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Abstract—We present a web-based software tool, the Virtual
Quantum Optics Laboratory (VQOL), that may be used for
designing and executing realistic simulations of quantum optics
experiments. A graphical user interface allows one to rapidly
build and configure a variety of different optical experiments,
while the runtime environment provides unique capabilities for
visualization and analysis. All standard linear optical components
are available as well as sources of thermal, coherent, and
entangled Gaussian states. A unique aspect of VQOL is the intro-
duction of non-Gaussian measurements using detectors modeled
as deterministic devices that ‘“click” when the amplitude of the
light falls above a given threshold. We describe the underlying
theoretical models and provide some illustrative examples. We
find that VQOL provides a faithful representation of many
experimental quantum optics phenomena and may serve as both
a useful instructional tool for students as well as a valuable
research tool for practitioners.

Index Terms—quantum, optics, simulation, experiments, edu-
cation

I. INTRODUCTION

The subject of quantum mechanics is notoriously difficult
to understand and teach [1], [2]. In part, this stems from
the complex mathematics often required to describe quantum
systems, but the many conceptual difficulties of the subject
pose what is arguably an even greater challenge. Ideally, one
would go to the laboratory and discover quantum phenomena
first hand, but this is not practical. A potential remedy is to
use high-fidelity simulation tools with which one may explore
the quantum world. Such an approach can indeed be of great
practical and pedagogical benefit, but simulators must strike
the right balance between simplicity and realism while giving
users ample freedom to explore. Simulations that are overly
idealized or abstract may rob one of the deep insights that
may be gained when working with real experiments.

The choice of physical systems is also of great importance.
We believe the physics of light provides an excellent approach
with which to introduce and study quantum concepts. In
using light, one can take advantage of the many classical
concepts that translate directly to their quantum counterparts.
The polarization of classical light, for example, provides a
direct analogy (sans normalization) to a photon polarization
state, which is itself one particular representation of a quantum
bit or qubit. Furthermore, classical linear optical devices, such
as beam splitters, phase shifters, wave plates, etc., translate
directly to general unitary transformations. Even nonlinear
optical phenomena, such as parametric down conversion, can
be introduced in classical terms.

The one important point of departure in these analogies lies
in measurement. Classical Gaussian measurements of light are
typically in the form of time-varying intensities, but quantum
light may also be measured as non-Gaussian detection events
or “clicks” of, say, an avalanche photodiode. Although quan-
tum phenomena can certainly be found in intensity measures,
as is done in heterodyne and homodyne detection, discrete
detection events are essential for exhibiting the particle-like
behavior of light. Thus, the difference between these two types
of measurements can be used to encapsulate the differences
between classical and quantum light [3].

These considerations led us to develop a novel quantum
optics simulation tool we call the Virtual Quantum Optics
Laboratory (VQOL). VQOL is a unique marriage of classical
and quantum optics based on two simple principles: First, we
formally treat the vacuum modes of quantum optics as real
(rather than virtual) random electromagnetic radiation corre-
sponding to the zero-point field. Second, detectors are modeled
as deterministic devices that “click” when the intensity of
incident light, including contributions from the vacuum, falls
above a user-defined threshold. These two ingredients have
been shown to be capable of reproducing many of phenomena
one observes in real quantum experiments [4], [5], [6].

There are, of course, a plethora of existing resources for
simulating quantum optics, ranging from pedagogical games
to sophisticated research tools [7], [8], [9]. We shall highlight
a few that we believe are particularly relevant and contrast
them with VQOL.

The first is Strawberry Fields by Xanadu, an open-source
programming architecture for simulating continuous-variable
photonic quantum computers [10]. Simulator backends allow
users to construct quantum states through a sequence of unitary
gates and apply both Gaussian (e.g., homodyne) and non-
Gaussian (e.g., photon counting) measurements. VQOL is
similar to Strawberry Fields in using only Gaussian states,
either thermal, coherent, or entangled, as light sources. It
differs in its focus on experimental design, vice abstract gate
operations, and in treating detectors as nonideal devices.

QuantumLab by the University of Erlangen-Nuremberg is
a web-based resource that uses Adobe Flash-Player to illus-
trate various real-world quantum optics experiments [11]. The
experiments are performed in a real laboratory and conducted
under various configurations and parameter settings. Users can
select from among these options and visualize the real (not
simulated) data that were actually observed. QuantumLab is an



excellent resource for demonstrating real-world quantum op-
tics phenomena, but it lacks the flexibility provided by VQOL
to allow users to design and conduct their own experiments.

Finally, Quantum Lab by Quantum Flytrap is a colorful
web-based tool that allows users to design and run their own
custom optics experiments [12], [13]. A virtual optics table
with a drag-and-drop pallette of components allows users to
design and run a variety of optical experiments. Lasers are
modeled as simple, on-demand single-photon sources, while
non-linear crystals provide a source of idealized entangled
photon pairs. Detectors are treated as having perfect efficiency
and no dark counts, with random detection events that strictly
follow the Born rule. Quantum Lab is similar to VQOL in
providing an open-ended user interface to design and conduct
experiments. VQOL differs, however, in its use of more
realistic light sources and non-ideal detectors. The advantage
of our approach, we believe, lies in its ability to provide a
more faithful representation of what is actually observed.

