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Learning-based Safe Motion Control of Vehicle Ski-Stunt Maneuvers

Feng Han and Jingang Yi

Abstract—This paper presents a safety guaranteed control
method for an autonomous vehicle ski-stunt maneuver, i.e., a
vehicle moving with two side wheels. To capture the vehicle
dynamics precisely, a Gaussian process model is used as addi-
tional correction. We construct a probabilistic exponential control
barrier function (CBF) to guarantee the planar motion safety.
The CBF and the balance equilibrium manifold are enforced
as the constraints into a safety critical control. Under the
proposed control method, the vehicle can avoid the collision and
safely maintain the balance for autonomous ski-stunt maneuvers.
We conduct numerical simulation validation to demonstrate the
control design. Preliminary experiments are also presented to
confirm the learning-based motion control using a scaled truck
for autonomous ski-stunt maneuvers.

I. INTRODUCTION

Ski-stunt is a vehicle driving technique in which only two
side wheels move on the ground. Vehicles in this motion can
go through narrow space, pass obstacles and avoid possible
collisions. Ski-stunt is one of the aggressive and agile ma-
neuvers [1], under which the vehicle motion is unstable and
may risk rolling over completely. The maneuver is usually
performed by professional racing car drivers [2], [3]. There
are various ways to initialize the ski-stunt maneuver and a
relatively safe and tractable method is to drive the vehicle on
a ramp to lift one side and then maintain the tilted body after
leaving the ramp. Vehicles with high center of gravity (e.g.,
the sport utility vehicles and trucks) can also perform ski-stunt
maneuver when turning sharply at high speed.

It is clear that the ski-stunt maneuvers is highly related
to the rollover control since they share the same large roll
motion and are initialized in the same way [4], [5]. Rollovers
happen when vehicles turn sharply or when vehicles hit on a
small obstacle at high speed [5]. Compared with the rollover,
the ski-stunt motion is a balanced, safe vehicle motion. Study
of the autonomous ski-stunt maneuver is of great importance
for vehicle safety operation. Moreover, autonomous skit-stunt
maneuvers might be used as active safety features for the next-
generation of zero-accident design, particularly, in case of the
emergency situation [6]-[8].

When conducting a ski-stunt maneuver, the vehicle motion
is underactuated with three degrees of freedom (DOFs), that
is, roll motion and planar motion, but with two control inputs
(i.e., steering and velocity actuation). To prevent the vehicle
from rollover or collision, safety guaranteed design must be
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considered. Safety critical control by the control barrier func-
tion (CBF) method is one of popular and effective approaches
for autonomous robots and vehicle [9]. Safety critical control
dose not explicitly design any trajectory or control inputs and
instead, CBF is used as dynamic constraint to directly update
the nominal control as a safety guaranteed certification in real
time. Since planar motion control cannot necessarily guarantee
the stable roll motion due to the underactuated property, further
attention is needed to maintain the roll balance motion.

When running on two side wheels, the vehicle displays
a single-track characteristic. Motion and balance control of
autonomous single-track motorcycles and bicycles have been
reported in the past decades [10], [11]. Steering and velocity
control are among the most effective actuation for autonomous
bicycles and a balance equilibrium (BEM) is used to capture
the trajectory tracking and balance control simultaneously.
All of the above-mentioned motion and balance control are
based on physical models of vehicle dynamics [9], [12]).
One challenge for autonomous ski-stunt maneuvers is the
lack of accurate vehicle dynamics model. Although there are
extensive research that study the rollover sequence and rollover
detection [4], [5], [13], the dynamics models in those work
cannot be directly used for ski-stunt maneuver control due to
large roll motion.

We study and design the safety-guaranteed autonomous ski-
stunt maneuver. To achieve superior performance, we build a
machine learning-based model using Gaussian process (GP)
to compensate for the modeling errors. A probabilistic expo-
nential CBF is defined for planar motion safety. The control
design is extended and updated through a model predictive
control (MPC) method by considering the safety requirement.
To prevent any possible rollover, CBFs for roll motion are also
added into the design. To guarantee the balance of roll motion,
the BEM is introduced to estimate the desired instantaneous
equilibrium [14], [15]. Under the proposed control design, the
closed-loop system is exponentially stable and the safety are
guaranteed. We validate the design using a scaled trunk vehicle
with simulation and experiments. The main contribution of this
work lies in the new learning-based safety and balance control
design for a ski-stunt maneuver. To our best knowledge, no
autonomous ski-stunt maneuver was reported previously and
this is the first study to demonstrate the safety-guaranteed
design.

