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Abstract—The control of underactuated balance robots is aimed
at performing both the external (actuated) subsystem trajectory
tracking and internal (unactuated) subsystem balancing tasks. In
this article, we propose a learning-based control design for under-
actuated balance robots. The key idea integrates a model predictive
control method to design the desired internal subsystem trajectory
and perform the external subsystem tracking task, while an inverse
dynamics controller is used to stabilize the internal subsystem to
its desired trajectory. The control design is based on Gaussian
process (GP) regression models that are learned from experiments
without requiring a priori knowledge about the robot dynamics
or the demonstration of successful stabilization. GP regression
models also provide estimates of modeling uncertainties of the
robotic systems, and these estimations are used to enhance control
robustness to modeling errors. The learning-based control design is
analyzed with guaranteed stability and performance. The proposed
design is demonstrated by experiments on a Furuta pendulum and
an autonomous bikebot.

Index Terms—Balance control, Gaussian processes (GPs), model
predictive control, nonminimum phase systems, underactuated
robots.

I. INTRODUCTION

UNDERACTUATED robots have fewer control inputs than
the degrees of freedom (DOFs) [1]. The control of un-

deractuated balance robots requires trajectory tracking for an
actuated subsystem and balance task around unstable equilibria
for an unactuated subsystem [2]. Commonly studied underac-
tuated balance robots include the cart–pole system [3], Furuta
pendulum [4], [5], [6], autonomous bicycles [7], [8], and bipedal
walkers [9], [10], to name a few. The control of these robots is
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challenging due to the lack of an analytical causal compensator
for the nonminimum phase nature of their dynamics [11]. A
well-known approach is to formulate the part of the control
task as an inversion problem, that is, to estimate the future state
trajectory such that the resultant internal state can be stabilized
on the desired profile [2], [3], [12]. In [2], an approximate dy-
namic inversion approach was proposed to construct the balance
equilibrium manifold (BEM) to capture the desired trajectory for
the unstable subsystem state. An external/internal convertible
(EIC) form of robot dynamics was used to design the controller
to perform both the tracking and balancing tasks. Despite the
guaranteed stability property, all the above-mentioned nonlinear
control designs require accurate dynamics models.

Using machine learning techniques, data-driven model-based
controllers have showed promising potential to capture com-
plex systems dynamics and achieve satisfactory control perfor-
mance [13]. The Gaussian process (GP) is used as a nonparamet-
ric learning model and has been widely applied to robot mod-
eling and control [14]. The work in [15] proposed a GP-based
inverse dynamics control law, and the feedback gain was adapted
to the variance of the predictive distribution. The approaches
in [15], [16], and [17] gave theoretically guaranteed stability
or safety regions of GP-based inverse dynamics control. The
work in [18] achieved robotic impromptu trajectory tracking for
a cart–pole system by learning a stable approximate inverse of a
nonminimum phase system. The algorithm, however, required a
baseline controller to stabilize the system for data collection.
In [19], the BEM approach was used to learn model-based
control. The learned model was, however, not accurate due to
the flexible structure of the GP under the dynamic inversion.
The work in [20] presented a GP-based stable tracking control
of underactuated balance robots, and the rotary pendulum was
used as a demonstration example. However, the design required
the knowledge of the physical model structure, which limits the
approach to general robot dynamics.

Optimization-based controllers, such as model predictive con-
trol (MPC) and reinforcement learning, have been applied to
underactuated robot systems. Many GP-based designs take ad-
vantage of the predicted Gaussian distribution to achieve robust
control performance. For example, in [17], [21], [22], [23], and
[24], the objective function was designed to include tracking
errors over the prediction horizon with the variance of the
predictive distribution. In [25], the predictive variance was used
to help reduce the feasible region for the predictive trajectory
mean value. Learning-based inverse dynamics control and MPC
have been demonstrated in many applications [26], [27], [28],
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[29]. In [30], [31], and [32], researchers adopted an inverse
dynamics controller with the global and local GP regression
models. These inverse dynamics controllers, however, cannot be
directly applied to unstable nonminimum phase underactuated
robots.

In this article, we take advantage of the EIC form property of
the underactuated balance robot dynamics to design GP-based
learning controllers. A GP-based inverse dynamics controller
is designed and applied to the internal subsystem to ensure
rapid stabilization with a specific fast convergence rate. An
MPC is used to simultaneously track the output of the external
subsystem and obtain the desired balance profiles for the internal
subsystem. Both the external and internal subsystem dynamics
are learned from experimental data with GP models, and the
MPC incorporates predictive model uncertainties into the design
to enhance the control robustness with proven stability. We
demonstrate the proposed learning-based control design on a
Furuta pendulum and an autonomous bikebot.

This article makes several contributions. First, the control
design is based on the learning models without needing to obtain
the physical dynamics model, and therefore, it is attractive for
many complex underactuated balance robots whose dynamics
models are difficult to obtain. Our approach differs from pre-
vious approaches that relied on either the prior knowledge of
robot’s physical dynamics model or the demonstration of stable
motion to obtain the training data. For example, the controller
in [18] explicitly requires a stabilized baseline system, and the
learning only improves the tracking accuracy under the baseline
controller. The proposed approach does not require such a stabi-
lization design for training data collection, and in this sense, the
approach treats the collected training data as open-loop dynamic
responses. We demonstrate this “free of stable motion in training
data” property in rotary inverted pendulum experiments. This
is attractive for many robots with intrinsic unstable balance.
Second, the proposed control demonstrates a novel design of
explicitly incorporating predictive model uncertainty to enhance
control robustness with guaranteed stability and convergence.
The guaranteed stability property is attractive for learning-based
robot control. The use of the GP-based MPC to design the
BEM is novel and avoids the dynamic inversion of nonminimum
phase robot dynamics. Compared with the previous conference
presentation [33], this article includes significant extensions
and new developments in control analysis and new experiments
conducted on multiple robotic platforms.

The rest of this article is organized as follows. In Section II, we
present the robot dynamics and basics of GP models. Section III
presents the control design overview. Section IV presents the
GP-based control of underactuated balance robots. We present
the control performance analysis in Section V. Experimental
results are included in Section VI. Finally, Section VII concludes
this article.

II. ROBOT DYNAMICS AND GPS

A. Notations

We introduce notations that will be used in this article. Vector
α and matrix A are denoted with bold lowercase and uppercase
variables, respectively. An n× n identity matrix is denoted as

Fig. 1. Three examples of underactuated balance robots. (a) Furuta pendulum.
(b) Autonomous bikebot. (c) Robotic biped.

In. The smallest and the largest eigenvalues of matrix A are
denoted by λmin(A) and λmax(A), respectively. For vector
x ∈ Rn and real matrixA, ‖x‖ and ‖A‖ represent the (induced)

2-norm, that is, ‖x‖ =
√
xTx and ‖A‖ =

√
λmax(A

TA), and

the weighted norm is ‖x‖P =
√
xTPx with symmetric pos-

itive definite P ∈ Rn×n. tr(A) and det(A) denote the trace
and determinant of matrix A, respectively. The expression
x ∼ N (μ,Σ) represents that x is a random variable satisfying
Gaussian distribution with mean vectorμ and covariance matrix
Σ. The expectation operator is denoted as E, variableΠ denotes
a probabilistic event, and its probability is written as Pr{Π}.

B. Robot Dynamics and Problem Statement

Fig. 1 shows three examples of underactuated balance robots.
The Furuta pendulum shown in Fig. 1(a) has the actuated base
joint angle θ and the unstable unactuated pendulum link joint
angle α. The bikebot shown in Fig. 1(b) has three DOFs (i.e.,
position (X,Y ) at the rear wheel contact point C2 and unstable
platform roll angleϕ) with two inputs (i.e., velocity and steering
actuation) [7], [8]. The five-link robotic biped shown in Fig. 1(c)
has four actuated joints, and the unstable torso joint is unactu-
ated [9], [34]. We present general dynamics models and property
for these underactuated balance robots.

The underactuated robot dynamics model is described as

D(q)q̈ +H(q, q̇) = B(q)u (1)

whereq ∈ Q and q̇ ∈ TQ are the generalized coordinate and ve-
locity of the system, respectively, Q, TQ ⊂ Rm+n are compact
sets, u ∈ U is the control input, admissible control set U ⊂ Rm

is compact, D(q) is the inertia matrix, H(q, q̇) contains the
centripetal, Coriolis, and gravitational terms, and B(q) is the
input mapping matrix [35]. The coordinate q = [θT

1 α
T
1]

T is par-
titioned into θ1 ∈ Rm of the actuated subsystem and α1 ∈ Rn

of the unactuated subsystem. Throughout this article, we focus
on the subset of the underactuated systems with m ≥ n, that
is, the actuated DOFs are not less than the unactuated DOFs.
Defining θ2 = θ̇1 and α2 = α̇1, (1) becomes

[
θ̇2

α̇2

]
= D−1(q)

([
B1(q)u

0

]
−H(q, q̇)

)
(2)
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where B1(q) ∈ Rm×m is full rank. A general state-space rep-
resentation of (2) is formulated as{

Σe : θ̇1 = θ2, θ̇2 = fθ(θ,α,u)

Σi : α̇1 = α2, α̇2 = fα(θ,α,u)
(3)

where θ = [θT
1 θ

T
2]

T ∈ R2m, α = [αT
1 α

T
2]

T ∈ R2n, and fθ and
fα are smooth nonlinear functions for the subsystems Σe and
Σi, respectively. In general, nonlinear dynamics of Σi in (3) are
unstable due to the balance task of the robotic system.

The key idea of EIC form is that the external and internal
subsystems are interchangeable by selecting a different output
subspace (θ or α) [2]. The external subsystem is the subsystem
with the chosen system output. For illustration purposes, let
us consider a special case of m = n, and both fθ and fα are
invertible with respect to u. Considering that the desired trajec-
tory is specified for θ subspace, θ is the output, and therefore,
θ dynamics are considered to be the external subsystem. Σe
of (3) can be feedback linearized by introducing a virtual input
z = fθ(θ,α,u) to obtain the linearized form of (3) as{

θ̇1 = θ2, θ̇2 = z

α̇1 = α2, α̇2 = fα(θ,α,f
−1
θ (θ,α, z))

. (4)

Symmetrically, by introducing a virtual input v = fα(θ,α,u),
the internal subsystem of (3) is feedback linearized, and we
obtain {

α̇1 = α2, α̇2 = v

θ̇1 = θ2, θ̇2 = fθ(θ,α,f
−1
α (θ,α,v))

. (5)

Equations (4) and (5) are called EIC dual forms for (3) from dif-
ferent perspectives of output linearization [2]. External/internal
subsystem interchangeability is only used to introduce the EIC
form as background knowledge to facilitate understanding of
the technical development. In the rest of this article, the external
subsystem Σe refers to the θ dynamics and the internal subsys-
tem Σi refers to the α dynamics given in (3).

