
IMG-SMP: Algorithm and Hardware Co-Design for Real-time
Energy-efficient Neural Motion Planning

Lingyi Huang∗
Xiao Zang∗

Rutgers University
Piscataway, New Jersey, USA

Yu Gong
Rutgers University

Piscataway, New Jersey, USA

Chunhua Deng†
ScaleFlux Inc

San Jose, California, USA

Jingang Yi
Rutgers University

Piscataway, New Jersey, USA

Bo Yuan
Rutgers University

Piscataway, New Jersey, USA

ABSTRACT
Motion planning is a fundamental and critical task in modern au-
tonomous systems. Conventionally, motion planning is built on
uniform sampling that causes long planning procedure. Recently,
built upon the powerful learning and representation abilities of
deep neural network (DNN), neural motion planners have attracted
a lot of attention because of the better biased sampling strategy
learned from data. However, the existing NN-based motion plan-
ners are facing several limitations, especially the insufficient exploit
of critical spatial information and the high computational cost in-
curred by neural network models. To overcome these limitations,
in this paper we propose IMG-SMP, an algorithm and hardware
co-design framework for neural sampling-based motion planner.
At the algorithm level, IMG-SMP is an end-to-end neural network
that can efficiently capture and process the critical spatial correla-
tion to ensure high planning performance. At the hardware level,
by properly rescheduling the computing scheme, the dataflow of
IMG-SMP architecture can eliminate the unnecessary computations
without affecting planning quality. The IMG-SMP hardware acceler-
ator is implemented and synthesized using CMOS 28nm technology.
Evaluation results across different planning tasks show that our
proposed hardware design achieves order-of-magnitude improve-
ment over CPU and GPU solutions with respect to planning speed,
area efficiency and energy efficiency.

CCS CONCEPTS
• Computer systems organization→ Embedded hardware.

∗Both authors contributed equally to this research.
†This work was done when the author was with Rutgers University.

This work is partially funded by National Science Foundation Award CNS-1932370.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9322-5/22/06. . . $15.00
https://doi.org/10.1145/3526241.3530367

KEYWORDS
VLSI, Hardware architecture, Motion planning

ACM Reference Format:
Lingyi Huang, Xiao Zang, Yu Gong, Chunhua Deng, Jingang Yi, and Bo
Yuan. 2022. IMG-SMP: Algorithm and Hardware Co-Design for Real-time
Energy-efficient Neural Motion Planning. In Proceedings of the Great Lakes
Symposium on VLSI 2022 (GLSVLSI ’22), June 6–8, 2022, Irvine, CA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3526241.3530367

1 INTRODUCTION
Motion planning, which targets to compute a high-quality and
collision-free path from a start configuration to a goal configura-
tion under the given environment, is a fundamental and important
task in autonomous systems. Among various motion planning ap-
proaches, sampling-based motion planner (SMP) is a very popular
solution that has been widely used in many applications, such as
robot arm manipulation, drone navigation and autonomous driv-
ing. However, the sampling process in most of the existing SMPs,
e.g., RRT [1] and RRT* [2], is typically performed in a uniform
way, thereby inevitably causing high exploration costs and slow
convergence for finding the near-optimal path solutions.

To solve this issue, recently several learning-based SMPs [3–5]
have been proposed to provide biased sampling schemes to find
near-optimal path in a fast way. Benefited from the strong learning
and representation abilities of deep neural networks (DNNs), these
neural planners are able to bias the sampling towards the promising
waypoints that most probably lie on the shortest collision-free paths.
Consequently, both planning cost (in term of planning time) and
path cost (in term of path length) can now be significantly reduced.

Despite these encouraging benefits, the widespread deployment
of neural SMPs are still hindered by some limitations. First, in or-
der to extract the map information, most neural planners [3][5]
adopt contractive auto-encoder (CAE) [6] to encode the spatial en-
vironment into a vertorized embedding. One key drawback of such
CAE-based solution is that once the obstacles are embedded into an
individual latent space, the critical spatial correlation between the
obstacles and the robot state, which is not contained in the latent
space, cannot not be fully exploited or leveraged in the learning
procedure, thereby causing limited planning performance. Second,
using DNN is not free – modern DNN models are typically com-
putation intensive. Considering the equipped DNN models need
to be executed for every sampling operation, the overall compu-
tational costs can be very high, thereby posing a severe challenge

