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a b s t r a c t 

Science is built on scholarly consensus that shifts with time. This raises the question of how new 

and revolutionary ideas are evaluated and become accepted into the canon of science. Using 
two recently proposed metrics, atypicality and diruption, we measure how research draws upon 
novel combinations of prior research and the degree it creates a new direction by eclipsing its 
intellectual forebears in subsequent work. Atypical papers are nearly two times more likely to 
disrupt science than conventional papers, but this is a slow process taking ten years or longer for 
disruption scores to converge. We provide the first computational model reformulating atypicality 
as the distance across latent knowledge spaces learned by neural networks. The evolution of 
this knowledge space characterizes how yesterday’s novelty forms today’s scientific conventions, 
which condition the noveltyof tomorrow’s breakthroughs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Over the past three centuries, science has exploded in size and recognition as the dominant driver of innovation and economic
growth ( Jones & Summers, 2020; Price, 1963 ). From Derek J. de Solla Price’s mid-20th Century scholarship demonstrating extreme
inequality in scientific article citations ( Price, 1965 ) and Eugene Garfield’s establishment of the Science Citation Index enabling
identification of the most “important ” papers on a given topic, citation number or “impact ” has become the dominant method for
quantitatively evaluating researchers and their work. This fixation on citation impact, however, has led to unintended consequences 
( Hicks Wouters, Waltman, de Rijcke & Rafols, 2015 ). The value of citation impact for careers and institutional allocations has led
scientists to make choices that inexpensively optimize the metric without its attendant quality, driving down the value of its index
of generalized research quality ( Campbell, 1979; Goodhart, 1984 ; ; Lucas, 1976 ). For example, research demonstrates that scientists
are rewarded by publishing in fashionable areas of science where citations are abundant ( Foster, Rzhetsky, & Evans, 2015; Rzhetsky,
Foster, Foster, & Evans, 2015 ; ), making their work relevant for citation by other contemporary researchers working on those topics.
This has contributed to log-jams in science where scientists crowd together along the scientific frontier ( Azoulay et al., 2018 ), driving
down the relationship between short-term impact and long-term influence. 

Alternative measures have been proposed to reveal the distinct character of scholarly work beyond popularity. These include pio-
neering work to identify knowledge relevance through bibliographic coupling ( Kessler, 1963 ), co-citation ( Small, 1973 ), or keyword
overlaps ( Milojevi ć, Sugimoto, Yan & Ding, 2011 ), and initiatives to understand the different function of citations by analyzing their
word context, so as to trace the unfolding drama of scientific debate and advance ( Biagioli, 2018 ; Jurgens, Kumar, Hoover, McFar-
land & Jurafsky, 2018 ; Zhang, Ding & Milojevi ć, 2013 ). Two recent, prominent metrics have arisen that highlight work generating
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new combinations and directions, contributing to the “creative destruction ” of science, whereby new scientific ideas and approaches 
supplant the old ( McMahan & McFarland, 2021 ). Novelty has been assessed in many ways ( Foster, Shi, & Evans, 2021 ), but one
high-profile approach, Atypicality, models how research draws upon unusual combinations of prior research in crafting their own 
contributions ( Uzzi, Mukherjee, Stringer & Jones, 2013 ). Disruption models how research comes to eclipse citations to the prior work
on which it builds, becoming recognized as a new scientific direction ( Funk & Owen-Smith, 2016; Wu, Wang, & Evans, 2019 ). In this
paper, we unpack the complex, temporally evolving relationship between atypicality, citations, and disruption. We show how atypi- 
cality increases at the expense of short-term citations, but anticipates works that will become “sleeping beauties ” ( He, Lei, & Wang,
2018; Ke, Ferrara, Radicchi, & Flammini, 2015 ; ; van Raan, 2004 ), accumulating surprising attention and citation impact over the
long run to disrupt science. We also reformulate atypicality as distance of co-cited journals in knowledge embedding space inscribed
by an embedding model, which offers new theoretical insight into the dynamic frontier of science: how yesterday’s novelty forms
today’s scientific conventions, which condition the surprise of tomorrow’s breakthroughs ( Fleming & Sorenson, 2001 ; Sorenson et al.,
2006 ). 

2. Atypicality: science as a recombinant process 

Scientific discoveries and technological inventions do not appear ex nihilo. They are built from combinations of existing knowl-
edge and technological components ( Schumpeter, 2018; Singh & Fleming, 2010; Uzzi, Mukherjee, Stringer, & Jones, 2013 ). Recent 
research has explored the recombination of knowledge entities, including keywords ( Hofstra et al., 2020 ), chemical and biological
entities Foster, Rzhetsky, & Evans, 2015 , and patent classes ( Youn, Strumsky, Bettencourt & Lobo, 2015 ) to produce novel scientific
advances. For example Hofstra and colleagues identified papers connecting concepts previously viewed as separated or irrelevant 
in literature (2020), including how Lilian Bruch connected “HIV ” with “monkeys ” to introduce HIV’s origins in nonhuman primates
( Sarngadharan, Popovic, Bruch, Schüpbach, & Gallo, 1984 ), or how Londa Schiebinger linked “masculinity ” to “justify ” in pioneering
academic studies of gender bias ( Schiebinger, 1991 ). Milojevi ć and coauthors analyzed combinations of words and phrases from paper
titles to elucidate the cognitive content of Library and Information Science (LIS), documenting how its cognitive landscape has been
reshaped by the emergence of new information technologies such as the Internet, and the retirement of old ones ( Milojevi ć et al.,
2011 ). Much recent work constructs knowledge spaces from combinations of knowledge components, such that the combination of
distant elements within that space strongly indicates combinatorial novelty (Gebhart & Funk, 2020; Shi & Evans, 2019) . 