With these preliminary considerations, we summarize the
organization of the paper as follows. In Section II we provide
a brief description of the VQOL software from a user inter-
face perspective. Sections III and IV discusses the modeling
assumptions and component descriptions underlying VQOL,
with particular emphasis on departures from standard classical
optics necessitated by our explicit use of vacuum modes.
Section V gives some examples of experiments that may
be performed with VQOL. We discuss the pedagogical and
research applications in Section VI and summarize our con-
clusions in Section VII.

II. SOFTWARE DESCRIPTION

This paper describes version 1.0 of the Virtual Quantum
Optics Laboratory. VQOL may be used online via the universal
resource locator (URL) https://www.vgol.org. Simu-
lations are run locally on the user’s device using JavaScript.
Using either a text editor or graphical interface, the user may
define an experiment by placing (and optionally orienting,
and configuring) various component devices on a gridded
virtual optics table. Figure 1 illustrates the interface and shows
an implementation of a quantum teleportation experiment.
Sample experiments are provided, but the user is free (and
encouraged) to design their own.

Since polarization figures heavily in many quantum optics
experiments, a design decision was made to use color to
represent polarization. Although the use of color to represent
polarization can be misleading, as it should properly be
construed as indicating wavelength (or frequency), we have
found this causes no great confusion and is preferably to a
two-dimensional projection of the electric field, which may
be visually ambiguous. The six main polarization states (and
corresponding colors) are horizontal (red), vertical (blue), di-
agonal (yellow), anti-diagonal (green), right circular (orange),
and left circular (violet). Other, general elliptical polarizations
are show in a color that is a blend of these six. An illustration
of these various colors, as seen on the Bloch sphere (or,
equivalently, the Poincaré sphere) is given in Fig. 2. For this
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Fig. 1. (Color online) VQOL quantum teleportation experiment. Colors

indicate different polarization states, as indicated in the Polarization Key.

choice of colors, individuals with partially impaired color
perception will generally be able to distinguish one of two
orthogonal polarizations but may have difficulty distinguishing
between non-orthogonal polarizations.

Fig. 2. (Color online) Colors used by VQOL for various polarization states,
as represented on the Bloch sphere.

Control buttons allow the user to start, pause, or stop the
experiment. There are also options to run the experiment in
slow motion, step forward, or step back. (Stepping back and
then forward produces the same outcome.) Experiments run for
a default time of 1 ms (in simulation time, not real time), but
this may be changed in the graphical interface or by editing the
variable num_seconds. VQOL operates in time segments of



At = 1 us, so the default time of 1 ms corresponds to 1000
time samples. The actual runtime of an experiment will depend
on the local machine and the complexity of the experiment;
a 1-ms experiment typically runs in about 15s of real time.
Setting the time to exactly 1 us gives something that looks
like a single photon, though this is not how VQOL actually
models quantum light.

A sample experiment for measuring the power of light
passing through a polarizer rotated 30° is the following:

# Malus’s law experiment
num_seconds = le-3

offline_mode = False

Laser, x=1, y=1, orientation=0
Polarizer, x=3, y=1, orientation=0,
PowerMeter, x=5, y=1

angle=30

Note that comments may be added within the experiment using
the hash symbol (#).

The optional variable offline_mode may be used to
control the graphics display. By default, this variable is set
to False. If set to True, VQOL will run the simulation
without producing any animation graphics. This can be useful
for doing long simulations in which the user only wants the
final results of the experiment, as it will generally run much
faster. In either case, once the experiment is completed the
results are displayed on the screen and stored in a comma

separated value (csv) file for later analysis.

One may use JavaScript directly within the web-based
editor to automate the simulation of multiple experimental
scenarios. To initiate the interpreter, the experiment editor
should begin with <JS>. An example for an experiment
investigating Malus’s law is shown below.

<JS>

// Malus’s law experiment

for (let theta=0; theta<=90; theta+=5) {
runSimulation (
"num_seconds = le-6\n" +
"Laser, x=1, y=1, orientation=0\n" +
"Polarizer, x = 3, y=1, orientation=0," +
" angle=" + theta + "\n" +
"PowerMeter, x=5, y=1"

)
}

The script runs 19 separate experiments, each 1-us in duration,
with polarizer angles of 0°,5°,...,90°. The “//” symbol
indicates a single-line comment, the “+” symbols perform
string concatenation, and the “\n” symbol implements a
newline character. The results are stored in a set of folders
that may be downloaded as a single ZIP-formatted file.

III. MODEL DESCRIPTION

In VQOL, light may travel in only one of four directions
in the plane of the optics table: right (—), left («), up
(1), and down ({). Out-of-plane or non-rectilinear directions
are currently not supported. Each At time segment has a
polarization given by a dimensionless Jones vector of the form

_ (%H
a= (av) : ()

where ap and ay are the complex horizontal and vertical
polarization components, respectively.

