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Millions of scientific papers are published globally each 
year1,2, which makes it difficult for scientists, research 
institutes, technology companies and other audiences of 

science to decide what to trust. The same is true for machine rea-
soning agents in the rising age of algorithmically driven experimen-
tation3–6. More certainty about robust findings would allow better 
selection of the next experiment and accelerate collective discovery. 
Here, we ask how to predict certainty about scientific claims and 
identify robust facts from research publications. We also consider 
the implications of our predictions for how scientific institutions 
might be reformed to amplify robust signals from science.

Subjective bias is an inevitable reality underlying published sci-
ence. As scientists undertake research and publish findings, they 
must consider not only accuracy but also scientific influence and 
their own academic survival. Scientists consider what will attract 
attention and inspire other scientists to build on their work in 
future, what journal editors and reviewers will allow7, what patrons 
will fund and what promotion committees will accept? Beyond 
motivation, scientists and their investigations are situated in par-
ticular positions with respect to their objects of study, which defy 
detached and universal notions of objectivity8 and necessarily shape 
their assessments. Scientists hold assumptions acquired through 
disciplinary education and prior experience9, and they rationally 
incorporate the beliefs of others they trust—respected mentors and 
colleagues—into their own scientific expectations and certainty10. 
As we show in this paper, ignoring these contextual forces distorts 
predictions about which findings will replicate and generalize.

Above the level of scientists, the scientific system promulgates 
predictable biases. Competition between journals makes it easier 
to publish positive findings than neutral or ‘negative’ ones1,2, which 
become underrepresented in the published record11. Moreover, 
favourable conditions for the ‘wisdom of crowds’ phenomenon12, 
where collectives produce systematically more accurate estimates 
than individuals, are widely violated in science. Crowds are wise 
when their members have access to independent data13 or utilize 
independent methods14 to derive their answers, but they falter when 

engaged in centralized communication15,16 and share prior expe-
rience, knowledge and methods17. By contrast, modern science is 
characterized by intensive and repeated collaboration18–20, increas-
ingly large21,22 and distributed teams23, star scientists24,25, canonical 
citations26–28 and expensive shared equipment18,20.

These forces have led to widespread concerns regarding the 
reliability and reproducibility of findings in fields ranging from 
pharmacology5,29–31 and genetics3,4,11,32–34 to psychology35,36 with 
widespread implications for the accumulation of certainty in sci-
ence. Some have even feared that distortions from publication and 
confirmation bias could lead to the canonization of false facts7. 
This is a problem for scientists, but also for future innovation. Prior 
work has attempted to identify the replicability of scientific litera-
ture through simulation7,37,38, experiments35,39 and meta-analysis 
of prior results17,40. Psychologists have called efforts to replicate 
the robust essence of an experiment with an alternative research 
design, measurements or methods a ‘conceptual replication’41–48. 
Here, we translate that approach into an algorithmic research pipe-
line to predict robust scientific facts on which future science can 
build. We demonstrate this in the context of genomic science, fol-
lowing a five-step procedure outlined in Fig. 1 and formalized in  
Methods: (1) data production, where we (1a) extract gene–gene 
interaction claims from the biomedical literature, (1b) consoli-
date results from a massively replicated high-throughput gene–
gene experiment and (1c) align claims and results for conceptual 
replication; (2) data selection, where we predict the existence of a 
genetic interaction in high-throughput experiments based on its 
position within the network of genetic interaction claims from 
the literature; (3) signal identification, where we predict the valid-
ity of a published genetic claim to isolate factors that increase or 
decrease the likelihood of replication; (4) knowledge resolution, 
where we follow Bayes’ rule to infer the direction of all published 
claims based on genetic interactions weighted by the signals of 
reproducibility identified in step 3 to update our scientific under-
standing and certainty; (5) augmented discovery, where we discover 
and simulate policies that would redesign scientific institutions for  
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accelerated advance. Because of the complex interconnection 
between each of these research steps, we reference them by number 
throughout the manuscript.

Automated validation pipelines
To predict robust facts from published science, we must first extract 
claims from published literature (step 1a). Here, we deploy two 
algorithmic approaches built on distinct architectures: GeneWays7 
and Literome8. The GeneWays (a portmanteau of ‘genetics’ and 
‘pathways’) system semantically parses the biomedical literature. 
It identifies biological substances and processes (nouns and verbs) 
then parses them with a context-free grammar tuned to the sublan-
guage of biomedicine49 that extracts relations yielding a graph with 
directed links from source to target. Proteins may bind, activate, 
inhibit or unleash other transformations (acetylate, methylate or 
phosphorylate) upon their targets50. We simplify these interactions 
into positive (for example, ‘activate’, ‘enhance’, ‘increase’, ‘promote’, 
‘stimulate’, ‘[over]produce’, ‘upregulate’ and so on) and negative  

(for example, ‘inactivate’, ‘depress’, ‘limit’, ‘inhibit’, ‘constrain’, ‘hinder’, 
‘downregulate’ and so on). Literome inverts the GeneWays pipeline, 
parsing articles into dependent clauses51, then extracts biological 
entities, including genes and proteins. From co-presence within 
parsed phrases, Literome identifies directed relationships and filters 
these for genes from the GENIA dataset52. ‘Gene’ in this context is 
used as a shorthand for ‘gene or gene product’.