Brian Uzzi and colleagues created a prominent score that captures how a paper deviates from the norm of science by building on
“atypical ” references, where a pair of journals are determined to be “atypical ( z < 0) ” if they are less likely than random to be co-cited
in the existing literature ( Uzzi et al., 2013 ). The atypically of a paper is characterized by the distribution of z -score across all pairs
of journals in the references. The 10th percentile of the z -score distribution yields a measure that stably approximates the maximum
atypicality, or minimum typicality in combining scientific sources ( z min ), and its 50th percentile yields a measure of average typicality
( z median ). A paper may be highly typical ( z median > z min > 0 ), mix atypical with typical references ( z min < 0 < z median ), or highly atypical
( z min < z median < 0 ). Uzzi and his colleagues found that mixing atypical with typical references best predicts the likelihood that a
paper will become highly cited ( Uzzi et al., 2013 ). We will show here, however, that the probability for a paper to disrupt rather than
consolidate science peaks when it makes the bold move to be highly atypical. 

2.1. Disruption: science advances in steps or leaps 

Scientific work plays distinct roles in the unfolding evolution of science. Research that aims to push the frontier of knowledge
differs from that which defends and extends existing theories or solves applied problems ( Hicks et al., 2015 ). As in science, tech-
nological change may either consolidate existing knowledge and reinforce established trajectories, or destabilize past achievements 
and create new paths (; Arthur, 2009; Dosi, 1982 ). This dichotomy reflects a fundamental tension identified by many scholars under
different names: “conformity vs. dissent ” ( Polanyi, 1962 ), “succession vs. subversion ” ( Bourdieu, 1975 ), paradigm “deepening vs.
changing ” ( Ahuja, Lampert, & Tandon, 2014; Dosi, 1982 ), “enhancing vs. destroying ” (Tushman& Anderson, 1986) , “exploitation vs.
exploration ” ( March, 1991 ), “relevance vs. originality ” ( Whitley, 2000 ), “conventionality vs. novelty ” ( Uzzi et al., 2013 ), “tradition
vs. innovation ” Foster, Rzhetsky, & Evans, 2015 , “destabilization vs. consolidation ” ( Chen, Shao & Fan, 2021 ), or path “deepening
vs. breaking ” (Garud, Kumaraswamy, & Karnøe, 2010; Karim & Mitchell, 2000) . Some scholars have argued that the two types of
science and technology are fundamentally incompatible and present an essential tension in which scientists must trade one for the
other ( Bourdieu, 1975 ; March 1991 ), producing different career outcomes for those that undertake them and contributing distinct
possibilities for scientists that follow Foster, Rzhetsky, & Evans, 2015 . Others have argued that these two forces take turns charac-
terizing the history of science, switching between “normal vs. revolutionary ” periods ( Kuhn, 1962 ). With all of the scholars listed
above, we argue that these strategies are complementary; both are critical for sustained advancement in science. 

To this end, recent work has sought to explore how science develops vs. disrupts prior science over time ( Wu Wang & Evans, 2019 ).
The intuition behind the proposed disruptive D -measure is straightforward: if subsequent papers that cite a paper also cite that
paper’s references, then the focal paper can be seen as consolidating the prior knowledge upon which it builds. If the converse is
true —future papers citing a focal paper ignore its acknowledged forebears —they are recognizing that paper as disruptive, creating
an unanticipated new direction for science. The D -score of a focal paper is calculated as the difference between the fraction of these
types of subsequent, citing papers. A paper may largely eclipse prior work by introducing distinct ideas (0 < D < 1), develop and
promote existing theories by providing supportive evidence ( − 1 < D < 0), or balance both ( D = 0). Through the lens of D -score, the
BTW-model paper ( Bak, Tang & Wiesenfeld, 1987 ) that discovered the “self-organized criticality ” property of dynamical systems, 
2 



Y. Lin, J.A. Evans and L. Wu Journal of Informetrics 16 (2022) 101234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

one of the most prominent patterns in complexity science, is among the most disruptive papers ( D = 0.86, top 1%). In contrast, the
article by ( Davis et al., 1995 ) that first observed Bose-Einstein condensation in the lab, a property hypothesized nearly three quarters
of a century before ( Bose, 1924 ), is among the most developing ( D = − 0.58, bottom 3%). D -scores highlight the distinct nature of
knowledge created by these two papers that cannot be captured with citation counts —both papers received over 8000 citations,
according to Google Scholar. The D -scores of 20 million Microsoft Academic Graph papers (1830–2021) are provided for public use
at https://lingfeiwu.github.io/smallTeams/ . Since publication of the disruption index, many papers have recommended adjustments 
( Bornmann & Tekles, 2019 ; Bornmann, Devarakonda, Tekles & Chacko, 2020 ; Chen et al., 2021 ) or extensions ( Leahey, Lee, & Funk,
2021; Leydesdorff & Ivanova, 2021 ). 

2.2. The delayed recognition of scientific novelty 

The delayed recognition of papers has been known for decades, but it was not until recently that the importance of this phenomenon
in science was recognized. Glänzel and Garfield observed that most papers receive most of their citations within the first three to five
years of publication (Glanzel & Garfield, 2004) , except for a negligible fraction of outliers —0.01% according to their study —which
experience a burst of attention after ten years. Recent studies of large-scale citation graphs have confirmed the scarcity of delayed
recognition papers ( Wang, Song, & Barabási, 2013; Yin & Wang, 2017 ), but these outliers, named “sleeping beauties, ” may not be so
rare ( He Lei & Wang, 2018 ). ( Ke, Ferrara, Radicchi, & Flammini, 2015 ) proposed a “sleeping beauty index ” (SBI), a non-parametric
measure, and reported that papers with top 0.1% SBI demonstrated a clear pattern of delayed recognition, ten times larger than what
Glänzel and Garfield suggested. One possibility is that Glänzel and Garfield only analyzed papers published before 1980, and thus
missed the opportunity to discover a majority of “sleeping beauties ” awakened after that. But Glänzel and Garfield ignored that while
papers garnering belated recognition may be rare, they may also be disproportionately important. We propose that these papers may
be too novel for immediate recognition, requiring their importance to unfold over time. Following this rationale, we ask the following
questions concerning the social mechanism through which novel papers are recognized: 