Poster Overview 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

373

https://doi.org/10.1145/3526241.3530367
https://doi.org/10.1145/3526241.3530367

Cl
as
si
ca
l S
M
P

Cl
as
si
ca
l S
M
P

Neural Network

Environment
Encoder

M
PN

et

Neural Network

Environment
Encoder

M
PN

et

Neural Network

IM
G
-S
M
P

IM
G
-S
M
P

Neural Network

IM
G
-S
M
P

Current
Robot State

Goal State

Obstacle

Desired
Path

Sample

Current
Robot State

Goal State

Obstacle

Desired
Path

Sample

Figure 1: Comparison between the classical SMP like RRT*
[2], existing NN-Based SMP like MPNet [3] and IMG-SMP
proposed in this paper. Taking the raw image of the working
status as the input of SMP can effectively capture the spatial
correlation between obstacles and the robot state, thereby
significantly improving the accuracy of biased sampling.

for the deployment of neural SMPs in the time-constrained power-
constrained embedded systems.

To overcome these limitations, in this paper we propose IMG-
SMP, an algorithm and hardware co-design framework towards
real-time energy-efficient neural motion planning. The contribu-
tions of IMG-SMP are two-fold. At the algorithm level, IMG-SMP
adopts a single CAE-free neural network, which directly takes the
raw image of the entire working status, including the information
of both the planning environment and the robot/goal states, as the
input. As indicated in Fig. 1, such end-to-end learning procedure en-
sures that the obstacles and the robot state can be embedded in the
same latent space, and therefore their spatial correlation can now be
efficiently captured, which brings a remarkable improvement on the
planning performance. At the hardware level, we further develop a
customized hardware architecture to reap the algorithmic benefits
of IMG-SMP and accelerate the execution in an energy-efficient
way. By properly rescheduling the computing scheme, the proposed
hardware architecture can eliminate all of redundant computations
without affecting planning quality, thereby significantly improving
the planning speed. To demonstrate the advantage of our proposed
solutions, we design and implement IMG-SMP hardware acceler-
ators using CMOS 28nm technology. Evaluations over different
planning maps demonstrates that the proposed customized hard-
ware for the neural planners significantly outperforms the CPU and
GPU-based planner with respect to planning speed, area efficiency
and energy efficiency.
2 THE PROPOSED IMG-SMP: ALGORITHM
2.1 Problem Statement
Denote a state space as𝐶 ∈ R𝑑 , where𝑑 is the dimension of the state
space. The obstacle space and free space can be then represented as
𝐶𝑜𝑏𝑠 ∈ 𝐶 and𝐶𝑓 𝑟𝑒𝑒 = 𝐶\𝐶𝑜𝑏𝑠 , respectively. Also, the start state and
goal state of the robot can be denoted as 𝑐𝑠𝑡𝑎𝑟𝑡 ∈ 𝐶𝑓 𝑟𝑒𝑒 and 𝑐𝑔𝑜𝑎𝑙 ∈
𝐶𝑓 𝑟𝑒𝑒 , respectively. The sampling-based motion planner aims to
find a collision-free path solution S that connects the 𝑐𝑠𝑡𝑎𝑟𝑡 and
𝑐𝑔𝑜𝑎𝑙 , i.e., S0 = 𝑐𝑠𝑡𝑎𝑟𝑡 and S𝑇 = 𝑐𝑔𝑜𝑎𝑙 , where a path is represented
as a non-empty list of states S : [0,𝑇] ∈ 𝐶 . Here a path is defined
as collision-free if the trajectory connecting all consecutive states
in S lies entirely in the free space 𝐶𝑓 𝑟𝑒𝑒 .

2.2 Key Idea
Motion Planning as Image Prediction. As analyzed in Section
1, the classical SMP approach and the existing neural planners suf-
fer from extensive sampling and limited planning performance,
respectively. To solve these problems, our proposed IMG-SMP aims
to develop a fast end-to-end NN-based planner, which can learn

Figure 2: The 2-D planning task from an image prediction
perspective. Note that the robot/goal states are denoted as
green/red dots, while the obstacles are represented as dark
blue patches. The left part of the figure summarizes the high-
level idea of determining the next robot state via predicting
the probability map. The right part describes the whole pro-
cess of computing a feasible path.

and process the images directly (See Fig. 1). To be specific, a 2D
planning task can be essentially interpreted as an image prediction
task, where the environment along with the robot/goal states can
be represented by an image (see Fig. 2). From this perspective, the
entire motion planning task can be viewed as an iterative procedure
of the following three steps. First, given a well-trained image pre-
diction model and the current task image, the neural model predicts
a probability map that shares the same size as the input (step 1).
Afterwards, the collision-free sample with the highest probability
is selected as the new robot state (step2). The task image is then
updated by the selected sample and proceed to the next iteration
(step 3). Notice that such 3-step operation is repeated until the robot
reaches the desired goal state.

