
Learning-based Safe Motion Control of Vehicle Ski-Stunt Maneuvers

Feng Han and Jingang Yi

Abstract— This paper presents a safety guaranteed control
method for an autonomous vehicle ski-stunt maneuver, i.e., a
vehicle moving with two side wheels. To capture the vehicle
dynamics precisely, a Gaussian process model is used as addi-
tional correction. We construct a probabilistic exponential control
barrier function (CBF) to guarantee the planar motion safety.
The CBF and the balance equilibrium manifold are enforced
as the constraints into a safety critical control. Under the
proposed control method, the vehicle can avoid the collision and
safely maintain the balance for autonomous ski-stunt maneuvers.
We conduct numerical simulation validation to demonstrate the
control design. Preliminary experiments are also presented to
confirm the learning-based motion control using a scaled truck
for autonomous ski-stunt maneuvers.

I. INTRODUCTION

Ski-stunt is a vehicle driving technique in which only two
side wheels move on the ground. Vehicles in this motion can
go through narrow space, pass obstacles and avoid possible
collisions. Ski-stunt is one of the aggressive and agile ma-
neuvers [1], under which the vehicle motion is unstable and
may risk rolling over completely. The maneuver is usually
performed by professional racing car drivers [2], [3]. There
are various ways to initialize the ski-stunt maneuver and a
relatively safe and tractable method is to drive the vehicle on
a ramp to lift one side and then maintain the tilted body after
leaving the ramp. Vehicles with high center of gravity (e.g.,
the sport utility vehicles and trucks) can also perform ski-stunt
maneuver when turning sharply at high speed.

It is clear that the ski-stunt maneuvers is highly related
to the rollover control since they share the same large roll
motion and are initialized in the same way [4], [5]. Rollovers
happen when vehicles turn sharply or when vehicles hit on a
small obstacle at high speed [5]. Compared with the rollover,
the ski-stunt motion is a balanced, safe vehicle motion. Study
of the autonomous ski-stunt maneuver is of great importance
for vehicle safety operation. Moreover, autonomous skit-stunt
maneuvers might be used as active safety features for the next-
generation of zero-accident design, particularly, in case of the
emergency situation [6]–[8].

When conducting a ski-stunt maneuver, the vehicle motion
is underactuated with three degrees of freedom (DOFs), that
is, roll motion and planar motion, but with two control inputs
(i.e., steering and velocity actuation). To prevent the vehicle
from rollover or collision, safety guaranteed design must be
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considered. Safety critical control by the control barrier func-
tion (CBF) method is one of popular and effective approaches
for autonomous robots and vehicle [9]. Safety critical control
dose not explicitly design any trajectory or control inputs and
instead, CBF is used as dynamic constraint to directly update
the nominal control as a safety guaranteed certification in real
time. Since planar motion control cannot necessarily guarantee
the stable roll motion due to the underactuated property, further
attention is needed to maintain the roll balance motion.

When running on two side wheels, the vehicle displays
a single-track characteristic. Motion and balance control of
autonomous single-track motorcycles and bicycles have been
reported in the past decades [10], [11]. Steering and velocity
control are among the most effective actuation for autonomous
bicycles and a balance equilibrium (BEM) is used to capture
the trajectory tracking and balance control simultaneously.
All of the above-mentioned motion and balance control are
based on physical models of vehicle dynamics [9], [12]).
One challenge for autonomous ski-stunt maneuvers is the
lack of accurate vehicle dynamics model. Although there are
extensive research that study the rollover sequence and rollover
detection [4], [5], [13], the dynamics models in those work
cannot be directly used for ski-stunt maneuver control due to
large roll motion.

We study and design the safety-guaranteed autonomous ski-
stunt maneuver. To achieve superior performance, we build a
machine learning-based model using Gaussian process (GP)
to compensate for the modeling errors. A probabilistic expo-
nential CBF is defined for planar motion safety. The control
design is extended and updated through a model predictive
control (MPC) method by considering the safety requirement.
To prevent any possible rollover, CBFs for roll motion are also
added into the design. To guarantee the balance of roll motion,
the BEM is introduced to estimate the desired instantaneous
equilibrium [14], [15]. Under the proposed control design, the
closed-loop system is exponentially stable and the safety are
guaranteed. We validate the design using a scaled trunk vehicle
with simulation and experiments. The main contribution of this
work lies in the new learning-based safety and balance control
design for a ski-stunt maneuver. To our best knowledge, no
autonomous ski-stunt maneuver was reported previously and
this is the first study to demonstrate the safety-guaranteed
design.

