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Abstract— This paper discusses how the risk of electricity grid 

outages is predicted using machine learning on historical data 

enhanced by graph embeddings of the distribution network. The 

process of graph creation using different embedding approaches 

is described. Several graph constructing strategies are used to 

create a graph, which is then transformed into the form acceptable 

for ML algorithm training. The impact of incorporating different 

graph embeddings on outage risk prediction is evaluated. The 

method used for graph embeddings is Node2Vec. The grid search 

is performed to find optimal hyperparameters of Node2Vec. The 

resulting accuracy metrics for a set of different hyperparameters 

are presented. The resulting metrics are compared against base 

scenario, where no graph embeddings were used. 
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prediction 

I. INTRODUCTION 

Short circuits in power systems caused by faults lead to 
outages and are a significant safety hazard and economic 
detriment to the society. The problem of frequent outages in the 
distribution network has been one of the main concerns of the 
utility companies. There is a growing need to improve quality of 
electrical supply to customers, as well as urgent necessity to 
enhance the resilience of the grid. Weather related outages 
constitute a major cause of outages in the distribution grids and 
are increasing due to climate change [1-3]. 

Recent advances in Machine Learning (ML) Algorithms 
offer ways of predicting the risk of outages in the grid and 
consequently mitigating it. That leads to improved resiliency, 
reduced economical losses, and higher customer satisfaction. 
The combination of Big Data, ML, and GIS software allows for 
analysis of the historical outages and creation of an ML model 
capable of predicting the risk levels for different time horizons 
for separate parts of the distribution system [4-7]. A timely 
prediction of high-risk levels allows utility companies to take 
preventive measures to reduce the risk. Mitigation actions may 
include improved dynamic tree trimming schedules, customer 
notifications, back-up generator start-up, targeted restoration 
actions for different parts of the system, etc. [8]. 

Authors of [9-11] use ML model to predict number of 
outages during severe storms in electric distribution networks. 
Distribution network resiliency is assessed in [12], using 
predicted risk levels [13]. [14] uses Logistic Regression method 
to predict probability of distribution transformers (DT) failure 
by analyzing a correlation between weather parameters and 
historical DT failures. These approaches can benefit from using 

spatial relationship among data of the network. Adding graph 
embeddings could benefit the accuracy of the predictions [15]. 

To improve the accuracy and performance of such models, 
different features (dimensions) may be used as input variables to 
the ML model. One of the main sources of data are weather 
indicators, correlated to the outage time and location [16]. The 
distribution grid may span across hundreds of miles; thus, the 
underlying geographical conditions may be different for each 
part of the system. That leads to necessity of incorporating 
spatial information about each part of the system into the 
features for the ML algorithm. Graph representation of the 
system with graph embeddings offers a solution to this problem 
[17]. 

Various graph embedding methods are developed by 
encoding each vertex with its own vector representation, or by 
representing the entire graph as a single vector. One of the oldest 
methods is Spectral Clustering [18], which first constructs a 
similarity matrix from a k-NN similarity graph and then 
calculates eigenvectors of Laplacian of the similarity matrix for 
embedding. Perozzi et al. generalized recent advancements in 
NLP and unsupervised feature learning (or deep learning) and 
proposed DeepWalk method [19], which became a foundation 
for many other methods. DeepWalk method allows learning 
latent representations of vertices in a network by generating 
truncated random walks in the corresponding graph for each 
node. It treats each walk as a sentence in a text. Authors 
demonstrated a substantial 10% increase in F1 score in multi-
label network classification tasks. A very efficient method, 
referred to as Large-scale Information Network Embedding 
(LINE), was proposed in [20]. The method optimizes an 
objective function that preserves both the global and local 
network structures. It is applicable to arbitrary types of 
information in graphs. Authors of [21] introduced the Node2Vec 
method. The advantage of this method is its ability to change its 
underlying search strategy. It can be tuned to focus on the 
immediate neighbors of each node, or it can be set to explore 
deep structure of the underlying graph. 

We analyze the impact of graph incorporation into the ML 
prediction model. Our contribution is in deploying different 
ways of constructing several types of graphs for the distribution 
network and then conducting a sensitivity analysis to find 
optimal hyper parameters for graph embedding method. We 
demonstrate that the graph embeddings increase the model 
performance measured by variety of metric ML indicators. 