Data Representation. In order to ensure that motion planning
can be realized as image prediction task, the corresponding data
representation is needed. To be specific, the input to the image
prediction network is a 1-channel image that describes the 2D
planning task, where the image size is the same as the environment
size. Here the free space and obstacle space are represented by pixel
values −1 and 1, respectively. On the other hand, we denote the
entries correspond to the robot and goal state as values −0.33 and
0.33, respectively. The output of the network is also a 1-channel
image that shares the same size as the input, which represents
each entry’s probability of being the next sample by a pixel value
between 0 − 1. In addition, for the ground-truth probability maps,
the pixel belongs to the next sample is marked as 1, otherwise 0.

Pixel Augmentation. Considering it is typically challenging
for the neural network to capture and learn the single-pixel in-
formation that represents robot/goal states, we perform the pixel
augmentation, which means also mark the neighbouring pixels
of robot/goal states as "1", to enhance the representation of those
important information. In this work, the augmentation square of
size 3× 3 is adopted. Such pixel augmentation is performed on both
the input task images and the ground-truth probability maps.

Data Generation. We train and evaluate our network on tasks
in three sizes of 2-D environments (32 × 32, 64 × 64 and 128 × 128).
For each size, we generate 10 different environments via placing 15
obstacles of different shapes randomly. For each planning task, we
use RRT* to compute its collision-free and near-optimal path as the
training data. Overall for each size the training data consists of 10
environments with 1000 near-optimal paths in each environment.
In the testing phase the neural planner is evaluated via solving 200
random planning tasks for each environment.

Poster Overview 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

374

2.3 Offline Training Procedure
After performing the above described data preparation, the pro-
posed IMG-SMP can be trained via minimizing the mean squared
error (MSE) between the predicted probability maps O and their
ground truths Ô. Let G and I denote the sample predictor and task
image, respectively, the optimization goal can be then written as:

𝑤∗ = argmin
𝑤

𝑀𝑆𝐸 (G(I;𝑤), Ô), (1)

where𝑤 represents the network parameters.

Algorithm 1 The Proposed IMG-SMP Neural Motion Planner
1: Input: 𝑐𝑠𝑡𝑎𝑟𝑡 , 𝑐𝑔𝑜𝑎𝑙 , map information C, sample predictor G
2: Output: The path solution S
3: I ← 𝐼𝑀𝐺_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑐𝑠𝑡𝑎𝑟𝑡 , 𝑐𝑔𝑜𝑎𝑙 , C)
4: while 𝑐𝑠𝑡𝑎𝑟𝑡 not reach 𝑐𝑔𝑜𝑎𝑙 do
5: O ← G(I)
6: for 𝑐𝑛𝑒𝑥𝑡 ∈ 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (O, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = 𝑇𝑟𝑢𝑒) do
7: if 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 (𝑐𝑠𝑡𝑎𝑟𝑡 , 𝑐𝑛𝑒𝑥𝑡 , C) then
8: 𝑐𝑠𝑡𝑎𝑟𝑡 ← 𝑐𝑛𝑒𝑥𝑡
9: S.𝑎𝑑𝑑 (𝑐𝑠𝑡𝑎𝑟𝑡)
10: Break
11: end if
12: I ← 𝐼𝑀𝐺_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑐𝑠𝑡𝑎𝑟𝑡 , 𝑐𝑔𝑜𝑎𝑙 , C)
13: end for
14: end while
15: Return S