For both datasets, we limit the examination of claims to those 
extracted from article abstracts, to increase the likelihood that they 
were not merely reiterated from referenced papers, but empirically 
demonstrated within the associated article. The GeneWays and 
Literome algorithms were run on overlapping collections of articles 
present in MEDLINE (197k for GeneWays; 220k for Literome). 
The precision of GeneWays and Literome is evaluated to be 95%44 
and 25%51, and their percentage of positive interactions as 77% and 
96%, respectively. In summary, GeneWays is more accurate while 
Literome has wider scope: GeneWays and Literome yield directed 
genetic graphs with 5,141 genes involved in 23,405 interactions and 
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Fig. 1 | Analysis synopsis. In step 1, we prepare the data, aligning published claims and massively replicated experimental results by specific genetic 
interaction (+/ arrows indicate positive and negative interactions, respectively; coloured ‘G’s suggest different genes; stacked papers indicate the research 
literature mentioning each genetic interaction, aligned with the coloured flasks indicating different experiments performed on those same interactions). 
In step 2, we select genetic interactions for further analysis by predicting their existence based on position in the network of prior published knowledge 
(stacked papers represent articles on a given interaction and all nearby interactions). In step 3, we identify reproducible signals by predicting the validity of 
published genetic claims using both their position in prior knowledge and their breadth of support (the network of papers indicates articles all mentioning 
the same interaction, variously linked by shared authors and institutions (blue ties) and shared references (red ties)) for claims about interactions selected 
in step 2. In step 4, we use Bayes’ rule to infer the direction of all genetic interactions on the basis of our evidence (genetic claims a, b and c from the 
literature are weighted by features predictive of reproducibility in step 3), which weakens our (posterior) confidence in some published interactions but 
strengthens it in others. In step 5, we propose and validate policies with data-driven simulations that could improve the publication of reproducible claims in 
future science (gears indicate the improved machinery of science generating new experiments and findings), suggested by the arrow linking steps 5 and 1.
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10,703 genes engaged in 144,172 interactions, respectively. This 
yields an overlap of 4,516 genes, but only 6,516 overlapping interac-
tions. We perform all of our analyses on both independently derived 
datasets, with GeneWays featured in the main figures and Literome 
in the Supplementary Information.

Next, we derive specific measures associated with how a claim 
fits into preexisting knowledge about genetic interactions and its 
breadth of support from article data and metadata, as illustrated in 
Fig. 2 and detailed in the Supplementary Information and Extended 
Data Fig. 1. We measure each genetic regulatory interaction’s posi-
tion in preexisting knowledge with (1) the centrality of its gene 
source and target in the network of publication claims, weighted 
by frequency of publication, as well as (2) the interaction commu-
nity size of which it is a member, derived from the InfoMap algo-
rithm53 run on that same network. The centrality measure provides 
an estimate of the interactions’ position within the global structure 
of knowledge (for example, P53, an important gene controlling 
cell division and death, is highly central), and the size of the gene  

community in which it is embedded represents its position within 
the local structure of knowledge. We measure the breadth of each 
interaction’s support with (1) the density of articles published on it 
each year, (2) the number of years over which it has been investigated,  
(3) the number of research communities investigating it (derived 
from the same InfoMap algorithm used above, here run on the net-
work of papers making each interaction claim, linked by coauthors, 
affiliations and shared references), (4) the absolute size of each 
research community and (5) the size of each community relative 
to others that investigate the same claim. We also derive measures 
capturing the reputation of the institution hosting the research and 
the journal publishing the claim, in addition to a number of related 
variables (detailed in Methods and Supplementary Information).

As the culmination of step 1 in the research, we aligned these 
findings with the massively high-throughput National Institutes 
of Health (NIH) Library of Integrated Network-Based Cellular 
Signatures (LINCS) L1000 experiment at the level of each genetic 
regulatory interaction. LINCS L1000 perturbed 77 distinct cell lines 
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Fig. 2 | Feature visualization and estimates from claim-level prediction models. a, Illustrated relationship between genes engaged in regulatory 
interactions, the communities that research them and the articles in which this research is published. Interactions cluster into partitions, researchers 
cluster into communities and author teams publish articles within fixed periods. Together, these structures are used to assess the position of a claim within 
preexisting knowledge, the breadth of attention to a claim and the independence of support for that claim. b, Gini importance for features in the random 
forest models (left scale, darker colours) and coefficients from the logistic regression models (right scale, lighter colours) for GeneWays with 95% CI for 
the mean of the estimate (vertical bars). See Supplementary Information for details about how specific operationalizations of each of these variables were 
selected as model features. See Extended Data Fig. 9 for comparable coefficients for Literome.
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with several different perturbation types, such as complementary 
DNA for overexpression of wild-type gene, for 5.8k genes54. Gene 
overexpression is a technique that utilizes expression vectors to force 
high levels of a gene’s coding sequence. The resultant effect is high 
steady-state messenger RNA levels and high steady-state protein 
levels. This enables a vast gene–gene causal experiment: if one gene 
product is increased and consistently leads to an increase or reduc-
tion in another gene across cell lines, perturbagens, dosage and time, 
this suggests that the overexpressed gene has a consistent and likely 
causal association with the other. In step 1b of the research, we com-
puted the mean z score across experiments for genetic regulatory 
interactions and transformed it to (0, 1) with the normal cumulative 
density function, denoting this as the average experimental strength 
of the interaction. In step 1c, we merged the literature-based claims 
(step 1a) and massively replicated high-throughput experimental 
findings (step 1b).

Bayesian certainty from science
We predict the scientific certainty of claims and when an interaction 
is neutral (non-existent), positive or negative by using a Bayesian 
calculus built atop established statistical and machine-learning 
methods (steps 2–4). These models incorporate features capturing 
position within preexisting knowledge and breadth of prior sup-
port, as described above. Some features occur at the level of the 
genetic regulatory interaction (for example, the position of source 
and target genes in the network of prior knowledge or the num-
ber of research communities publishing on the interaction). Others 
occur at the level of the published claim (for example, the size of 
the research community publishing a paper about the interaction). 
All features vary with time. We used these features to predict the 
robust aggregate results of LINCS L1000 experiments pertaining to 
the same source and target gene across distinct trials, dosages, tis-
sues and durations.

Claims in the biomedical literature tend to be either positive or 
negative, with a strong positive bias. The distribution of experimen-
tal interactions does not share this bias, normally distributed and 
varying smoothly from negative to positive, peaked and centred at 
0.5, indicating a ‘neutral’, inconsistent or non-existent interaction 
between those genes. The contrast between published findings and 
experimental data suggests the extent of the ‘file drawer problem’ 

in science where scientists euphemistically ‘file’ but do not pub-
lish negative or inconclusive results55,56. We note that the correla-
tion between published and experimental results increases as we 
consider more popular interactions (Extended Data Fig. 2). These 
observations culminated in step 2 of the research (Fig. 1), binning 
experimental interactions into three categories: neutral, positive and 
negative, then predicting non-neutral interactions to select them for 
further analysis based on their position within the network of prior 
knowledge (Supplementary Information and Extended Data Fig. 3).