Question 1. How often does a novel paper successfully create a new direction and disrupt science? Stated differently, do novel
inputs predict disruptive outcomes? We anticipate that paper novelty should be positively correlated with future disruption rather than
development, as novel combinations are more likely to depart from existing trajectories and open new paths ( Fleming, Mingo & Chen,
2007 ; Lee, Walsh & Wang, 2015 ; Tushman& Anderson, 1986 ). But does disruption necessarily grow from unusual combinations? Can
one create a new direction by citing interlinked sources and fighting consensus? Rarely. The physicist Max Planck made the sharp
observation restated as “science progresses one funeral at a time ”, an idea widely cited by Thomas Kuhn, Paul Feyerabend and
science and technology studies (STS) scholars. Old perspectives die not from new arguments, methods and evidence, but from the
marginalization ( Collins, 2000 ) and death ( Azoulay, Fons-Rosen & Zivin, 2019 ) of those who hold them. This suggests that ignoring
old arguments may be more likely to generate new directions in science than disputing them. As such, we posit that disruption grows
much more from novel than conventional combinations of prior ideas and literatures. 

Question 2. If novel papers indeed disrupt science, how long does this process take? Based on our earlier discussion, we anticipate
that novel papers are more likely to be “sleeping beauties ” and accumulate citations over the long run, as new findings that contradict
traditional wisdom ( Cole, 1970 ) or appear “before their time ” ( Garfield, 1980 ; van Raan, 2015 ) may face resistance from contemporary
ideas and their defenders, achieving delayed recognition from other fields only as knowledge spills over ( Ke, Ferrara, Radicchi, &
Flammini, 2015 ). If novel papers are indeed more disruptive as theorized above, they are likely to become so by attracting citations
over the long term. This is because the D -score of a focal paper is calculated as the difference between two types of papers: papers
that only cite the focal paper but not its references and those citing both. These two types may not appear with the same likelihood
over time: short-term citations will likely cite both, while long-term citations, further in time from the work a focal work cited, will
disproportionately cite the focal paper alone. This would explain the finding that D -score is associated with the “sleeping beauty ”
index ( Wu et al., 2019 ). In this paper, we will unfold the temporal dynamics of disruption and answer this question. 

Question 3. How does the landscape of scientific novelty evolve? We posit that landscapes of novel opportunity in science evolve
continuously, with every new finding and claimed association. While analysis of recombinant ideas has been used to quantify the
novelty of individual papers in historical context, similar approaches have not yet explored the changing context itself. Here we seek to
understand how yesterday’s novelty forms today’s scientific conventions, which condition tomorrow’s breakthroughs. For example, 
Mark Granovetter’s classic paper on social networks published in 1973, “The Strength of Weak Ties ”, cited both physical science
journals (e.g., Bulletin of Mathematical Biophysics) and sociological journals (e.g., American Sociological Review). This combination 
was much more novel in the 1970s than today, partly as a result of the success of this early work ( Castellano, Fortunato & Loreto,
2009 ). Recent advances in semantic analysis such as the word2vec model ( Mikolov, Chen, Corrado, & Dean, 2013 ) provide a powerful
tool to reformulate paper atypicality defined by ( Uzzi et al., 2013 ) as distance across the underlying, continuous space of knowledge in
which conventional and novel combinations are continuously redefined. Within these spaces, “structural holes ” ( Burt, 2004 ) or sparse 
regions that separate distinct communities and fields, emerge and collapse like whirlpools in the ocean. We propose to model and
visualize knowledge space over time to reveal changes in novelty and facilitate understanding regarding how the scientific frontier
evolves. 

3. Data and method 

Data. We investigate impact, novelty and disruption using the Microsoft Academic Graph (MAG), which includes 87,860,684 
journal articles published 1800–2020 and 1042,590,902 citations created by these articles. We calculated two variables for each of
3 
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the 35,431,832 journal articles that have both citations and references, including D -score for disruption (higher is more disruptive)
and z median for typicality (higher is more conventional). Our analysis of typicality, citations, and disruption covers multiple cohorts, 
including cohorts from 1970 (87,475 papers), 1980 (176,826 papers), 1990 (318,914 papers), and 2000 (591,653 papers). These 
papers have 21 references on average. The average number of citations to these papers is 32. The construction of the journal embedding
space is based on the co-citation of 2429 journals in 1970 and 8009 journals in 2000. 

4. Methods 

Calculating the z -score of novelty. Uzzi et al. (2013) defined the z -score for a pair of journals co-cited in an article as more or less
typical with z ij , 

z ij = 

(
ob s ij − ex p ij 

)
∕ σij (1) 

where i and j are journals, ob s ij is the empirical frequency that these two journals are co-cited across research articles ( Uzzi et al.,
2013 ) and ex p ij is the expected frequency of the co-citation. ex p ij is calculated from random shuffling citations, in which two citations
are randomly selected to exchange the papers to which they are attached, given that the papers are published in the same year. In this
way, two variables remain unchanged, including the length of references for each paper and the temporal distribution characterizing 
their references. 