Given a desired trajectory θ1d, the controller aims to perform
an asymptotic tracking task of θ1 to θ1d; meanwhile, the unsta-
ble internal subsystem is stabilized. Defining θd = [θT

1d θ
T
2d]

T,
θ2d = θ̇1d, as the EIC control design [2], a state feedback
control, denoted as zf , is first chosen for input z in (4) to achieve
asymptotic tracking of θ1 to θ1d. Under control zf , the BEM is
defined as element α1 of the equilibrium in (4), that is,

E = {αe1 : fα(θ,α
e,f−1

θ (θ,αe, zf )) = 0,αe2 = 0}, (6)

where αe = [(αe1)
T (αe2)

T]T. The BEM specifies the desired
trajectoryα1 of the internal subsystem when the external subsys-
tem follows θd. For example, a bikebot following a straight-line
trajectory would result in a BEM of a zero roll angle (i.e., upright
position), whereas when following a circular trajectory, the BEM
is a constant roll angle whose value depends on the trajectory
curvature and the bikebot’s velocity.

The BEM is considered the desired trajectory α1d for α1,
namely,α1d ∈ E . To obtainα2d = α̇1d as the desired trajectory

for α2, we take the directional derivative of α1d along the θ-
dynamics vector field under control zf , i.e.,

α2d =
∂α1d(θ, zf )

∂θ
θ̇ +

∂α1d(θ, zf )

∂t
, α1d ∈ E .

zf is a function of θ and θd, and therefore, the directional
derivative does not contain terms with żf . With the above
construction, αd = [αT

1d α
T
2d]

T, α1d ∈ E , is the desired output
trajectory for α under the tracking control zf . The EIC control
then updates the above zf design to achieve an exponential
convergence of α and θ to the respective neighborhoods of αd
and θd simultaneously [2].

One challenge of the above EIC control design lies in an es-
timation of αd that implicitly depends on tracking performance
under zf . In [2], a dynamic inversion method was proposed to
obtainE in (6), and it was involved to invert a nonminimum phase
nonlinear dynamics. From (6), it is clear that accurate models
(i.e., fα and fθ) are required to guarantee the control perfor-
mance. With the above background description, we consider the
following problem.

Problem statement: The control goal for robot dynamics (3) is
to track a given desired trajectory θd of the external subsystem
Σe and simultaneously obtain and follow the desired trajectory
αd of the unstable internal subsystem Σi by learning robot dy-
namics models (i.e., fα and fθ) in (3) with guaranteed stability
and tracking performance.

C. Gaussian Processes

A GP is a collection of random variables, any finite num-
ber of which has a joint Gaussian distribution. A real-valued
random function f(x) of variable x ∈ X , where X ⊂ Rn is
compact, is determined by its mean value function μ(x) and
covariance functionk(x,x′) asμ(x) = E[f(x)] andk(x,x′) =
E[(f(x)− μ(x))(f(x′)− μ(x′))] for x,x′ ∈ X . The GP with
a zero prior mean function is assumed sufficient for the ap-
plications in this article and is, therefore, adopted throughout
this article. Suppose that the training dataset contains N data
pairs D = {xi, yi}Ni=1, where observation yi = f(xi) + ε for
xi, ε ∼ N (0, σ2) is a zero-mean Gaussian noise. The observa-
tion is denoted as y = [y1 · · · yN ]T, and the input is denoted as
X = [xT

1 · · · xT
N ]T. Under the zero prior mean GP assumption,

for a testing input x∗ ∈ Rn, the joint distribution of f(x∗) and
y is a zero mean Gaussian distribution, namely[

y

f(x∗)

]
∼ N

(
0,

[
KX + σ2IN k(X,x∗)
k(X,x∗)T k(x∗,x∗)

])

where the (i, j)th element of the Gram matrix KX is k(xi,xj)
and the ith element of k(X,x∗) ∈ RN is k(xi,x∗), i, j =
1, . . . , N . Throughout this article, the covariance (kernel) func-
tion adopts the squared exponential (SE) form. For calcu-
lating the Gram matrix KX , k(xi,xj) = σ2

f exp[− 1
2 (xi −

xj)
TS(xi − xj)], where positive-definite matrix S and σf >

0 are hyperparameters determined by the learning process.
For calculating vector k(X,x∗), k(xi,x∗) = σ2

f exp[− 1
2 (xi −

x∗)TS(xi − x∗)].
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The prediction of f(x∗) is given by the conditional distribu-
tion f(x∗)|D ∼ N (μ(x∗|D),Σ(x∗|D)) with mean and covari-
ance functions, respectively, as

μ(x∗|D) = k(X,x∗)T(KX + σ2IN )−1y (7a)

Σ(x∗|D)=k(x∗,x∗)−k(X,x∗)T(KX+σ2IN )−1k(X,x∗).
(7b)

For the m-dimensional function f(x), GPs are adopted
to learn each element fi(x), i = 1, . . . ,m, as fi(x

∗)|D ∼
N (μi(x

∗|D),Σi(x
∗|D)) independently. The predictive distri-

bution is written as f(x∗)|D ∼ N (μ(x∗|D),Σ(x∗|D)), where
μ(x∗|D) with element μi(x∗|D) and Σ(x∗|D) is a diagonal
matrix with element Σi(x∗|D).

The hyperparameters are obtained by the training process,
such as maximum a posteriori. Once hyperparameters are
determined, the values of the above SE covariance function
only depend on the distance between two points. If a test-
ing point x∗ is far away from all training data, i.e., ‖x∗ −
xi‖ → ∞ for any xi ∈ D, the posterior mean μ(x∗|D) → 0
due to k(x∗,xi) → 0. The posterior covariance is bounded
by Σ(x∗|D) ≤ σ2

f + σ2. For the m-dimensional function f ,
‖Σ(x∗|D)‖ ≤ max1≤i≤m(σ2

fi
+ σ2

i ), where σfi and σi are the
hyperparameters for corresponding fi. The rest of this article
mainly focuses on the posterior GP given training data D, and
for notation simplicity,D will be omitted in μ(x) andΣ(x). The
following lemma gives the estimation error bound.

Lemma 1 (see [36, Th. 6]): For a function f(x)with bounded
reproducing kernel Hilbert space norm ‖f(x)‖k, and x ∈ X ,
X ⊂ Rn is compact, let δ ∈ (0, 1); then

Pr{|μ(x)− f(x)| ≤ βΣ
1
2 (x)} ≥ 1− δ

where β =
√
2‖f‖2k + 300γ ln3(N+1

δ ) and γ =

maxX
1
2 log det(IN + σ−2KX) is the maximum information

gain for GP.
For the m-dimensional function f(x), if every dimen-

sion is independent, the results in Lemma 1 are extended to
Pr{‖μ(x)− f(x)‖ ≤ ‖βTΣ

1
2 (x)‖} ≥ (1− δ)m, where μ(·)

and Σ(·) are defined in (7), β ∈ Rm with element βi =√
2‖fi‖2k + 300γi ln

3(N+1
δ ), and γi is the maximum informa-

tion gain for fi.

III. ROBOT CONTROL DESIGN OVERVIEW

In this section, we first illustrate the proposed control design
by using the physical dynamics model and then give an overview
of the GP-based control design.

A. Internal Subsystem Control

Instead of using (4) to design tracking control of θ as in the
EIC-based approach, we first consider driving α to follow αd
by (5) assuming that the desired trajectory αd is known. Only
a subset of u is obtained by inverting fα due to m ≥ n, and
therefore, letting u = [uT

d u
T
f ]

T, ud ∈ Rn, and uf ∈ Rm−n, ud

is obtained by inverting fα, i.e.,

ud = f−1
α (θ,α,v,uf ). (8)

Robot dynamics (5) become

Σe : θ̇1 = θ2, θ̇2 = fθ (θ,α,v,uf ) (9a)

Σi : α̇1 = α2, α̇2 = v. (9b)

In (9a), we slightly abuse notation for function fθ by directly
replacing u with (v,uf ) in argument without causing any
confusion.

A high-gain feedback control is designed for inputv in (9b) for
rapidly tracking of α to αd, and one commonly used high-gain
controller is given as

v = α̇2d − kd
ε
eα2 − kp

ε2
eα1 = w − kd

ε
eα2 − kp

ε2
eα1 (10)

where w = α̇2d is the designed input, errors eα1 = α1 −α1d,
eα2 = α2 −α2d, eα = α−αd = [eT

α1 eT
α2]

T, ε > 0 is small,
and kp, kd > 0 are constant gains. Plugging (10) into (9b), the
closed-loop erroreα converges to zero exponentially with a rapid
rate of −1/ε. Inspired by singular perturbation theory [37] with
detailed analysis provided in later sections, by replacing α with
αd under control v in (10), an accurate approximation of (9a)
is obtained as

˙̂
θ1 = θ̂2,

˙̂
θ2 = fθ(θ̂,αd,w,uf ) (11)

where θ̂ = [θ̂
T
1 θ̂

T
2]

T is an estimate of θ, and it can be shown that
‖θ − θ̂‖ = O(ε) [37]. In (11), αd and w are designed by

α̇1d = α2d, α̇2d = w, αd(t0) = αd0 (12)

where input w and initial value αd0 determine the trajectory of
αd(t) at any time t ≥ t0 with initial time t0. Function arguments
of fθ in (11) do not contain v and α terms since, under (10), α
converges to αd rapidly and v is a function of w and αd.

The rationale of introducing the approximation in (11) is that
θ̂ dynamics are decoupled from closed-loopα dynamics and the
trajectory αd is considered as an input to drive θ̂ close to θ. The
desired trajectory αd exhibits a duplicated dynamics similar to
that ofαwith decision variablesw andαd0, which are designed
by an optimization approach. The future value of αd can be
chosen by design, while α is the actual state whose value is only
available up to the current time. By doing so, we avoid designing
a noncausal controller, which is one of the main challenges for
the control of nonminimum phase nonlinear dynamic systems.

B. External Subsystem Control

We still need to design the tracking control of θ̂ to follow θd
and discuss how to obtain the desired trajectory αd. We formu-
late an MPC to achieve these two tasks. Since θ̂ is an accurate
approximation of θ, one element of the MPC objective function
is to minimize the magnitude of error eθ̂ = θ̂ − θd, from current
time t to th = t+ tH with a time horizon tH > 0. Considering
θ̂- and αd-dynamics in (11) and (12), the MPC decision vari-
ables are denoted as W (t) = {αd(t) = αdt,w(τ),uf (τ), t ≤
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Fig. 2. Overall schematic of the GP-based control algorithms. Two GP models
gpα and gpθ are trained by offline experiments and then used to estimate f−1

α
and fθ , respectively. A GP-based inverse dynamics control ud (through v) and
an MPC design uf are then used for real-time tracking control of the internal
and external subsystems, respectively.