In step 3 of the research (Fig. 1), we built models to predict 
whether positive and negative claims correctly align with positive 
and negative experimental interactions based on a collection of fea-
tures revealing both the position of claimed interactions within the 
network of prior knowledge and the depth and breadth of support 
associated with each claim. We separately built logistic regression 
and random forest models to estimate the influence of each feature 
on the neutrality of interactions (step 2) and the accuracy of claims 
(step 3). Logistic regressions provide us with interpretable direc-
tional estimates, but they assume that the log odds between positive 
and negative classes is a linear function of features. Random forests 
predict more variation and provide us with estimates of each fea-
ture’s importance, but reduce interpretability by allowing nonlinear 
feature interactions. The most important features regarding how a 
claim fits into the fabric of prior knowledge and its breadth of prior 
support are defined in Fig. 2. For others, see the Supplementary 
Information and Extended Data Figs. 1 and 4. Because empirically 
neutral interactions are less likely to be mentioned in literature and 
never represented as neutral or non-existent (Fig. 3a), models pre-
dicting whether an interaction is non-neutral (step 2) cannot con-
tain features associated with depth and breadth of support, but these 
are critical for models predicting the accuracy of published positive 
and negative claims (step 3). Features associated with the position of 
neutral claims within the network of prior knowledge were included 
in both models of interaction neutrality and published claim accu-
racy (steps 2 and 3).

Step 4 of the research (Fig. 1) involved a Bayesian calculus 
wherein we used estimates from the model of claim accuracy in step 
3 to infer the direction of each genetic regulatory interaction using 
Bayes’ formula, derived under the assumption of conditional inde-
pendence between claims, and also independence between claim 
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correctness and interaction positivity (Methods). This allowed us 
to update what began as an uninformed, uniform prior about the 
direction of each non-neutral genetic interaction with the number 
of published claims, weighted by features demonstrated to predict 
reproducibility in step 3.

Predicting claim accuracy and interactions
We evaluated out-of-sample genetic predictions using receiver 
operator curves (ROCs). The distributions of the corresponding 
area under the curve (AUC) are presented in Fig. 3. Our model 
predicting whether a genetic regulatory interaction is non-neutral 
(∃), assessed across the wide range of LINCS experiments (step 2) 
and based on its position in the network of published interactions, 
betrays the difficulty of that task (with an average AUC of 0.58 from 
random forest models for GeneWays on 6.8k interactions and 0.54 
for Literome on 25.4k interactions). The most important feature 
for identifying non-neutral interactions is notable: the degree of 
the source gene in the network of prior published knowledge. The 
more central the source gene, the more other genes it controls (for 
example, P53 is central in that it regulates cascades of other genes in 
the complex processes of cell division and death). This finding sug-
gests simply that in genetic discovery, the ‘rich get richer’—claims 
about the influence of genes already known to be influential are 
more plausible than claims about the influence of peripheral genes 
with no prior signs of influence.

Our claim accuracy model predicting whether a published claim 
correctly identifies the direction of a genetic regulatory interaction, 
conditional on the interaction being non-neutral (step 3), is much 
more powerful (with an AUC of 0.77 for GeneWays on 580 interac-
tions and 0.74 for Literome on 1,090 interactions), being strongly 
influenced by both the position of the claim within prior knowledge 
and its breadth of support (Fig. 2 and Extended Data Fig. 5). The 
feature manifesting most predictive power is the size of the partition 
of published genetic effects that surround the interaction in ques-
tion. Its positive influence suggests that the structure and direction 
of nearby interactions may guide researchers to the correct conclu-
sion10. When claims about genetic influence pathways are embed-
ded within large, dense thickets of claims about related interactions, 
the structure and direction of those interactions logically and physi-
cally constrains the direction of the focal claim10, which likely helps 
researchers robustly triangulate the correct claim. The presence of 
other researchers asking nearby questions may also socially disci-
pline researchers to share their most robust results, as their work 
will receive scrutiny by those researching nearby.

The next most important class of influences are historical depth 
and social and institutional breadth of support. By contrast, empiri-
cal incorrectness is associated with higher relative community size 
and our indices tracing author, institutional and prior knowledge 
dependencies. Greater relative community size indicates that the 
majority of scientific activity in support of a genetic regulatory 
claim comes from just one or a few researcher communities, which 
weakens the independence of that support. Moreover, when the 
dependency index is high, support for a given genetic regulatory 
claim draws on overlapping authors, institutions and citations. This 
inflates the appearance of strong support for a claim (for example, 
publication in many research papers), without the independence 
required to justify that support (for example, papers are by the 
same authors and institutions, referencing the same prior work). 
This accords with recent research that shows how papers forward-
ing the same claim but sharing authors, institutions, methods and 
references decrease replicability by outsiders17 and characteriza-
tions of dense scientific communities as echo chambers that drive 
out diverse perspectives and reproduce fragile findings57. In sum-
mary, a lack of social and theoretical independence between claims 
should reduce our confidence in them. Our analysis revealed that 
some features widely considered to be strong signs of support 

were in fact red herrings. The reputation of the journal publish-
ing a claim (for example, Science) and the status of the institution 
hosting the underlying research (for example, Harvard) had no 
impact on our prediction and should not elevate our confidence in  
high-profile results.