II. LEARNING-ENHANCED VEHICLE SYSTEM DYNAMICS

A. System Configuration

Fig. 1(a) shows the scaled truck platform modified for the
ski-stunt maneuvers (see Fig. 1(b)). Figs. 1(c) and 1(d) show
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(a)

Fig. 1.

(c) (d)

(a) The scaled racing truck (modified from Traxxas X-Maxx racing truck) with Jetson TX2 computer and sensors. (b) The vehicle ski-stunt maneuver

in experiment. (b) Side view and (d) back view of the schematics of the vehicle ski-stunt maneuver.

the side and back views of the vehicle. The wheelbase contact
line is denoted as CyC5 and l; = C1C5,. Three coordinate
frames are introduced: the initial frame 7 is fixed on the ground
with upward z-axis, the body frame B is fixed at the truck’s
center of mass (CoM), and the local frame H is located at
Cs with z-axis along C7C5. We denote the position of Cy as
rc, = [zy]T in T and it is considered as the vehicle position.
The steering, yaw and roll angles are ¢, 1 and ¢, respectively.
The vehicle CoM position is ¢ = [z¢ yg z¢]T in H. The zero
roll angle ¢ = 0 is defined as the static roll motion equilibrium
point. The position of ¢ = 0 corresponds to that rotating the
vehicle @g g — arctan |22 along the z-axis in H; see
Fig. 1(d). The actual rotation angle from four-wheel driving
position is ¢, = ¢ + @q. The goal is to design a control
systems to allow the vehicle avoids the any obstacles while
maintains the balance with running on two wheels at C; and
Cs.

B. System Dynamics

Assuming no wheel slippage at € and Cy with the non-
holonomic constraint at C3, the vehicle velocity is given as
T vecosy = vey, y = vsiny = wvsy, where v is the
velocity meganitude and notations ¢y = cos and sy, = sin
are used for ¥ and other angles. The planar motion kinematics
model is obtained as

—v Sw:l [

-k )

v

¢] = gru, (1)

v Cw
gr‘

where u = [uy uy), uy = 0 and uy, = 9 is the yaw angle rate
that is related to the steering control input as [11]

¥ @)
The roll motion of the vehicle is captured by an inverted

pendulum model using the Lagrangian method. The position
of CoM in T is
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r# = [ze —lgs, lgcy)T, and g = /yZ + 2Z. The velocity
of the CoM in 7 is obtained by taking differentiation of (3),
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vE = #L. The angular velocity of the vehicle in B is w

REwH, wl =[p 04|

The kinetic energy of the vehicle is T = Zm(v§)? +
2(WB)T JowE, where Jg = diag(Jy, Jy, J2) is the moment
of inertia about CoM. The potential energy is V = mglg cy,
where m is the vehicle mass. With the Lagrangian method, we
obtain the roll motion dynamics

B _
o =

1

“4)

where J; mrg + J,; and the steer-induced torque
is 7 = mlgzgey +mlii?s,c,+ (2 J. +52 Jy) P2 —
(mlgzegs, —vigmey) 1. The above steer-induced torque T
captures the centrifugal force, which influences the roll motion
of the vehicle [16]. Noting that v > |1,1’;| and by neglecting
the second-order term and using (2), we obtain the simplified
steer-induced torque as

Jip—mglgs, =T,

mvilg Cy

T =muvlgcyuy = Py an ¢. (5)
Letting f, = Jl‘(mglcsgg) and g, = }‘mvlcc@ the
roll dynamics is written as ¢ = f, + gyuy. Introducing
x = [r{, ¢]", the nominal model of the system is written
1B Bl

= 22| = + = f +gu, 6)
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where g, = [0 g,]. It is clear that from (6) the vehicle is
underactuated and the steering input affects both the planar
and roll motion.