II. LEARNING-ENHANCED VEHICLE SYSTEM DYNAMICS

A. System Configuration
Fig. 1(a) shows the scaled truck platform modified for the

ski-stunt maneuvers (see Fig. 1(b)). Figs. 1(c) and 1(d) show
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Fi g. 1. ( a) T h e s c al e d r a ci n g tr u c k ( m o di fi e d fr o m Tr a x x as X- M a x x r a ci n g tr u c k) wit h J ets o n T X 2 c o m p ut er a n d s e ns ors. ( b) T h e v e hi cl e s ki-st u nt m a n e u v er
i n e x p eri m e nt. ( b) Si d e vi e w a n d ( d) b a c k vi e w of t h e s c h e m ati cs of t h e v e hi cl e s ki-st u nt m a n e u v er.

t h e si d e a n d b a c k vi e ws of t h e v e hi cl e. T h e w h e el b as e c o nt a ct
li n e is d e n ot e d as C 1 C 2 a n d l1 = C 1 C 2 . T hr e e c o or di n at e
fr a m es ar e i ntr o d u c e d: t h e i niti al fr a m e I is fi x e d o n t h e gr o u n d
wit h u p w ar d z - a xis, t h e b o d y fr a m e B is fi x e d at t h e tr u c k’s
c e nt er of m ass ( C o M), a n d t h e l o c al fr a m e H is l o c at e d at
C 2 wit h x - a xis al o n g C 1 C 2 . We d e n ot e t h e p ositi o n of C 2 as
r C 2 = [ x y ]T i n I a n d it is c o nsi d er e d as t h e v e hi cl e p ositi o n.
T h e st e eri n g, y a w a n d r oll a n gl es ar e ϕ , ψ a n d φ , r es p e cti v el y.
T h e v e hi cl e C o M p ositi o n is r G = [ x G y G z G ]T i n H . T h e z er o
r oll a n gl e φ = 0 is d e fi n e d as t h e st ati c r oll m oti o n e q uili bri u m
p oi nt. T h e p ositi o n of φ = 0 c orr es p o n ds t o t h at r ot ati n g t h e
v e hi cl e φ G = π

2 − ar ct a n | z G

y G
| al o n g t h e x - a xis i n H ; s e e

Fi g. 1( d). T h e a ct u al r ot ati o n a n gl e fr o m f o ur- w h e el dri vi n g
p ositi o n is φ r = φ + φ G . T h e g o al is t o d esi g n a c o ntr ol
s yst e ms t o all o w t h e v e hi cl e a v oi ds t h e a n y o bst a cl es w hil e
m ai nt ai ns t h e b al a n c e wit h r u n ni n g o n t w o w h e els at C 1 a n d
C 2 .

B. S yst e m D y n a mi cs

Ass u mi n g n o w h e el sli p p a g e at C 1 a n d C 2 wit h t h e n o n-
h ol o n o mi c c o nstr ai nt at C 2 , t h e v e hi cl e v el o cit y is gi v e n as
ẋ = v c o s ψ = v c ψ , ẏ = v si n ψ = v s ψ , w h er e v is t h e
v el o cit y m e g a nit u d e a n d n ot ati o ns c ψ = c o s ψ a n d s ψ = si n ψ
ar e us e d f or ψ a n d ot h er a n gl es. T h e pl a n ar m oti o n ki n e m ati cs
m o d el is o bt ai n e d as

ẍ
ÿ

=
c ψ − v s ψ

s ψ v c ψ

g r

v̇
˙ψ

= g r u , ( 1)

w h er e u = [ u v u ψ ], u v = ˙v a n d u ψ = ˙ψ is t h e y a w a n gl e r at e
t h at is r el at e d t o t h e st e eri n g c o ntr ol i n p ut as [ 1 1]

˙ψ = v
l1 c φ + φ G

t a n ϕ. ( 2)

T h e r oll m oti o n of t h e v e hi cl e is c a pt ur e d b y a n i n v ert e d
p e n d ul u m m o d el usi n g t h e L a gr a n gi a n m et h o d. T h e p ositi o n
of C o M i n I is

r I
G = r ′ + R I

H r H
G =

r C 2

0
+




x G c ψ + lG s ψ s φ

x G s ψ − lG c ψ s φ

lG c φ



 , ( 3)

w h er e r ′ = [ r T
C 2

0] T , R I
H tr a nsf ers t h e v e ct or i n H t o I ,

r H
G = [ x G − lG s φ lG c φ ]T , a n d lG = y 2

G + z 2
G . T h e v el o cit y

of t h e C o M i n I is o bt ai n e d b y t a ki n g diff er e nti ati o n of ( 3),

v I
G = ṙ I

G . T h e a n g ul ar v el o cit y of t h e v e hi cl e i n B is ω B
G =

R B
H ω H

G , ω H
G = [ φ̇ 0 ˙ψ ]T .