2.4 Online Path Construction
With the well-trained neural network, we are then able to conduct
the path construction by making use of its predicted samples. The
details of this online path construction procedure are described in
Algorithm 1. Initially, the function 𝐼𝑀𝐺_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 takes the state
pairs and map information as input, and generates the correspond-
ing image (Line 3). The search procedure iterates until the robot
states reaches the goal state 𝑐𝑔𝑜𝑎𝑙 (Line 4). In each iteration, the
neural network takes the current task imageI as input, and outputs
the probability map O (Line 5). The entries in the probability map
are then sorted in an descending order, according to their probabil-
ities of being the next sample (Line 6). Each sorted entry is visited
sequentially (Line 6) and checked whether this is a valid sample
(Line 7) or not. To be specific, the function 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 returns True if
there is no collision between the newest robot start state 𝑐𝑠𝑡𝑎𝑟𝑡 and
the next sample 𝑐𝑛𝑒𝑥𝑡 , otherwise returns False. If a valid sample
is found, the robot moves to the next state (Line 8), appends it to
the path solution (Line 9) and stops visiting the following samples
(Line 9). The task image I is then updated by the new start state
(Line 12), thereby being prepared for the next iteration (Line 12).
The path is returned after a valid solution is found (Line 15).

3 THE PROPOSED IMG-SMP: HARDWARE
Built upon the algorithm described in Section 2.3, in this section we
further develop the customized hardware architecture to accelerate
the execution of IMG-SMP.

Key Observation. Recall that the neural network used in IMG-
SMP serves as the sample generator, which needs to be executed
multiple times for biased sampling. Evidently, such repeated execu-
tions significantly increase the overall computational cost for the
neural planner. Fortunately, our in-depth analysis on the computing

Predicted
Samples

128×128×1

Obstacle
+Goal+Robot

128×128×1

T=
1

T=
2Ti
m

e

N
e

u
ra

l
N

e
tw

o
rk

N
e

u
ra

l
N

e
tw

o
rk

…

…

Selecting
Next

Robot State
from Samples

Selecting
Next

Robot State
from Samples

Selecting
Next

Robot State
from Samples

Selecting
Next

Robot State
from Samples

T=
0

128×128×1 128×128×1

Ti
m

e

Obstacle+Goal

T=
1 Robot

+

T=
2

M
o

d
if

ie
d

N
e

u
ra

l
N

e
tw

o
rk

+

…

3×3×1 27×27×1

27×27×1
3×3×1

…

N
e

u
ra

l
N

e
tw

o
rk

Selecting
Next

Robot State
from Samples

Selecting
Next

Robot State
from Samples

M
o

d
if

ie
d

N
e

u
ra

l
N

e
tw

o
rk

Memory

Selecting
Next

Robot State
from Samples

Selecting
Next

Robot State
from Samples

Standard
Procedure

Proposed
Dataflow

Standard
Procedure

One-time Computation

Iterative Process

Memory

Memory

Figure 3: Dataflow for IMG-SMP. (a) Standard computing
scheme via straightforward design. (b) Proposed optimized
scheme. Here 128 × 128 map size is used as example.

flow shows the existence of numerous unnecessary computations.
To be specific, consider in each prediction iteration the input of the
sample predictor G consists of three information: obstacles, the goal
state and the real-time state of the robot. Since the environment
and the goal state of the static motion planning tasks are fixed,
the only unique information for each iteration’s input is the robot
state, which only contributes to a very small portion of the input
image. Therefore, the predictor indeed takes highly similar images
as the inputs across all iterations. In other words, many repetitive
computations are performed during the online planning process.

The Proposed Dataflow. Based on this observation, we propose
a dataflow to eliminate the unnecessary computations incurred by
the planning procedure. As illustrated in Fig. 3, our key idea is to
separate the computations that are repeatedly performed across
different iterations from the unique computations required in each
iteration. To be specific, the originally repeated computation will
now be executed only once at the start of the motion planning task,
and then the corresponding results will be saved and reused in
the future iterations. By this way, in each iteration the proposed
hardware accelerator will only focus on performing the distinctive
computations, thereby saving a lot of computational costs. Next,
we describe the computing procedure in detail.

128×128×1

C
o

n
v.

La

ye
r

6

R
e

LU

128×128×64

15×15×64

Neural Network

……

M
e

m
o

ry

… …

128×128×64

Modified Neural
Network

3×3×1

C
o

n
v.

La

ye
r

6…

15×15×64

A
d

jU

15×15×64

…

T=0

Ti
m

e

T=t0

Figure 4: Network modification for iterative prediction. (1)
Zero padding for feature maps. (2) Replacement of ReLUs by
AdjUs (adjustment units).