For monochromatic light traveling, say, to the right with
Jones vector a, the electric field at the coordinate (x,y) and
time ¢ is given by

E(xa Y, t) X 7(0,].[’!} + (1\/2’) ei(kw7Wt) +c.c., (2

where w is the angular frequency of the light, kK = w/c is the
wavenumber, c is the speed of light in a vacuum, and “c.c.”
denotes the complex conjugate of the term to the left. Note
that VQOL uses a right-handed coordinate system such that
the upper left corner is the origin, & points to the right, ¥
points down, and Z points into the optics table.

Classically, the Jones vector of the vacuum is simply the
zero vector. Quantum mechanically, we describe the vacuum
by the Fock state |0), ® |0),,, where |0), and |0), are
the vacuum states of the horizontal and vertical polarization
modes, respectively, and ® denotes the tensor product. More
generally, the Wigner function of a thermal state for a given
wave vector mode is given by

1 aH>2—F ay 2
7T20'4 €xp <| | 2 | | 9 (3)

T or
where o > 0 is given by Planck’s second theory of black
body radiation. Specifically,

Wr(am,av) =

1 1

2 _
or = ehw/(kBT) 1 + 9 ) (4)

where T is the absolute temperature (in Kelvin), kg is Boltz-
mann’s constant, and A is Planck’s constant (divided by 2).
For T' = 0, we define 0 = 1/2 as the limit of 02 as T' — 0.
At optical wavelengths and room temperature, o ~ 0y, which
is taken to be the default in VQOL. In quantum mechanical
terms, o2./iw is the modal energy for a given wave vector and
polarization, so each vacuum mode has an associated modal
energy of #hw.

In VQOL, a vacuum state is treated as having a random
Jones vector of the form o4z, where

_ (*H
z= (ZV> 5)

is a standard complex Gaussian random vector, for which zg
and zy are independent standard complex Gaussian random
variables. (We say that z is a standard complex Gaussian
random variable if E[z] = 0, E[2?] = 0, and E[|2|?] = 1, where
E[-] denotes the expectation value of a random variable.) The
probability density function of the Jones vector is therefore
identical to the Wigner function of the vacuum state, by the
optical equivalence theorem [14]. Note that each vacuum mode
has a random modal energy that is exponentially distributed
with a mean value of %hw Vacuum modes are assumed to
be coherent (i.e., constant) over the time interval At but are
independent from one time step to the next.

In classical optics, a monochromatic plane wave may be
represented by the Jones vector

_ (@H
a= (av) : (©)



where apy and ay are complex numbers specifying the
amplitude and phase of the horizontal and vertical polarization
components. Similarly, in quantum optics a monochromatic
plane wave is described by the separable coherent state |a g ) ®
|ay ). In VQOL, a mathematically equivalent representation is
obtained by simply adding the vacuum components, resulting
in the Jones vector

(7

ag + ooz
ay +ogzy )

a:a+aov:(

This, then, provides a model for laser light that includes
classical light as a limiting case when the vacuum fluctuations
can be neglected.

VQOL also provides a source of entangled light, modeled
as a pair of random Jones vectors whose joint probability
density function is identical to the Wigner function of a multi-
mode Gaussian squeezed vacuum state. The random vectors
are defined in terms of a pair of random vectors in a manner
described in Sec. IV and, more generally, in Ref. [5].

The ability to model coherent and squeezed vacuum states
as complex Gaussian random variables follows directly from
the Gaussian nature of the quantum states themselves. In this
sense, they may be deemed classical. (We note, however, that
entangled Gaussian states need not admit a positive Glauber-
Sudarshan P function representation and, in this sense, may
be deemed non-classical.) Non-Gaussian measurements are
therefore essential to provide a mechanism for observing
nonclassical behavior, and these are provided by threshold
detectors, which we shall now describe.

In VQOL we model detectors as devices that produce a
detection event (or “click”) when the amplitude of either the
horizontal or vertical mode falls above a given threshold v >
0. Thus, a detection corresponds to the event

D:{|aH|>7 or \av|>'y}. (8)

This particular definition of a detection event was chosen for
its mathematical simplicity. Using instead the magnitude of
the Jones vector may be more physically motivated but would
yield similar results.

For coherent light, the probability of event D occurring is
given by

PF[D] =1- P'Y»UO (aH) P’Y,Uo (CVV) ) &)

where

P, (a) =1—Q1(V2|a|/o,V2v/0) (10)

and Q1 (-, -) is the Marcum Q function [15]. As we shall see,
this result is different from the quantum probability of 1 —
exp(—|ag|* —|ay|?) associated with one or more photons in
a coherent state, as our model implicitly incorporates the non-
idealities of dark counts and sub-unity detection efficiency.