Calculating the D -score of disruption. The Disruption, D, of a focal paper, can be calculated as the difference between the fractions
of two types of subsequent papers, 

𝐷 = 𝑝 𝑖 − p j = 

n i − n j 
n i + n j + n k 

(2) 

where p i is the fraction of papers that only cites the focal paper but not its reference and p j is the fraction of papers that cites both.
A paper may disrupt earlier research by introducing new ideas that come to be recognized independent from the prior work on
which it builds (0 < D < 1), develop existing research by providing supportive evidence or extensions that come to be recognized as
developments of prior work ( − 1 < D < 0), or remain neutral, keeping in balance the disruptive and developmental character of its
contribution (D = 0). d -score may change over time due to the temporal evolution of the two types of subsequent, citing papers. To
calculate a stabilized disruption score, we used the longest time window available in the MAG dataset from the year of publication for
each paper to 2018. In Section 1 of our findings, we explore the temporal dynamics of D t , i.e., how D -score changes with time, for two
field-definitive studies in biology, the paper on DNA by Watson & Crick (1953) and the paper on RNA by Baltimore ( Baltimore, 1970 )
and also four cohorts of papers published in 1970, 1980, 1990, and 2000, respectively. 

Reformulating z -score atypicality as distance in knowledge space. The z -score of atypicality is deeply related to a common measure
in information science, the Pointwise mutual information (PMI) between two items. Indeed, we can rewrite PMI into a z -score-like
form 

PM I ij = lo g 2 
( P ij 
P i × P j 

) 

= lo g 2 
(
P ij 

)
− lo g 2 

(
P i × P j 

)
= lo g 2 

(
ob s ij 

)
− lo g 2 

(
ex p ij 

)
(3) 

where P i and P j are the probabilities that i and j appear independently, respectively, and P ij is the joint probability. The hidden
connection between PMI and z -score permits defining and measuring atypicality as the distance on latent semantic spaces obtained
through an embedding model, such as the popular skip-gram word2vec model, which has been demonstrated to preserve semantic
compositionality within word vectors sufficient to perform at human level on semantic analogy problems ( a is to b as c is to ___?)
Mikolov, Chen, Corrado, & Dean, 2013 . Word embedding models have inspired a wide range of item-context embedding models
beyond words, ranging from images ( Xian et al., 2016 ) and audio clips ( Xie & Virtanen, 2019 ) to graphs (; Grover & Leskovec, 2016;
Perozzi, Al-Rfou, & Skiena, 2014 ) and academic journals ( Miao et al., 2021; Peng, Ke, Budak, Romero, & Ahn, 2021; Tshitoyan et al.,
2019 )). 

In an embedding model, each item is represented as a vector in shared vector space. For example, in a word embedding, words
sharing similar contexts within the text will be positioned nearby in the space, whereas words that appear only in distinct and
disconnected contexts will be positioned farther apart. The same holds for journals embedded as a function of their co-citation
within reference lists. Consider the structure of the descriptive problem that embeddings attempt to solve: how to represent all items
from a dataset within the k -dimensional space that best preserves distances between n items (e.g., journals) across m contexts (e.g.,
article reference lists). The solution, is a n -by- k matrix of values, where k ≪ m . Early embedding approaches used singular-value
decomposition (SVD) to factorize this item-context matrix, where contexts were large and nondiscriminating (e.g., entire documents 
of thousands or tens of thousands of words), but SVD placed strict upper limits on the number of contexts they could factorize.
Neural embeddings use heuristic optimization of a neural network with at least one “hidden-layer ” of k internal, dependent variables,
enabling factorization of much larger item-context matrices constructed from vast numbers of arbitrarily local item contexts (very 
large m ). In this way, PMI is formally equivalent to the inner product of two vectors representing items within a latent semantic space
( Levy & Goldberg, 2014 ). Specifically, 

em b in − 𝑖 ⋅ em b out − 𝑗 = PM I ij − lo g 2 Neg (4) 

where em b in − 𝑖 is the item embedding of i and em b out − 𝑗 is the context embedding of j . Neg is the number of negative samples per positive
(actual item-context) sample. In sum, the inner product between journal vectors in an embedding space is a computationally efficient
proxy for the z -score. In Section 3 of our findings, we train journal vectors across time periods to visualize and compare the changing
landscape of novelty in science. 
4 
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Fig. 1. Novel papers disrupt, conventional papers develop. (a) Simplified illustration of disruption. Three citation networks comprising focal papers 
(colored diamonds), references (grey circles) and subsequent work (gray squares). Subsequent work may cite the focal work (green squares), both 
the focal work and its references (red squares) or just its references (black squares). Disruption, D, of the focal paper is defined by the difference 
between the proportion of type i and j papers pi − pj, which equals the difference between the observed number of these papers ni − nj divided by 
the number of all subsequent works ni + nj + nk. A paper may be disrupting (D = 1), neutral (D = 0) or developing (D = − 1). Figure recreated from 

Wu et al., 2019 . (b) Simplified illustration of novelty. A paper may cite journals of weak (green, z < 0) or strong ties (red, z > 0). (c) Cumulative 
distributions of z-scores for two exemplary papers: the DNA paper by Waston and Crick ( D = 0.96, top 1% disruptive) and the RNA paper by 
Baltimore (D = − 0.47, top 1% developing). For all 87,475 papers published in 1970, we selected the most disruptive (top 5%) and developing 
(top 5%) papers, then calculated their average cumulative distribution of conventionality (displayed in blue and orange, respectively). Z-median 
for disruptive papers is significantly different from those of developing papers (the Kolmogorov–Smirnov statistic D = 0.14, p < 0.001). The same 
conclusion holds for z-min ( D = 0.09, p < 0.001). (d) The cumulative distributions of the z-score of high-impact (purple, top 5% citations) and 
low-impact (yellow, bottom 5% citations) papers selected from all of the 87,475 papers published in 1970. Z-median for high-impact papers is 
significantly different from low-impact papers (the Kolmogorov–Smirnov statistic D = 0.15, p < 0.001). Note that Panels c and d are plotted using 
the “symlog ” (which means symmetrical log) function from the “matplotlib ” library of Python. 