One-time Computation.At the beginning of online planning, only
the goal state and the map information, without the robot state, are

Poster Overview 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

375

formed as the input and sent to the neural planner. Then the output
activation of each layer, before the processing of the activation
function, is saved into memories for future reuse. Specifically, the
outputs of all the hidden layers are saved into off-chip DRAM, and
the last convolution layer’s output is saved into on-chip SRAM.

9

9

3

3

6

6

ReLUReLU
Adjustment

Unit
6

9

9

-3

0

12

9

ReLUReLU
Adjustment

Unit

-3

12

-6

0

-9

0

3

0

ReLUReLU
Adjustment

Unit
0

-3

0

9

9

-6

-9

ReLUReLU
Adjustment

Unit
9

① ②

③ ④

6 3 9R(k, i, j) B(k, i, j) S(k, i, j)6 O(k, i, j)

Figure 5: Examples of four operation modes of the adjust-
ment unit.

Network Modification in Iterative Process. After the above de-
scribed one-time computation, the neural planner will then execute
on the input containing robot states in each iteration. As shown
in Fig. 4, to guarantee mathematical equivalence, the ReLU acti-
vation units are replaced by the specifically designed adjustment
units (AdjU) (see Fig. 5). To be specific, the output tensor 𝑂 of the
adjustment unit can be expressed as:

𝑂 (𝑘, 𝑖, 𝑗) =


𝑅(𝑘, 𝑖, 𝑗) 𝑆 (𝑘, 𝑖, 𝑗) > 0 and 𝐵(𝑘, 𝑖, 𝑗) > 0
𝑆 (𝑘, 𝑖, 𝑗) 𝑆 (𝑘, 𝑖, 𝑗) > 0 and 𝐵(𝑘, 𝑖, 𝑗) < 0
−𝐵(𝑘, 𝑖, 𝑗) 𝑆 (𝑘, 𝑖, 𝑗) < 0 and 𝐵(𝑘, 𝑖, 𝑗) > 0
0 𝑆 (𝑘, 𝑖, 𝑗) < 0 and 𝐵(𝑘, 𝑖, 𝑗) < 0

(2)

where 𝑅, 𝐵, 𝑆 and 𝑂 are four 3-rd order tensors with the same
size of 𝐾 × 𝐼 × 𝐽 , 𝑘 ∈ [1, 𝐾], 𝑖 ∈ [1, 𝐼] and 𝑗 ∈ [1, 𝐽], respectively.
Here 𝑅 is the output activation generated in the iteration, 𝐵 is the
pre-stored results from initial one-time computation, and 𝑆 is the
sum of 𝑅 and 𝐵. After that, the output of the adjustment units will
then be added with these pre-stored results to recovery the correct
activation outputs. Fig. 6 illustrates the benefits of the proposed
dataflow. Here for the example motion planning tasks on 32 × 32,
64 × 64 and 128 × 128 grid maps, our proposed approach can bring
a very significant saving in computational costs (in term of number
of multiplications).

32 64 128
Map Size (N N)

0

5

10

15

N
or

m
al

iz
ed

 N
um

be
r o

f M
ul

tip
lic

at
io

ns

Standard Procedure
Proposed Dataflow

77.6%

94.4%

98.6%

Figure 6: The numbers of required multiplications for one
iteration of IMG-SMP on maps with size of 32 × 32, 64 × 64
and 128 × 128.

Overall Architecture & Processing Scheme. Based on the
above described dataflow, the overall hardware architecture can
be then developed. As shown in Fig.7, the proposed IMG-SMP

PE #1

PE #NPE

PE #2

OTC
SRAM

Weight
SRAM

OTC
DRAM

OTC
FIFO

MAC R
o

u
ti

n
g

N
et

w
o

rk
A

ct
iv

at
io

n
SR

A
M

W
ei

g
ht

Input Reg

Input
Activation

Output
Activation

PE Array

... Accumulation
Buffer

Activation Unit
Array

Iterative
Processing

One-time
Computation

Main Controller

Comparator
Array

Address
Generator P

at
h

 S
R

A
M

Prefetch
Unit

Collision
Check UnitMap

SRAM

Update
Logic

Figure 7: The overall hardware architecture.