Using Bayesian inference (step 4), we applied these estimates to 
infer the direction of any given genetic interaction. We begin with 
a uniform prior that assumes nothing about the genetic regula-
tory interaction in advance. Then, we update that prior based on 
evidence from the number of published claims about the interac-
tion, weighted by features shown in the prior model (step 3) to be 
predictive of reproducible research. Our out-of-sample predictions 
demonstrate substantially greater signal than random regarding the 
robust direction of a genetic interaction (with an AUC of 0.67 for 
GeneWays and 0.63 for Literome). These models are less predic-
tive than our models predicting accurate research claims because 
of inequality in research attention, collectively focused on a few, 
popular interactions. While scientific certainty about any particular 
interaction might be satisfied with a moderate number of replica-
tions, the inequality of research attention and activity are more likely 
to furnish the 100th replication of a popular claim than the 2nd of 
an unpopular one, despite the drop in information this entails for 
science as a system58. All of our findings are robust to analysis of 
only those claims published in elite journals, and authored by scien-
tists at elite universities (Supplementary Table 3).

Policies to optimize scientific certainty
Our computational pipeline not only enables a Bayesian update of 
certainty regarding the robustness of scientific literature (step 4). It 
also suggests policies to increase collective certainty across claims. 
In step 5 of the research, we design data-driven statistical experi-
ments that simulate the impact of two policies on the accuracy of 
science’s collective certainty. The first experiment manipulates the 
distribution of independent communities examining a research 
claim, and the second manipulates the distribution of attention 
traced by claims across interactions. For both, we examine their 
influence on the correctness of all scientific inferences that can be 
made about genetic regulatory interaction—the robustness of our 
collective understanding about the genetic world. These policies 
could be implemented science-wide by research funders such as 
the US NIH. For the NIH to influence the number of communi-
ties studying a specific topic, it could simply prefer to fund each 
new investigation on the basis of, in part, its social, institutional and 
intellectual independence. For the NIH to broaden the distribution 
of claims across interactions, it could prefer research on new top-
ics over old. We demonstrate predictively that each policy would 
increase the correct identification of the direction of genetic reg-
ulatory interactions as measured by the AUC of our model. Both 
policies enacted together would enable science to know more about 
more on the basis of the same resources.

For the first statistical experiment, we divide interactions from 
the test sample into disjoint groups by the number of author com-
munities that publish on them. For the subset of positive and nega-
tive interactions we (1) split the dataset into training and testing 
samples, (2) estimate the model of claim correctness, then using 
Bayesian inference (3) predict model certainty for groups of inter-
actions having 1, 2, 3, 4 or more communities in the test sample and 
(4) repeat this procedure 30 times to estimate the metric distribu-
tions. Figure 4a,b shows that a greater number of communities has 
a profound positive effect on the distributions of AUCs for inter-
action positivity. The more communities studying any particular 
interaction, the better we can infer genetic facts from the resulting 
corpus of research.

For the second statistical experiment, we artificially shift the 
distribution of published claim numbers by sampling interactions 
according to the number of times each is published. Specifically,  
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we (1) fix time t for all interactions in the sample and consider only 
claims published before t, (2) prepopulate the sample with ~20% 
of claims in chronological order then (3) repopulate the sample 
with claims (and interactions), year by year, until each interaction 
contains the complete history of observed claims. Figure 4c pres-
ents two synthetic examples of claim number distribution (see 
also Extended Data Fig. 6). The claim number distribution can 
be approximated by a power law, with the probability distribution 
function proportional to the number of interactions having a given 
number of claims about them raised to the power of an exponent 
(γ), where lower values correspond to flatter distributions. We dem-
onstrate in Fig. 4d that flatter claim number distributions, where 
scientific attention is spread more widely across genetic regulatory 
interactions, correspond to significantly higher AUCs predicting 

accurate interactions (increases of 0.03 ± 0.003 for GeneWays and 
0.007 ± 0.002 for Literome per unit of exponent of the claim number 
distribution γ).

Amplifying certainty in science
The deluge of published scientific information available to 
twenty-first century scientists has overwhelmed their capacity 
to account for all available signals from science in their efforts to 
innovate atop established facts. This project represents the first 
automated, machine-driven pipeline of which we are aware that 
reads scientific research papers, extracts information about scien-
tific claims, aligns them with high-throughput experiments and 
provides a Bayesian update of that knowledge. This is precisely 
what individual scientific experts do when they critically evaluate 
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Fig. 4 | Science policy experiments revealing the relationship between community independence, collective attention and certainty about genetic 
regulatory interactions. a, Relationship between the number of communities studying a particular genetic regulatory interaction and the average AUC 
of out-of-sample predictions for positive interactions, with 95% CI (band). b, Distribution of AUC values for GeneWays extracted interactions with one, 
two or three, and four or more communities. c, Two synthetic examples of claim number distributions that can be approximated by power laws (that 
is, the probability of observing an interaction in the corpus is proportional to the number of claims about this interaction raised to the power of some 
exponent γ > 1, such that lower γ values correspond to flatter distributions). Here we render these as survival functions, which formally complement the 
cumulative distribution functions. For flatter claim number distributions, scientific attention spreads more widely across genetic regulatory interactions, 
which corresponds to significantly higher certainties (AUCs) of accurate interactions (Extended Data Fig. 7). d, Relationship between the shape of the 
distribution of number of claims per interaction (γ) on the AUC of out-of-sample predictions for positive interactions (plus signs are γ-AUC coordinates; 
darker contours represent higher densities). The shape is quantified by the slope (β) of the claim number per interaction distribution on the AUC for 
predicting all genetic regulatory interactions using GeneWays data. See Extended Data Fig. 9c for comparable simulations for Literome.
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the literature, on the basis of deep personal understanding of the 
dynamics and reputations within their specific field, here scaled by 
machine to many areas of biomedicine beyond the scope possible 
for any single scientific reasoner. Moreover, our findings suggest 
that some common human heuristics for quality, such as trust in 
high-profile journals and affiliations, may be unwarranted.