 

 

 

 

 

 

 

 

 

 

5. Findings 

5.1. Novel papers are more likely to disrupt existing literature 

We find that typicality ( z median ) and disruption (D-score) are negatively associated (Pearson correlation coefficient − 0.05, p -value 
< 0.001). Papers integrating unusual combinations of literature come to be seen as disruptive by a disproportionate number of
subsequent papers that only cite those novel papers but not their references. In comparison, papers drawing upon typical combinations
of references are deemed as developing prior approaches by the majority of following papers that cite those papers in context with
their references —as extensions. 

Fig. 1 presents the association between typicality and disruption with two representative cases after illustrating the calculation 
of d - and z-scores. In Fig. 1 c, each paper is characterized by the distribution of the z -score for all pairs of journals in the references.
A high, positive z -score (distribution shifting to the right end on the x -axis) is a signature of typical combinations of journals on
established topics within a field, whereas a low, negative z -score (distribution shifting to the left end on the x-axis) implies unusual
combinations of journals that span fields to create new topics. More specifically, The 10th percentile of the z -score distribution yields
a measure that stably approximates the maximum atypicality, or minimum typicality in combining scientific sources ( z min ), and its
50th percentile yields a measure of average typicality ( z median ). A paper may be highly typical ( z median > z min > 0 ), mix atypical with
typical references ( z < 0 < z ), or present as highly atypical ( z < z < 0 ). We find that only a small fraction of papers
min median min median 
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(2.3%) are highly atypical with less atypical papers over time representing a nearly threefold decrease from 3.9% in 1970 to 1.4% in
2000. 

Uzzi and colleagues discovered that mixing conventional with atypical references best predicts the likelihood that a paper will
become highly cited ( Uzzi et al., 2013 ). This finding is confirmed in Fig. 1 d. However, Fig. 1 c shows that the chance of disrupting
rather than consolidating science peaks when a paper takes the bold move to be highly novel. A highly novel paper is much more
likely —nearly two times (61 vs 36%), to disrupt science than conventional papers. The average z -score distribution of the most
disruptive (top 5% D -score) versus developing (bottom 5% D -score) papers significantly deviate from one another as evidenced by
Kolmogorov-Smirnov tests (see the caption of Fig. 1 ). The former shifts to the left and the latter shifts to the right, indicating the
alignment between novelty and disruption; conventionality and development. The correlation between atypicality and disruption 
holds for a majority of fields, but the effect is more significant in “artificial ” than “natural ” sciences ( Simon, 2019 ). In computer
science and engineering (the higher average D -score as presented in Fig. 3 in Wu et al., 2019 , atypicality is more likely rewarded
with disruption, evidenced by the larger difference between novel versus conventional groups in the fraction of disruptive citations
(Table S1). By contrast, for stable sciences such as biology, chemistry, and physics, which remain difficult to disrupt (low average
D -score), atypicality is more weakly related to disruption. 

The fundamental difference between dynamics revealed in Fig. 1 c and d should not be underestimated. Scientific advance is
constrained by an essential tension between “tradition vs. innovation ” ( Foster, Rzhetsky, & Evans, 2015 ): in most cases, new ideas
must be introduced in connection with relevant, old ideas to enter the canon of scientific knowledge ( Chu & Evans, 2021; Collins,
2009 ) . This permits two types of strategies for individual scientists to effectively contribute. One can prioritize tradition by selecting
an established theory and adding new, supportive evidence. This strategy, characterized by the “clockwise rotation ” and decreased 
slope of the z -score distribution ( Fig. 1 d), an operation suggested by the black, curved arrow, maximizes the chance a paper will
achieve “hit ” status ( Uzzi et al., 2013 ). Alternatively, one can prioritize innovation by selecting an underdeveloped topic lacking
consensus. In the space of z -scores, this strategy corresponds to “left shifting ” the cumulative distribution ( Fig. 1 c), which results in
a higher likelihood of disruption. 

A question that remains is when atypical papers disrupt science, are they cited as sources of the new concepts they contribute?
To answer this question, we selected 887 scientific keywords identified by MAG to create 887 groups of papers that contain them.
We then separate the most cited paper from the other papers in each group, and compare these two types of papers in atypicality and
disruption. We anticipate that by selecting the most cited paper, we can reveal the “center ” of the scientific consensus. For example,
among all 22 papers containing the keyword “the market for lemons, ” the paper “The Market for ’Lemons’: Quality Uncertainty and the
Market Mechanism ( Akerlof, 1970 ), ” was the most highly cited. This paper was indeed among the first discussing the consequence
of information asymmetry on markets between buyers and sellers ( D = 0.99, 𝑧 𝑚𝑒𝑑𝑖𝑎𝑛 = 14). We find the “center ” papers are more
disruptive and atypical than other papers, supporting the assumption that atypical and disruptive papers were recognized as the 
source of the new concept they contributed. 

To obtain a more intuitive understanding of the complex dynamics characterizing “creative destruction ” in science, whereby new 

scientific ideas and approaches supplant the old ( McMahan & McFarland, 2021 ), we highlight two papers, one on the double helix
structure of DNA by Waton and Crick (Watson & Crick, 1953) called the “DNA ” paper hereafter, and another on “RNA-dependent
DNA Polymerase ” by David Baltimore called the “RNA ” paper hereafter. The two papers are similar in many ways: both are highly-
cited, field-definitive work by distinguished biologists later awarded the Nobel Prize in Physiology or Medicine. However, the z -score
distributions reveal their distinct approaches to integrate prior knowledge ( Fig. 1 c). Baltimore’s article reviewed papers published 
in conventional biology venues such as Virology and Biochemical and Biophysical Research Communications ( 𝑧 = 51 ) and hypothesized
that genetic information could transfer bidirectionally between DNA and RNA. At the time of this paper, information transfer from
DNA to RNA was well studied, and Baltimore was not the only scholar proposing to test the reverse influence from RNA to DNA.
Actually, Baltimore’s paper was published back-to-back with Howard Temin’s paper ( Mizutani, Boettiger & Temin, 1970 ) on the same
topic in the same issue of Nature . The bidirectional influence between DNA and RNA represents the “adjacent possible ” described by
Kauffman (1996) , which articulates new ideas or discoveries that extend from prior science, a single step from present understanding
as “low hanging fruit ”, easily reached, which, unsurprisingly, triggers intense competition. Back-to-back publications by Baltimore 
and Temin were like the race to the South Pole between Britain’s explorer Robert Scott and Norway’s Roald Amundsen. Unlike
the explorers’ race, which ended in victory for Amundsen and tragedy for Scott, the discovery of DNA-RNA’s mutual influence
became a shared and widely celebrated success treated as a confirmation of the underlying claim. In 1975, only five years after the
paper’s publication, Baltimore and Temin shared the Nobel Prize in Physiology or Medicine. This timely appreciation itself speaks 
for the adjacent, developing nature of that discovery, evidenced by its low D -score ( D = − 0.47, bottom 1% disruption, or top 1%
development). 