τ ≤ th}, and the MPC is given as

minW (t)‖αdt‖2Q2
+

∫ th

t

(‖eθ̂‖2Q1
+ ‖w‖2R + ‖uf‖2R

)
dτ

(13a)

subject to (11) and(12) with t ≤ τ ≤ th (13b)

where matrices Q1, Q2, and R are positive definite.
Note that penalizing ‖αdt‖2Q2

as an initial cost together with
the ‖w‖2R stage cost is equivalent to penalizing the weighted
norm of αd(τ) over the time horizon τ ∈ [t, th] in (13). Be-
sides (11) and (12), no other constraints on system states and
inputs are considered in this article. By (13), the desired trajec-
toryαd and control inputsw anduf are obtained for the internal
subsystem control in (10) and state approximation (11).

C. GP-Based Learned Robot Dynamics

The accurate inverse dynamics model f−1
α in (8) and the

state model fθ in (11) are usually difficult to obtain. We use
GP models to estimate them, and a detailed discussion will be
presented in Section IV.

Fig. 2 illustrates the overall schematic of the GP-based control
design. Two GP models gpα and gpθ are trained offline with
data that are collected under open-loop control without requiring
robot stabilization. A GP-based inverse dynamics control ud
(through v by (10) and an extension of (8) with GP model gpα)
drives the internal subsystem Σi in (3) to follow the desired
trajectory αd(t). Meanwhile, an MPC extended from (13) with
GP model gpθ is used to design αd(t) (through αd0 and w(t))
and control input uf for the external subsystem Σe in (3) to
follow the given trajectory θd. The MPC also incorporates the
predictive variance Σα from the GP distribution gpα. The over-
all tracking convergence and performance of the closed-loop
system is analyzed and guaranteed. We are now ready to present
the GP-based control design in detail.

IV. GP-BASED CONTROL DESIGN

A. GP-Based Inverse Dynamics Control

Instead of directly learning inverse dynamic model f−1
α in the

form (8), we subtract both sides of (8) by v to yield ud − v =
f−1
α (θ,α,v,uf )− v. We define κα(v) := κα(θ,α,v,uf ) =

f−1
α (θ,α,v,uf )− v as the model to learn. For presentation

brevity, we drop other three arguments and only retain the third
one in κα(v). By doing so and with (8), the robot dynamics
model (9b) becomes

α̇1 = α2, α̇2 + κα(α̇2) = ud. (14)

By (14), the learning model for κα(α̇2) is formulated as

κα(α̇2) = ud − α̇2 ∼ gpα(θ,α, α̇2,uf ) (15)

where gpα is the GP distribution to estimate κα(α̇2). In (15),
we use α̇2 in the function argument of κα because it is part of
training data, and when applied in control design, v is used for
inference prediction. The GP model (15) is trained on a dataset
that contains the input tuplexα = {θ,α, α̇2,uf} and the output
yα = {ud − α̇2}, that is, training dataset Dα = {xα,yα}. For
each output dimension, an individual GP model is built, and the
GPs for all the dimensions are assumed to be independent of
each other due to the property of fully actuated α dynamics of
Σi in (9b).

The control input ud for (15) is predicted and obtained as

ud = v + μα (16)

where μα := μα(θ,α,v,uf ) (and Σα := Σα(θ,α,v,uf )) is
the mean (and variance) of predictive Gaussian distribution
gpα(θ,α,v,uf ) ∼ N (μα,Σα), which are computed from (7)
with inverse dynamics control input v and MPC input uf . Here,
we drop dependence on (θ,α,v,uf ) forμα andΣα for notation
simplicity. One benefit of using the κα(α̇2) representation is
that with a zero-mean GP model with SE kernel, when the
inference input v is far away from the training data Dα, the
inverse dynamics control (16) reduces to ud = v due to that μα
is close to zero. Similar to (10), v is designed as

v = w − kd
ε
eα2 − kp

ε2
eα1 + r (17)

where r is an auxiliary control input that is introduced to guar-
antee that the controller converges robustly when using learned
models gpα to approximate unknown κα(v).

Plugging (16) and (17) into (14), the α error dynamics are

ėα = Aeα +B[r + μα − κα(α̇2)] (18)

where

A =

[
0 In

−kp
ε2 In −kd

ε In

]
, B =

[
0

In

]
(19)

and A is Hurwitz with kp, kd > 0. To show the convergence of
eα, it is required that disturbance μα − κα(α̇2) is bounded.
Note that μα and κα(α̇2) have different arguments, that is,
the latter has argument α̇2 for training, while the former has v
for running inference prediction. We first analyze the difference
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‖μα − κα(v)‖ to give a bound for ‖μα − κα(α̇2)‖. According
to Lemma 1, the following probabilistic event

Πα = {‖μα − κα(v)‖ ≤ ‖βT
αΣ

1
2
α‖} (20)

is true with probability Pr{Πα} ≥ (1− δ)n, where βα ∈ Rn

is δ-dependent and given in Lemma 1. When (20) is true, μα −
κα(α̇2) is upper-bounded, namely

‖μα − κα(α̇2)‖ ≤ ρ(eα,θ) (21)

where ρ(eα,θ) is defined and calculated in Appendix I.A.
Because of (21), the auxiliary controlr is designed such that (18)
is robustly stable.

Lemma 2: If k2d > 4kp > 0, A in (19) is diagonalizable with
A = MΛM−1, where Λ is a diagonal matrix and M is a
nonsingular matrix. A positive-definite matrixP exists as the so-
lution ofATP + PA = −M -TM−1. Furthermore, under (20),
r is designed as

r =

{
−ρ(eα,θ) BTPeα

||BTPeα|| , if ||BTPeα|| > ξ

−ρ(eα,θ)
ξ BTPeα, if ||BTPeα|| ≤ ξ

(22)

with constant ξ > 0. Moreover, errors ‖eα(t)‖ satisfy

‖eα(t)‖ ≤ d1‖eα(0)‖e
λ1
4ε t + d2 (23)

where λ1 =
−kd+

√
k2d−4kp
2 , d1 =

√
λmax(P )
λmin(P ) , d2 =√

− 2εc3
λ1λmin(P ) , and constant c3 > 0 is defined in (54).

The proof of Lemma 2 is given in Appendix I.B. Since λ1 < 0

and ε > 0 is small, e
λ1
2ε t converges to zero rapidly. The GP-based

inverse dynamics controller (16) only uses the mean value μα
of the predictive distribution, and the covariance Σα determines
the disturbance error bound ρ(eα,θ) and control performance.
We incorporate Σα into the MPC design.

B. MPC-Based Tracking and Balance Control

In this subsection, we discuss how to use MPC to obtain
control input uf and desired trajectory αd. The design can be
considered as an extension of (13) with GP models.

A learned GP model is used to predict fθ in (11) with
estimated state θ̂

˙̂
θ1 = θ̂2,

˙̂
θ2 ∼ gpθ(θ̂,αd,w,uf ) (24)

where gpθ is the GP distribution to estimate fθ. The GP
model (24) is trained on a dataset that contains the input tu-
ple xθ = {θ,α, α̇2,uf} and the output yθ = {θ̇2}, that is,
Dθ = {xθ,yθ}. The strategy is to design the MPC such that
θ̂ converges to θd, and we then give theoretical guarantee that
θ̂ is an accurate approximation of θ. We use the discrete-time
representation of (12) and (24) for MPC design as

θ̂(k + i+ 1|k) ∼ Fmθ̂(k + i|k) +Gmgpθ̂(k + i) (25a)

αd(k + i+ 1) = F nαd(k + i) +Gnw(k + i),αd(k) = αdk
(25b)

where θ̂(k + i|k)=[θ̂1(k + i|k)T θ̂2(k + i|k)T]T, i = 0, . . . ,
H + 1, denotes the (k + i)th step estimate given the

kth observation and θ̂(k|k) = θ(k), H is the predictive
horizon, and gpθ̂(k + i) = gpθ(θ̂(k + i|k),αd(k + i),w(k +
i),uf (k + i)). αd(k + i) = [α1d(k + i)T α2d(k + i)T]T are
obtained from the deterministic model (12) and, therefore, not
conditioned on observations. F i and Gi, i = m,n, are matrices
with dimension i as

F i =

[
Ii ΔtIi

0 Ii

]
, Gi =

[
0

ΔtIi

]
(26)

where Δt is the sampling period.
The evolution of θ̂(k + i+ 1|k) is probabilistic due to the

predictive GP modelgpθ̂(k + i) and also the probabilistic nature
of its previous state θ̂(k + i|k). Even if θ̂(k + i|k) is Gaussian
distribution, θ̂(k + i+ 1|k) in (25a) is not exactly Gaussian
because the predictive distribution gpθ(k + i) is nonlinear with
respect to θ̂(k + i|k). By linearizing gpθ̂(k + i) in (25a) with
respect to θ̂(k + i|k), we approximate θ̂(k + i+ 1|k) with a
Gaussian distribution with a closed form for mean and covari-
ance propagation (denoted, respectively, asμθ̂(k + i+ 1|k) and
Σθ̂(k + i+ 1|k)) as

μθ̂(k + i+ 1|k)=Fmμθ̂(k + i|k)+Gmμgpθ̂ (k + i) (27a)

Σθ̂(k + i+ 1|k)=FmΣθ̂(k + i|k)F T
m+Gm∂Σθ̂(k+i)G

T
m

(27b)

where ∂Σθ̂(k + i)=
∂μgp

θ̂

∂θ̂
Σθ̂(k + i|k)∂μ

T
gp

θ̂

∂θ̂
+Σgpθ (k + 1),

and μgpθ̂ (k + i) and Σgpθ̂
(k + i) are the mean and covari-

ance of gpθ̂(k + i), respectively. It is straightforward to obtain
‖Σgpθ̂

‖ ≤ σ2
fmax := max1≤j≤m(σ2

fθj
+ σ2

j ), where j is the in-

dex of the dimension of fθ. Assuming that μgpθ̂ has a bounded
gradient, with a small Δt, we obtain a bound of Σθ̂(k + i|k) as

‖Σθ̂(k + i|k)‖ ≤ i(Δt)2‖Σgpθ‖ ≤ i(Δt)2σ2
f max. (28)

The calculation of (28) is given in Appendix I.C.
We use θ(k + i|k), i ∈ N, to denote the predicted value of

θ(k + i) given θ(k). Similar to (25a), the evolution of θ(k +
i|k) under the GP model (24) with inference by α (instead of
αd) is given as

θ(k + i+ 1|k) ∼ Fmθ(k + i|k) +Gmgpθ(k + i) (29)

with the mean value μθ(k + i+ 1|k) and variance Σθ(k + i+
1|k) calculated similar to (27), where gpθ(k + i) = gpθ(θ(k +
i|k),α(k + i),v(k + i),uf (k + i)). The main difference be-
tween models (29) and (25a) is that the former depends on
the actual state α(k + i), while the latter uses the estimated
αd(k + i). Fig. 3 further illustrates the relationships among
three different θ and its estimate θ̂ predictive models (9a), (25a),
and (29).