In contrast to prior efforts that only detect overconfidence in 
science, describing the level at which science fails to replicate, here 
we also correct it, accounting for relevant factors to predict repli-
cability and update uncertainty about particular facts. Our models 
predict replication based on two, separate collections of publica-
tions, read by different algorithms, demonstrating deep consistency 
regarding what predicts replication and what might be altered by 
science policy-makers to improve the state of scientific knowledge. 
These findings reveal an essential tension in the undertaking of sci-
ence. Robust findings are predicted by many investigators devoted 
to studying topics central in the network of scientific claims and 
embedded within dense areas of investigation. Nevertheless, greater 
independence between investigators, communities, institutions and 
prior knowledge dramatically increases claim robustness. This leads 
to a paradox in developing a policy for the optimal scientific agent. 
When scientists flock together by studying the same phenomenon, 
it increases our collective understanding. When they flock together 
in their approach and collaborations, it decreases our collective 
understanding, increasing the illusion that we know more than we 
do. Our policy experiments suggest that if scientific institutions 
take this tension seriously, they could dramatically increase the 
robustness of collective understanding and accelerate innovation. 
When an important scientific problem merits attention, sponsoring 
diverse parallel approaches will pay dividends in robust replicable 
understanding.

Our approach has several natural limitations. Despite our rep-
lication of all findings with two different samples of research 
papers and claim extraction algorithms, our study nevertheless 
only explores claims about pairwise genetic regulatory interactions. 
Moreover, both information extraction algorithms (GeneWays 
and Literome) had limitations described above, but they bal-
anced one another in terms of precision and recall. Finally, link-
ages across datasets that facilitate our mapping of research claims 
to LINCS L1000 experimental results necessarily excluded inter-
actions from the literature not present in the experiment, and vice 
versa. Our analysis of observational data makes it impossible for 
us to make strong causal claims about the impact of optimal poli-
cies or reforming scientific institutions according to the sugges-
tive patterns we document. Notwithstanding these limitations, all 
of which would have decreased the signal we might have expected 
to isolate from scientific literature, our system was able to predict 
the likelihood of conceptual replication far above random and 
identify consistent patterns of focus and independence that, if 
enhanced, could substantially increase the robustness of science. 
Our approach can immediately be factored into prediction engines 
that efficiently drive high-throughput research to accelerate robust  
replicable science.

Methods
Analysis synopsis. Here, we introduce terminology that allows us to formalize 
the structure of our analysis and outline the Bayesian calculus we use to update 
certainty estimates for gene–gene interactions.

Let α index genetic interactions (gs, gt), where gs denotes the source gene 
that undergoes manipulation and gt denotes the target gene whose expression 
is modified (or not). We denote by πα

j  the strength of the interaction α inferred 
from experiment j in the LINCS L1000 dataset (real valued) and by cα

i  the value 
of the claim α extracted from publication i drawn from academic literature. 
In what follows, we treat LINCS L1000 as ground truth in the framework of 
supervised learning. While we understand that the high-throughput LINCS L1000 
experiment does not represent truth, its recency, transparency (through external 
audit), accuracy and replication strategy and the influence of its findings across 
biomedicine suggest that it represents our best proxy.

As stated in the narrative of the paper, our objectives in this analysis are, first, 
to decide whether a given claim cα

i  is correct, second, to infer the direction of the 
genetic regulatory interaction πα

j  from knowledge about the entire literature of 
claims on the topic {cα

i } (data and metadata) and, finally, to suggest improved 
exploration strategies to guide investigations for improved collective knowledge 
regarding genetic interaction strength and direction.

Our exploration proceeded in the following steps, summarized in Fig. 1 and the 
narrative of the paper. We:

	(1)	 Produced then aligned publication and experimental data, by (1a)  
aggregating claims from the GeneWays and Literome algorithms for  
each publication i and per interaction α, then projected them onto 
Boolean-valued cα

i , which equals 1 for a positive interaction and 0 for a  
negative one (neutral interactions are not published). The next step involved 
(1b) aggregating data from a series of experiments j in LINCS L1000 with 
regards to interaction α into a single value πα (Extended Data Fig. 3). This 
allowed us to (1c) align the real-valued interaction strength πα (step 1b) and 
the cα

i  from the literature (step 1a).
	(2)	 Selected relevant data for modelling by first partitioning interactions into 

three classes: neutral, positive and negative, then introducing Boolean-valued 
variables πα

0 , which equals 1 for neutral interactions and 0 otherwise, and πα
+, 

which equals 1 for positive interactions and 0 for negative. Then, we trained a 
model to predict πα

0 , whether an interaction α exists (∃, that is, non-neutral, 
has a z score over expression above or below certain thresholds) or does 
not exist (∄, that is, neutral) in LINCS L1000 experiments using features 
derived from the network of interlocking genetic regulatory claims across 
publications.

	(3)	 Identified the correctness of published claims by training models to  
predict yα

i  (where yα
i = 1 − |cα

i − πα
+|, the agreement between published 

claims and high-throughput experiments) using publication features P(yα
i |fi). 

Such models are validated out of sample. Publication features included the 
position of the claim within other published genetic interactions, as above, 
but also the depth and breadth of prior support for the claim. Note that  
we do this only for interactions deemed positive or negative, that is, that  
exist (∃) and are non-neutral, in step 2.

	(4)	 Inferred genetic interaction strength πα
+ with our Bayesian calculus. We used 

Bayes’ formula and results from the aforementioned model P(yα
i |fi) in step 3: 

P(πα
+|{(cα

i , fαi )}) ∝
∏

i
P(cα

i , fαi |πα
+)P(πα

+) ∝
∏

i
P(πα

+)
∑

yα
i
P(cα

i |yα
i πα

+)P(yα
i |fαi ) .

	(5)	 In language, we updated our understanding of the strength for a given  
genetic regulatory interaction by taking into account features associated  
with more and less replicable claims as established with findings from the 
LINCS L1000 experiment and validated out of sample (step 3). We began  
with an uninformed, uniform prior about the interaction, then updated  
it based on claims from literature weighted by publication-level features 
demonstrated in step 3 to predict reproducibility.

	(6)	 Proposed and validated strategies for augmented discovery through 
data-driven simulations of modifications to knowledge production that  
optimize the AUC for our models P(πα

+|{(cα
i , fαi )}), which proxies for our 

overall certainty about genetic reality. The two policies we investigated, on  
the basis of findings from step 3, increase the number of (1) independent 
author communities studying a genetic interaction and (2) different genetic 
interactions studied.

Details regarding the steps in this process are presented below.