T h e ki n eti c e n er g y of t h e v e hi cl e is T = 1
2 m (v I

G ) 2 +
1
2 (ω B

G ) T J G ω B
G , w h er e J G = di a g ( J x , Jy , Jz ) is t h e m o m e nt

of i n erti a a b o ut C o M. T h e p ot e nti al e n er g y is V = m gl G c φ ,
w h er e m is t h e v e hi cl e m ass. Wit h t h e L a gr a n gi a n m et h o d, w e
o bt ai n t h e r oll m oti o n d y n a mi cs

J t φ̈ − m gl G s φ = τ, ( 4)

w h er e J t = m r 2
G + J x a n d t h e st e er-i n d u c e d t or q u e

is τ = ml G x G ψ̈ c ψ + ml 2
G

˙ψ 2 s φ c φ + c 2
φ J z + s 2

φ J y
˙ψ 2 −

(ml G x G ˙φ s φ − vl G m c φ ) ˙ψ . T h e a b o v e st e er-i n d u c e d t or q u e τ
c a pt ur es t h e c e ntrif u g al f or c e, w hi c h i n fl u e n c es t h e r oll m oti o n
of t h e v e hi cl e [ 1 6]. N oti n g t h at v ≫ | ˙ψ | a n d b y n e gl e cti n g
t h e s e c o n d- or d er t er m a n d usi n g ( 2), w e o bt ai n t h e si m pli fi e d
st e er-i n d u c e d t or q u e as

τ = m vl G c φ u ψ =
m v 2 lG c φ

l1 c φ + φ G
t a n ϕ. ( 5)

L etti n g f φ = 1
J t

(m gl G s φ ) a n d g φ = 1
J t

m vl G c φ , t h e
r oll d y n a mi cs is writt e n as φ̈ = f φ + g φ u ψ . I ntr o d u ci n g
x = [ r T

C 2
φ ]T , t h e n o mi n al m o d el of t h e s yst e m is writt e n

as

ẍ =
r̈ C 2

φ̈
=

0
f φ

f

+
g r

g φ

g

u v

u ψ
= f + g u , ( 6)

w h er e g φ = [ 0 g φ ]. It is cl e ar t h at fr o m ( 6) t h e v e hi cl e is
u n d er a ct u at e d a n d t h e st e eri n g i n p ut aff e cts b ot h t h e pl a n ar
a n d r oll m oti o n.

C. G P- E n h a n c e d M o d el

We c o nsi d er a n a d diti v e t er m t o ( 6) t o c a pt ur e u n m o d el e d
d y n a mi cs a n d u n c ert ai nti es, i. e.,

ẍ = f + g u + f u , ( 7)

w h er e f u = [ f u x f u x f u φ ]T d e n ot es t h e u n m o d el e d eff e cts a n d
u n c ert ai nti es t h at ar e i n v ari a nt u n d er v ar yi n g p ositi o n r C 2

. A
G P m o d el is us e d t o esti m at e f u t h at is r el at e d t o st at e ξ =
[ẋ ẏ ẍ ÿ φ ˙φ φ̈ ϕ v ]T ∈ R 9 . f w = f u (ξ ) + w is d e n ot e d as t h e
n ois y o bs er v ati o n of f u , w h er e w ∼ N (0 , Σ ) is t h e z er o- m e a n
G a ussi a n n ois e. We us e t h e G P r e gr essi o n t o c a pt ur e f u . T h e
tr ai ni n g d at a s et is D = { X , Y } = { ξ i }

N
i = 1 , { f w i } N

i = 1 ,
w h er e N is t h e n u m b er of tr ai ni n g d at a p oi nts a n d f w is
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o bt ai n e d as t h e diff er e n c e b et w e e n a ct u al m e as ur e m e nt a n d
n o mi n al m o d el c al c ul ati o n.

T h e G P f or f u x , f or i nst a n c e, is t o m a xi mi z e t h e li k eli h o o d
f u n cti o nl o g (Y x ; X , θ ) = − 1

2 Y T
x K − 1 Y x − 1

2 l o g d et(K ),
w h er e K i j = k (ξ i , ξ j ) = σ 2

f e x p( − 1
2 (ξ i − ξ j )

T W (ξ i − ξ j )) +
σ 2

0 δ i j , W = di a g { W 1 , · · · , Wm } , δ i j = 1 f or i = j o nl y,
θ = { W , σf , σ0 } , a n d Y x is t h e v e ct or c o m p os e d b y all f w x i n
D . Gi v e n t h e n e w m e as ur e m e nt d at a ξ ∗ , G P r e gr essi o n pr e di cts
t h e m e a n v al u e a n d t h e st a n d ar d d e vi ati o n of t h e u n m o d el e d
d y n a mi cs as

µ (ξ ∗ ) = k T K − 1 Y x , Σ( ξ ∗ ) = k ∗ − k T K − 1 k , ( 8)

w h er e k = k (ξ ∗ , X ) a n d k ∗ = k (ξ ∗ , ξ ∗ ). T h e pr e di cti o ns f or
f y a n d f φ ar e o bt ai n e d i n t h e s a m e m a n n er. We t h e n us e t h e
pr e di cti o n f µ (ξ ) = [ f µ x (ξ ) f µ y (ξ ) f µ φ (ξ )] T t o a p pr o xi m at e
f u . F urt h er m or e, t h e pr e di cti o n err or δ f = f u (ξ ) − f µ (ξ ) is
b o u n d e d i n t h e s e ns e of pr o b a bilit y as s h o w n i n t h e f oll o wi n g
L e m m a.

