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Abstract— This paper discusses how the risk of electricity grid
outages is predicted using machine learning on historical data
enhanced by graph embeddings of the distribution network. The
process of graph creation using different embedding approaches
is described. Several graph constructing strategies are used to
create a graph, which is then transformed into the form acceptable
for ML algorithm training. The impact of incorporating different
graph embeddings on outage risk prediction is evaluated. The
method used for graph embeddings is Node2Vec. The grid search
is performed to find optimal hyperparameters of Node2Vec. The
resulting accuracy metrics for a set of different hyperparameters
are presented. The resulting metrics are compared against base
scenario, where no graph embeddings were used.
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I. INTRODUCTION

Short circuits in power systems caused by faults lead to
outages and are a significant safety hazard and economic
detriment to the society. The problem of frequent outages in the
distribution network has been one of the main concerns of the
utility companies. There is a growing need to improve quality of
electrical supply to customers, as well as urgent necessity to
enhance the resilience of the grid. Weather related outages
constitute a major cause of outages in the distribution grids and
are increasing due to climate change [1-3].

Recent advances in Machine Learning (ML) Algorithms
offer ways of predicting the risk of outages in the grid and
consequently mitigating it. That leads to improved resiliency,
reduced economical losses, and higher customer satisfaction.
The combination of Big Data, ML, and GIS software allows for
analysis of the historical outages and creation of an ML model
capable of predicting the risk levels for different time horizons
for separate parts of the distribution system [4-7]. A timely
prediction of high-risk levels allows utility companies to take
preventive measures to reduce the risk. Mitigation actions may
include improved dynamic tree trimming schedules, customer
notifications, back-up generator start-up, targeted restoration
actions for different parts of the system, etc. [8].

Authors of [9-11] use ML model to predict number of
outages during severe storms in electric distribution networks.
Distribution network resiliency is assessed in [12], using
predicted risk levels [13]. [14] uses Logistic Regression method
to predict probability of distribution transformers (DT) failure
by analyzing a correlation between weather parameters and
historical DT failures. These approaches can benefit from using
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spatial relationship among data of the network. Adding graph
embeddings could benefit the accuracy of the predictions [15].

To improve the accuracy and performance of such models,
different features (dimensions) may be used as input variables to
the ML model. One of the main sources of data are weather
indicators, correlated to the outage time and location [16]. The
distribution grid may span across hundreds of miles; thus, the
underlying geographical conditions may be different for each
part of the system. That leads to necessity of incorporating
spatial information about each part of the system into the
features for the ML algorithm. Graph representation of the
system with graph embeddings offers a solution to this problem
[17].

Various graph embedding methods are developed by
encoding each vertex with its own vector representation, or by
representing the entire graph as a single vector. One of the oldest
methods is Spectral Clustering [18], which first constructs a
similarity matrix from a k-NN similarity graph and then
calculates eigenvectors of Laplacian of the similarity matrix for
embedding. Perozzi et al. generalized recent advancements in
NLP and unsupervised feature learning (or deep learning) and
proposed DeepWalk method [19], which became a foundation
for many other methods. DeepWalk method allows learning
latent representations of vertices in a network by generating
truncated random walks in the corresponding graph for each
node. It treats each walk as a sentence in a text. Authors
demonstrated a substantial 10% increase in F1 score in multi-
label network classification tasks. A very efficient method,
referred to as Large-scale Information Network Embedding
(LINE), was proposed in [20]. The method optimizes an
objective function that preserves both the global and local
network structures. It is applicable to arbitrary types of
information in graphs. Authors of [21] introduced the Node2Vec
method. The advantage of this method is its ability to change its
underlying search strategy. It can be tuned to focus on the
immediate neighbors of each node, or it can be set to explore
deep structure of the underlying graph.

We analyze the impact of graph incorporation into the ML
prediction model. Our contribution is in deploying different
ways of constructing several types of graphs for the distribution
network and then conducting a sensitivity analysis to find
optimal hyper parameters for graph embedding method. We
demonstrate that the graph embeddings increase the model
performance measured by variety of metric ML indicators.