Information extraction algorithms (step 1a). GeneWays. This algorithm and 
associated database of automatically extracted claims50,59 contains approximately 
496k unique claims (after aggregating them so that there is a single claim per 
interaction per publication) and approximately 313k unique interactions (defined 
as a triplet including source gene, target gene and action, where the action is a verb 
that takes values including ‘bind’, ‘interact’, ‘induce’, ‘associate’, ‘regulate’ and so on) 
expressed in approximately 197k publications from MEDLINE. Approximately 32% 
of claims were extracted from abstracts. We found that claims in publications could 
either result from independent original research or simply reference a finding from 
a cited publication. The former were much more likely to be mentioned in the 
abstract, so in our research we considered only claims extracted from abstracts. 
This operation leaves us with ~172k unique publication claims and ~130k unique 
interactions from the abstracts of approximately ~109k unique publications.

A typical record in the GeneWays database has the form ‘abg prevents tert’. 
To simplify the representation of interactions, we identify all such verbs that can 
be interpreted as positive or negative directional actions. As positive, we encode 
‘activate’, ‘actuate’, ‘cause’, ‘control’, ‘direct’, ‘enhance’, ‘facilitate’, ‘force’, ‘increase’, 
‘induce’, ‘lead’, ‘overproduce’, ‘promote’, ‘provoke’, ‘stimulate’, ‘transactivate’, ‘trigger’, 
‘regulate’, ‘produce’ and ‘upregulate’. As negative, we encode ‘constrain’, ‘degrade’, 
‘destroy’, ‘downregulate’, ‘hinder’, ‘inactivate’, ‘inhibit’, ‘interrupt’, ‘limit’, ‘reduce’, 
‘repress’, ‘shut’ and ‘suppress’. After projecting the interactions to positive or 
negative, we are left with ~36k unique interactions and ~68.6k unique claims  
from ~51k unique publications from PubMed.
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For each attribute, GeneWays contains a flag indicating whether the claim 
is negative, where ~4% of claims are negative. According to logic, the negation 
of ‘a increases b’ is the union of both ‘a decreases b’ and ‘a does not affect b’. 
Non-interactions are never recorded, so we assume that a positive interaction 
is the negation of a negative interaction, and vice versa. If we encounter claims 
with respect to the same interaction extracted from the same paper that negate 
one another, we discard them. We retain claims from publications present in our 
version of MEDLINE from 3k journals that we could identify using an available 
copy of the Web of Science database.

The final iteration has 23k unique interactions and 44k unique claims from  
33k unique publications.

Literome. Literome60 contains 144k unique interactions and 259k unique claims 
from 220k unique publications extracted from MEDLINE abstracts by means of 
distant supervision via Markov logic51. We only consider claims extracted from the 
abstracts and note that Literome has a strong bias towards positive interactions 
(~98%). For the set of final models described in the articles, we exclude claims 
with respect to gene TP53 (Entrez id 7157) acting on CDKN1A (Entrez id 1026) 
because the 150 extracted claims on that interaction were all deemed incorrect or 
ambiguous as evaluated by a biomedical expert.

Genetic dataset from LINCS L1000 (step 1b). We use LINCS, which was 
compiled using the Luminex bead technology called L1000, as the ground truth 
with respect to gene–gene interactions derived within the same context54. The 
experimental technique of LINCS L1000 is based on tracking gene expression, 
the procedure by which information from genes chemically perturbed in the 
experiment causes the synthesis of functional gene products, such as proteins, 
resulting in an altered cellular phenotype. We use the GSE92742 level 5 version of 
LINCS L1000. The level 5 dataset contains signatures from aggregated replicates. 
The experiments are performed on 77 cell lines, using various perturbation types, 
durations and dosages. Multiple experiments are performed per combination of 
cell line, perturbation type, duration and dosage. The result of an experiment is 
a z score that quantifies the expression of a particular gene under the action of a 
perturbagen, relative to the baseline experiment.

We aggregate the z scores of experiments in the following manner: For a given 
cell line, perturbagen, dosage and duration, we compute the mean value. Then, 
across cell lines, perturbagens, dosages and durations, we take the maximum of the 
absolute value for a given interaction. The z score is then transformed using the 
normal cumulative density function (that takes values in (0, 1)). We denote this  
by π̂α and call it the experimental regulatory interaction strength.

For GeneWays, 40% of claims and 32% of interactions remain after merging 
with LINCS L1000, while for Literome, the corresponding fractions are 29% and 
25%. After merging GeneWays and Literome onto aggregated LINCS L1000 data, 
we obtain 15.5k and 50.5k claims and 6.8k and 25.4k interactions, respectively.  
The overlap between the published claims (1) extracted by GeneWays, (2) 
extracted by Literome and also (3) present in (and merged with) LINCS L1000 
is 2k interactions (31% of all interactions of GeneWays, 8% of all interactions of 
Literome) or 827 claims. The correlation of the intersection of GeneWays and 
Literome claims is 0.38 (representing 13% of GeneWays claims but only 4% of 
Literome claims). The number of overlapping interactions is greater than the 
number of overlapping claims because the majority of interactions are discussed 
in sets of publications that are disjoint between GeneWays and Literome. If we 
restrict the merged GeneWays–LINCS and Literome–LINCS datasets to the 
strongest positive and negative experimental regulatory interactions (intervals 
(0, 0.1] and [0.9. 1.0) on the interaction strength cumulative density function), 
the overlap between GeneWays and Literome is 81 claims (34 interactions) with 
a correlation on the claim variable of 0.57. We conclude that the GeneWays and 
Literome datasets, while being significantly different, are in moderate agreement 
where they overlap, suggesting that they are largely independent sources of 
genetic regulatory interaction claims. We note that the distribution of the 
number of claims per interaction follows Zipf ’s law (Extended Data Fig. 7). The 
correlation between regulatory interaction strength from LINCS L1000 and mean 
claim value per interaction from the literature is negligible, but increases as we 
introduce a threshold for the number of publications in which the claim appears 
(Supplementary Table 1 and Fig. 1).