C. GP-Enhanced Model

We consider an additive term to (6) to capture unmodeled
dynamics and uncertainties, i.e.,

Z=Ff+gu+fu, (N

where fy = [fuz fuz fue]T denotes the unmodeled effects and
uncertainties that are invariant under varying position r¢,. A
GP model is used to estimate f, that is related to state £ =
Egijep@dv]l €RY fi = fu(€)+w is denoted as the
noisy observation of f,, where w ~ N(0, X) is the zero-mean
Gaussian noise. We use the GP regression to capture f,. The
training data set is D = {X,Y} = {{&}, {fwi}iii}
where N is the number of training data points and f,, is



obtained as the difference between actual measurement and
nominal model calculation.

The GP for f,., for instance, is to maximize the likelihood
functionlog(Y;; X,0) = —1YJK7'Y, — flogdet(K),
where K;; = k(& ‘Sj) = C’? eXP(_%(Eﬁ _Ej)TW(‘Si —Ej))"‘
0265, W = diag{Wh,--- ,Wp}, & = 1 for i = j only,
0 ={W ,of,00}. and Y is the vector composed by all f,, in
D. Given the new measurement data £*, GP regression predicts
the mean value and the standard deviation of the unmodeled
dynamics as

u(€) =kTKY,, 5(¢*) =k* —kTK 'k, (3)

where k = k(¢*, X)) and k* = k(£*, £€*). The predictions for
fy and f, are obtained in the same manner. We then use the
prediction £,(€) = [fuz(€) fuy(€) fup(€)]” to approximate
fu. Furthermore, the prediction error 67 = f, (&) — fu.(&) is
bounded in the sense of probability as shown in the following
Lemma.

Lemma 1 ([17]): Given D, if the kernel function k(&;,&;)
is chosen such that f,; has a finite reproducing kernel Hilbert
space norm || fy||, < oo, for given 0 < 5 < 1,

1
Pr {I6/]| < =3 (©)~ll} = m, ©)
where Pr(-) denotes the probability of an event, n € (0,1),
K, € R™ Kk = )/2|fui|i + 300¢; In® & G =

1-nm
maxgeex 31|l + o] °k; (€,€')], and i = 1?2,3 for the
dimensional elements of f,.
Defining x = [T #T]7, the GP-enhanced dynamics model
is obtained from (7) as

X = [‘I’] +[0]+ [0] u+@=F+Fg+Gu+6F,

I Su g
Y
F F, led 85

where F,,, F', G and §F are in proper dimensions.

ITI. SAFE SKI-STUNT MANEUVER CONTROL
A. Control Barrier Function with Learning Model

For ski-stunt motion, we design learning-based CBF control
strategy to prevent possible collisions and rollover. The inter-
pretation of the safety is that the state of the vehicle dynamics
systems remains in a set defined by & = {x : h(x) > 0},
where h(-) is a continuously differential function. Set S is
referred as a safe set of the vehicle motion. We assume that
h(x) has the relative degree p € N, that is, the control input
u appears in the pth derivative of h(x) explicitly. To consider
the general case of the safety requirement, the explicit form of
h(x) is not specified here.

To define the CBF for the nonparametric model (7), we
introduce variable g(x) € R? as

q(x) = [h(x) --- K2V )]T = [h(x) -+ L& "h(x)]"

and Lie derivative Lph(x) = Lrh(x) + Lruh(x). The
dynamics of g(x) is obtained as

g=Aq+ Bup+us, h=Cgq (10)
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with

|0 Ips |0 _ _ 0
A—|:0 0],3—[1],0—[1 0],U5—[%§F],

where I, represents the identity matrix of dimension p—1,
un = L2 h(x)+Le LA "h(x)u, and L L% ' h(x) is assumed
to be invertible.

