator is used to help balance collaboratively, it

increases to 11.6 degs. To validate these estimates, we conducted
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Fig. 6. Experimental results for the steering torque model. (a) Comparison results of the model prediction with the experiments for radius rφ0
.

(b) Comparison of the steering sensitivity model prediction with the experiments. (c) Comparison of the balance torque model prediction with the
experiments under steering angle increment δ and roll angle ϕb with φ0 = 90 degs.

Fig. 7. Bikebot balance control experimental results. (a) Bikebot roll angle ϕb. (b) Bikebot roll angle error eb. (c) Steering angle increments. The
red markers “•” in (a) and (b) indicate that the initial angles.

Fig. 8. Verification of the recoverable roll angle region. The markers
“×,” “◦,” and “�” represent the successful balance trial of the bikebot by
one-wheel steering, two-wheel steering, and collaboratively two-wheel
steering with manipulation balancing strategies, respectively. The verti-
cal lines indicate the estimated maximum angle boundaries ϕb = ±3.4,
±5.6, and ±11.6 degs.

multiple balance control experiments. One experimental trial

was considered successful if the system was kept balanced for

a time duration over 50 s. Fig. 8 shows the successful trials

in the ϕ̇b-ϕb plane. Each marker in the figure represents the

state at which the bikebot successively started to balance under

steering control, which was confirmed by comparing the model

predictions from (13) and (14). The experiments, which are in

agreement with the model prediction, validate the model analysis

and demonstrate the balance capability under various bikebot

balancing strategies.

We now present a plant inspection example for the end-

effector to continuously go through and stop momentarily

at four poses (i.e., Nξ = 4). This represents the end-effector

movement during a plant scanning and inspection task [19].

Fig. 9(a) shows the snapshots of the end-effector at the four

poses. The major movement of the end-effector (with a mounted

camera) was along the z-axis in I and orientation always

pointed toward to the stalk of a fake corn plant. The end-

effector moved from one pose to another in sequence and

stopped for about 15 s at each pose. Fig. 9(b) shows the

3-D trajectories with the four poses. The planning and con-

trol parameters used in experiments include: λ1 = 10, λ2 =
1, λ3 = 5, λ4 = 1.5, W 1 = diag(10, 5, 5, 5, 1, 1, 1), W 2 =
diag(1, 1, 1, 1, 1, 1), κ = 5, ε = 0.1, εb = 0.4 degs, q̇max =
36 deg/s, q̈max = 120 deg/s2, τmax

θ = [10 15 10 5 5 5]T Nm,

δmax = 15 degs, δ̇max = 20 deg/s, and N = 7. For off-line

planning implementation, the number of data points was chosen

as Ns = 50 in each dimension of q(t) and the SQP method

(via fmincon function) in Matlab was used for solving (19).

The obtained Bézier polynomial trajectory was then sampled

at 100 Hz for real time control. The off-line planner computed

the trajectory for the next pose transition when conducting

motion control of the current pose movement. By doing so, the

proposed planner was capable to obtain the trajectory with fast

computational time. Table III lists the desired end-effector poses,

the poses planned by the BPIK and the actual poses. It is clear
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Fig. 9. (a) Snapshots of the manipulator with an inspected plant at four poses. (b) Pose transition and end-effector trajectory under the pose
planning and control. The arrows (i.e., unit vectors (ex,ey ,ez)) at each pose represent the actual orientation of the end-effector in I. (c) Pose
error (mean with one standard deviation) in transition process (from Poses 1 to 4 as indicated by the vertical lines) from 15 experiment trials. Top:
Position error; Bottom: Orientation error. The video of the experiment can be found at https://youtu.be/jHQRNrrnPMc.

TABLE III
COLLABORATIVE END-EFFECTOR POSE CONTROL RESULT

The unit for position is cm and for orientation is deg. The error mean and standard deviation values are calculated from 10 S data of the pose holding phase.

that the position errors are within 8 mm and orientation errors

within 0.45 degs at these four poses.