At the kth step, the MPC input set is

W (k) = {αdk,w(k + i),uf (k + i), i = 0, . . . , H}. (30)

Unlike w(k + i) or uf (k + i) with predictive values over hori-
zon H , only the initial value αdk = αd(k) at the current step is
included in (30), which is the same in (13). For (25), the MPC
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Fig. 3. Flowchart of the state variable θ(k + i) and its estimates θ(k + i|k)
and θ̂(k + i|k), i ∈ N, by three predictive models. True state θ(k + i) is
evolved with the external subsystem dynamics fθ ; estimates θ(k + i|k) and
θ̂(k + i|k) are predicted under the kth step values by using the GP models
gpθ and gpθ̂ with the true and desired trajectories α and αd, respectively. For
presentation simplicity, notation fθ(θ,α) drops the other two arguments v and
uf , while gpθ(θ,α) and gpθ̂(θ̂,αd) are presented by dropping the last two
arguments of (v,uf ) and (w,uf ), respectively.

cost function is designed as

J̄k
θ̂,W

= ‖αdk‖2Q2
+

H∑
i=0

ls(k + i) + lf (k +H + 1) (31)

where the stage cost ls(j), j ≥ k, and the terminal cost lf (k +
H + 1) are

ls(j)=E ‖eθ̂(j)‖2Q1
+ ‖w(j)‖2R + ‖uf (j)‖2R=‖eμθ̂

(j)‖2Q1

+ tr(Q1Σθ̂(j|k)) + ‖w(j)‖2R + ‖uf (j)‖2R (32a)

lf (k +H + 1) = E ‖eθ̂(k +H + 1)‖2Q3

= ‖eμθ̂
(k +H + 1)‖2Q3

+ tr(Q3Σθ̂(k +H + 1|k)) (32b)

eθ̂(j) = θ̂(j|k)− θd(j), eμθ̂
(j) = μθ̂(j|k)− θd(j), and ma-

trix Q3 is positive definite. We take the expectation op-
erator in (32) because of the probabilistic variable θ̂(j|k)
from (27) for j = k, . . . , k +H + 1. In (32a), we use
the fact that E ‖eθ̂(j)‖2Q1

= E ‖θ̂(j|k)− μθ̂(j|k) + μθ̂(j|k)−
θd(j)‖2Q1

= ‖eμθ̂
(j)‖2Q1

+ tr(Q1Σθ̂(j|k)); a similar calcula-
tion is used in (32b) and others in this article.

The cost (31) is built on the θ̂- and αd-dynamics in (25), and
it does not penalize the eα convergence. It is, thus, modified as

Jk
θ̂,W

= J̄k
θ̂,W

+ ν‖Σα(k)‖ (33)

where Σα(k) is the covariance of the predictive distribution
gpα(θ,α,v,uf ) at the kth step and ν > 0 is a weighting
factor. As expressed previously, variance Σα(k) depends on
control inputs (i.e., W (k)), and the added term ‖Σα(k)‖ in (33)
penalizes to optimize decision variables W (k) to be close to
the training dataset and to reduce the tracking performance and
convergence of eα. The variance term also measures the GP
modeling accuracy, and this can be seen from the fact that d2
in (23) increases with large ‖Σα‖ value.

Similar to (13), the MPC formulation is given as

min
W (k)

Jk
θ̂,W

(34a)

subject to (25b) and (27), i = 0, . . . , H. (34b)

The above optimization is solved by a gradient decent
method, and the solution is denoted asW ∗(k) = {α∗

dk,w
∗(k +

i),u∗
f (k + i), i = 0, . . . , H}. The gradient of the objective

function with respect to the decision variables is obtained with
the chain rule. In implementation, the states in the MPC pre-
diction horizon are computed and constrained as the function
of initial state and the inputs (i.e., W (k)) by the forward
propagating models (25b) and (27) iteratively [38, Ch. 2].

C. MPC Convergence Analysis

Certain terminal cost conditions of (31) need to be satisfied
to guarantee the asymptotic stability of the closed-loop system
under the finite-horizon optimization in (34). The work in [39]
presented the terminal cost condition that guarantees the MPC
stability. To apply the results in [39] to (34), the state and input
variables in (27) need to be shifted such that the origin of the
transformed dynamics is an equilibrium of the system.

Suppose that for given desired trajectory θd, there exists a set
of corresponding nominal inputs {αdd,wd,ufd} satisfying the
mean propagation dynamics similar to (27a), that is,

μθd(k + i+ 1) = Fmμθd(k + i) +Gmμgpθd
(k + i)

whereμgpθd (k + i) is the mean of gpθd(k + i) = gpθ(θd(k +

i),αdd(k + i),wd(k + i),ufd(k + i)), and αdd(k + i) is ob-
tained from (25b) under wd(k + i) and αdkd. The dynamics
of error eμθ̂

(k + i) = μθ̂(k + i|k)− θd(k + i) is obtained by
taking the difference between the above equation and (27a)

eμθ̂
(k + i+ 1) = Fmeμθ̂

(k + i) +GmΔμgpθ (k + i) (35)

where Δμgpθ (k + i) := μgpθ (k + i)− μgpθd
(k + i). Since

the nominal inputs trajectory is fixed for a given θd, the
actual control input for (35) is the difference between
the input for (27a) and the nominal input trajectory, i.e.,
ue(k) = [ΔαT

dk ΔwT(k) ΔuT
f (k)]

T, where Δαdk = αdk −
αdkd, Δw(k) = w(k)−wd(k) and Δuf (k) = uf (k)−
ufd(k). The origin of state eμθ̂

(k) and input ue(k) of (35)
is an equilibrium point. The following fictitious MPC is used to
find input ue at the kth step:

min
W (k)

J̄k◦
θ̂,W

(36)

where J̄k◦
θ̂,W

= ‖Δαdk‖2Q2
+
∑H
i=0 l

◦
s(k + i) + l◦f (k +H +

1), and

l◦s(j) = ‖eμθ̂
(j)‖2Q1

+ ‖Δw(j)‖2R◦ + ‖Δuf (j)‖2R◦ (37a)

l◦f (k +H + 1) = ‖eμθ̂
(k +H + 1)‖2Q3

. (37b)

Matrix R◦ in (37a) is positive definite. The superscript “◦”
is used in (36) and (37) to differentiate from (34) and (32),
respectively.

By [39], the stability of the fictitious MPC (36) is guaranteed
by the particular design of the terminal cost, i.e., matrix Q3,
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which is the solution of a Lyapunov equation of the linearization
of (35) at its equilibrium. The linearization of (35) around its
equilibrium (i.e., the origin) leads to

eμθ̂
(k + i+ 1) = Aeeμθ̂

(k + i) +Beue(k + i) (38)

where Ae = Fm +Gm

∂μgpθd

∂θd
and Be =

Gm

[
∂μT

gpθd

∂αdk

∂μT
gpθd

∂wd

∂μT
gpθd

∂ufd

]T

. The chosen Q3 as the Lyapunov

equation solution of (38) guarantees that the MPC (36) has a
decreasing terminal cost

l◦f (k +H + 2) ≤ l◦f (k +H + 1)− l◦s(k +H + 1). (39)

By comparing (32) with (37), the following terminal cost de-
creasing property is obtained for the MPC in (34).

Lemma 3: For the stage and terminal costs ls(k + i) and
lf (k +H + 1) in (32), let R satisfy λmax(R) < λmin(R

◦) and
Q3 be the solution of the Lyapunov equation of (38). Defining
λR = λmin(R

◦)λmax(R)
λmin(R

◦)−λmax(R) , then

lf (k +H + 2) ≤ lf (k +H + 1)− ls(k +H + 1)

+ tr(Q3Σθ̂(k +H + 2|k)) + tr(Q1Σθ̂(k +H + 1|k))
+ λR(‖wd(k +H + 1)‖2 + ‖ufd(k +H + 1)‖2). (40)

The proof of this lemma is in Appendix I.D. The terminal cost
condition (40) is a key step to ensure the following convergence
property for the MPC in (34).

Lemma 4: Assuming bounded input trajectories for θd, that
is, ‖αdk‖2Q2

≤ α2
dmax, ‖wd(k)‖ ≤ wdmax and ‖ufd(k)‖ ≤

ufdmax, under the MPC in (34), the tracking error satisfies
‖eμθ̂

(k + i)‖ ≤ a4(i)‖eθ(k)‖+ a5(i), where eθ(k) = θ(k)−
θd(k), a4(i), and a5(i) are given in Appendix I.E.

The proof of Lemma 4 is in Appendix I.E. Lemma 4 gives the
bound of tracking error eμθ̂

under the MPC in (34). However, it
does not take into account the error introduced by using the GP
model to approximate the unknown robot dynamics. We will
show the stability of the overall GP-based control in the next
section.

V. CONTROL PERFORMANCE ANALYSIS

Under the GP-based inverse dynamics control (16) and (17)
and the MPC design (34), we consider a Lyapunov function
candidate

V (k) = Vθ(k) + ζVα(k) (41)

where constant ζ > 0, Vα(k) = eT
α(k)Peα(k), P is defined in

Lemma 2, Vθ(k) = J̄kθ,W ∗ is taken similar to the cost J̄k
θ̂,W ∗

in (31) under W ∗(k) but with actual θ(k) from (9a), namely

J̄kθ,W ∗ =
H∑
i=0

‖eθ(k + i)‖2Q1
+‖w∗(k + i)‖2R+‖u∗

f (k + i)‖2R

+ ‖α∗
dk‖2Q2

+ ‖eθ(k +H + 1)‖2Q3
(42)

and eθ(k + i) = θ(k + i)− θd(k + i). It is impossible to di-
rectly evaluate above J̄kθ,W ∗ because of inaccessible states
θ(k + i), and its value is instead approximated by Jk

θ̂,W ∗ .