A feedback gain - is selected properly such that the un-
perturbed system (A, B, C) with us = 0 with control input
up, = —q is exponentially stable. The solution of h(x) is

t
h(x) = Ce~(A=BMtq(0) + / CeA=BNY s (¢ — v)dv,
\_‘NF_I 0

hu(x)

-

h.sfx}
= hu(x) + hs(X),

If the model is exactly accurate, namely, hs(x) = 0, h(x)
is referred as the exponential CBF, when u, > -—vgq
and hy(x) > CelA-BYtg(0) > 0, for t > 0 and
hy(0) > 0 [18], [19]. Assuming that h(x) is locally Lips-
chitz in x € &, namely, ||%|| < M}, with finite number
My > 0, us can be shown as probabilistically bounded
Pr{||u5|| < Mu||23(€)s]|} > 7. Then hs(x) is bounded
with probability Pr{|hs| < hJ*} > 5, where AP** =
SUD(5, 1} Jy CeA=BNYq5(t — v)d for all possible GP pre-
diction errors and experiment time.

Definition 1: Probabilistic exponential control barrier func-
tion: Given the nonparametric dynamics (7), the function h(x)
is a probabilistic exponential CBF if there exists ~ such that

sup [Lih(x)+LcL%_1h(x)u] >—vq(x), (D
u
where U is the feasible control set and h(x) = hi(x) —
ha(2(¢)) with hq(x) denoting the nominal function,
ha(2(€)) being introduced to account for the GP prediction
uncertainties. ho(2(€)) is chosen as hy(3(€)) = X(&) [20].
Meanwhile, if w satisfies (11), function h(x) has

Pr{h(x) > —h§™} > n. (12)

Compared with the conventional CBF, h(x) might reach to

a negative value. However, with sufficient training data, GP

prediction error could be small [17] and therefore, h§*™* < 1.

In practice, a safety buffer zone can be added when designing

the nominal CBF by considering the vehicle size, which is

interpreted as to define the safety criterion conservatively.

Furthermore, the CBF in (12) incorporates the probability

property of GP regression, which is not involved in other
work [20].

B. Ski-Stunt Maneuver Control

With the CBF designed above, the ski-stunt maneuver con-
trol is formulated in a safety critical control form [18]. The set
of safety guaranteed control is defined as

Us = {u el : [Eh(x) + LeL% "h(x)u > —vq(x)}-



Given the nominal control u, we solve the safe control by
minimizing eﬂeu under constraints u, € U, €, = Uy — u,
and u, is the target safe control.

The safety criteria is the collision avoidance with multiple
obstacles for the planar motion and rollover prevention for the
roll motion, especially in the initialization phase. We design
CBF h(x) = h(y) in terms of the roll motion to safely move
roll angle to desired profile and prevent a complete rollover.
We take above planar motion safety and rollover prevention
into the control design. To further strengthen the safety, we
formulate the planar motion safe control design as a MPC
problem as

t+i g
n;le t eTWie + el Wye, dt, (13a)
subj. to : &(s) = fu + f + gus,s € [t,t + tH] (13b)
L2 hi(r) + LeL% ' hi(r)us > —viqi(r),  (13¢)
LEhi(p) + LaLh thy(p)ue > —7;q5(¢),  (13d)
where ug = {Ug1,- -+ ,ugm } is the H-step control input set,

tg = HAt is the H-step prediction horizon, At is the step
length, and H € N is the predictive horizon. e = x4 — X, Xa
is the desired state, e, = u, — u, and W; € R6, W, € R?
are positive definite diagonal matrices, h;(r) (h;(y)) is the
ith (jth) CBF for planar motion (rollover prevention), i =
1,---,n4 5 = 1,---,nj, ny,n; € N are the numbers of
CBFs for planar motion and rollover prevention, respectively.
hi(r) and h;(yp) are defined in the same way as h(x) with
other elements being zeros. The optimization problem is solved
online in real time via gradient descending algorithm (e.g.,
sequential quadratic programming).