In comparison, Watson and Crick’s paper cited prior literature published in diverse journals across fields, including the Journal 
of Geophysical Research and Journal of Chemical Physics ( 𝑧 = −26 . 7 ), Canadian Journal of Chemistry and Quarterly Journal of the Royal
Meteorological Society ( 𝑧 = −5 . 7 ), proposing that double-stranded DNA of helical structure is the genetic material. This paper was ahead
of time. When published, there was not yet a consensus on the identity of genetic material —proteins seemed a better bet. Moreover,
few could foresee its influence into the future; how the double helix shed light on almost every aspect of modern biology and medicine
for decades to come, ranging from the migration of human populations and cancer-causing mutations in tumors to the diagnosis and
treatment of rare congenital diseases. Watson and Crick received delayed recognition of the Nobel Prize in Physiology or Medicine
in 1962, ten years after the paper was published —an enduring wait twice longer than Baltimore’s work despite its greater impact in
transforming the future of biology and offering the non-academic world an icon of scientific work —the double helix ( Ferry, 2019 ).
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Fig. 2. The disruption of novel papers increases over time. In Panels a-b, we present the temporal evolution of disruption scores for the DNA 
paper by Waston and Crick (a) and RNA paper by Baltimore (b), and the total number of disruptive (green) and developing (red) citations to the 
DNA paper and RNA paper over time, respectively. This analysis is extended to four generations of papers, including the cohort of 1970 (87,475 
papers), 1980 (176,826 papers), 1990 (318,914 papers), and 2000 (591,653 papers). For each cohort, we select the most novel (top 10% z-median, 
Panel c) and conventional papers (bottom 10% z-median, Panel d) and plot the average total number of citations over time. Statistical tests on 
the asymmetry between the two types of citations were reported as follows. The t -test of the difference between novel and conventional papers in 
the disruptive-citation fraction from the last year of analysis (2018) is significant for all cohorts, including 1970 (t-statistic = 23.85, p < 0.001), 
1980 (t-statistic = 33.04, p < 0.001), 1990 (t-statistic = 52.78, p < 0.001), 2000 (t-statistic = 88.76, p < 0.001). In Panel e, from all 87,475 papers 
published in 1970, we break them into ten groups by disruption percentile (DP) and plot the average disruption score of papers within each group 
over time. The curves are colored by DP. The vertical grey line shows that it typically takes 10 years for the D-score to stabilize (the earliest time for 
a paper to reach 80% of its final D-score). In Panel f, from all 87,475 papers published in 1970, we break them into ten groups by novelty percentile 
(NP) using z -median, and plot the median Sleeping Beauty Index (SBI) of papers within the group over time. In the original version, each paper has 
only one SBI calculated over the lifecycle of citations ( Ke, Ferrara, Radicchi, & Flammini, 2015 ). Here we calculate and track the temporal evolution 
of SBI for each two-year time window. Average curves for low-novelty papers flatten within a decade, showing no delayed burst of citations. Average 
curves for high-novelty papers continuously increase after a decade, showing that new, larger bursts still occur after a long wait. 

 

 

 

 

 

 

 

 

 

 

 

This delayed acknowledgement footnotes the pioneering, disruptive nature of that discovery, evidenced by its high D -score ( D = 0.96,
top 1% disruptive). 

5.2. Novel papers are more likely to become “sleeping beauties ” and accumulate citation impact over the long run 

Going back to the moment of publication, can one have foreseen the accelerated acknowledgment of Baltimore’s contribution and
retarded recognition to Watson and Crick? Could we predict them from the typicality of the former ( z median = 266 . 3 ) and atypicality
of the latter ( z median = 4 . 8 ), which can be derived at the point of publication? In these cases, and millions of others published over the
following decades, we document that novelty results in delayed impact. Creative explorations that travel more than a step beyond
the adjacent possible ( Monechi, Ruiz-Serrano, Tria & Loreto, 2017 ) are inaccessible to the majority of scientists upon publication, but
come to make up the pool of possibilities that are verified, appreciated, or reformulated and used to advance science over the long
run. 

We examined the temporal evolution of disruption and citations for these two, archetypal papers ( Fig. 2 a,b). We find that the d -
score of the DNA paper increased nearly monotonically from 0.2 in 1953 to nearly 0.8 ten years after publication, steadily increasing
to 0.96 in 2018, whereas the D -score of the Baltimore paper has been negative since publication in 1970, and decayed rapidly to
− 0.45 within five years of publication, barely changing in the subsequent four decades (D = − 0.47 in 2018, bottom 1%). This seems
7 
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to be a general pattern we confirmed from many other cases: the D -score of developing papers converges quickly within five years,
but that of disruptive papers increases after a decade or longer ( Fig. 2 e). 