L e m m a 1 ([ 1 7]): Gi v e n D , if t h e k er n el f u n cti o n k (ξ i , ξ j )
is c h os e n s u c h t h at f u i h as a fi nit e r e pr o d u ci n g k er n el Hil b ert
s p a c e n or m ∥ f u ∥ k < ∞ , f or gi v e n 0 < η < 1 ,

Pr ∥ δ f ∥ ≤ ∥ Σ
1
2 (ξ )κ ∥ ≥ η, ( 9)

w h er e Pr( ·) d e n ot es t h e pr o b a bilit y of a n e v e nt, η ∈ ( 0, 1) ,

κ , ς ∈ R m , κ i = 2 |f u i |2k + 3 0 0 ςi l n3 N

1 − η
1
m

, ςi =

m a x ξ ,ξ ′ ∈ X
1
2 l n |1 + σ − 2

i k i (ξ , ξ ′) |, a n d i = 1 , 2 , 3 f or t h e
di m e nsi o n al el e m e nts of f u .

D e fi ni n g χ = [ x T ẋ T ]T , t h e G P- e n h a n c e d d y n a mi cs m o d el
is o bt ai n e d fr o m ( 7) as

˙χ =
ẋ
f

F

+
0
f u

F µ

+
0
g

G

u +
0
δ f

δ F

= F + F µ + G u + δ F ,

w h er e F µ , F , G a n d δ F ar e i n pr o p er di m e nsi o ns.

III. S A F E S K I - S T U N T M A N E U V E R C O N T R O L

A. C o ntr ol B arri er F u n cti o n wit h L e ar ni n g M o d el

F or s ki-st u nt m oti o n, w e d esi g n l e ar ni n g- b as e d C B F c o ntr ol
str at e g y t o pr e v e nt p ossi bl e c ollisi o ns a n d r oll o v er. T h e i nt er-
pr et ati o n of t h e s af et y is t h at t h e st at e of t h e v e hi cl e d y n a mi cs
s yst e ms r e m ai ns i n a s et d e fi n e d b y S = { χ : h (χ ) ≥ 0 } ,
w h er e h (·) is a c o nti n u o usl y diff er e nti al f u n cti o n. S et S is
r ef err e d as a s af e s et of t h e v e hi cl e m oti o n. We ass u m e t h at
h (χ ) h as t h e r el ati v e d e gr e e p ∈ N , t h at is, t h e c o ntr ol i n p ut
u a p p e ars i n t h e p t h d eri v ati v e of h (χ ) e x pli citl y. T o c o nsi d er
t h e g e n er al c as e of t h e s af et y r e q uir e m e nt, t h e e x pli cit f or m of
h (χ ) is n ot s p e ci fi e d h er e.

T o d e fi n e t h e C B F f or t h e n o n p ar a m etri c m o d el ( 7), w e
i ntr o d u c e v ari a bl e q (χ ) ∈ R p as

q (χ ) = [ h (χ ) · · · h ( p − 1 ) (χ )] T = [ h (χ ) · · · L p − 1
F h (χ )] T

a n d Li e d eri v ati v e L F h (χ ) = L F h (χ ) + L F µ h (χ ). T h e
d y n a mi cs of q (χ ) is o bt ai n e d as

q̇ = A q + B u h + u δ , h = C q ( 1 0)

wit h

A =
0 I p − 1

0 0
, B =

0
1

, C = 1 0 , u δ =
0

∂ h
∂ χ δ F

,

w h er e I p − 1 r e pr es e nts t h e i d e ntit y m atri x of di m e nsi o n p − 1 ,
u h = L p

F h (χ ) + L G L p − 1
F h (χ )u , a n d L G L p − 1

F h (χ ) is ass u m e d
t o b e i n v erti bl e.

A f e e d b a c k g ai n γ is s el e ct e d pr o p erl y s u c h t h at t h e u n-
p ert ur b e d s yst e m (A , B , C ) wit h u δ = 0 wit h c o ntr ol i n p ut
u h = − γ q is e x p o n e nti all y st a bl e. T h e s ol uti o n of h (χ ) is

h (χ ) = C e − ( A − B γ ) t q ( 0)

h u ( χ )

+
t

0

C e ( A − B γ ) ν u δ (t − ν )d ν

h δ ( χ )

,

= h u (χ ) + h δ (χ ),

If t h e m o d el is e x a ctl y a c c ur at e, n a m el y, h δ (χ ) = 0 , h (χ )
is r ef err e d as t h e e x p o n e nti al C B F, w h e n u h > − γ q
a n d h u (χ ) ≥ C e ( A − B γ ) t q ( 0) > 0 , f or t > 0 a n d
h u ( 0) > 0 [ 1 8], [ 1 9]. Ass u mi n g t h at h (χ ) is l o c all y Li ps-
c hit z i n χ ∈ S , n a m el y, ∥ ∂ h