Using (33) and (42), the Lyapunov function decrease
ΔV (k) = V (k + 1)− V (k) is calculated as

ΔV (k) =
(
J̄k+1
θ,W ∗ − J̄k+1

θ̂,W ∗

)
−
(
J̄kθ,W ∗ − J̄k

θ̂,W ∗

)
+
(
Jk+1

θ̂,W ∗ − Jk
θ̂,W ∗

)
+ ζ [Vα(k + 1)− Vα(k)]

− ν [‖Σα∗(k + 1)‖ − ‖Σα∗(k)‖] (43)

where Σα∗(k) is the covariance Σα(k) under control W ∗(k).
In (43), term J̄kθ,W ∗ − J̄k

θ̂,W ∗ quantifies the difference between

the approximated and actual cost-to-go at the kth step.
As shown in Fig. 3, we quantify the difference between θ̂(k +

i|k) and θ(k + i|k). At i = 0, θ̂(k|k) = θ(k|k) = θ(k). The
difference between θ̂(k + i|k) and θ(k + i|k) comes from the
predictions by (27a) and (29). Assuming that the mean value
function of the predictive distribution μgpθ (μθ,α)1 is Lipshitz
in μθ and α, we have

‖μgpθ (·,α)− μgpθ (·,αd)‖ ≤ L2‖eα‖ (44a)

‖μgpθ (μθ, ·)− μgpθ (μθ̂, ·)‖ ≤ L3‖μθ − μθ̂‖ (44b)

with constants L2, L3 > 0; error μ̃θ(k + i) = μθ(k + i|k)−
μθ̂(k + i|k) satisfies ‖μ̃θ(k + i)‖ ≤ �θ̂(i)‖eα(k)‖+ �2(i),
where �θ̂(i) and �2(i) are given by Lemma 5 in Appendix I.F.
We then inspect the difference betweenθ(k + i|k) andθ(k + i),
which comes from the predictions between (9a) and (29), as
shown in Fig. 3. Similar to (20) for κα, if event

Πθ = {‖μgpθ (θ,α)− fθ(θ,α)‖ ≤ ‖βT
θΣ

1
2
gpθ‖} (45)

for the GP estimate μgpθ (θ,α) for fθ(θ,α) is true with
high probability, that is, Pr{Πθ} ≥ (1− δ)m, 0 < δ < 1,
the upper bound of θμ(k + i) = μθ(k + i|k)− θ(k + i) is
given by Lemma 6 in Appendix I.F as ‖θμ(k + i)‖ ≤
�μθ

(i) = Δt
∑i−1
j=0 ‖βT

θΣ
1
2
gpθ (k + j|k)‖. In (45), βθ ∈ Rm is

δ-dependent and given in Lemma 1. Combining these results, we
have the upper bound of θ̃μ(k + i) = μθ̂(k + i|k)− θ(k + i)
as

‖θ̃μ(k + i)‖ ≤ ‖μ̃θ(k + i)‖+ ‖θμ(k + i)‖
≤ �θ̂(i)‖eα(k)‖+a2(i)

where a2(i) = �2(i) + �μθ
> 0. We then obtain the bound for

|J̄k
θ̂,W ∗ − J̄kθ,W ∗ |, as shown in Lemma 7 in Appendix I.F.

We denote e(k) = [eT
θ(k) e

T
α(k)]

T as the systems error
at the kth step, λ = min(λmin(Q1), ζλmin(Q)) and λ =
max(λmax(Q1), ζλmax(Q)), where matrices Q and Q1 are de-
fined in Lemma 2 and (31), respectively. We have the following
main result with proof given in Appendix I.G.

Theorem 1: For parameters ξ̄j(i), i = 0, 1, . . . , H + 2,
j = 1, . . . , 5, given in Lemma 7, defining ξj =

λ̄[ξ̄j(0) + 2
∑H+1
i=1 ξ̄j(i) + ξ̄j(H + 2)], γ1 =

√
η, γ2 = ξ3

2γ1
,

1For presentation simplicity, we drop the third and four arguments and use
notation μgpθ

(μθ,α) to represent μgpθ
(μθ,α,v,uf ) and μgpθ

(μθ,αd)

for μgpθ
(μθ,αd,w,uf ). The same notation is applied to both μgpθ

and fθ

in (45) with dropped (v,uf ) as the third and fourth arguments.
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γ3 =
√

λmin(Q1), γ4 = ξ4
γ3

, and γ5 =
ξ24
γ2
3
+

ξ23
4γ2

1
+ ξ5 +

α̂2
max + νσ2

κmax + ζc3Δt+mλm(H + 2)(Δt)2σ2
f max,

λm = λmax(Q1) + λmax(Q3), and

η =
1

4
ζλmin(Q)Δt− ξ1 − ξ22

2λmin(Q1)
− λmin(Q1)

4
> 0

(46)
the following property is then held:

V (k + 1) ≤ γλV (k) + γ5 (47)

where 0 < γλ = 1− γ2
3

4λ
< 1.

Applying (47) iteratively for i consecutive steps, we have

V (k + i) ≤ γiλV (k) +
4γ5λ(1− γiλ)

γ23
. (48)

Introducing the steady-state values Vss = limi→∞ V (k + i) and
ess = limi→∞ ‖e(k + i)‖ for any fixed k, taking the limit on
both sides of (48) as i→ ∞ results Vss ≤ 4λ

γ2
3
γ5. From (60)

in Appendix I.G, λe2ss ≤ Vss and, therefore, combining with

the above result, we have ess ≤
√

4λ
γ2
3λ
γ5. Theorem 1 implies

that the error magnitude decreases exponentially until reach-
ing the region that satisfies ‖e(t)‖ ≤ ess. Condition (46) is
satisfied by choosing a small value for ε. As the value of ε is
small, λmin(Q) becomes large according to Lemma 2 and �θ̂
is small by Lemma 5, and henceforth, both ξ1 and ξ2 values
are small. GP learning model errors are important factors for
control performance since the results in Theorem 1 are obtained

under conditions (20) and (45). As the error bound ‖βT
αΣ

1
2
α‖ for

κα estimation increases, values of d2 and �2(i) increase, a2(i)
increases, ξ̄3, ξ̄4, and ξ̄5 increase, γ5 increases, and, finally, the

bound of ess increases. Similarly, as the error bound ‖βT
θΣ

1
2
gpθ‖

for fθ estimation increases, the values of �μθ
(i) and a2(i)

increase; therefore, both γ5 and the bound of ess increase.

VI. EXPERIMENTS

The proposed robot control is implemented and demonstrated
independently using a Furuta pendulum and a bikebot.

A. Experimental Testbeds

The Furuta pendulum shown in Fig. 1(a) is a commercial
robotic platform provided by Quanser, Inc. The actuated joint
is the base angle θ that is driven by a motor. The unactuated
joint is the pendulum angle α, and its value is defined to be
zero when the pendulum arm is vertically upright. The applied
motor voltage Vm is the control input. The control goal is to
balance the pendulum around the upright position, while the
rotary base tracks a desired trajectory θ1d. The motion of the
external subsystem is captured by θ1 = θ and θ2 = θ̇, and for the
internal subsystem,α1 = α andα2 = α̇. Defining θ = [θ1 θ2]

T,
α = [α1 α2]

T, and ud = Vm, the dynamics model is{
θ̇1 = θ2, θ̇2 = fθ(θ,α, ud)

α̇1 = α2, α̇2 + κα(θ,α, α̇2) = ud
(49)

where functions fθ and κα are given in Appendix II.A.

Fig. 4. (a) Autonomous bikebot. (b) Schematic of the bikebot model.

The bikebot shown in Figs. 1(b) and 4(a) is a single-track
mobile robot [8], [40]. The detailed description of the system can
be found in [8]. Fig. 4(b) illustrates the modeling configuration
of the bikebot. The bikebot platform consists of a main body
structure (with the rear wheel) and a front wheel. The rear wheel
contact point is denoted asC2, and its planar position is denoted
as θ1 = [X Y ]T in the inertial frameN . The yaw and roll angles
of the bikebot are denoted as ψ and ϕ, respectively. The steering
angle is denoted as φ, and the magnitude of linear velocity atC2

is denoted as vc. Due to the nonholonomic constraint of C2, its
velocity is obtained asθ2 = [Ẋ Ẏ ]T = [vc cosψ vc sinψ]

T. The
external subsystem motion is captured by θ = [θT

1 θT
2]

T and the
internal subsystem motion α = [α1 α2]

T, α1 = ϕ, and α2 = ϕ̇.
The control inputs are u = [ud uf ]

T with ud = φ and uf = v̇c.
The bikebot dynamics model is written in the form of (14) as{

θ̇1 = θ2, θ̇2 = fθ(θ,α, ud, uf )

α̇1 = α2, α̇2 + κα(θ,α, α̇2, uf ) = ud
(50)

where fθ and κα are given in Appendix II.A.

B. Experimental Results

1) Furuta Pendulum Experiments: To obtain the learned
model, we perturbed the system to collect training data. An
open-loop control was implemented as

Vm =

{
a1 sin(ω1t) + a2 sin(ω2t) , |α| ≤ π

3

0 , |α| > π
3

(51)

wherea1 anda2 were chosen to satisfy the voltage bound |Vm| ≤
5 V, and ω1 and ω2 were designed to excite the system by both
low and high frequencies. In the experiment, we chose a1 =
3, a2 = 1.5, ω1 = 8 rad/s, and ω2 = 40 rad/s as an example.
Under this input, we swung up the pendulum manually by giving
an initial velocity when angle |α| ≥ π

3 . The input (51) cannot
stabilize the pendulum around the upright position. Fig. 5 shows
an example of θ and α angles under (51). For each swing, angle
α often stayed in the range of |α| ≤ π

3 for less than 1 s and then
fell.

Joint angles θ and α were measured with encoders, and their
velocities and accelerations were obtained by numerical differ-
entiation. The open-loop controller and data collection were im-
plemented at a frequency of 100 Hz. The closed-loop controller
was implemented through MATLAB Real-Time Workshop with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Rutgers University. Downloaded on October 12,2022 at 03:10:49 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON ROBOTICS

Fig. 5. Example profiles of the collected training data for Furuta pendulum
experiments (under open-loop control).

a frequency of 50 Hz, that is, Δt = 20 ms, and a preview
horizon of H = 27. The weight matrices in (31) were chosen
as Q1 = Q3 = diag{1000, 100}, Q2 = diag{100, 100}, R =
10I2, and ν = 1. The chosen Q3 value satisfied the stability
condition in [39] to obtain the property in (39). The inverse
dynamics control parameters were chosen as kp = kd = 5 and
ε = 0.1.

A set of 800 points was collected and used as the training
data. In testing experiments, the desired trajectory was first
designed as a composite sine θ1d = 0.6 sin(t) + 0.4 sin(4t) rad
and θd = [θ1d θ̇1d]

T. We chose this smooth curve as a rep-
resentative profile to demonstrate the performance. Fig. 6(a)
shows the tracking results of the base angle θ and Fig. 6(b)
for the roll angle α. For comparison purposes, the physical
model-based EIC control in [2] was implemented and included in
the plots. The EIC control was used as the benchmark, and other
physical model-based controls (e.g., sliding-mode control [5],
orbital stabilization [4], [6], etc.) produced similar results. The
parameter values of the physical model were obtained from the
vendor’s manual and also validated by experiments. In Fig. 6(b),
the BEMs α1d for the pendulum link angle show similar profiles
under the learning control and the EIC control. The αd profile
under the learning control was obtained from the MPC design.
Fig. 6(c) and (d) compares the tracking errors eθ and eα [with
their corresponding α1d shown in Fig. 6(b)] under these two
controllers. Fig. 6(e) and (f) shows the control input ud and the
MPC solution w for the learning control, respectively. Fig. 7(a)
and (b) further shows the error mean and standard deviation
profiles over multiple experimental runs. We also implemented
tracking a square wave θ1d = 0.6 sgn(sin(t)) rad to show the
performance under a sharp change trajectory, where function
sgn(x) = 1 for x ≥ 0 and −1 for x < 0. Fig. 7(c) and (d)
similarly shows the error mean and standard deviation profiles.
Table I lists the root-mean-square errors (RMSEs) for both the
trajectory profiles under the two controllers. It is clear that the
learning-based design outperforms the physical model-based
controller with more than a 50% reduction in both mean values
and variance of errors for both the trajectories.