To guarantee the balance of roll motion, we first compute
the BEM and regulate the roll motion around the BEM. The
BEM is defined as set of instantaneous equilibrium angles, i.e.,
E ={p" 1 fo(¥°) + fup(¢®) + 9o (¢°)usy = 0}, where ugy
is the planar motion controller [10]. We estimate the BEM by
minimizing the following function

mjnw]_—‘ = (ff,o((P) + fﬁw(ﬁo) + g@(ﬁp)usv)za

which is solved numerically: go§+1 = @ — a% ,g% =
21
of 9g a1, Ofue _ VT pc—10k 06
2]'—‘(3#,: +3_$u3¢+ a;w y a:;p = Y@ K BE Ty with k

is given by the GP model estimate (8), & > 0 and the iteration
is terminated when I'(¢§) < € for € > 0. The control input is
finally updated by incorporating the BEM as

Uprp :9;1(_fw_fw+$5e — kpey — kaéy) (14)

to enforce the roll motion moving around £, where e, = p—¢°
and kp, kg > 0 are feedback gains. The final control is ul =
[tesv upy]. In the simulation and experiment, we use the CBF
designed control to prorogate the system state as the reference
trajectory and then design the control input. By doing this, we
are trying to avoid any unreasonable control design by (13).
The stability of the system is summarized in the following
based on the Theorem 1 in [14].

Lemma 2: Assuming that BEM estimation error (i.e., the
GP regression error 6; and the numerical BEM estimation
error is locally Lipschitz and affine with the planar and roll
motion errors e. The system under the control u] is stable with
high probability and the error of the closed system converges
into a small ball around zero exponentially, that is, x € & and
pekf.

IV. SIMULATION AND EXPERIMENTAL RESULTS
A. Experimental Setup

The scaled racing truck was built on an RC platform (model
X-Maxx) from Traxxas. We installed the encoders and the
inertia measurement unit (IMU) for onboard measurement. A
Jetson TX2 computer and a Teensy 4.0 microcontroller were
used for onboard computation purpose. The physical model
parameters are m = 114 kg, J; = 1.35 kgm?, I; = 0.48 m,
Yo =0.25 m, z¢ = 0.29 m pg = 40 deg.

In the simulation, the unmodeled dynamics were considered
as fur = 0.5vcos’Ysindy, fuy = 0.5vcosysint, fu, =
0.25v2 sin p — 0.25¢ and we set J; = 1 kgm?. The training
data were generated using the nominal model with arbitrarily
designed input. The obstacles had a circular shape with radius
R. The vehicle should avoid the obstacles while keeping
balance. Furthermore, from autonomous four-wheel driving
to ski-stunt maneuvers, any possible rollovers should also be
avoided. Based on those requirement, the CBFs used were

hi('f‘) = (R + RE)2 - (I - f‘::mi)2 - (y - yci)z — X — Ey:

h(p) = (pmax +¢c)” — (¢ +¢c)” — Ty,

h’(‘P) = (szax - 5621
where (z.;,ye:) is the center position of the ith obstacle, R, is
used to account for the GP regression error (hs) and serves as
a buffer zone. Ymyax is allowed maximum roll angle and @max
denotes the maximum roll angular velocity.

In simulation and experiment, the truck’s velocity was set
at a constant value, which left the steering as the only control
actuation for planar motion and roll motion. The control
parameters used in design were ; = [1 1.5]7, k, = 35, kq =
20, Wy = diag{20,20,20,10,10,10}, W, = diag{5,5},
a = 0.05, e = 0.005, and At = 0.02 s. The computer platform

used for simulation was equipped with a Core i7-9700 @ 3.0G
Hz x 8 CPU.

B. Simulation Result

We first show the results with different MPC prediction
horizons. The simulation was setup with an obstacle (R = 2.5
m and R, = 0.5 m) at (5,5) m. The vehicle needs to move
to the target location (10,10) m safely. Fig. 2 shows the
trajectory, the roll angles, the steering angles and the CBF
profiles. In all cases, the truck passed obstacle (Fig. 2(d))
with the CBF applied while closely contacting the buffer
zone. Without the buffer zone, the vehicle closely passed by
the obstacle. For all successful obstacle avoidance cases, the
vehicle trajectories in Fig. 2(a) look similar. The differences
in roll angle profile are significant as shown in Fig. 2(b). With
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(©)
Simulation results of truck ski-stunt maneuver with different prediction horizons. (a) Truck trajectory. The gray area denotes the buffer zone and the
two circle markers show the start and target locations. (b) Roll angle. (c) Steering angle. (d) CBF value.
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Simulation results of a straight line tracking task with multiple obstacles. (a) Truck trajectory. (b) Roll angle. The horizontal line in denotes