∂ χ ∥ ≤ M h wit h fi nit e n u m b er
M h > 0 , u δ c a n b e s h o w n as pr o b a bilisti c all y b o u n d e d

Pr ∥ u δ ∥ ≤ M h ∥ Σ
1
2 (ξ )κ ∥ ≥ η . T h e n h δ (χ ) is b o u n d e d

wit h pr o b a bilit y Pr {| h δ | ≤ h m a x
δ } ≥ η , w h er e h m a x

δ =

s u p { δ F , t}
t

0
C e ( A − B γ ) ν u δ (t − ν )d ν f or all p ossi bl e G P pr e-

di cti o n err ors a n d e x p eri m e nt ti m e.

D e fi niti o n 1: Pr o b a bilisti c e x p o n e nti al c o ntr ol b arri er f u n c-
ti o n: Gi v e n t h e n o n p ar a m etri c d y n a mi cs ( 7), t h e f u n cti o n h (χ )
is a pr o b a bilisti c e x p o n e nti al C B F if t h er e e xists γ s u c h t h at

s u p
u ∈ U

L p
F h (χ ) + L G L p − 1

F h (χ )u ≥ − γ q (χ ), ( 1 1)

w h er e U is t h e f e asi bl e c o ntr ol s et a n d h (χ ) = h 1 (χ ) −
h 2 (Σ (ξ )) wit h h 1 (χ ) d e n oti n g t h e n o mi n al f u n cti o n,
h 2 (Σ (ξ )) b ei n g i ntr o d u c e d t o a c c o u nt f or t h e G P pr e di cti o n
u n c ert ai nti es. h 2 (Σ (ξ )) is c h os e n as h 2 (Σ (ξ )) = Σ (ξ ) [ 2 0].
M e a n w hil e, if u s atis fi es ( 1 1), f u n cti o n h (χ ) h as

Pr { h (χ ) ≥ − h m a x
δ } ≥ η. ( 1 2)

C o m p ar e d wit h t h e c o n v e nti o n al C B F, h (χ ) mi g ht r e a c h t o
a n e g ati v e v al u e. H o w e v er, wit h s uf fi ci e nt tr ai ni n g d at a, G P
pr e di cti o n err or c o ul d b e s m all [ 1 7] a n d t h er ef or e, h m a x

δ ≪ 1 .
I n pr a cti c e, a s af et y b uff er z o n e c a n b e a d d e d w h e n d esi g ni n g
t h e n o mi n al C B F b y c o nsi d eri n g t h e v e hi cl e si z e, w hi c h is
i nt er pr et e d as t o d e fi n e t h e s af et y crit eri o n c o ns er v ati v el y.
F urt h er m or e, t h e C B F i n ( 1 2) i n c or p or at es t h e pr o b a bilit y
pr o p ert y of G P r e gr essi o n, w hi c h is n ot i n v ol v e d i n ot h er
w or k [ 2 0].

B. S ki- St u nt M a n e u v er C o ntr ol

Wit h t h e C B F d esi g n e d a b o v e, t h e s ki-st u nt m a n e u v er c o n-
tr ol is f or m ul at e d i n a s af et y criti c al c o ntr ol f or m [ 1 8]. T h e s et
of s af et y g u ar a nt e e d c o ntr ol is d e fi n e d as

U s = { u ∈ U : L p
F h (χ ) + L G L p − 1

F h (χ )u ≥ − γ q (χ )} .

7 2 6



Gi v e n t h e n o mi n al c o ntr ol u , w e s ol v e t h e s af e c o ntr ol b y
mi ni mi zi n g e T

u e u u n d er c o nstr ai nts u s ∈ U s , e u = u s − u ,
a n d u s is t h e t ar g et s af e c o ntr ol.

T h e s af et y crit eri a is t h e c ollisi o n a v oi d a n c e wit h m ulti pl e
o bst a cl es f or t h e pl a n ar m oti o n a n d r oll o v er pr e v e nti o n f or t h e
r oll m oti o n, es p e ci all y i n t h e i niti ali z ati o n p h as e. We d esi g n
C B F h (χ ) = h (φ ) i n t er ms of t h e r oll m oti o n t o s af el y m o v e
r oll a n gl e t o d esir e d pr o fil e a n d pr e v e nt a c o m pl et e r oll o v er.
We t a k e a b o v e pl a n ar m oti o n s af et y a n d r oll o v er pr e v e nti o n
i nt o t h e c o ntr ol d esi g n. T o f urt h er str e n gt h e n t h e s af et y, w e
f or m ul at e t h e pl a n ar m oti o n s af e c o ntr ol d esi g n as a M P C
pr o bl e m as

mi n
u H

t + t H

t

e T W 1 e + e T
u W 2 e u dt, ( 1 3 a)

s u bj. t o : ẍ ( ς ) = f µ + f + g u s , ς ∈ [t, t + tH ] ( 1 3 b)