TABLE I
RMSES AND THEIR STANDARD DEVIATIONS OF THE BASE AND ROLL ANGLES

UNDER TWO CONTROLLERS FOR THE FURUTA PENDULUM

TABLE II
RMSES (STANDARD DEVIATIONS) OF THE TRACKING POSITION AND ROLL

ANGLE COMPARISON UNDER TWO CONTROLLERS FOR THE BIKEBOT

2) Bikebot Experiments: Because the falling experiments
would severely damage the hardware platform, for training data
collection, the EIC controller was used to track sinusoidal-
shape trajectories [8]. Different sinusoidal-shape trajectories
were used asXd = vdt, Yd = Ay sin(

2π
Ty
t), where vd = 2 m/s is

the x-direction desired velocity,Ay is the magnitude around the
y-direction, and period Ty = 3.5 s. The training data were col-
lected from seven different experiment trials, each lasting about
7 s. In these experiments, Ay values were chosen from 0.2 to
0.5 m, and the use of these different trajectories aimed to perturb
the bikebot dynamics. The use of the EIC control for training
data collection was mainly for experiment convenience. Other
open-loop control strategies might work as well provided that
a fall-protection mechanism is used in the experiment without
changing system dynamics.

Using the trained model, we conducted the experiments to
track various desired trajectories, such as straight lines, sinu-
soidal (peak-to-peak amplitude around 0.8 m), and circular (ra-
dius of around 3.8 m) shapes. For comparison purposes, we also
included the results under the EIC controller. Fig. 8 shows the
comparison results under the learning-based and EIC controllers
for a sample experimental run. It is clear that the trajectory
tracking results under the learning-based control outperform
those under the EIC controller [see Fig. 8(a)–(c)]. Similarly, the
results shown in Fig. 8(d)–(f) demonstrate that the roll angles
under the learning-based control oscillated less significantly than
those under the EIC controller. The learning-based controller
also demonstrates faster reaction in circular tracking than the
EIC controller.

Fig. 9 further shows the tracking errors and roll angle errors
under the two controllers over the path arc length. In the figure,
we plot the mean and standard deviation of the trajectory and roll
angle tracking errors by using five experimental trials. Fig. 9(a)–
(c) shows the error and deviation profiles for the straight-line,
sinusoidal, and circular trajectories, respectively. The RMSEs
are listed in Table II under both the controllers. These results
confirm again that the learning-based control outperforms the
EIC control. Fig. 9(d)–(f) shows the roll angle tracking errors for
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Fig. 6. One experimental performance under the learning-based and EIC controllers for the Furuta pendulum. (a) Rotary link angle θ tracking profiles. (b)
Pendulum link angle α tracking profiles. The balance equilibrium angles are calculated differently for the physical model and the GP-based learning model. α1d(0)
is the first element of αd0. (c) Tracking error eθ = θ − θ1d. (d) Tracking error eα = α− α1d, where α1d (the first element of αd) is the BEMs that are obtained
by the physical model (for EIC control) or the GP-based model (for learning control). (e) Control inputs ud (motor voltage). (f) MPC solution w in the learning
control design.

Fig. 7. Mean tracking errors ēθ and ēα with standard deviation profiles by multiple experimental runs under two controllers for the Furuta pendulum. (a) and
(b) For tracking the composite sine. (c) and (d) For the square wave trajectories.

three types of trajectories in multiple runs. The roll angle error
magnitudes and variances under the learning-based controller
are much lower than those under the EIC controller. In Table II,
we also list the RMSEs for the roll angles during these runs,
and the calculations confirm small variations under the learning
control, as shown in the figures.

To understand the influence of training data on control per-
formance, the sizes of training datasets varied from 200 to 800
points to obtain different learned models in pendulum experi-
ments. These models were used to track the same previously used

composite sine trajectory. Fig. 10(a) shows the error distribution
under different sizes of training datasets. These contours in
the figure are plotted as the smallest convex coverage of the
corresponding error data points. For each learned model, the
plot includes tracking errors of a 90-s duration. The results
clearly imply that with 200 data points, the controller barely
achieved the balancing and tracking tasks with large errors.
With increased training data points, the magnitudes of both
the balancing and tracking errors decreased. With a set of 800
training data points, the learned model-based controller achieved
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Fig. 8. Performance comparison of the bikebot tracking under the learning-based control and the EIC control designs for one experimental run. (a)–(c) For XY
position tracking profiles and (d)–(f) for roll angle profiles for straight-line, sinusoidal, and circular trajectories, respectively.

Fig. 9. Bikebot position and roll angle tracking error profiles with multiple experimental runs under the learning-based and the EIC controllers. (a)–(c) For the
position tracking error ep profiles and (d)–(f) for roll angle error eϕ profiles for straight-line, sinusoidal, and circular trajectories, respectively. All the results are
plotted over the path arc length s.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Rutgers University. Downloaded on October 12,2022 at 03:10:49 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: GAUSSIAN-PROCESS-BASED CONTROL OF UNDERACTUATED BALANCE ROBOTS 13

Fig. 10. (a) Comparison results of the errors ‖eα‖ and ‖eθ‖ under the learning-based control by various training data points and the EIC control for the Furuta
pendulum. (b) Comparison of the balance and tracking errors ‖eθ‖ and ‖eα‖ under various values of the weight factor ν.

superior performance relative to the EIC controller. The plots in
Fig. 10(a) also confirm the error analysis and trend given by
Theorem 1.

The tradeoff between tracking and balancing performance
is tuned by the choice of ν value in (33). Experiments were
conducted on the Furuta pendulum to demonstrate the perfor-
mance under different values of ν. We chose a slightly inaccurate
learned model obtained by using 200 training data points, and
the value of ‖Σα‖ in (33) was relatively large. Fig. 10(b) shows
the contours of tracking and balancing errors with different ν
values. When ν = 0, the system shows large error distributions
due to the poor inverse dynamics model. Withν = 10, the system
achieves a good tradeoff between balancing and tracking tasks.
With a further increased ν value (i.e., ν = 40, 60), the tracking
performance becomes similar or slightly worse than those with
ν = 10, and when ν > 80, the controller even fails to balance
the pendulum. The average variances of the inverse dynamics
model for 60-s trials are 0.255◦, 0.174◦, 0.108◦, and 0.108◦

for ν = 0, 10, 40, 60, respectively. The results clearly show that
with increased ν values, the magnitude of Σα decreases. This
confirms that the integration of Σα in the cost function helps
improve control performance.

VII. CONCLUSION

In this article, we proposed a GP-based learning control design
for underactuated balance robots. One characteristic of underac-
tuated balance robots is that the equilibria of the internal subsys-
tem depend on the tracking of the external subsystem trajectory.
The control design consisted of an integrated trajectory tracking
of the external subsystem and the stabilization of the internal
subsystem. The trajectory tracking of the external subsystem was
designed through a GP-based MPC method, while a GP-based
inverse dynamics controller was used to simultaneously predict
and stabilize the internal subsystem trajectory. The GP models
were used to estimate system dynamics and to provide predictive
distribution of model uncertainties. The learned GP models were
obtained without prior knowledge about the robot dynamics

or successful balance demonstration. Moreover, the stability
and closed-loop performance were guaranteed through control
design and analysis. We demonstrated the controller design
independently using a Furuta pendulum and a bikebot testbed.

APPENDIX I
TECHNICAL RESULTS AND PROOFS

A. Calculation of (21)

We calculate μα − κα(α̇2) by Taylor expansion as

μα − κα(α̇2) = μα − κα(v) + κα(v)− κα(α̇2)

= μα − κα(v)− ∂κα
∂v

[μα − κα(α̇2)] +O(‖α̇2 − v‖2).
The second equality results from (14) and (16). The positive-
definite matrix Aκ = In + ∂κα

∂v is the linearization of the left-
hand side of (14). From the above equation, we have

μα − κα(α̇2) = A−1
κ [O(‖α̇2 − v‖2) + μα − κα(v)].

Taking the norm of both the sides, if event Πα is true and con-
sidering that O(‖α̇2 − v‖2) ≤ c2‖eα‖2 + c1‖eα‖+ c0, with
constants ci > 0, i = 0, 1, 2, we obtain

‖μα − κα(α̇2)‖ ≤ ρ(eα,θ)

where ρ(eα,θ) = λ−1
min(Aκ)

(∑2
i=0 ci‖eα‖i + ‖βT

αΣ
1
2
α‖
)

.

B. Proof of Lemma 2

To show that A is diagonalizable, introducing

M =

[
εIn εIn

λ1In λ2In

]
, Λ =

[
λ1

ε In 0

0 λ2

ε In

]
(52)

where λ1,2 =
−kd±

√
k2d−4kp
2 < 0, it is clear that A =

MΛM−1. Since Λ is Hurwitz and diagonal, it is straightfor-
ward to find a positive-definite matrix P α such that ΛTP α +
P αΛ = −I2n. P α has n eigenvalues at − ε

2λ1
> 0 and the
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other n eigenvalues at − ε
2λ2

> 0. Let P = M -TP αM
−1 and

ATP + PA = −M−TM−1.
Introducing eα = Meα′ , error dynamics (18) becomes

ėα′ = Λeα′ +M−1B[r + μα − κα(α̇2)]. (53)

We choose the Lyapunov function candidate Vα′ = eT
α′P αeα′ .

It is clear that − ε
2λ2

‖eα′ ‖2 ≤ Vα′ ≤ − ε
2λ1

‖eα′ ‖2 and

V̇α′ = − eT
α′eα′ + 2(BTM -TP αeα′)T[r + μα − κα(α̇2)].

Defining Vα = eT
αPeα, by the choice of r in (22) with ξ =

λmin(Aκ)
c2‖M‖2 , we obtain

V̇α′ ≤ − ‖eα′ ‖2 + ξρ(eα,θ)

2
= −1

2
‖eα′ ‖2 + c1

2c2‖M‖‖eα′ ‖

+
c0

2c2‖M‖2 +
‖βT

αΣ
1/2
α ‖

2c2‖M‖2 = −1

4
‖eα′ ‖2 − 1

4

(
‖eα′ ‖

− c1
c2‖M‖

)2

+ c3 ≤ −1

4
‖eα′ ‖2 + c3 (54)

where c3 = 1
4

c21
c22‖M‖2 + 1

2
c0

c2‖M‖2 + 1
2
‖βT

αΣ
1/2
α ‖

2c2‖M‖2 > 0.