@max = 10 deg (Ymax + ¥ = 50 deg). (c) CBF value. (d) Position and roll angle tracking errors.

increased prediction horizons, the roll angle changes become
small. Since the desired roll angle was calculated through the
BEM, a large roll angle indicates that the curvature of the
trajectory is large and therefore it is difficult to follow (large
steering angle change is needed; see Fig. 2(c)). For the tradeoff
between computation cost and trajectory tracking performance,
we chose =5 in the following tests.

We demonstrate a tracking task with multiple obstacles. The
reference trajectory is x4 = yq = 1.6t. Three obstacles were
at (20,20), (27.5,27.5), and (35,35) m. For safety concern,
the maximum roll angle was set at 10 deg. Thus the CBFs
considered were hy(7), ha(7), hs(r) and h(p). Fig. 3(a) shows
a 3-D illustration with the velocity direction and roll angle
direction added to the trajectory. In the first 5 s, the truck was
in the four-wheel driving mode. At ¢ = 5 s, the truck conducted
a sharp turn to initialize the ski-stunt maneuver. Compared
with the case without roll motion CBFE, the roll angle was less
than 10 deg; see Fig. 3(b). The truck successfully passed three
obstacles in an “S”-shape trajectory as shown in Fig. 3(c).
The arrows marked “Roll” in Fig. 3(a) indicate the roll angle
changes to maintain balance. Fig. 3(b) shows the reference
roll angle (i.e., BEM) and the roll angle closely followed the
reference. Fig. 3(d) shows the planar and roll motion errors
and both of them decay to zero.

C. Experimental Result

Fig. 1(b) shows an experimental setup. To protect the vehicle
from any possible damages by rollover, a training wheel was
added and mounted on one side. When the training wheel
touches down on the ground, ¢ = 5 deg (equivalently 45 deg
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rotation from four-wheel driving situation, that is, ¢g
45 deg). Fig. 4 shows the straight line tracking experiment
result based on the nominal model. For different velocities the
trajectory errors were less that 0.6 m in Fig. 4(a) and the roll
angle vibrate around the equilibrium point. One advantage with
large velocity is that the steering induced balance torque is
significant; see (5). For ¢ = 3 to 4 s, the roll angles for three
trials were at 38 degs and the steering angle under the small
velocity v = 0.8 m/s is indeed the largest among v = 0.8, 1.2
and 1.6 m/s, as shown in Figs. 4(b) and 4(c).

Fig. 5 shows the obstacle avoidance experimental result. The
analytical model was used and the MPC prediction horizon
is set as H = 5. The obstacle center position is (., y.)
(4,0), R = 0.8 m, v = 1.2 m/s. With the CBF constraint
applied, the truck passed by the obstacle and maintained the
balance, although the truck is very close to the obstacle (see
Fig. 5(c)). However, the truck was not able to track the
reference trajectory afterwards and displays large errors. One
possible reason is that the roll motion model is not accurate,
which causes tracking errors in both planar motion and roll
motion. The preliminary results validate the analytical model
and the control design.

V. CONCLUSION

This paper presented the control system design for au-
tonomous ski-stunt maneuvers. We considered the collision of
planar motion and balance of the roll motion as the vehicle
became underactuated and inherently unstable during the ski-
stunt maneuver. To achieve superior performance, the system
model was enhanced by a Gaussian process regression method.
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Fig. 5. Obstacle avoidance in ski-stunt maneuvering. (a) Vehicle trajectory. (b) Vehicle roll angles. (c) CBF function values.
We designed a model predictive control that incorporated [8] H. Imine, L. M. Fridman, and T. Madani, “Steering control for rollover

a probabilistic exponential control barrier function method
for collision avoidance and roll motion balance. Under the
proposed control design, the ski-stunt maneuver was proved to
be stable and safe. The control algorithm was validated through
multiple numerical simulation examples and preliminary ex-
periment. We are currently working to extend the experiments
to demonstrate the performance under the proposed modeling
and control design.
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