The remainder of the paper is structured as follows. Section 
II discusses various types of graphs suitable for our application. 



A graph embedding process is described in Section III, followed 
by Section IV, which gives details about ML model training and 
testing. The conclusions are summarized in Section V.  

II. GRAPH CONSTRUCTION 

There are number of ways, in which the graph can be 

constructed. The obvious choice for power system applications 

is to use the electric grid connectivity graph. The other way 

would be to use an artificial surface grid placed on top of the 

geographic representation of the system. 

In this work we have chosen a method where we use 

geographical centroids of different feeders as nodes. The edges 

are created based on the distance between the centroids of the 

feeders. This choice is also driven by the prediction entity or 

prediction object, which in our case is the grid outage risk map. 

A. Nodes 

The geographical representation of an actual power system 

we use for our study is shown in Fig. 1. The centroids are shown 

as dots. A centroid is determined as a geometrical equivalent of 

center of mass of an object. It is a point located at the weighted 

average of x and y coordinates of the midpoints of all line 

segments that form a feeder, where the weight of a particular 

midpoint is the length of the correspondent line segment [22]. 

ArcGis Pro allows two methods for calculating a centroid of an 

object: the “true” one and one that is contained within the object 

itself. We used the latter option, since we want to find a point 

in each feeder that represents it as a whole and is actually 

located somewhere on the feeder.  

B. Edges 

One can construct edges of a graph from nodes in a different 

manner. For example, there are number of methods for 

randomized graph construction [23-26]. In our application we 

connect nodes with edges based on geographical proximity. 

The underlying rational is that if feeders are in close 

geographical proximity, they should possess similar 

characteristics and should have similar measures of risk. That 

is in line with the Tobler's first law of geography [27], which 

states: "everything is related to everything else, but near things 

are more related than distant things." 

We created 4 graphs with 1, 2, 4 and 7 closest nodes being 

connected by edges (NE). The resulting graphs are presented in 

Fig. 2-Fig. 5. As can be seen, 1 and 2 closest nodes actually 

form several subgraphs, which are not connected with each 

other. And then, starting with 4 nodes, the whole network is 

interconnected. The number of closest nodes represent the level 

of complexity of information contained in the graph. One of the 

aims of this paper is to assess the optimal number of closest 

nodes with respect to preserving structural properties of the 

power network. The process of connecting N closest nodes 

together is performed in ArcGIS Pro by using several tools in 

specific order. The diagram of the process is presented Fig. 6. 

First, one needs to determine the set of N closest nodes for each 

node in the network. The optimal tool for that is “Generate Near 

Table” [28], where N is specified and also the fields “FROM” 

and “TO” are generated, to keep track of location of each pair. 

Second, the Near Table is converted to lines, using “XY to 

Line” tool [29]. The result is yet not usable since the edges are 

 

Fig. 1. Geographical Representation of the Network with 191 nodes 

 

 

 

Fig. 3. Graph for NE = 2. 191 nodes, 257 edges. 

 

 

Fig. 2. Graph for NE = 1. 191 nodes, 141 edges. 

 



formed twice between some nodes (ex. node K is closest to 

node M, and M is closest to node K, then 2 rows are generated 

in Near Table). To discard double edges, the “Delete Identical” 

tool [30] was used. We should note that if one is to obtain 

directed graph, the method should be used with caution, since 

the “Delete Identical” removes first instance of the repeating 

feature. The resulting feature classes are exported as .csv tables 

for further processing outside of ArcGis Pro in Python.  

III. GRAPH EMBEDDING 

In recent years there was an advent of graph embedding 

methods (GEM) [31]. In general, the embedding process is 

mapping of a graph G, which is characterized by its nodes (N), 

edges (E) and edges’ weights (W), to RN dimensional vector 

space, which preserves some part of information about the 

original graph (1). 

 GEM(G(N, E, W))  →  RN  () 

Due to its flexibility and ability to differentiate between 

different search strategies, we have chosen Node2Vec [21] for 

our application. A description of the method is given below. 

The input for the method is a graph G (N, E, W). For each 

node of the graph the random walks of length WL are generated 

NW times. The random walk is affected by two hyper 

parameters: return parameter p and in-out parameter q (Fig. 7). 