To see this, note that we may approximate P, ,(«), to
second order in |a| and -, as

2
2 2
Pyo(a)=1—e/7 1+%|a|2+0(\a|4) (11

Thus, to lowest order,

Pr[D] ~ 6+ (lanl” +lav[?) | (12)
where
2 2 2
o=1-(1-e"7) (13)
is the probability of a dark count and
2
n=e7/% (1 _ 6—72/03) l4 (14)

%0
is the nominal detection efficiency. In this way we can see
that VQOL reproduces the Born rule in the limit of weak
coherent light (for fixed v) and under the non-ideal, albeit
realistic, conditions of a nonzero dark count rate and imperfect
detection efficiency. Note that it is not possible within the
above parameterization to achieve both an arbitrarily low
dark count rate and a detection efficiency arbitrarily close
to one. However, using an operational definition of detection
efficiency, it is possible to achieve an arbitrarily good detection
efficiency for a given dark count rate, as described in Sec. V-A.

IV. DESCRIPTION OF COMPONENTS
A. Passive Optical Components

In VQOL, lossless optical components behave in accordance
with their classical Jones matrix description. For example, the
action of a half-wave plate (HWP) with a fast-axis angle of
6 is described by the Jones matrix
cos(20)  sin(26)
sin(26) — cos(26)

The angle 6 is measured counterclockwise from the horizontal.
(Figure 3 provides a graphical illustration.)

HWP () = (15)

ay

Fig. 3. (Color online) Graphical illustration of the action of a wave plate
with a fast-axis angle of 6. The input (ag, aV)T is shown on the left, while
the output (ay, a},)7 is shown on the right.

Similarly, a quarter-wave plate (QWP) with a fast-axis

angle of # has the Jones matrix
2 a2

cos .9+1sm. 0 . (16)
(1 —1i)cosfsind

Finally, a phase delay (PD) component may be used to
apply a common phase shift e!® to both components. This is
represented by the Jones matrix

po- [ 0]

(1 —1i)cosfsind

QWP(0) = sin 0 + icos? 0

A7)



The related dephaser (DPH) component is treated as a phase
delay for which ¢ is a random variable that is uniformly
distributed on the interval [0, 27r] and generated independently
at each time step.

For longer delays, a time delay (TD) component may be
used. This component delays the light beam by an integer
number of time steps, in units of At. The default is zero (no
delay). A delay of 10 will set the light beam back by one whole
grid space. Physically, a time delay may be implemented with
a coil of optical fiber, although in VQOL the time delay
component is both amplitude and polarization preserving.

VQOL also offers the more general rotator (R) and phase
retarder (PR) components, whose Jones matrices are

cosf) —sind
R(#) = {sin@ cos 6 ] ’ (18)
for € [0°,90°], and
1 0
PR(¢) = |:0 ei¢:| ’ (19)

respectively.
A general unitary may be represented by a rotator, two phase
retarders, and a phase delay as follows: [16], [17]

U(x,#,0,2) = PD(x) PR(¢)R(6) PR(A) . (20)

Taking 0 = % cos~1(2u—1), where u is uniformly distributed
on the interval [0,1], and taking ¢, \, x to be independent
and uniformly distributed on the interval [0, 2], the matrix
U(x, ¢,6,\) becomes a Haar-distributed random matrix. This
is used to define a depolarizer (DP) in VQOL as a component
that applies a random U(x, ¢, 0, \) at each time step.

Lossy components are treated differently in VQOL from
their classical counterparts. In quantum optics, attenuation
may be treated as a partially transmitting beam splitter, where
the second input port receives a vacuum mode. Similarly, in
VQOL a neutral density filter (NDF) with, say, an optical
density of d > 0 acting on a Jones vector @ = (ay,ay)" has
the following output:

ay\ _ qp—d/2 (Qn _qn—d/2
(a,v>_1o (av>+<1 10 )aoz, @1)

where z is, again, an independent standard complex Gaussian
random vector. VQOL also offers a beam blocker (BB)
component, which transforms an input Jones vector a into a
vacuum state oyz. This is equivalent to an NDF with d — oc.

In a similar manner, a general elliptical polarizer (P) acting
on the Jones vector a has the following output:

() =po () < [-pooloe.

where P (6, ¢) is the standard polarizer Jones matrix,

e~ cosfsin b
sin’ 9 ’

cos? 6

el? cos 0 sin @ (23)

P(0,6) = [

and 1 — P(0,¢) is the complementary matrix projection.
Note that the presence of an additional vacuum term in Eqn.

(22) invalidates the no-enhancement assumption [18]. In other
words, it is possible that |a’y|? + |ai,|? > |ag|® + |av|? for a
given instance of z. This implies, in particular, that placing a
polarizer in front of detector could generate a detection that,
counterfactually, would not have occurred if the polarizer were
not present!