Fig. 10 shows the detailed experimental results. Fig. 10(a)

and (b) shows the bikebot roll angle ϕb and the six joint angles

Θ of the manipulator, respectively. Since ϕb and the first three

joint angles (θ1-θ3) played a major role to balance the entire

system, their reference trajectories were designed to avoid large

variations. Poses 2 and 3 were searched in the local workspace

Xϕ0
b1
(Θ), and Pose 4 is searched in the workspace X (q). The

bikebot roll angle change was approximately around 1.5 degs. At

t = 0 s, the manipulator was at the desired balance configuration

as Pose 1. Around t = 30 s, the manipulator started moving to

Pose 2. Small disturbances were introduced at around t = 40 s,

causing about a 0.4-deg roll angle error. The velocity correction

control was applied to compensate for the roll angle error; see

Fig. 10(e). No obvious roll angle error was observed during the

transition from Poses 2 to 3 (except around 0.1 degs oscillation).

The bikebot platform was required to move in the transition from

Poses 3 to 4. Around t = 110 s, a large roll angle change was

commanded by the steering actuation and the velocity correction

control was needed; see Fig. 10(e).

We further repeated the above four-pose control experiment

15 times. Fig. 9(c) summarizes the statistics (i.e., mean and one-

standard deviation) of the end-effector pose errors during the

motion. The end-effector position errors are less than 5 mm

and the orientation errors within 0.3 degs. Relative large errors

happened around t = 42 and 120 s with about 10 mm and 0.7

degs, respectively. This is consistent with the previous results.

TABLE IV
COMPUTATIONAL COST COMPARISON FOR THE PROPOSED AND THE DP

ALGORITHMS

The position errors are at the same level of the manipulator

hardware performance limits (3.7 mm) that are provided by the

vendor and the orientation errors are much less that level (2.1

degs). The results demonstrate the successful balance and pose

control performance by the design.

C. Discussion

To further demonstrate the performance, we conducted ad-

ditional comparison experiments. Fig. 10(a) also includes the

bikebot roll angle when the balance priority was not enforced in

trajectory planning. Clearly, the entire system lost balance in the

pose transition phase at t = 50 s. This confirms the effectiveness

of the priority-based task control. In Fig. 9(c), we also present the

errors statistics (i.e., mean and one-standard deviation) without

the online velocity correction. In this case, both the position and

orientation tracking errors are larger than these results under the

velocity control correction. We also conducted computational

time comparison between the proposed trajectory planning al-

gorithm and the DP method. Table IV shows the comparison

results. The numerical results confirmed that the computational
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Fig. 10. Large roll angle balance control of the mobile manipulation system. (a) Roll angle, (b) robotic arm joint angles, and (c) steering angle
increments. The vertical lines in (a) divides the entire process into four phases for each pose. (d) Roll angle error. (e) Online robotic arm trajectory
correction in pose transition phase (the difference between off-line planing results and the actual angle).

cost of the DP method was over 200 times higher than that of the

proposed algorithm to solve the optimization problem in (19).

Although demonstrating successful results, the current work

have several limitations for further improvement. We only stud-

ied coordinated control of the manipulator on stationary bikebot

and it would be desirable to extend to moving platform case.

Second, the steering control does not include the dynamic effects

of the steering mechanism. The control performance might

be improved with incorporating dynamic steering effect. The

trajectory of the bikebot roll angle and the manipulator joint

angles was planned off-line and online planning is desirable

for applications with dynamic obstacle avoidance. Finally, the

proposed method is built on the precise robot model and it is

desirable to extend to handle model uncertainties in complex,

dynamic environment. One possible approach is to use machine

learning-based methods. For example, as discussed in [37], the

robot dynamics might be approximated and estimated using a

Gaussian process model and a learning-based motion control

can be then designed.

VI. CONCLUSION

In this article we presented a coordinated balance and pose

control for a stationary mobile manipulation using a two-wheel

steered bikebot. The mobile platform is inherently unstable and

the dynamics of the platform and the manipulator are strongly

coupled. We presented a two-wheel steering model and iden-

tified the use of φ0 = 90 degs as the most beneficial steering

angle for stationary balance. A balance equilibrium manifold

was extended to the mobile manipulation for coordinated motion

control. Built on the BEM, a balance-priority design was then

presented to solve the optimal joint angles for the bikebot and the

manipulator. Coordinated balance and pose control was achieved

by enforcing the entire system moving on the BEM with online

manipulator velocity correction control. We conducted exper-

iments and the results demonstrated the performance of the

balance and pose control for a plant inspection application.
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