These are used to calculate the probability of going from node 

v to the preceding node t (go back) or going to any other node 

(explore). The parameter p correlates with the probability of 

going back to the previous node, and q with probability going 

to some other node. In this fashion, one can regulate how much 

the method tends to gain distance from original node and 

expand further into the network; or the opposite – how much 

the method tends to pick nodes that are immediate neighbors of 

the original node. That defines the sampling strategy of the 

algorithm. The original paper refers to them as Breadth-first 

Sampling (BFS) for going back and Depth-first Sampling 

(DFS) for exploring [21]. The scheme used in the original 

publication is shown in Fig. 8. 

After the walks are generated for all the nodes, the neural 

network (NN) with one input, one hidden and one output layer, 

that have dimensions of L, N and L accordingly, is trained to 

predict the probability of each node having the rest of the nodes 

as its neighbors, based on the “corpus” of random walks. The L

 

Fig. 7. Node2Vec Graph [21] 

 

Fig. 4. Graph for NE = 4. 191 edges, 487 edges. 

 

 

Fig. 6. Graph Generation Diagram 

 

 

Fig. 5. Graph for NE = 7. 191 nodes, 829 edges. 

 



 
is the number of unique objects (vocabulary) in “corpus”, which 

in our case is 191 feeders in the network. N is a hyperparameter 

of the method and it defines the dimensionality of a vector 

space representation of the embedding method. We have tested 

several values of N for our application. This process is known 

as skip-gram [32] and is used in many embedding techniques, 

for example a well-known Word2Vec. However, after training 

the NN, the NN itself is not used. Instead, the weight matrix of 

the inner layer of dimension L by N is used as a final embedding 

matrix. Based on that matrix, the similarity between nodes can 

be measured as cosine distance, for instance. We use the matrix 

elements as additional features to describe the baseline training 

dataset for the ML model. 

IV. ML ALGORITHM TRAINING AND SENSITIVITY ANALYSIS 

A. Base Model 

To have comparable results, we establish a baseline solution 

against which we would check the results of the ML model with 

graph embedding. The baseline training dataset includes only 

weather parameters for each node (feeder), namely: 

• Air Temperature in Fahrenheit, typically at the height 

of 2 of meters 

• Dew Point Temperature in Fahrenheit, typically at the 

height of 2 meters 

• Relative Humidity in % 

• Wind Direction in degrees from “true” north 

• Wind Speed in knots 

• One hour precipitation in inches for the period from 

the observation time to the time of the previous hourly 

precipitation reset. 

• Wind Gust in knots. 

• Present Weather Codes. 

The weather parameters are obtained from ASOS network 

[33] by means of API provided by Iowa Environmental 

Mesonet [34]. The target feature is the occurrence of an outage 

within an hour of analyzed timestamp. The historical outage 

dataset is acquired from the utility company that provided data 

from their network. The outages for the duration of three years 

from January 2015 to December 2017 are analyzed. There is a 

total of 5615 outages, each associated with single feeder. The 

model is trained to predict risk of outage for whole feeder. To 

balance the dataset with non-outage instances, the same amount 

of 5615 non-outage timestamps were randomly selected, that 

are at least 3 hours apart from the outage occurrence. 

The original dataset is cleaned, preprocessed, and wrangled 

to fit the input of ML algorithm. The ML algorithm used is 

Catboost [35], which has proved its efficiency in several ML 

problems [36],[37]. It is the Gradient boosting algorithm type. 

The Catboost has an advantage of automatically recognizing the 

categorical features, which makes the process of training faster 

and more efficient. 

We use 5-fold cross validation for obtaining performance 

metrics. The metrics in use are Area Under the Receiver 

operating characteristic (ROC AUC), F1 Score, Area Under the 

Precision-Recall Curve (PRC AUC) [38]. We also introduce the 

final compound metric (FM), which is the weighted average of 

the three previous metrics (ROC AUC has a bigger weight, 

because it was used as loss function for model training) 

 𝐹𝑀 = 0.4 ∙ 𝑅𝑂𝐶_𝐴𝑈𝐶 + 0.3 ∙ 𝐹1 + 0.3 ∙ 𝑃𝑅𝐶_𝐴𝑈𝐶 (2) 

We use the final metric for a better representation of the 

model performance with different embeddings. The results of 

the model applied on the baseline dataset are presented in Table I. 