L p
F h i (r ) + L G L p − 1

F h i (r )u s ≥ − γ i q i (r ), ( 1 3 c)

L p
F h j (φ ) + L G L p − 1

F h j (φ )u s ≥ − γ j q j (φ ), ( 1 3 d)

w h er e u H = { u s 1 , · · · , u s H } is t h e H -st e p c o ntr ol i n p ut s et,
tH = H ∆ t is t h e H -st e p pr e di cti o n h ori z o n, ∆ t is t h e st e p
l e n gt h, a n d H ∈ N is t h e pr e di cti v e h ori z o n. e = χ d − χ , χ d

is t h e d esir e d st at e, e u = u s − u , a n d W 1 ∈ R 6 , W 2 ∈ R 2

ar e p ositi v e d e fi nit e di a g o n al m atri c es, h i (r ) (h j (φ )) is t h e
it h (j t h) C B F f or pl a n ar m oti o n (r oll o v er pr e v e nti o n), i =
1 , · · · , ni , j = 1 , · · · , nj , n i , nj ∈ N ar e t h e n u m b ers of
C B Fs f or pl a n ar m oti o n a n d r oll o v er pr e v e nti o n, r es p e cti v el y.
h i (r ) a n d h j (φ ) ar e d e fi n e d i n t h e s a m e w a y as h (χ ) wit h
ot h er el e m e nts b ei n g z er os. T h e o pti mi z ati o n pr o bl e m is s ol v e d
o nli n e i n r e al ti m e vi a gr a di e nt d es c e n di n g al g orit h m ( e. g.,
s e q u e nti al q u a dr ati c pr o gr a m mi n g).

T o g u ar a nt e e t h e b al a n c e of r oll m oti o n, w e first c o m p ut e
t h e B E M a n d r e g ul at e t h e r oll m oti o n ar o u n d t h e B E M. T h e
B E M is d e fi n e d as s et of i nst a nt a n e o us e q uili bri u m a n gl es, i. e.,
E = { φ e : f φ (φ e ) + f µ φ (φ e ) + g φ (φ e )u s v = 0 } , w h er e u s v

is t h e pl a n ar m oti o n c o ntr oll er [ 1 0]. We esti m at e t h e B E M b y
mi ni mi zi n g t h e f oll o wi n g f u n cti o n

mi n φ Γ = ( f φ (φ ) + f µ φ (φ ) + g φ (φ )u s v ) 2 ,

w hi c h is s ol v e d n u m eri c all y: φ e
i + 1 = φ e

i − α ∂ Γ
∂ φ

φ e
i

, ∂ Γ
∂ φ =

2 Γ
∂ f φ

∂ φ +
∂ g φ

∂ φ u s ψ +
∂ f µ φ

∂ φ ,
∂ f µ φ

∂ φ = Y T
φ K − 1 ∂ k

∂ ξ
∂ ξ
∂ φ wit h k

is gi v e n b y t h e G P m o d el esti m at e ( 8), α > 0 a n d t h e it er ati o n
is t er mi n at e d w h e n Γ( φ e

i ) ≤ ϵ f or ϵ > 0 . T h e c o ntr ol i n p ut is
fi n all y u p d at e d b y i n c or p or ati n g t h e B E M as

u φ ψ = g − 1
φ (− f φ − f µ φ + φ̈ e − k p e φ − k d ė φ ) ( 1 4)

t o e nf or c e t h e r oll m oti o n m o vi n g ar o u n d E , w h er e e φ = φ − φ e

a n d k p , kd > 0 ar e f e e d b a c k g ai ns. T h e fi n al c o ntr ol is u f
s =

[u s v u φ ψ ]. I n t h e si m ul ati o n a n d e x p eri m e nt, w e us e t h e C B F
d esi g n e d c o ntr ol t o pr or o g at e t h e s yst e m st at e as t h e r ef er e n c e
tr aj e ct or y a n d t h e n d esi g n t h e c o ntr ol i n p ut. B y d oi n g t his, w e
ar e tr yi n g t o a v oi d a n y u nr e as o n a bl e c o ntr ol d esi g n b y ( 1 3).
T h e st a bilit y of t h e s yst e m is s u m m ari z e d i n t h e f oll o wi n g
b as e d o n t h e T h e or e m 1 i n [ 1 4].

L e m m a 2: Ass u mi n g t h at B E M esti m ati o n err or (i. e., t h e
G P r e gr essi o n err or δ f a n d t h e n u m eri c al B E M esti m ati o n
err or is l o c all y Li ps c hit z a n d af fi n e wit h t h e pl a n ar a n d r oll
m oti o n err ors e . T h e s yst e m u n d er t h e c o ntr ol u f

s is st a bl e wit h
hi g h pr o b a bilit y a n d t h e err or of t h e cl os e d s yst e m c o n v er g es
i nt o a s m all b all ar o u n d z er o e x p o n e nti all y, t h at is, χ ∈ S a n d
φ ∈ E .