A beam splitter (BS) in VQOL works much like a classical
beam splitter. Given the input Jones vectors @ = (ag,ay)"
and b = (b, by)T, the output is given by

aly t 0 r O am
a,| |10 ¢ 0 r ay
2% Rl RV ) Y I
b/V 0O r» 0 —t by

where r € [0,1] is the reflection coefficient and ¢ = /1 — r2
is the transmission coefficient. (See Fig. 4.) A mirror (M) is
a special case for which » = 1. Unitarity is maintained with
the convention that a transmitted component has a minus sign
applied to it when the corresponding reflection is to the left.
Note that if a beam splitter is presented with only one input,
the other is taken to be a pair of independent vacuum modes,
represented by a random Jones vector 0gz.

by

b

tay + rby
tag + rby

rag — tby

Fig. 4. (Color online) Graphical illustration of the action of a beam splitter
with transmission (reflection) coefficient ¢ (r). The inputs are shown in the
upper left and right, while the outputs are shown in the lower left and right.

A polarizing beam splitter (PBS) works similarly to a
regular beam splitter. Given two input Jones vectors, a and b,
the output is

a'’y 1 0 0 O ag
CLQ/ 0 0 0 1 ay

= . 25
by 00 1 0 by (25)
b, 01 0 O by

(See Fig. 5.) Again, if the PBS is presented with only one
input, the other is taken to be a pair of independent vacuum
modes. Consequently, the light exiting each output port need
not be restricted to only horizontal or vertical polarization,
as reflected components of the opposite polarization will
contribute from the vacuum modes.
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Fig. 5. (Color online) Graphical illustration of the action of a polarizing beam
splitter. The inputs are in the upper left and right, while the outputs are in
the lower left and right.

VQOL offers three PBS variants for different polarization
bases. The default H/V basis transmits horizontal light and
reflects vertical light, as described by Eqn. (25). An optional
D/A basis transmits diagonal light and reflects anti-diagonal
light, while the R/L basis option transmits right-circular light
and reflects left-circular light. Specifically, if @ = (ay,ay)’
and b = (by,by)" are the Jones vectors for the inputs to a
D /A-basis PBS, then the output Jones vectors are

a'H _agtay (1 by —by (1
()= )+ (B) e
ag — ay

b}[ :bH+bV 1 n 1
bQ/ 2 1 2 -1/

Similarly, for an R/L-basis PBS we have
1

a’H _am — iay (1 " by + iby
ay 2 i 2
bIH by —iby (1 ag +iay (1
o)~ 2 )T )
14

B. Light Sources

and

27

and

(29)

VQOL provides three different sources of light that are
commonly available: a light-emitting diode for thermal light,
a laser for coherent light, and a parametric downconversion
source for entangled light. All sources are assumed to have a
coherence time of At, so an independent random realization
of the ZPF is drawn every time step. VQOL does not provide
single-photon sources or indeed sources for any Fock states
other than the vacuum. Since these three light sources pro-
duce Gaussian states, they may be modeled classically by an
equivalent Gaussian random vector, as described below.

A light-emitting diode (LED) is a source of incoherent
thermal light. In VQOL, an LED is treated as a monochro-
matic light source, with a wavelength of A = 496.61 nm
(603.68 THz) that is perfectly collimated, appearing as a beam
of constant width. An LED is specified by the parameter
power, in Watts, with a default value of 4 mW. The Jones
vector of an LED is /02 —|—08 z, where z is a standard
complex Gaussian random vector and o > 0 specifies the
total power .

2 2
P = (0 +07) D
where At is the length of each time step and w = 27w¢/A.
Note that the power parameter in VQOL is actually P — Py,
where Py = o3hw/At = 2.0000 x 10~ W. This is done to
ensure that the vacuum modes persist even with the power
parameter set to zero.

A laser (LAS) in VQOL is a coherent monochromatic light
source that is perfectly collimated. The Jones vector of a laser
is of the form a + opz, where @ = a|¢¥), @ = 10° (in
dimensionless units), and |¢) is a normalized polarization
vector. (Note that, although the use of “ket” notation is
suggestive of a quantum state, here we use it solely to represent
a normalized complex vector.) Lasers may be configured so
that |¢) takes one of the following six standard forms:

(30)

m=(5).  m=(}) Gl
bedf) wed(l) o
050 w-50) oo

The wavelength of a laser is the same as that of an LED,
with the same default power as well. However, lasers will
exhibit far less variability in both amplitude and polarization
unless strongly attenuated. The total power, P, is related to
the average photon number, |||? = |ax|? + |av|?, by

fuw
P = (|la|® + ) (32)

At
For the default power setting of 4mW we have |||* = 101°,
which corresponds to an average photon number of 10 billion
per time segment At. Using a neutral density filter with a
default optical density of d = 10, the average photon number
drops to just one nominal photon per time segment. If the
power parameter is set to zero, the total power reduces to
that of the vacuum.

Interestingly, VQOL also offers the ability to classically
simulate multi-modal squeezed light and, hence, entangled
states. A dual-spatial-mode entanglement source (ENT)
based on parametric downconversion is used as a notional
source of entangled photons. Entanglement sources can be
type-I or type-II and are parameterized by a squeezing strength
parameter r and relative phase (. The Jones vectors for an
entanglement source are a direct translation of the Bogoliubov
transformations, with the annihilation operators replaced by
complex Gaussian random variables [5]. Since the multi-modal
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Fig. 6. (Color online) Illustration of light sources in VQOL. Shown above
are an LED (top), a laser (middle), and an entanglement source (bottom).

squeezed vacuum states are Gaussian, this provides a faithful
representation of the joint statistical distribution.