Features predicting replicability (steps 2 and 3). Our models account for a range 
of scientific and social factors that could influence the likelihood that a claim is 
robust and generalizable. Two important classes of factors involve (1) how a claim 
fits into prior knowledge about nature and (2) its breadth of prior support. We 
measure how a claim fits with preexisting knowledge by assessing its position in the 
complex network of other scientific claims. We measure whether a claim is central 
or peripheral in the network, and whether the entire claim network is decentralized 
or hierarchical, controlled through a small number of central nodes. A claim’s 
plausibility may also be affected by its position in the macro cluster structure of 
the network, that is, whether it lies in a large or small cluster of interactions. We 
examine a scientific claim’s breadth of prior support by evaluating the distribution 
of researchers who have reiterated it and the depth of time over which a claim has 
been examined. We also include features measuring the authority of whether a 

finding was published in elite, high-impact journals, or was authored by scientists 
from elite schools with a strong reputation.

Specifically, we define communities associated with each genetic regulatory 
interaction for claims made within a variety of fixed time intervals: the past one, 
two, three and all years leading up to a given year. Each claim is made within a 
unique publication, which is produced in an institutional, social and knowledge 
context, reflected by the multiple authors, affiliations and citations referenced 
within it. We denote the set of affiliations (or authors, or references) by V and the 
set of publications by U, such that edges (u, v) between members of these two sets 
form a bipartite graph, which is reduced to a weighted graph defined on the set of 
publications U, with weights proportional to the number of common affiliations. 
In each such local weighted graph of publications defined over a given time 
period (that is, one, two, three and all prior years), we identify communities using 
the information theory-inspired InfoMap algorithm61 and assign the number of 
communities, community size and community share for a given claim as derived 
features. All features are described in the Supplementary Information and listed 
in Supplementary Table 2, while the correlations of these features with claim 
correctness and interaction neutrality are presented in Extended Data Fig. 4.

To classify (1) the neutrality of a genetic regulatory interaction and (2) the 
correctness of a claim (the positivity or negativity of a regulatory interaction 
is derived from our correctness model), we used random forest and logistic 
regression models to enable both prediction and interpretation. While random 
forest allows us to reach near-maximal predictive performance, logistic regression 
enables the linear interpretation of features, rendering some effects positive and 
others negative. We choose models of optimal complexity and estimate metrics 
over the ensemble using procedures described in the Supplementary Information 
and Extended Data Fig. 8. In Fig. 2, features are presented pictorially with the 
highest Gini importance for the random forest model. The detailed methodology 
of the feature importance calculation is provided in the Supplementary 
Information. Figure 2 displays the Gini importance for each variable in the random 
forest model and associated coefficients for the logistic regression, plotted in 
decreasing importance for the GeneWays random forest.

Sampling procedure. For each model type, we randomly generated 20 threefold 
samples of interactions. Leaving 1 out of 3 for validation in each of these 20 
samples yields 60 training–validation pairs. These threefold samples were 
constructed randomly per interaction (using the claim number distribution 
function). For each experiment, models were trained on training samples and 
metrics were evaluated on validation samples. The claim correctness model is 
trained and then validated on sets containing disjoint genetic interactions.

Sensitivity analyses. We performed sensitivity analyses of the pipeline used 
to derive model features and estimate model parameters to account for the 
heterogeneous quality of research across the scientific system. First, we restricted 
our sample of claims to a subset of GeneWays and Literome published in 
high-reputation journals, measured as being in the 90th percentile of the Article 
Influence Score62. This measure uses an eigenvalue-based centrality measure on 
citation networks to assess those journals that exert the most direct and indirect 
influence over other journals. Our entire sample of GeneWays and Literome claims 
is derived from thousands of journals and may raise concerns that lower-quality 
or fraudulent results may be more highly represented there and artificially inflate 
our findings (for example, if our models discounted findings from low- but not 
high-profile journals).

Second, we restricted our sample of claims to those authored by scientists 
at respected research universities. These scientists represent what Ioannidis 
and colleagues have called the ‘Continuously Publishing Core in the Scientific 
Workforce’63. We performed this analysis on a subset of the GeneWays and 
Literome dataset restricted to publications by authors affiliated with the top 100 
universities according to the 100 Quacquarelli Symonds (QS) World University 
Rankings of biological sciences in 2011. The QS World University Rankings is an 
annual publication of university rankings, previously known as the Times Higher 
Education–QS World University Rankings (through 2009). Our entire sample of 
claims is derived from both active, centrally positioned scientists (for example, 
at the University of Oxford) and those who publish intermittently at peripheral 
institutions (for example, at Friends College) and may raise the concerns that 
lower-quality results may be more highly represented and artificially inflate our 
findings (for example, if our models discounted findings from researchers at  
low- but not high-status institutions).

With these new subsets, we estimated AUC distributions (out of sample)  
for all three models described above. The high-profile journal filter leaves us with 
46% and 51% of GeneWays and Literome, respectively. The high-profile affiliations 
filter leaves 21% and 22% of the GeneWays and Literome dataset, respectively. 
These results are summarized in Supplementary Table 3 and demonstrate the 
stability of our results to these sample restrictions. Results for the restricted 
high-profile affiliations and journal samples are comparable to those from the 
full sample. For the Literome dataset, the AUCs for high-profile affiliations and 
journals are slightly higher than the full sample for all models. For GeneWays, the 
high-profile samples are slightly higher than the full sample for the neutral model 
(step 2), lower on the claims model (step 3) and approximately the same for the 
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positive–negative interaction inference (step 4). In short, all reported findings are 
robust to these perturbations. These findings are also consistent with our result 
that claims published in higher-profile journals or affiliated with higher-profile 
institutions are not more likely to replicate.

Additional details with regard to all the steps are given in the Supplementary 
Information. We used Python and scikit-learn to develop the models. Large-scale 
computations were made possible thanks to the Cloud Kotta infrastructure64.

Data availability
To illustrate our pipeline, we used the publicly available GeneWays and Literome 
datasets (available at https://github.com/KnowledgeLab/geneways and https://
github.com/KnowledgeLab/literome), linked with Clarivate’s Web of Science 
database of bibliographic information. While we cannot share the Web of Science, 
we share a linked file https://github.com/KnowledgeLab/nmi_robust_facts_
supplemenary, which includes all claims of interest and citation metadata required 
to perform described analyses.