I V. S I M U L A T I O N A N D E X P E R I M E N T A L R E S U L T S

A. E x p eri m e nt al S et u p

T h e s c al e d r a ci n g tr u c k w as b uilt o n a n R C pl atf or m ( m o d el
X- M a x x) fr o m Tr a x x as. We i nst all e d t h e e n c o d ers a n d t h e
i n erti a m e as ur e m e nt u nit (I M U) f or o n b o ar d m e as ur e m e nt. A
J ets o n T X 2 c o m p ut er a n d a Te e ns y 4. 0 mi cr o c o ntr oll er w er e
us e d f or o n b o ar d c o m p ut ati o n p ur p os e. T h e p h ysi c al m o d el
p ar a m et ers ar e m = 1 1 .4 k g, J t = 1 .3 5 k g m 2 , l1 = 0 .4 8 m,
y G = 0 .2 5 m, z G = 0 .2 9 m φ G = 4 0 d e g.

I n t h e si m ul ati o n, t h e u n m o d el e d d y n a mi cs w er e c o nsi d er e d
as f u x = 0 .5 v c o s 2 ψ si n ψ, f u y = 0 .5 v c o s ψ si n ψ, f u φ =
0 .2 5 v 2 si n φ − 0 .2 5 φ̇ a n d w e s et J t = 1 k g m 2 . T h e tr ai ni n g
d at a w er e g e n er at e d usi n g t h e n o mi n al m o d el wit h ar bitr aril y
d esi g n e d i n p ut. T h e o bst a cl es h a d a cir c ul ar s h a p e wit h r a di us
R . T h e v e hi cl e s h o ul d a v oi d t h e o bst a cl es w hil e k e e pi n g
b al a n c e. F urt h er m or e, fr o m a ut o n o m o us f o ur- w h e el dri vi n g
t o s ki-st u nt m a n e u v ers, a n y p ossi bl e r oll o v ers s h o ul d als o b e
a v oi d e d. B as e d o n t h os e r e q uir e m e nt, t h e C B Fs us e d w er e

h i (r ) = ( R + R ϵ )
2 − (x − x c i )

2 − (y − y c i )
2 − Σ x − Σ y ,

h (φ ) = ( φ m a x + φ G ) 2 − (φ + φ G ) 2 − Σ φ ,

h ( φ̇ ) = φ̇ 2
m a x − ˙φ 2 ,

w h er e (x c i , yc i ) is t h e c e nt er p ositi o n of t h e it h o bst a cl e, R ϵ is
us e d t o a c c o u nt f or t h e G P r e gr essi o n err or ( h δ ) a n d s er v es as
a b uff er z o n e. φ m a x is all o w e d m a xi m u m r oll a n gl e a n d ˙φ m a x

d e n ot es t h e m a xi m u m r oll a n g ul ar v el o cit y.
I n si m ul ati o n a n d e x p eri m e nt, t h e tr u c k’s v el o cit y w as s et

at a c o nst a nt v al u e, w hi c h l eft t h e st e eri n g as t h e o nl y c o ntr ol
a ct u ati o n f or pl a n ar m oti o n a n d r oll m oti o n. T h e c o ntr ol
p ar a m et ers us e d i n d esi g n w er e γ i = [ 1 1 .5] T , k p = 3 5 , k d =
2 0 , W 1 = di a g { 2 0 , 2 0 , 2 0 , 1 0 , 1 0 , 1 0 } , W 2 = di a g { 5 , 5 } ,
α = 0 .0 5 , ϵ = 0 .0 0 5 , a n d ∆ t = 0 .0 2 s. T h e c o m p ut er pl atf or m
us e d f or si m ul ati o n w as e q ui p p e d wit h a C or e i 7- 9 7 0 0 @ 3. 0 G
H z × 8 C P U.

B. Si m ul ati o n R es ult

We first s h o w t h e r es ults wit h diff er e nt M P C pr e di cti o n
h ori z o ns. T h e si m ul ati o n w as s et u p wit h a n o bst a cl e ( R = 2 .5
m a n d R ϵ = 0 .5 m) at ( 5, 5) m. T h e v e hi cl e n e e ds t o m o v e
t o t h e t ar g et l o c ati o n ( 1 0 , 1 0) m s af el y. Fi g. 2 s h o ws t h e
tr aj e ct or y, t h e r oll a n gl es, t h e st e eri n g a n gl es a n d t h e C B F
pr o fil es. I n all c as es, t h e tr u c k p ass e d o bst a cl e ( Fi g. 2( d))
wit h t h e C B F a p pli e d w hil e cl os el y c o nt a cti n g t h e b uff er
z o n e. Wit h o ut t h e b uff er z o n e, t h e v e hi cl e cl os el y p ass e d b y
t h e o bst a cl e. F or all s u c c essf ul o bst a cl e a v oi d a n c e c as es, t h e
v e hi cl e tr aj e ct ori es i n Fi g. 2( a) l o o k si mil ar. T h e diff er e n c es
i n r oll a n gl e pr o fil e ar e si g ni fi c a nt as s h o w n i n Fi g. 2( b). Wit h

7 2 7



(a) (b) (c) (d)
Fig. 2. Simulation results of truck ski-stunt maneuver with different prediction horizons. (a) Truck trajectory. The gray area denotes the buffer zone and the
two circle markers show the start and target locations. (b) Roll angle. (c) Steering angle. (d) CBF value.