The remainder of the paper is structured as follows. Section
II discusses various types of graphs suitable for our application.



A graph embedding process is described in Section III, followed
by Section IV, which gives details about ML model training and
testing. The conclusions are summarized in Section V.

II. GRAPH CONSTRUCTION

There are number of ways, in which the graph can be
constructed. The obvious choice for power system applications
is to use the electric grid connectivity graph. The other way
would be to use an artificial surface grid placed on top of the
geographic representation of the system.

In this work we have chosen a method where we use
geographical centroids of different feeders as nodes. The edges
are created based on the distance between the centroids of the
feeders. This choice is also driven by the prediction entity or
prediction object, which in our case is the grid outage risk map.

A. Nodes

The geographical representation of an actual power system
we use for our study is shown in Fig. 1. The centroids are shown
as dots. A centroid is determined as a geometrical equivalent of
center of mass of an object. It is a point located at the weighted
average of x and y coordinates of the midpoints of all line
segments that form a feeder, where the weight of a particular
midpoint is the length of the correspondent line segment [22].
ArcGis Pro allows two methods for calculating a centroid of an
object: the “true” one and one that is contained within the object
itself. We used the latter option, since we want to find a point
in each feeder that represents it as a whole and is actually
located somewhere on the feeder.

B. Edges

One can construct edges of a graph from nodes in a different
manner. For example, there are number of methods for
randomized graph construction [23-26]. In our application we
connect nodes with edges based on geographical proximity.
The underlying rational is that if feeders are in close
geographical proximity, they should possess similar
characteristics and should have similar measures of risk. That
is in line with the Tobler's first law of geography [27], which
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Fig. 1. Geographical Representation of the Network with 191 nodes

states: "everything is related to everything else, but near things
are more related than distant things."

We created 4 graphs with 1, 2, 4 and 7 closest nodes being
connected by edges (NE). The resulting graphs are presented in
Fig. 2-Fig. 5. As can be seen, 1 and 2 closest nodes actually
form several subgraphs, which are not connected with each
other. And then, starting with 4 nodes, the whole network is
interconnected. The number of closest nodes represent the level
of complexity of information contained in the graph. One of the
aims of this paper is to assess the optimal number of closest
nodes with respect to preserving structural properties of the
power network. The process of connecting N closest nodes
together is performed in ArcGIS Pro by using several tools in
specific order. The diagram of the process is presented Fig. 6.
First, one needs to determine the set of N closest nodes for each
node in the network. The optimal tool for that is “Generate Near
Table” [28], where N is specified and also the fields “FROM”
and “TO” are generated, to keep track of location of each pair.
Second, the Near Table is converted to lines, using “XY to
Line” tool [29]. The result is yet not usable since the edges are
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Fig. 2. Graph for NE = 1. 191 nodes, 141 edges.
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Fig. 3. Graph for NE = 2. 191 nodes, 257 edges.



Fig. 5. Graph for NE = 7. 191 nodes, 829 edges.

Generate Near Table

Fig. 6. Graph Generation Diagram

formed twice between some nodes (ex. node K is closest to
node M, and M is closest to node K, then 2 rows are generated
in Near Table). To discard double edges, the “Delete Identical”
tool [30] was used. We should note that if one is to obtain
directed graph, the method should be used with caution, since
the “Delete Identical” removes first instance of the repeating
feature. The resulting feature classes are exported as .csv tables
for further processing outside of ArcGis Pro in Python.

III. GRAPH EMBEDDING

In recent years there was an advent of graph embedding
methods (GEM) [31]. In general, the embedding process is
mapping of a graph G, which is characterized by its nodes (N),
edges (E) and edges’ weights (W), to RN dimensional vector
space, which preserves some part of information about the
original graph (1).

GEM(G(N,E,W)) - RN (1)

Due to its flexibility and ability to differentiate between
different search strategies, we have chosen Node2Vec [21] for
our application. A description of the method is given below.