In VQOL, the Jones vector for a type-I entanglement source
is given by

ag z1m coshr 4 23, sinhr

ay | _ o z1y coshr + e'¥z3,, sinhr (33)
b 0 zop coshr + 2]y sinhr ’

by zoy coshr + e'¥2]y, sinhr

where z1p7, 21v, 2251, 291 are independent standard complex
Gaussian random variables. The Jones vectors a = (az,ay)"
and b = (by,by)" correspond to the two spatial modes and
notionally represent the two entangled photons. For a type-II
entanglement source we have the Jones vector

ag z1g coshr 4 23y, sinhr

ay | _ o z1y coshr 4 €' z5 sinhr (34)
by | = 7% 204 coshr + e¥zf, sinhr

by zay coshr + 27y sinhr

The VQOL entanglement source provides a statistical rep-
resentation of macroscopic Bell states [19]. For small r, the
type-1 entanglement source may be used to approximate the
entangled state

_|HH) + 9 |VV)
= 7 )
while for a type-II source it may be used to approximate the
entangled state

|©) (35)

|HV) + €% |[VH)
0) = = .
2
This correspondence may be made clearer by examining corre-
lated measurements. The default settings for an entanglement
source are = 1 and either ¢ = 0°, for a type-I source, or
@ = 180°, for a type-II source.

An entanglement source has a fixed orientation, but the
directions of the two outgoing beams can be configured with
the parameter directions. By default, this parameter is set
to LR, indicating that a travels to the left and b travels to the
right. Other options are LU (left, up), LD (left, down), UR
(up, right), DR (down, right), and UD (up, down).

(36)

C. Measurement Devices

VQOL offers two types of measuring devices, a power
meter (PM) and a detector (D). The power meter acts as a
photodetector operating in linear mode, so it reports the total
incident power at each time step (including contributions from
the vacuum). Power meters register power from any direction,
so they have no orientation. If more than one light source
illuminates a given power meter, it reports the largest power
among the illuminating sources.

Given a Jones vector @ = (ag, ay)", the power meter will
report the value

fan P +lavP & (37)

where w and At are defined as before. Note that P repre-
sents the slowly varying, time-averaged power of the wave.
Fluctuations on a time scale below At are not seen. Power
levels are displayed with up to three significant figures but
recorded to within 1nW of precision. In particular, power
levels below 1nW will be displayed and recorded as zero.
If the user highlights the power meter while the simulation is
running, it will display the current and time averaged power
in the configuration window.

A detector in VQOL acts as a photodetector operating in
Geiger mode. It will produce a detection count (or “click”)
when the amplitude of either the horizontal or vertical com-
ponent falls above a given threshold v > 0. Detectors have
an effective dead time of A¢, as there can be at most one
detection per time step. A detector is parameterized by its dark
count rate (DCR), measured in counts per second. The DCR
is related to the dark count probability, §, via the formula
DCR = §/At. By default, DCR is set to 1000 counts per
second (or 1/ms), corresponding to a dark count probability
of § = 0.001. The detection threshold for a given dark count
probability § is found from Eqn. (13) to be

fy:cro\/—log(l— 1—5).

For DCR = 1/ms, this takes the default value of v = 1.95.
The user may set the DCR value for each detector separately.

(38)

Fig. 7. (Color online) Illustration of measurement devices in VQOL. Shown
above are a power meter (top) and single-photon detector (bottom), along
with two lasers and a neutral density filter (gray rectangle). The power meter
reads 4.0 mW, and the detector has just made a detection.



V. SELECTED EXAMPLES

In this section we consider two different examples (and
a few subvariants) of experiments that can be performed in
VQOL. We begin with measuring detection efficiency using
either a laser or an entanglement source. Next, we consider
the Born rule using a polarizer and weak coherent light from
a laser and a neutral density filter. Several other experiments,
not discussed here, are possible. For example, from the Born
rule experiment one may perform quantum state tomography
to infer the density matrix of a prepared state. One may
also consider wave/particle duality in the context of a Mach-
Zehnder interferometer, as was done in Ref. [6]. One may
also examine the use of an entanglement source to demonstrate
anti-correlation or violations of the Bell-CHSH inequality [20],
[21], [22]. Finally, one may consider the use of a beam
splitter to perform a partial Bell state analysis and use this to
implement a quantum teleportation scheme [23], [24]. In the
examples to follow, special emphasis will be placed on the
role of data analysis and post-selection to connect measured
data with theoretical predictions. All component settings are
taken to be their default values unless stated otherwise.