For both the DNA and RNA papers, we unpacked two kinds of citations: disruptive citations from subsequent papers that only cite
the focal paper but not its references (green curves in Fig. 2 a), and developing citations from subsequent papers that cite both (the red
curves in Fig. 2 b). We find a “taking off” pattern in the DNA paper —disruptive citations increase steadily following paper publication,
deviating from developing citations, which decline exponentially after a short peak and follow the widespread pattern of citation decay
( Wang et al., 2013 ). Disruptive citations contribute to long-term impact more than developing citations. In comparison, citation impact
of the RNA paper is increasingly dominated by developing citations, reflecting the stabilizing consensus on its developing contribution
within biology. 

Long-term impact for atypical papers is confirmed as a general pattern when we scale the data ( Fig. 2 c,d). We select the most novel
(top 10%) and conventional (bottom 10%) papers by z -median including the cohort of papers published in 1970 (87,475 papers),
1980 (176,826 papers), 1990 (318,914 papers), and 2000 (591,653 papers) then compared the difference between disruptive (green 
data points in Fig. 2 c,d) and developing (red data points in Fig. 2 c,d) citations. Atypical papers that integrate surprising combinations
of literature to create new ideas accumulate long-term impact by attracting both disruptive and developing citations, with the relative
fraction of the former over the latter amplifying over time ( Fig. 2 c). This pattern reverses in the citation dynamics of conventional
papers, wherein the relative fraction of developing citations increases faster than that of disruptive citations ( Fig. 2 d). 

To verify the long-term impact of atypical papers, we calculate the Sleeping Beauty Index (SBI) ( Ke, Ferrara, Radicchi, & Flammini,
2015 ). A paper with a high SBI will receive few citations upon publication, followed by a later burst tracing a convex curve. By contrast,
a paper with a low SBI will receive many citations following publication and fewer later tracing a concave cumulative distribution.
Atypicality and SBI are positively correlated (Pearson correlation coefficient equals 0.08 on the log-log scale, p -value < 0.001). We
also calculated SBI over time to examine the chance that larger bursts occur after a long wait, i.e., whether the long-term citations
compensate for lengthy waiting times and drive up SBI over time. We find that curves of conventional papers flatten within a decade,
implying no delayed burst of citation attention. In contrast, the citation curves of atypical papers continuously increase after a decade,
revealing long-term citation pay-off and scientific influence after lengthy waiting times ( Fig. 2 f). 

5.3. Reformulating atypicality as distance in knowledge space to map the moving frontier of science 

We first demonstrate that atypicality can be reformulated for computational efficiency and dynamism as the distance between 
journals in embedding spaces built from co-cited journals (see Methods for details). Recent advances in natural language process- 
ing (NLP) for semantic analysis, such as the word2vec manifold learning model ( Mikolov, Chen, Corrado, & Dean, 2013 ), provide
us the computational tools needed to reconstruct knowledge spaces. With them, we can extend the z -score as a measure of con-
tinuous distance across embedding space. Levy and Goldberg analytically proved that PMI, a revised z -score, equals the distance
between vectorized items embedded in latent spaces as calculated by their inner product ( Levy & Goldberg, 2014 ). In this way,
knowledge embedding spaces learn scientific conventions, which can be used to assess and direct exploration of the scientific frontier
( Tshitoyan et al., 2019 ). The temporal evolution of these knowledge embedding spaces reveal how yesterday’s novelty forms today’s
scientific conventions, disrupted by tomorrow’s breakthroughs. 

To test the association between z -score and embedding space distance, we constructed two embedding spaces from journal co-
citation networks in 1970 (2429 journals) and 2000 (8009 journals), respectively. We also visualize these embedding spaces by
projecting them onto a 2-dimension surface with the t-SNE algorithm. We find that the distance between journals in the embedding
space reflects their content relevance, as journals from the same field tend to cluster together ( Figs. 3 and S1). This observation
is confirmed as we zoom-in with a focus on regions covered by Mathematics and Computer Science journals. While close to each
other, the average distance between journals across the two fields is larger than within a field. The z -score for journal pairs correlates
strongly with the inner product between journal embeddings (Pearson correlation coefficient = 0.74, p -value < 0.001), confirming
the validity of our z -score reformutation (Fig. S2). 

The landscape of novelty is dramatically changing, as revealed in comparison between knowledge spaces from 1970 to 2000
( Fig. 3 ). One of the most strikingly trends visible is the emergence of dense areas of journals within each field, suggesting the
formation of subfields supported by consensus on relevant topics. Clustering occurs within fields, but fields also mix with one another,
showcasing the increasing importance of interdisciplinary scientific collaboration ( Leahey, Beckman, & Stanko, 2017; Leydesdorff & 

Ivanova, 2021 ). The change in relative distance between fields also reveals rich trends in shifting atypicality. In the 1970s, a study
drawing together social and computer science was highly atypical due to the distance between these two fields, but is far less so in
2000, when these two field are closer to each other after waves of movements that link them, including “social informatics ” of the
1980s ( Kling, 1999 ) and “computational social science ” in the past decade ( Lazer et al., 2009, 2020 ). 

6. Discussion 

Citation data should be analyzed in a way that distinguishes different scientific contributions, unlike citation counts, which project 
all papers onto a single dimension of popularity. Unfortunately, over the past several decades, citation impact and its derivatives (e.g.,
impact factor and H-index) have come to determine a scholar and institution’s viability. This has unintentionally led to a fixation
on short-term scientific advances that crowd together along the scientific frontier to predictably yield citations, but which do not
propel science forward by generating novel combinations and new alternatives. With the availability of rich data on networks of
scientists, institutions, and ideas in concert with advances in natural language processing and increased computational power, we 
8 
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Fig. 3. Knowledge spaces in 1970 and 2000 obtained through journal embeddings. We constructed two journal embeddings using the 1970 (2429 
journals) and 2000 (8009 journals) cohort of papers (see Methods for details of the embeddings). Each dot is a journal colored by field. We 
trained the embeddings using the word2vec Skip-gram algorithm. We used the Gensim package in Python with parameters as follows: embedding 
dimension = 50, negative sampling size = 5 and window size = 10. We then project the 50-D journal vectors into a 2-D space using the t-SNE 
algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

can now represent the high-dimensional character of science with fidelity and expand evaluation metrics about research, researchers, 
and institutions. This paper has unpacked the complex, temporally evolving relationship between citation impact alongside metrics 
of atypicality and disruption, which focus on path-breaking contributions that move the scientific frontier. 