B. Model with Graph Embeddings 

After training the baseline model we move on to adding 

graph embeddings to the base dataset. We join the embedding 

to the cleaned and preprocessed baseline training dataset. In this 

way, the dataset is identical, except for the additional 

dimensions of graph embeddings. It is important to have same 

rows in baseline and modified training datasets, otherwise the 

results may have noise and become non-comparable. In general, 

the additional features (dimensions) to training dataset may 

need cleaning and preprocessing as well. That may lead to some 

of the rows of the baseline dataset being discarded after the 

additional features are added. A precaution should be taken to 

track such changes and adjust final datasets accordingly.  

In each algorithm run we change one of the hyperparameters 

of the method. A unique combination of hyperparameters is 

coded with its own number (UID). The combinations for 

sensitivity analyses are created from following sets of 

hyperparameters: 

• Number of closest points, connected with edges (NE): 

(1, 2, 4, 7) 

• Embedding dimensions (N): (15, 40, 85) 

• Length of single walk (WL): (4, 10, 16) 

• Window size for skim-gram (WS): (3,6) 

There are total of 72 unique runs in the experiment. Some of 

the hyperparameters for the algorithm are fixed. These are 

Number of walks per node: (NW=100), Minimum length of one 

walk: (min count=1), Return parameter: (p=1), In-out 

parameter: (q=3). Also, we fixed the random seed parameter for 

reproducible results. The choice of return and in-out parameter 

inclines the model to BFS strategy, since we want to capture the 

immediate neighbors of the feeders.  

The results for model with graph embeddings, organized as 

bar-chart for different hyper parameters, are presented in Fig. 

9-Fig. 12. Numbers above bars indicate UID of each case. The 

scale of FM axis is kept the same throughout all figures to keep 

 

Fig. 8. BFS and DFS search strategies from node U [21] 

TABLE I. BASELINE MODEL METRICS 

  ROC AUC F1 Score PRC AUC FM 

Baseline Model 0.939 0.856 0.944 91.57 

 



representation of results easy to read. We also used a darker 

color for bars with higher ROC AUC score, since it was used 

as objective function for training the algorithm. 

C. Results discussion 

We assume that the FM represents the desired balance in 

performance metrics. One can tweak the FM’s weight 

coefficients to rise importance of some metric or one can even 

make judgement on a single metric. The decision should be 

based on the cost of false positives and false negatives in the 

model performance.  

All graph embedding-based experiments resulted in 

significant improvements versus baseline, as evident at Figs 9-

12, where bars correspond to improvement versus baseline 

result. For the 1-edge embedding the best case is UID = 6, with 

15 dimensions, window size of 6 and walk length of 16. This 

shows that by even adding a trivial graph we improve model 

performance up by 1%. Adding more edges yields better 

results. For 2-edge embedding, the best outcome has a FM of 

92.58% (N = 15, WL = 16, WS = 6). When increasing closest 

nodes in graph to 4, the best outcome is 42 with the same 

hyperparameters. The increase in FM is 1.07%. Moving to 7 

edges, the best outcome is number 59 with 15 dimensions, walk 

length of 16 and window size of 3. In latter case we do not see 

any increase in performance as compared to 4-edge embedding. 

In fact, we experienced that increasing graph complexity above 

4 closest nodes does not yield better results.  

One can see that the strongest cases for each type of graph 

have similar hyperparameters: N = 15, WL = 16, WS = 6. We 

may conclude that those are optimal for the application in hand. 

Hence, 15 dimensions are enough to represent spatial difference 

between feeders in the network, and increasing the amount only 

degrades the performance. WL and WS of higher levels allow 

the model to capture more neighbors, than it otherwise does 

with lower values. 

V. CONCLUSION 

In this paper, we analyzed the effect of spatial information 

embedding into features by constructing a graph and then 

passing it through graph embedding method. The resulting 

features were used to train the ML model. Several important 

outcomes are achieved: 

• Graph embedding improves prediction accuracy of risk 

outages in the network. 

• 4-edge graph is optimal for application at hand. 

• Sensitivity analysis reveals optimal hyper parameters for 

the prediction model.  
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