A. Detection Efficiency

In Eqn. (14) we identified 1 as the nominal detection
efficiency. Operationally, the efficiency of a single-photon
detector is measured by counting detection events relative to
some reference photon flux. We may implement this scheme in
VQOL using a laser (LAS), neutral density filter (NDF), and
single detector (D), as shown in Fig. 8). The known power, P,
of the laser and optical density, d, of the NDF allow us to esti-
mate the photon flux as R = 107¢P/(hw) = 10~%||c||?/ At.
If we measure for a time ¢ and obtain N counts, the inferred
detection efficiency is

N
Rt

This experiment was implemented in VQOL and run for
different values of d and dark count rates. In each case we
used a default laser power of 4 mW and an experiment time of
t = 1 s. The results are summarized in Fig. 9. We observe that
nr, has a peak value of about 15% at d = 9.3 for the default
setting of DCR = 1/ms. Higher dark count rates give larger
peak efficiencies and at larger values of d. For much larger
values of d, corresponding to lower incident photon fluxes,
the inferred detection efficiency actually goes over unity and
becomes invalid, as detections are now dominated by dark
counts. Thus, in VQOL, the detection efficiency is not an
intrinsic property of the detector but, rather, is dependent upon
the context of the measurement process.

An alternative scheme for measuring detection efficiency
uses an entanglement source with post-selection heralding.
The modified experiment is shown in Fig. 10, where we
have replaced the laser with an entanglement source (ENT),
removed the NDF, and now use two detectors, D1 and D2.
A detection on D1 is construed to herald the presence of a
photon at D2. Let N; denote the number of counts for which

L (39)

LAS

) — =D~ D

Fig. 8. (Color online) Experimental setup for measuring detection efficiency
using a laser (LAS), neutral density filter (NDF) and single detector (D).
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Fig. 9. (Color online) Plot of inferred efficiency ny, versus the optical density,
d, for the NDF for different values of the dark count rate (DCR).

there is a detection on D1 but not D2. Similarly, let N;2 denote
the number of coincident counts on D1 and D2. The inferred
detection efficiency may then be defined as

_ Ny
Ni+ Nig *

This experiment was also implemented in VQOL and run
for different values of squeezing strength r and dark count
rates. In contrast to n;, we find that ng approaches (but
does not exceed) unity as r becomes large. There is also a
dependence on the detection threshold, as parameterized by
the DCR, that is similar to 5y, but not as dramatic. Again, we
find that the inferred detection efficiency is not an intrinsic
property of the detector itself and may even appear arbitrarily
close to unity under the right measurement conditions. This,
of course, is merely an artificiality born of the amplification
that results from a high squeezing strength. In real experiments
this effect may be suppressed by detector saturation, which is
not currently implemented in VQOL.

ne (40)

B. The Born Rule

The Born rule provides the fundamental connection between
quantum theory and observations. Here we illustrate a simple
experiment that may be performed in VQOL for studying the
Born rule [4]. The experiment uses an attenuated laser and
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Fig. 10. (Color online) Experimental setup for measuring detection efficiency
using an entanglement source (ENT) and two detectors (D1 and D2).
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Fig. 11. (Color online) Plot of inferred efficiency ng versus squeezing

strength r for different values of the dark count rate (DCR).

polarizing filter with a single detector. One variation of this
experiment, not discussed here, would be to replace the po-
larizer with a polarizing beam splitter and a pair of detectors.
Another variation would be to use heralded detections with an
entanglement source in place of the attenuated laser.

In this example we consider a simple experiment in which
we prepare a laser (LAS) in the |H) polarization state and
attenuate it using a neutral density filter (NDF), as shown in
Fig. 12. A polarizer (P), set to an angle 6 and phase ¢, is
placed before a detector (D). The polarizer has the effect of
both attenuating the light and changing its polarization. The
Jones vector of the light exiting the polarizer is given by

ag\ _ qn—d/2 ] 'COSG ZH
<GV> =10 acos b <e1¢ sin@) + og <2v> , (4D

where o = 107 is the default amplitude of the laser and d = 10
is the default optical density of the NDF. In accordance with
Malus’s law, the intensity varies as cos? 6.

From the quantum perspective, we may view this ex-
periment as the preparation of the |H) quantum state and
subsequent measurement of the [¢)) state, where

cos 6
|1/J> = (eiqb sin 9) 42)
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Fig. 12. (Color online) Experimental setup for the Born rule using a laser
(LAS), neutral density filter (NDF), polarizer (P), and detector (D).

For a single photon, the Born rule predicts that the probability
of a detection is | (10| H) |? = cos? 6. Although VQOL does not
have a single-photon source, the laser and NDF provide a weak
coherent state that may serve as a suitable approximation. If
the optical density d is large, then only the single-photon and
vacuum components of the coherent state will be significant.

In Fig. 13 we have shown the detection counts for a one-
second experiment using a dark count rate of 100/ms for which
we varied the polarizer angle 6 while keeping ¢ = 0° fixed.
The results are qualitatively similar to those of Malus’s law,
though we note that the number of counts at § = 90° is not
zero, due to the presence of dark counts.