A paper may choose between two types of research contribution, reflected in the intercorrelation of their references. If references
are highly clustered, consisting of frequently co-cited sources ( Small, 1973 ) or pairs of high “typicality ” ( Uzzi et al., 2013 ), this
implies the existence of strong consensus on the topic ( Shwed & Bearman, 2010 ). The paper contributing to such a topic is more
likely to be viewed as part of an ongoing conversation, and future papers will likely judge it as developing an established direction,
citing it together with its references (D < 0, Fig. 4 a). By contrast, if the referenced literature is unstructured, only loosely linked or
even disconnected (z < 0), this suggests a lack of consensus and underdevelopment of the topic. In this case, the focal paper may
creatively and ambitiously integrate scattered ideas and, if successful, is more likely to be recognized as creating a new direction for
which future papers will cite the paper alone, without its references (D > 0, Fig. 4 b). 

We have demonstrated that novel versus conventional science yields contributions that disrupt versus develop past science, re- 
spectively, and can be clearly distinguished from citation data. We show how the new D -score and z -score measures are not only
useful as novelty metrics for individual papers, but also provide powerful tools to understand how science advances, driven by the
essential tension of “tradition vs innovation ” ( Foster, Rzhetsky, & Evans, 2015 ). As illustrated in Fig. S3, if science continues to ex-
pand, continuously searching out new topics, a majority of papers will be disruptive (D = 1), but no consensus will be achieved and
no tradition will form. Alternatively, if all new papers cite existing clusters of papers, a majority will develop (D = − 1), consensus
will be established, but no new ideas will be possible as the knowledge space collapses to a closed, crystalline system. Sustainable
advance requires that science balance tradition and innovation. 

We found that nearly 67% papers develop prior science (D < 0), revealing the conservative nature of most scientific activity. The
slow path to acceptance for novel and disruptive research contributions points to sustained resistance against radically new ideas.
This underscores the history of how many significant breakthroughs of modern science were initially rejected or ignored, sometimes
for decades. Consider Darwin’s theory of evolution introduced in 1859; the atom conception proposed by Ludwig Boltzmann in
the 1870s, the Continental Drift model formulated in 1912 by Richard Wegener; the Big Bang theory of the origin of the universe
formalized by Georges Lemaître in the 1920s, and the gravitational wave theory by Albert Einstein in 1916. Resistance to more
recent science includes denial of documented hazards from tobacco and DDT, ozone depletion, and climate change ( Oreskes &
Conway, 2011 ). The “sleeping beauty ” model ( Ke, Ferrara, Radicchi, & Flammini, 2015 ) captures this pattern and suggests that a
9 
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Fig. 4. An illustration of how novelty and disruption are related. In Panel a, the focal paper draws upon and contributes to literature on a well 
studied topic, characterized by “clustered ” references that have high, pairwise “typicality ” (z > 0) Uzzi et al., 2013 as they are frequently co-cited 
( Small, 1973 ) and form “strong-ties ” ( Granovetter, 1973 ). Network modularity ( Newman, 2006 )) emerges from these strong-ties, reflecting well- 
established consensus ( Shwed & Bearman, 2010 ). In Panel b, the focal paper identifies an unsolved problem and addresses it by integrating distant 
literature that is loosely linked or even disconnected ( z < 0), which implies a lack of consensus. These two kinds of intellectual activities are not 
only different in input, but generate very different outcomes. The focal paper contributing to a developed topic is more likely to be viewed in future 
as a part of the ongoing conversation. For this reason, future papers (red circles in Panel a) will judge this paper as developing the broader topic or 
field (the larger gray circle in Panel a) and cite it together with its references (D < 0). By contrast, the focal paper identifying unsolved problems 
tends to be viewed as creating a new direction for which future papers (green circles in Panel b) will cite it as a starting point, ignoring its references 
(D > 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

scientist’s eureka moment may take decades to be validated and appreciated. A similar pattern observed in technology is named
after “J-curve ” theory, which suggests that revolutionary, general-purpose technologies (GPTs) like steam engines, electricity, and AI 
always take a long time to diffuse as they demand and grow complementary technologies, but once a supportive environment has
bloomed, they dramatically extend productivity ( Brynjolfsson, Rock, & Syverson, 2021 ). However, neither of these theories link the
character of scientific discovery or technological innovation to their influential outcomes or confirm that novelty succeeds only over 
time. Our study identifies and recovers this missing piece of puzzle for the science of innovation. 

The delayed recognition of radical innovations may inspire some to wonder whether it is possible to formulate science policies
that accelerate the exploration, diffusion and application of transformative scientific ideas. We call for additional research fixed on
exploring signals derived from publication data and metadata, at the level of individual papers, fields, and science as a whole, to
empower institutional leaders, policy makers, and researchers within the Science and Information Metrics communities for use to 
direct and accelerate science ( Hicks et al., 2015 ). The number of citations as a metric is short-sighted —it emphasizes short-term
impact and not long-term influence ( Wang et al., 2013 ). Novelty and disruption direct our gaze to the long-term impact of science,
and our reformulation of novelty as the pointwise mutual information (PMI) of embedded journal vectors enable us to analyze the
evolution of perceived novelty for the first time. We argue that the design, verification, and implementation of metrics that enable
us to quantify and value novel failures on the long path to transformational success, will reduce the tyranny of short-term rewards
that have unintentionally inspired narrow, incremental, redundant research. 
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