hardware accelerator can be operated in two modes. In the one-time
computation mode, at the beginning of the planning task, the map
information and the goal state are loaded from the Input SRAM, and
then, together with the DNN weights, they are sent into an array
of 𝑁𝑃𝐸 processing elements (PEs) for DNN inference. The final
outputs of PE arrays will be sent into the One-time Computation
(OTC) DRAM. After the PE array has finished processing the current
portion of inputs, the activation, which is loaded from the OTC
DRAMand processed by the activation units (ActU), will be sent into
the Activation SRAM, where the used-up data will be overwritten.
Notice in order to support the requirements of different applications,
each activation unit can be reconfigured to act as Rectified Linear
Unit (ReLU), Sigmoid function unit, or the adjustment unit.

Iterative Processing Mode. In the subsequent iteration, the neural
planner is operated in the iterative processing mode, which means
only the impact of the current robot state will be calculated. At the
beginning of each iteration, with the coordinates of the current ro-
bot state, the prefetch unit will produce the corresponding reading
addresses that will be used to access OTC DRAM. After the process-
ing of PE arrays, the adjustment units will be activated to provide
the correct activation results. The output of the last layer will be
added into the corresponding results from one-time computation
to obtain the probability maps. The predicted samples, according
to their corresponding probabilities, will be sorted by a comparator
array, and their qualifications will also be checked in sequence via
a specialized collision check unit. With the sequential visiting of
the sorted samples, the foremost qualified sample will be finally
selected as the robot state at the next timestamp by an update logic.
The coordinates of the selected sample will then be stored in the
path SRAM and sent to the prefetch unit to start the next iteration.

4 EVALUATION
4.1 Algorithm Evaluation
Network Architecture. We adopt a 12-layer convolutional neural
network model with 3 × 3 kernel size. The first 11 convolutional
layers has 64 filters and the last one has only 1 filter. Each con-
volutional layer is followed by batch normalization, and after the
last convolution we apply a dropout layer with 10% drop rate. Zero
padding is used in all the convolutional layers to keep the same
dimension. The entire model is trained by ADAM optimizer [7] for
200 epochs with learning rate 1𝑒−3.

Baselines and ImplementationDetails.We compare our IMG-
SMP with three other baseline planners (BIT*, RRT* and MPNet).
Here BIT* and RRT* are the classical planners, and MPNet is the
state-of-the-art neural planners. The neural networks of MPNet

Poster Overview 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

376

32 64 144
Map Size (N N)

100

101

102

103
Av

er
ag

e
N

um
be

r o
f S

am
pl

es

BIT* RRT* MPNet IMG-SMP

(a) The average number of samples.

32 64 144
Map Size (N N)

97

97.5

98

98.5

99

99.5

100

Su
cc

es
s

R
at

e
(%

)

BIT* RRT* MPNet IMG-SMP

(b) Success rate.

32 64 144
Map Size (N N)

10-1

100

101

Av
er

ag
e

Ti
m

e
C

os
t (

s)

BIT* RRT* MPNet IMG-SMP

(c) Time cost.

Figure 8: The comparison with baseline planners, with respect to the average number of samples, success rate and time cost of
finding a feasible path under 2-D environments of different sizes.

and our IMG-SMP are implemented using PyTorch framework, and
all the motion planners are implemented with Python.

Experimental results. Fig. 8 shows the planning performance
of different motion planners, with respect to the average number
of samples, success rate and time cost, respectively. It is seen that
that our proposed IMG-SMP outperforms all the other baselines
significantly with respect to planning speed and number of samples
with very similar success rate. For instance, IMG-SMP is at least 12×
faster than the classical motion planners. Meanwhile, IMG-SMP
achieves both faster speed and higher success rate than the state-
of-the-art neural planner MPNet. In addition, IMG-SMP uses the
fewest samples to compute a path, which demonstrates its strong
capability of predicting the feasible samples.

32 64 128
Map Size (N N)

10-1

100

101

102

103

104

N
or

m
al

iz
ed

 A
re

a
Ef

fic
ie

nc
y

Accelerator CPU GPU

(a) Area Efficiency.

32 64 144
Map Size (N N)

100

102

104

N
or

m
al

iz
ed

 E
ne

rg
y

Ef
fic

ie
nc

y Accelerator CPU GPU

(b) Success rate.