The connection to probabilities is more subtle. The prob-
ability of an event is generally estimated as the ratio of the
number of occurrences of the event to the number of trials.
Experimentally, we measure the former, but the latter is un-
known. (Of course, in VQOL we actually do know the number
of trials, 10% in this case, but this is a detail hidden in the
implementation and not something experimentally available.)
A common strategy used by experimentalists is to subtract the
dark counts, estimated here by the minimum number of counts,
and rescale by the new maximum number of counts. Other
strategies, such as fitting to a parametric curve, work similarly.
Although this is common practice, it is important to understand
that there is no “correct” strategy for associating counts with
probabilities and that all such strategies incorporate some
modeling assumptions.

In this example we have taken a rather large dark count rate.
Lower dark count rates entail higher detection thresholds, for
which the approximation of Eqn. (11) may therefore fail to
hold, exhibiting deviations from the single-photon prediction.
A similar effect is observed if d is too small and, hence, the
laser too bright. Although good agreement can be found with
high attenuation and low dark counts, the rate of detections in
this regime may be quite low. The example we have shown
here works well for a series of short, 1-ms experiments that
can be run quickly and give good agreement under standard
normalization.

VI. DISCUSSION

We have illustrated a few examples of experiments in
VQOL exhibiting characteristically quantum phenomena. In
most cases, agreement between VQOL and the corresponding
ideal quantum predictions is only approximate. This is due, in
part, to our restriction to using only Gaussian states of light,
such as coherent laser light or entangled squeezed light, which
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Fig. 13. (Color online) Detector counts (in thousands) versus the polarization
angle 6 (in degrees) for a DCR of 100/ms. The blue bars are measured results,
while the black curve is the Born rule prediction for an ideal single-photon
source.

contain contributions from vacuum modes as well as higher
photon-number states. It is also due, in part, to our treatment
of detectors as simple amplitude threshold crossing devices.
Departures from ideal behavior can occur when the light
source is too weak, in which case vacuum contributions may
dominate, or when the light source is too strong, in which case
multi-photon components may dominate. Similarly, different
detection thresholds can provide varying levels of agreement.
Thresholds that are too high will result is small sample sizes or
necessitate long experiment runs; those that are too low may
suffer from an excess of dark counts. The best agreement will
depend on the experiment and the method of analysis but will
usually be for intermediate values. In the examples discussed
we have tried to identify parameter regimes that provide a
good compromise between these competing factors.

We have also highlighted the important role of data analysis
is comparing experimental observations to theoretical pre-
dictions. Quantum mechanics is fundamentally a theory of
probabilities, and the meaning and estimation of these proba-
bilities depends critically on the context and interpretation of
the experiment. Although in principle one has access to the
true underlying number of random trials in VQOL, we have
emphasized how data analysis in real experiments must be
performed without this information. In many cases, this leads
to the necessity of performing post-selection on particular
outcomes, such as the use of heralding to approximate single-
photon sources or the use of coincident detections in per-
forming quantum correlation experiments. Even in the absence
of post-selection, renormalization may be required to obtain
probabilities from raw counts. Furthermore, the removal of
dark counts and “accidental” coincidences, both of which are
common data analysis techniques, may also be required. The
seemingly mundane process of comparing raw observations to

theoretical predictions can be a critical step in understanding
and interpreting quantum theory.

The restriction to 1-us time bins is an artificiality intended
to represent the typical dead time of an avalanche photodiode
as well as the coherence times of the light sources. Common
photodetection timing devices have a sampling resolution of
about 1 ns, although timing jitter below 10 ps can be resolved
[25]. This restriction makes VQOL ill suited for experiments
focusing on high-resolution timing with small, nonzero time
delays. Likewise, the subtle effects of detector afterpulsing and
saturation are also ignored [26]. The choice of using a 1-us
coherence time is an artificiality born of expediency. At the
beginning of each time step a new and independent random
realization of the ZPF is drawn. At this time, any light incident
upon a detector will either be such as to trigger a detection
or not. If a detection is triggered, the detector remains dead
until the next time step. Otherwise, the Jones vector remains
unchanged (and hence cannot trigger a detection) until the
next time step. In other words, the detectors are such that
they do not accumulate energy over time but, rather, trigger
immediately when adequate conditions are realized at the be-
ginning of a time step. This is consistent with the rather short
response times of avalanche photodiodes (typically less than
a nanosecond) compared with their relatively long recovery
times (typically around a microsecond).

VII. CONCLUSION

The Virtual Quantum Optics Laboratory (VQOL) is a ver-
satile simulation tool that can be used to design and execute a
wide array of experiments in classical and quantum optics. The
simplicity of the user interface makes it a valuable classroom
resource that can be used to introduce and explore quantum
concepts. The novelty and sophistication of the underlying
models also make it an excellent tool for exploratory theo-
retical research or as a complement to actual quantum optics
experiments.

We have illustrated a few examples of experiments in VQOL
exhibiting characteristically quantum phenomena. Many oth-
ers are possible. Agreement with quantum theory is only
approximate and depends critically on both the choice of
parameter settings and the manner in which the data are post-
selected and analyzed. In this regard, VQOL is very different
from traditional simulators in that it is intended to more
closely match observations than theory. Despite its simplicity,
we believe VQOL can be a powerful tool for learning and
understanding key quantum phenomena.
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