The input for the method is a graph G (N, E, W). For each
node of the graph the random walks of length WL are generated
NW times. The random walk is affected by two hyper
parameters: return parameter p and in-out parameter q (Fig. 7).
These are used to calculate the probability of going from node
v to the preceding node t (go back) or going to any other node
(explore). The parameter p correlates with the probability of
going back to the previous node, and q with probability going
to some other node. In this fashion, one can regulate how much
the method tends to gain distance from original node and
expand further into the network; or the opposite — how much
the method tends to pick nodes that are immediate neighbors of
the original node. That defines the sampling strategy of the
algorithm. The original paper refers to them as Breadth-first
Sampling (BFS) for going back and Depth-first Sampling
(DFS) for exploring [21]. The scheme used in the original
publication is shown in Fig. 8.

After the walks are generated for all the nodes, the neural
network (NN) with one input, one hidden and one output layer,
that have dimensions of L, N and L accordingly, is trained to
predict the probability of each node having the rest of the nodes
as its neighbors, based on the “corpus” of random walks. The L

Fig. 7. Node2Vec Graph [21]



Fig. 8. BFS and DFS search strategies from node U [21]

is the number of unique objects (vocabulary) in “corpus”, which
in our case is 191 feeders in the network. N is a hyperparameter
of the method and it defines the dimensionality of a vector
space representation of the embedding method. We have tested
several values of N for our application. This process is known
as skip-gram [32] and is used in many embedding techniques,
for example a well-known Word2Vec. However, after training
the NN, the NN itself is not used. Instead, the weight matrix of
the inner layer of dimension L by N is used as a final embedding
matrix. Based on that matrix, the similarity between nodes can
be measured as cosine distance, for instance. We use the matrix
elements as additional features to describe the baseline training
dataset for the ML model.

IV. ML ALGORITHM TRAINING AND SENSITIVITY ANALYSIS
A. Base Model

To have comparable results, we establish a baseline solution
against which we would check the results of the ML model with
graph embedding. The baseline training dataset includes only
weather parameters for each node (feeder), namely:

e Air Temperature in Fahrenheit, typically at the height

of 2 of meters

e Dew Point Temperature in Fahrenheit, typically at the
height of 2 meters
Relative Humidity in %
Wind Direction in degrees from “true” north
Wind Speed in knots
One hour precipitation in inches for the period from
the observation time to the time of the previous hourly
precipitation reset.

e  Wind Gust in knots.

e  Present Weather Codes.

The weather parameters are obtained from ASOS network
[33] by means of API provided by Iowa Environmental
Mesonet [34]. The target feature is the occurrence of an outage
within an hour of analyzed timestamp. The historical outage
dataset is acquired from the utility company that provided data
from their network. The outages for the duration of three years
from January 2015 to December 2017 are analyzed. There is a
total of 5615 outages, each associated with single feeder. The
model is trained to predict risk of outage for whole feeder. To
balance the dataset with non-outage instances, the same amount
of 5615 non-outage timestamps were randomly selected, that
are at least 3 hours apart from the outage occurrence.

The original dataset is cleaned, preprocessed, and wrangled
to fit the input of ML algorithm. The ML algorithm used is
Catboost [35], which has proved its efficiency in several ML
problems [36],[37]. It is the Gradient boosting algorithm type.

The Catboost has an advantage of automatically recognizing the
categorical features, which makes the process of training faster
and more efficient.

We use 5-fold cross validation for obtaining performance
metrics. The metrics in use are Area Under the Receiver
operating characteristic (ROC AUC), F1 Score, Area Under the
Precision-Recall Curve (PRC AUC) [38]. We also introduce the
final compound metric (FM), which is the weighted average of
the three previous metrics (ROC AUC has a bigger weight,
because it was used as loss function for model training)

FM =0.4-ROC_AUC+03-F1+0.3:-PRC_AUC (2)

We use the final metric for a better representation of the
model performance with different embeddings. The results of
the model applied on the baseline dataset are presented in Table I.