(a) (b) (c) (d)

Fig. 3. Simulation results of a straight line tracking task with multiple obstacles. (a) Truck trajectory. (b) Roll angle. The horizontal line in denotes
φmax = 10 deg (φmax + φG = 50 deg). (c) CBF value. (d) Position and roll angle tracking errors.

increased prediction horizons, the roll angle changes become
small. Since the desired roll angle was calculated through the
BEM, a large roll angle indicates that the curvature of the
trajectory is large and therefore it is difficult to follow (large
steering angle change is needed; see Fig. 2(c)). For the tradeoff
between computation cost and trajectory tracking performance,
we chose H = 5 in the following tests.

We demonstrate a tracking task with multiple obstacles. The
reference trajectory is xd = yd = 1.6t. Three obstacles were
at (20, 20), (27.5, 27.5), and (35, 35) m. For safety concern,
the maximum roll angle was set at 10 deg. Thus the CBFs
considered were h1(r), h2(r), h3(r) and h(φ). Fig. 3(a) shows
a 3-D illustration with the velocity direction and roll angle
direction added to the trajectory. In the first 5 s, the truck was
in the four-wheel driving mode. At t = 5 s, the truck conducted
a sharp turn to initialize the ski-stunt maneuver. Compared
with the case without roll motion CBF, the roll angle was less
than 10 deg; see Fig. 3(b). The truck successfully passed three
obstacles in an “S”-shape trajectory as shown in Fig. 3(c).
The arrows marked “Roll” in Fig. 3(a) indicate the roll angle
changes to maintain balance. Fig. 3(b) shows the reference
roll angle (i.e., BEM) and the roll angle closely followed the
reference. Fig. 3(d) shows the planar and roll motion errors
and both of them decay to zero.

C. Experimental Result

Fig. 1(b) shows an experimental setup. To protect the vehicle
from any possible damages by rollover, a training wheel was
added and mounted on one side. When the training wheel
touches down on the ground, φ = 5 deg (equivalently 45 deg

rotation from four-wheel driving situation, that is, φG =
45 deg). Fig. 4 shows the straight line tracking experiment
result based on the nominal model. For different velocities the
trajectory errors were less that 0.6 m in Fig. 4(a) and the roll
angle vibrate around the equilibrium point. One advantage with
large velocity is that the steering induced balance torque is
significant; see (5). For t = 3 to 4 s, the roll angles for three
trials were at 38 degs and the steering angle under the small
velocity v = 0.8 m/s is indeed the largest among v = 0.8, 1.2
and 1.6 m/s, as shown in Figs. 4(b) and 4(c).

Fig. 5 shows the obstacle avoidance experimental result. The
analytical model was used and the MPC prediction horizon
is set as H = 5. The obstacle center position is (xc, yc) =
(4, 0), R = 0.8 m, v = 1.2 m/s. With the CBF constraint
applied, the truck passed by the obstacle and maintained the
balance, although the truck is very close to the obstacle (see
Fig. 5(c)). However, the truck was not able to track the
reference trajectory afterwards and displays large errors. One
possible reason is that the roll motion model is not accurate,
which causes tracking errors in both planar motion and roll
motion. The preliminary results validate the analytical model
and the control design.

V. CONCLUSION

This paper presented the control system design for au-
tonomous ski-stunt maneuvers. We considered the collision of
planar motion and balance of the roll motion as the vehicle
became underactuated and inherently unstable during the ski-
stunt maneuver. To achieve superior performance, the system
model was enhanced by a Gaussian process regression method.
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(a) (b) (c)

Fig. 4. Straight line tracking at different velocities v = 0.8, 1.2, 1.6 m/s. (a) Vehicle trajectories. (b) Vehicle roll angles. (c) Steering angles.

(a) (b) (c)

Fig. 5. Obstacle avoidance in ski-stunt maneuvering. (a) Vehicle trajectory. (b) Vehicle roll angles. (c) CBF function values.

We designed a model predictive control that incorporated
a probabilistic exponential control barrier function method
for collision avoidance and roll motion balance. Under the
proposed control design, the ski-stunt maneuver was proved to
be stable and safe. The control algorithm was validated through
multiple numerical simulation examples and preliminary ex-
periment. We are currently working to extend the experiments
to demonstrate the performance under the proposed modeling
and control design.
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