Code availability
Our code is publicly available at https://github.com/alexander-belikov/datahelpers 
and https://github.com/KnowledgeLab/bm_support.
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Extended Data Fig. 1 | Illustration of core interaction and claim variables. Directed regulatory interactions between genes constitute communities  
of researchers who study them. Features regarding the position of a claim within prior knowledge are derived from its relationship to other genetic 
regulatory interactions. Features regarding the breadth and independence of support are derived from the connection between publications making claims 
about the same interaction.
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Extended Data Fig. 2 | Correlation between claim value and experimental strength across the claim frequency distribution. Correlation of mean claim 
value μ̂α and interaction strength π̂α from LINCS L1000 as a function of threshold on minimum claim sequence length per interaction for GeneWays (a) 
and Literome (b).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Data-driven thresholds to partition interactions into neutral, negative and positive interactions for analysis. C0, C− and C+ 
correspond to classes of neutral, negative and positive genetic regulatory interactions. Distance between C0and C− (W (g0, g−, θ

−
, θ+), solid green), and 

C0 and C+ (W (g0, g+, θ
−
, θ+), solid blue), number of claims in C−, dotted green, number of claims in C+, dotted blue) for GeneWays (a) and Literome (b). 

Distance between C0 and C− (W (g0, g−, θ
−
, θ+)) in GeneWays (c) and Literome (d); Distance between C0 and C+ (W (g0, g+, θ

−
, θ+)) in GeneWays (e) 

and Literome (f).
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Extended Data Fig. 4 | Pearson correlation between core analysis variables in both Geneways and Literome datasets. Heat map indicating correlation 
between: (a) claim correctness yα

i  and batch-level features for GeneWays (top row) and Literome (bottom row); (b) claim correctness yα
i  and claim-level 

features for GeneWays (top row) and Literome (bottom row); (c) interaction non-neutrality πα
0 and interaction-level features for GeneWays (top row) and 

Literome (bottom row); (d) interaction positivity πα
+

 and interaction-level features for GeneWays (top row) and Literome (bottom row).
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Extended Data Fig. 5 | Variable importance and significance in models of the non-neutrality and positivity of genetic regulatory interactions. Family 
importances of random forest model (left, darker shade) and logistic regression coefficients (right, lighter shade) for the model of classification of neutral 
interactions (top) and positive interactions (bottom) for GeneWays (left) and Literome (right). Vertical centered lines show 95% confidence level on the 
mean of the corresponding importance/coefficient.
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Extended Data Fig. 6 | Analysis of the relationship between the distribution of claims per interaction and overall certainty about those interactions. 
Examples of claim number distribution ρ(nα) per interaction for test subsamples from GeneWays (a) and Literome (b). Information gain as a function 
of the slope of claim number distribution β. Solid lines correspond to binned averages and shaded regions denote one standard deviation of the data 
confidence interval for GeneWays (c) and Literome (d).
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Extended Data Fig. 7 | Survival functions (complements of the cumulative distribution functions) of claim number per interaction. Survival functions 
for GeneWays (a) and Literome (b); for all interactions (∀) and nonzero (∃) interactions, where the probability distribution function is modeled as ρ ∝ nγ. 
Exponents γ equal 2.26 and 2.01 for Geneways for all and non-neutral interactions, respectively; and equal 2.5 and 2.26 for Literome for all and non-neutral 
interactions. The exponents were obtained by Maximum Likelihood Estimation.
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Extended Data Fig. 8 | Model selection using ROC AUC values for all models. Neutral interaction models (a-c,g-i) and positive interaction models 
(d-f,j-l). Left: the distribution of ROC AUC as a function of random forest depth (a,d,g,j). Center: the distribution of ROC AUC as a function of minimum 
number of samples in a decision tree leaf (b,e,h,k). Right: the distribution of ROC AUC as a function of the number of trees in a random forest (c,f,i,l).
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Extended Data Fig. 9 | Science policy experiments revealing the relationship between community independence, collective attention, and certainty 
about genetic regulatory interactions (complement to Fig. 4). a, Relationship between the number of communities studying a particular genetic 
regulatory interaction and the average AUC of out-of-sample predictions for positive interactions. b, Distribution of the average AUC curves for Literome 
for interactions with 1, 2-3 and greater than 4 communities. c, Relationship between the shape of the distribution of number of claims per interaction 
on the AUC of out-of-sample predictions for positive interactions. β represents the slope of the claim number per interaction distribution for Literome. 
(Complement to main Fig. 4).
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Extended Data Fig. 10 | Positivity bias in published effects and prediction results for Literome (complement to Fig. 3); random forest Gini Importance 
scores and logistic regression coefficients for features from Literome (complement to Fig. 2b). a, Joint plot of the mean experimental interaction 
strength (x-axis) and mean value of the published claim (y-axis) for each genetic interaction. More intense hues of the red (and also greater marker size) 
correspond to the interactions in Literome with 10 or more claims per interaction; for less intense hues (and also smaller marker size) the cutoff is absent, 
representing the complete distribution. (See Fig. 3a for comparable Geneways distribution). b, We first predicted the nonexistentence (∄) or existence 
(∃) of each published gene-gene regulatory interaction (Literome). c, Then, if the interaction was deemed existent (∃), we predicted whether each claim 
(of positivity or negativity) from literature was correct. d, Using Bayesian inference, we estimated the sign (positive vs negative) of all genetic regulatory 
interactions. Mean ROC curves in bold are complemented by a 95% c.i. contours, with fainter individual lines corresponding to ROC curves for 60 models 
corresponding to different training/validation samples. (Complement to Fig. 3 in the main manuscript). e, Gini Importance or Mean Decrease in Impurity 
for features in the random forest models (left vertical scale, bold colors), and coefficients from the logistic regression models (right vertical scale, fainter 
colors) for Literome. Vertical bars represent 95% c.i. for the mean value of the estimate.
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