From (54), we obtain V̇α′ ≤ λ1

2εVα′ + c3, and therefore

Vα′(t) ≤ Vα′(0)e
λ1
2ε t − 2ε

λ1
c3. (55)

Noting that Vα = Vα′ and λmin(P )‖eα‖2 ≤ Vα ≤
λmax(P )‖eα‖2, from (55), we have

‖eα(t)‖ ≤
√

λmax(P )

λmin(P )
‖eα(0)‖e

λ1
4ε t +

√
− 2εc3

λ1λmin(P )

= d1‖eα(0)‖e
λ1
4ε t + d2.

This proves the lemma.

C. Calculation of (28)

Taking norm on both sides of (27b) and apply-

ing the upper bound of the gradient ‖∂μgp
θ̂

∂θ̂
‖ ≤ L1, we

obtain ‖Σθ̂(k + i+ 1|k)‖ ≤ (‖Fm‖2 + ‖Gm‖2L2
1)‖Σθ̂(k +

i|k)‖+ ‖Gm‖2σ2
f max. Applying the process iteratively with

Σθ̂(k|k) = 0, we have

‖Σθ̂(k + i|k)‖ ≤ 1− (‖Fm‖2 + ‖Gm‖2L2
1)
i

1− (‖Fm‖2 + ‖Gm‖2L2
1)

‖Gm‖2σ2
f max.

From (26), ‖Fm‖ =
√

1 + Δt
2 (Δt+

√
(Δt)2 + 4), ‖Gm‖ =

Δt and for Δt� 1, taking ‖Fm‖ ≈ 1 and that (1 + x)n ≈ 1 +
nx for |x| � 1, we obtain (28).

D. Proof of Lemma 3

The terminal and stage costs in (32) and (37) are related
as l◦f (j) = lf (j)− tr(Q3Σθ̂(j|k)) and l◦s(j) = ls(j)−
tr(Q1Σθ̂(j|k))− ‖w(j)‖2R − ‖uf (j)‖2R + ‖Δw(j)‖2R◦ +
‖Δuf (j)‖2R◦ . Plugging the above results into (39), we obtain

lf (j + 1) ≤ lf (j) + tr(Q3Σθ̂(j + 1|k))− tr(Q3Σθ̂(j|k))

− ls(j) + tr(Q1Σθ̂(j|k)) + ‖wd(j) + Δw(j)‖2R
+ ‖ufd(j) + Δuf (j)‖2R − ‖Δw(j)‖2R◦ − ‖Δuf (j)‖2R◦

where j = k +H + 1. With λmax(R) < λmin(R
◦), we obtain

‖wd(j) + Δw(j)‖2R − ‖Δw(j)‖2R◦

≤ λmax(R)‖wd(j) + Δw(j)‖2 − λmin(R
◦)‖Δw(j)‖2

≤ λR‖wd(j)‖2.
Similarly, ‖ufd(j) + Δuf (j)‖2R − ‖Δuf (j)‖2R◦ ≤
λR‖ufd(j)‖2. Combining the above two inequalities with
the fact that tr(Q3Σθ̂(j|k)) ≥ 0, we obtain (40), and this
proves the lemma.

E. Proof of Lemma 4

We choose Jk
θ̂,W ∗ underW ∗(k) in (34) as the Lyapunov func-

tion candidate and first show the decreasing property of Jk
θ̂,W ∗ .

Inspired by the design in [38, Ch. 2.4], we take the technique to
construct a following intermediary policy W e(k + 1) extended
from computed W ∗(k) as

W e(k + 1) = {αed(k+1),w
∗(k + i),u∗

f (k + i),

we(k+H+1),uef (k+H+1), i = 1, . . . , H}
where αed(k+1) = F 1α

∗
dk +G1w

∗(k), and we(k +H + 1)

and uef (k +H + 1) are chosen from admissible input set.
The choice of the above design guarantees that W e(k + 1)
contains the same terms of W ∗(k) for i = 1, . . . , H . Con-
sequently, the predicted states at the (k + 1)th control cycle
μe
θ̂
(k + i|k + 1), Σe

θ̂
(k + i|k + 1) by (27) under W e(k + 1)

are the same as those at the kth control cycle under con-
trol W ∗(k) i.e. μe

θ̂
(k + i|k + 1) = μ∗

θ̂
(k + i|k), Σe

θ̂
(k + i|k +

1) = Σ∗
θ̂
(k + i|k) for i = 1, . . ., H + 1.

Let les(k + i) (lef (k + i)) and l∗s(k + i) (l∗f (k + i)) denote the
stage (terminal) costs under W e(k + 1) and W ∗(k), respec-
tively. It is straightforward to obtain that les(k + i) = l∗s(k + i)
for i = 1, . . . , H and lef (k +H + 1) = l∗f (k +H + 1)

Jk+1

θ̂,W e
− Jk

θ̂,W ∗ = les(k +H + 1) + lef (k +H + 2)− l∗s(k)

− lef (k +H + 1) + νΔΣα(k) + Δαdk

where ΔΣα(k) = ‖Σe
α(k + 1)‖ − ‖Σ∗

α(k)‖ and Δαdk =
‖αed(k+1)‖2Q2

− ‖α∗
dk‖2Q2

. By Lemma 3, we have

Jk+1

θ̂,W e
− Jk

θ̂,W ∗ ≤ −l∗s(k) + νΔΣα(k) + Δαdk+

tr(Q1Σθ̂(k +H + 1|k)) + tr(Q3Σθ̂(k +H + 2|k))
+ λR(‖wd(k +H + 1)‖2 + ‖ufd(k +H + 1)‖2).

Because of Jk+1

θ̂,W ∗ ≤ Jk+1

θ̂,W e
by optimality, from the above result,

we have

Jk+1

θ̂,W ∗ − Jk
θ̂,W ∗ ≤ −λmin(Q1)‖eμθ̂

(k)‖2 + νΔΣα(k)

+ Δαdk + tr(Q1Σθ̂(k +H + 1|k))
+ tr(Q3Σθ̂(k +H + 2|k)) + λR(‖wd(k +H + 1)‖2
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+ ‖ufd(k +H + 1)‖2). (56)

From (28), Σθ̂(k +H + 1|k) ≤ (H + 1)(Δt)2σ2
fmax. Also,

‖Σe
α(k + 1))‖ ≤ max1≤i≤n(σ2

αi
+ σ2

i ) := σ2
κmax. Applying

the above inequalities and the nominal input bounds, we have

Jk+1

θ̂,W ∗ − Jk
θ̂,W ∗ ≤ −λmin(Q1)‖eμθ̂

(k)‖2 + νσ2
κmax + α2

dmax

+m[λmax(Q1) + λmax(Q3)](H + 2)(Δt)2σ2
f max

+ λR(w
2
dmax + u2fdmax). (57)

Furthermore, we have Jk+1

θ̂,W ∗ ≥ λmin(Q1)‖eμθ̂
(k + 1)‖2. By

the monotonicity of the value function (see [38, Lemma 2.15]),
we have

Jk
θ̂,W ∗ ≤ lf (k) + ‖α∗

dk‖2Q2
+ ν‖Σα(k)‖

≤ λmax(Q3)‖eμθ̂
(k)‖2 + α2

dmax + νσ2
κmax.

Substituting the above inequalities into (57), we ob-
tain Jk+1

θ̂,W ∗ ≤ d3J
k
θ̂,W ∗ + d4, where d3 = 1− λmin(Q1)

λmax(Q3)
,

d4 = mλm(H + 2)(Δt)2σ2
f max + (2− d3)(νσ

2
κmax +

α2
dmax) + λR(w

2
dmax + u2fdmax). Therefore, Jk+i

θ̂,W ∗ ≤
di3J

k
θ̂,W ∗ + d4

1−di3
1−d3 , and consequently, ‖eμθ̂

(k + i)‖ ≤
a4(i)‖eθ(k)‖+ a5(i), where a4(i) = d

i
2
3

√
λmax(Q3)
λmin(Q1)

,

a5(i) =

√
di3(α

2
dmax+νσ

2
κmax)+d4

1−di
3

1−d3

λmin(Q1)
, and λm = λmax(Q1) +

λmax(Q3). This proves the lemma.

F. Other Technical Lemmas

Lemma 5: Given (44), ‖μ̃θ(k + i)‖ ≤ �θ̂(i)‖eα(k)‖+
�2(i), where

�θ̂(i) = d1L2Δt

[(
1− ai1
1− a1

− i

)(
1− L3Δt

1− a1

)
+ i

]

a1 = e
λ1
4εΔt and �2(i) = d2L2Δt[i+

1
2L3Δt(i− 1)i]. d1, d2,

and λ1 are defined in Lemma 2.
Proof: Denoting j = k + i and plugging (27a) for μθ̂(j|k)

and counterpart from (29) for μθ(j|k) into μ̃θ(j) = μθ(j|k)−

μθ̂(j|k), we obtain

‖μ̃θ(j)‖ = ‖Fmμ̃θ(j − 1) +Gm(μgpθ̂ (j)− μgpθ (j))‖
≤ ‖Fm‖‖μ̃θ(j − 1)‖+ ‖Gm‖‖μgpθ (μθ(j − 1),α(j − 1))

− μgpθ (μθ̂(j − 1),αd(j − 1))‖
=‖Fm‖‖μ̃θ(j − 1)‖+‖Gm‖‖μgpθ (μθ(j−1),α(j−1))

− μgpθ (μθ(j−1),αd(j − 1))+μgpθ (μθ(j−1),αd(j−1))

− μgpθ (μθ̂(j − 1),αd(j − 1))‖
≤ ‖Fm‖‖μ̃θ(j − 1)‖+ ‖Gm‖ × (L2‖eα(j − 1)‖
+ L3‖μ̃θ(j − 1)‖)

= (‖Fm‖+ L3‖Gm‖)‖μ̃θ(j − 1)‖+ L2‖Gm‖‖eα(j − 1)‖.
We use the Lipshitz condition above. When i = 1, with the fact
that μθ(k|k) = μθ̂(k|k), we have μ̃θ(k + 1) ≤ L2Δt‖eα(k)‖.
For i ≥ 2, applying the above process iteratively, we obtain

μ̃θ(k + i) ≤
i−1∑
j=0

(‖Fm‖+ L3‖Gm‖)i−j−1L2‖Gm‖

× ‖eα(k + j)‖.

From Lemma 2, we have ‖eα(k + j)‖ ≤ d1e
λ1
4ε jΔt‖eα(k)‖+

d2. For Δt� 1, ‖Fm‖ ≈ 1 and ‖Gm‖ = Δt, using (1 +
L3Δt)

i−j−1 ≈ 1 + (i− j − 1)L3Δt for small L3Δt� 1, we
obtain the upper bound, as shown in the lemma. �

Lemma 6: Under condition (45), ‖θμ(k + i)‖ ≤ �μθ
(i) :=

Δt
∑i−1
j=0 ‖βT

θΣ
1
2
gpθ (k + j|k)‖.