Figure 9: The comparison with the CPU-based and GPU-
based implementations w.r.t. area and energy efficiency.

4.2 Hardware Evaluation
Accelerator Configuration. To demonstrate the effectiveness of
the proposed hardware architecture, we develop a design example
for IMG-SMP hardware accelerator, which can perform planning
tasks onmaps with size up to 128×128. Here the overall architecture
consists of 256 16-bit multipliers and 876.3 KB on-chip memory.

EDATools and Synthesis Results.Abit-accurate cycle-accurate
simulator is designed in System Verilog to model the high-level be-
havior of the IMG-SMP hardware architecture, which is then used
to verify the functional correctness of the RTL model implemented
by Verilog HDL. The verified model is synthesized by Synopsys
Design Compiler with CMOS 28nm technology. The synthesis re-
port shows our design example occupies 4.2𝑚𝑚2 and consumes
206𝑚𝑊 under 800𝑀𝐻𝑧 clock frequency.

Hardware Performance. We compare the performance of the
accelerator with the CPU-based and the GPU-based implementa-
tions. Here the evaluated CPU platform is the AMD EPYC 7601
32-Core Processor with 2.2 𝐺𝐻𝑧 clock frequency. The GPU plat-
form is NVIDIA RTX A6000 with 1410𝑀𝐻𝑧 clock frequency. Table
1 shows the average time cost to complete a motion planning task

Table 1: Average time cost (ms) to complete a planning task.
Operation Platform Time Cost on Different Map Size

32 × 32 64 × 64 128 × 128
IMG-SMP Accelerator 5 14.4 48.3
AMD EPYC 7601 CPU 290 970 2090

NVIDIA RTX A6000 GPU 120 250 1020

under environments of different sizes. On 32 × 32, 64 × 64 and
128 × 128 maps, our accelerator achieves average 58×, 67.4× and
43.3× speedups over the CPU implementation, respectively. It also
archives average 24×, 17.4× and 21× speedups as compared to the
GPU implementation on these three maps, respectively. In addition,
Fig. 9 shows the benefits of the proposed hardware accelerators
with respect to area and energy efficiency. It can be seen that, on
maps of size 32 × 32, 64 × 64, 128 × 128, our design achieves 2941×,
3418× and 2196× area efficiency improvement and 3589×, 2602×
and 3140× energy efficiency improvement over the CPU based
implementation, respectively. Moreover, compared to the GPU im-
plementation, our accelerator achieves 4964×, 6279×, 4017× area
efficiency improvement and 6757×, 5406×, 7544× energy efficiency
improvement on maps of size 32×32, 64×64, 128×128, respecitively.
5 CONCLUSION
In this paper, we present IMG-SMP, a neural sampling-based motion
planner. IMG-SMP can efficiently capture the spatial correlation
between obstacles and robot state to guarantee high planning per-
formance; and meanwhile the dataflow of IMG-SMP is specifically
optimized to reduce computational cost. Experiment shows that
our proposed neural planner can achieve very high planning and
hardware performance simultaneously.

REFERENCES
[1] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning. The

international journal of robotics research, 20(5):378–400, 2001.
[2] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal

motion planning. The international journal of robotics research, 30(7):846–894,
2011.

[3] Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip. Motion
planning networks. In 2019 International Conference on Robotics and Automation
(ICRA), pages 2118–2124. IEEE, 2019.

[4] Masaya Inoue, Takahiro Yamashita, and Takeshi Nishida. Robot path planning by
LSTM network under changing environment. In Advances in computer communi-
cation and computational sciences, pages 317–329. Springer, 2019.

[5] Alassane MWatt and Yusuke Yoshiyasu. Pathnet: Learning to generate trajectories
avoiding obstacles. In 2020 IEEE International Conference on Image Processing (ICIP),
pages 3194–3198. IEEE, 2020.

[6] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
Contractive auto-encoders: Explicit invariance during feature extraction. In Icml,
2011.

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Poster Overview 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

377

	Abstract
	1 Introduction
	2 The Proposed IMG-SMP: Algorithm
	2.1 Problem Statement
	2.2 Key Idea
	2.3 Offline Training Procedure
	2.4 Online Path Construction

	3 THE PROPOSED IMG-SMP: Hardware
	4 Evaluation
	4.1 Algorithm Evaluation
	4.2 Hardware Evaluation

	5 Conclusion
	References