B. Model with Graph Embeddings

After training the baseline model we move on to adding
graph embeddings to the base dataset. We join the embedding
to the cleaned and preprocessed baseline training dataset. In this
way, the dataset is identical, except for the additional
dimensions of graph embeddings. It is important to have same
rows in baseline and modified training datasets, otherwise the
results may have noise and become non-comparable. In general,
the additional features (dimensions) to training dataset may
need cleaning and preprocessing as well. That may lead to some
of the rows of the baseline dataset being discarded after the
additional features are added. A precaution should be taken to
track such changes and adjust final datasets accordingly.

In each algorithm run we change one of the hyperparameters
of the method. A unique combination of hyperparameters is
coded with its own number (UID). The combinations for
sensitivity analyses are created from following sets of
hyperparameters:

e  Number of closest points, connected with edges (NE):

1,2,4,7)

e Embedding dimensions (N): (15, 40, 85)

e Length of single walk (WL): (4, 10, 16)

e  Window size for skim-gram (WS): (3,6)
There are total of 72 unique runs in the experiment. Some of
the hyperparameters for the algorithm are fixed. These are
Number of walks per node: (NW=100), Minimum length of one
walk: (min count=1), Return parameter: (p=1), In-out
parameter: (q=3). Also, we fixed the random seed parameter for
reproducible results. The choice of return and in-out parameter
inclines the model to BFS strategy, since we want to capture the
immediate neighbors of the feeders.

The results for model with graph embeddings, organized as
bar-chart for different hyper parameters, are presented in Fig.
9-Fig. 12. Numbers above bars indicate UID of each case. The
scale of FM axis is kept the same throughout all figures to keep

TABLE I. BASELINE MODEL METRICS

ROC AUC F1 Score PRC AUC FM

Baseline Model 0.939 0.856 0.944 91.57
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Fig. 9. Results for 1-Edge embedding
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Fig. 11. Results for 4-Edge embedding

N /WL / WS
16

92.58 I i B *b 59460 B e
92.48
92.38
92.28
9218
92.08
91.98
91.88
91.78
91.68

3 6/3 63 63 63 63 63636

Fig. 12. Results for 7-Edge embedding

FM»

representation of results easy to read. We also used a darker
color for bars with higher ROC AUC score, since it was used
as objective function for training the algorithm.

C. Results discussion

We assume that the FM represents the desired balance in
performance metrics. One can tweak the FM’s weight
coefficients to rise importance of some metric or one can even
make judgement on a single metric. The decision should be
based on the cost of false positives and false negatives in the
model performance.

All graph embedding-based experiments resulted in
significant improvements versus baseline, as evident at Figs 9-
12, where bars correspond to improvement versus baseline
result. For the 1-edge embedding the best case is UID = 6, with
15 dimensions, window size of 6 and walk length of 16. This
shows that by even adding a trivial graph we improve model
performance up by 1%. Adding more edges yields better
results. For 2-edge embedding, the best outcome has a FM of
92.58% (N = 15, WL = 16, WS = 6). When increasing closest
nodes in graph to 4, the best outcome is 42 with the same
hyperparameters. The increase in FM is 1.07%. Moving to 7
edges, the best outcome is number 59 with 15 dimensions, walk
length of 16 and window size of 3. In latter case we do not see
any increase in performance as compared to 4-edge embedding.
In fact, we experienced that increasing graph complexity above
4 closest nodes does not yield better results.

One can see that the strongest cases for each type of graph
have similar hyperparameters: N = 15, WL = 16, WS = 6. We
may conclude that those are optimal for the application in hand.
Hence, 15 dimensions are enough to represent spatial difference
between feeders in the network, and increasing the amount only
degrades the performance. WL and WS of higher levels allow
the model to capture more neighbors, than it otherwise does
with lower values.

V. CONCLUSION

In this paper, we analyzed the effect of spatial information
embedding into features by constructing a graph and then
passing it through graph embedding method. The resulting
features were used to train the ML model. Several important
outcomes are achieved:

e  Graph embedding improves prediction accuracy of risk
outages in the network.

e  4-edge graph is optimal for application at hand.

e  Sensitivity analysis reveals optimal hyper parameters for
the prediction model.
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