Proof: Substituting the iterative model similar to (27) for both
μθ(k + i|k) and θ(k + i), the error is reduced to

θμ(k + i) = Fmθμ(k + i− 1) +Gm[μgpθ (k + i− 1|k)
− fθ(k + i− 1)].

Taking the norm on both sides of the above equation and using
approximation ‖Fm‖ ≈ 1, ‖Gm‖ = Δt, and event in (45) is
true with high probability, we have

‖θμ(k + i)‖ ≤ ‖θμ(k + i− 1)‖+Δt‖βT
θΣ

1
2
gpθ (k+i−1|k)‖.

J̄k
θ̂,W ∗ − J̄kθ,W ∗ =

H∑
i=0

E‖eθ̂(k + i|k)‖2Q1
− ‖eθ(k + i)‖2Q1

+ E ‖eθ̂(k +H + 1)‖2Q3
− ‖eθ(k +H + 1)‖2Q3

=

H∑
i=0

‖eμθ̂
(k + i)‖2Q1

+ tr(Q1Σθ̂(k + i))− ‖eθ(k + i)‖2Q1
+ ‖eμθ̂

(k +H + 1|k)‖2Q1
+ tr(Q3Σθ̂(k +H + 1))

− ‖eθ(k +H + 1)‖2Q3

=

H∑
i=0

−‖θ̃μ(k + i)‖2Q1
+ tr(Q1Σθ̂(k + i|k)) + 2θ̃

T
μ(k + i)Q1eμθ̂

(k + i)− ‖θ̃μ(k +H + 1)‖2Q3
+ tr(Q3Σθ̂(k +H + 1|k))

+ 2θ̃
T
μ(k +H + 1)Q3eμθ̂

(k +H + 1). (58)
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With μθ(k|k) = θ(k), recursively using the above inequality,
we obtain ‖θμ(k + i)‖ ≤ �μθ

(i). �
Lemma 7: Under (20) and (45), |J̄k

θ̂,W ∗ − J̄kθ,W ∗ | ≤
ρJ(eα, eθ), where

ρJ(eα, eθ) = λmax(Q3)

H+1∑
i=0

{
ξ̄1(i)‖eα(k)‖2 + ξ̄3(i)‖eα(k)‖

+ξ̄2(i)‖eα(k)‖‖eθ(k)‖+ξ̄4(i)‖eθ(k)‖+ξ̄5(i)
}

ξ̄1(i) = �2
θ̂
(i), ξ̄2(i) = 2�θ̂(i)a4(i), ξ̄3(i) = 2�θ̂(i)[a2(i) +

a5(i)], ξ̄4(i) = 2a2(i)a4(i), and ξ̄5(i) = a2(i)(a2(i) +
2a5(i)) +mi(Δt)2σ2

f max. �θ̂(i) is defined in Lemmas 5,
a4(i) and a5(i) are defined in Lemma 4.

Proof: Using (31) and (42), we obtain (58) shown at the
bottom of the previous page. The last equality comes from the
observation

‖eμθ̂
‖2Q1

− ‖eθ‖2Q1
= ‖eμθ̂

‖2Q1
− ‖eμθ̂

− θ̃μ‖2Q1

= ‖eμθ̂
‖2Q1

− ‖eμθ̂
‖2Q1

− ‖θ̃μ‖2Q1
+ 2θ̃

T
μQ1eμθ̂

= −‖θ̃μ‖2Q1
+ 2θ̃

T
μQ1eμθ̂

with eμθ̂
= μθ̂ − θd, θ̃μ = μθ̂ − θ, and eθ = θ − θd. For pre-

sentation simplicity, we drop the discrete-time index for each
error variable above. The rationale to use the above formulation
is to obtain a bound on J̄k

θ̂,W ∗ − Jkθ,W ∗ by terms ‖θ̃μ‖ and ‖eμθ̂
‖.

Since λmax(Q1) < λmax(Q3), from (58), we have

|J̄k
θ̂,W ∗ − J̄kθ,W ∗ | ≤ λmax(Q3)

H+1∑
i=0

{‖θ̃μ(k + i)‖2+

tr(Σθ̂(k + i|k)) + 2‖eμθ̂
(k + i)‖‖θ̃μ(k + i)‖}. (59)

From Lemma 4, ‖eμθ̂
(k + i)‖ ≤ a4(i)‖eθ(k)‖+ a5(i).

From (28), ‖Σθ̂(k + i)‖ ≤ i(Δt)2σ2
f max. For diagonal

Σθ̂(k + i|k), we have tr(Σθ̂(k + i|k)) ≤ m‖Σθ̂(k + i)‖ ≤
im(Δt)2σ2

f max. Adding the above upper bounds for each term
in (59), we obtain that |J̄k

θ̂,W ∗ − J̄kθ,W ∗ | ≤ ρJ(eα, eθ). �

G. Proof of Theorem 1

It is straightforward to obtain that V (k) ≥
λmin(Q1)‖eθ(k)‖2 + ζλmin(Q)‖eα(k)‖2 ≥ λ‖e(k)‖2 and
similarly V (k) ≤ λ‖e(k)‖2. Therefore, we have

λ‖e(k)‖2 ≤ V (k) ≤ λ‖e(k)‖2. (60)

From (43), we obtain

ΔV (k) ≤ |J̄k+1

θ̂,W ∗ − J̄k+1
θ,W ∗ |+ |J̄k

θ̂,W ∗ − J̄kθ,W ∗ |+ ζ
[
Vα(k + 1)

− Vα(k)
]
+ ν
[‖Σ∗

α(k)‖ − ‖Σ∗
α(k + 1)‖]

+
(
Jk+1

θ̂,W ∗ − Jk
θ̂,W ∗

)
. (61)

We apply the results in Lemma 7 to the first two terms in (61).
For the third difference term, from Lemma 2, we have

Vα(k + 1)− Vα(k) ≤ −1

4
Δtλmin(Q)‖eα(k)‖2 + c3Δt.

For the last two difference terms in (61), by (56), we have

Jk+1

θ̂,W ∗ − Jk
θ̂,W ∗ + ν

[‖Σ∗
α(k)‖ − ‖Σ∗

α(k + 1)‖]
≤ −λmin(Q1)‖eθ(k)‖2 + ν

[‖Σe
α(k + 1)‖ − ‖Σ∗

α(k + 1)‖]
+Δαdk + tr(Q1Σθ̂(k +H + 1|k))
+ tr(Q3Σθ̂(k +H + 2|k))
≤ −λmin(Q1)‖eθ(k)‖2 + α2

dmax + νσ2
κmax

+mλm(H + 2)(Δt)2σ2
f max.

In the above last inequality, we use the facts that ‖α∗
d(k+1)‖2Q2

≤
α2
dmax and ‖Σe

α(k + 1)‖ ≤ σ2
κmax.

Substituting the above derivations into (61), we obtain (62)
shown at the bottom of this page if (46) is held. Considering the
above result and (60), we have V (k + 1) ≤ γλV (k) + γ5, and
this proves the theorem.

APPENDIX II
PHYSICAL MODELS FOR TWO PLATFORMS

A. Furuta Pendulum

The dynamics model is given in the form of (1) with q =
[θ1 α1]

T, q̇ = [θ2 α2]
T, and u = ud = Vm,

D(q) =

[
D1 D3

D3 D2

]
,H(q, q̇) =

[
H1

H2

]
,B(q) =

[
1

0

]

where D1 = mpl
2
r +

1
4mpl

2
p sin

2 α1 + Jr, D2 = Jp +
1
4mpl

2
p,

D3 = − 1

2
mplplr cosα1, H1 =

1

2
mpl

2
pθ2α2 sinα1 cosα1

+
1

2
mplplrα

2
2 sinα1 + drθ2 + k2gktkm/Rmθ2

ΔV (k) ≤ ξ1‖eα(k)‖2 + ξ2‖eα(k)‖‖eθ(k)‖+ ξ3‖eα(k)‖+ ξ4‖eθ(k)‖+ ξ5 − ζ

4
Δtλmin(Q)‖eα(k)‖2 + ζc3Δt−

λmin(Q1)‖eθ(k)‖2 + α2
dmax + νσ2

κmax +mλm(H + 2)(Δt)2σ2
f max

= − 1

2

(
γ3‖eθ(k)‖ − ξ2

γ3
‖eα(k)‖

)2
− γ23

4
‖e(k)‖2 − (γ1‖eα(k)‖ − γ2)

2 −
(γ3
2
‖eθ(k)‖ − γ4

)2
+ γ5

≤ − γ23
4
‖e(k)‖2 + γ5. (62)
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H2 = − 1

4
mpl

2
p cosα1 sinα1θ

2
2 + dpα2 − 1

2
mplpg sinα1.

lr and Jr denote the base arm’s length and moment of inertia,
respectively. Parameters lp, mp, and Jp denote the pendulum
link’s length, mass, and moment of inertia, respectively. Param-
eters dr and dp are the viscous damping coefficients of the base
arm and pendulum joints, respectively. kg , kt, km, andRm are dc
motor’s electromechanical parameters [41]. It is straightforward
to write the dynamics in the form of (14) with

fθ(θ,α, ud) =
D2ud −H1D2 +D3H2

D1D2 −D2
3

and κα(θ,α, α̇2) = H1 − 1
D3

[(D3 +D1D2 −D2
3)α̇2 +

H2D1].

B. Autonomous Bikebot

As shown in Fig. 4(b), the kinematic model at C2 gives

Ẍ = v̇c cosψ − vc sinψψ̇, Ÿ = v̇c sinψ + vc cosψψ̇. (63)

The yaw rate is calculated from the geometric relationship
between the steering and rear frames as [42]

ψ̇ =
vc cosϑ

l cosϕ
tanφ (64)

and the equation of roll motion is obtained as [8]

Jtϕ̈ = −mbhb
v2c
l
cosϑ tanφ+mbhbg sinϕ (65)

where mb is the total mass of the bikebot, l is the wheelbase, ϑ
is the steering casting angle, hb is the height of mass center, and
Jt = mbh

2
b + Jb and Jb are the mass moments of inertia of the

bikebot around the x-axis direction of the moving frame R and
the body frame B, respectively [see Fig. 4(b)]. Plugging (64)
into (63) and combining with (65), we obtain the dynamics
in (50) with

fθ(θ,α, ud, uf ) =

[
uf cosψ − v2c sinψ cosϑ

l cosϕ tanud

uf sinψ + v2c cosψ cosϑ
l cosϕ tanud

]

κα(θ,α, α̇2, uf ) = tan−1
(
mbhbgl sinϕ−Jtlϕ̈
mbhbv2c cosϑ

)
− ϕ̈, and yaw

angle ψ = atan2(Ẏ , Ẋ).
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