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Abstract— We propose a learning-based model predictive
control framework for mitigating the spread of epidemics. We
capture the epidemic spreading process using a susceptible-
infected-removed (SIR) epidemic model and consider testing
for isolation as the control strategy. In the framework, we use a
daily testing strategy to remove (isolate) a portion of the infected
population. Our goal is to keep the daily infected population
below a certain level, while minimizing the total number of tests.
Distinct from existing works on leveraging model predictive
control in epidemic spreading, we learn the model parameters
and compute the feedback control signal simultaneously. We
illustrate the results by numerical simulation using COVID-19
data from India.

I. INTRODUCTION

In order to optimally allocate resources for epidemic
mitigation while reducing the impact on society, researchers
have studied the use of optimal control formulations [1].
However, a gap still exists between the theoretical/numerical
results and the implementation of optimal mitigation policies
in real-time for mitigation: the open-loop structure of the
optimal control framework is not robust to epidemic model-
ing uncertainties [2]. One way to overcome the challenge is
to learn the model and update the optimal control strategy
iteratively [3].

Model predictive control (MPC) has demonstrated success
in both traditional and modern control systems [4]. One
advantage of MPC is the ability to generate policies while
considering future performance by solving optimal control
problems recursively. Hence, researchers have explored MPC
for epidemic control problems [5]–[11]. The authors in [5]
leveraged MPC to minimize the cost of social distancing
and testing. The authors in [6] considered MPC to minimize
the number of fatalities caused by COVID-19, subject to
constraints on the economic cost of social distancing, and
[7] formulated an optimal on-off (binary) social isolation
strategy through the MPC framework to mitigate the COVID-
19 contagion in Brazil. The authors in [8] captured logical
relations between model variables through temporal logic
in constraints for the COVID-19 mitigation framework. In
addition, existing literature estimated the model parameters
offline through data sets for the MPC implementation [5]–
[11]. In real-time epidemic control problems, parameter
estimation must be implemented recursively into the MPC
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framework to learn the model parameters gradually, since
the size of the data set can be varying. Therefore, we
will adopt a learning-based MPC framework to perform
parameter estimation and control design simultaneously.

Our main contribution is to propose a learning-based MPC
framework for epidemic mitigation. Specifically, we use a
linear regression method to estimate the model parameters.
For the MPC framework, we adopt testing for isolation
strategies [12], [13]. The testing for isolation strategy aims
to remove the infected population from the infected group
through uniform random sampling. Similar to the idea of
vaccination strategies that remove the susceptible population
from the mixed group [14], testing for isolation strategies are
another widely adopted method [13]. One disadvantage of
vaccination strategies is that the vaccine may be unavailable
at the early stages of an outbreak caused by novel viruses
like COVID-19. Unlike vaccination, testing for isolation
strategies can be implemented much earlier [15].

The paper is organized as follows. In Section II, we intro-
duce the learning-based model predictive control framework
that we will leverage for the epidemic mitigation problem.
In Section III, we formulate and discuss the linear regression
problem for learning the epidemic model parameters for
the learning-based MPC framework. Section IV illustrates
the learning-based MPC framework through simulations on
both simulated data and real COVID-19 data from India.
Section V presents the conclusion and future work.
Notation

For a system of three equations captured by Ak, we use
[A]S,k, [A]I,k, [A]R,k to represent the first, second, and third
equation in Ak, respectively. We use E[X] to represent the
expected value of a random variable X , and Cov(X,Y ) to
represent the covariance of random variables X and Y . We
use Z>0 and N to denote the set of all positive integers and
natural numbers, respectively. For two numbers a and b, we
use a � b and a � b to represent a is much larger and
smaller than b, respectively. For any positive integer n, we
use [n] to denote the index set {1, 2, . . . , n}. We view vectors
as column vectors and write x> to denote the transpose of
a column vector x. For any matrix M ∈ IRn×n, we use
[M ]i,:, [M ]:,j , [M ]ij , to denote its ith row, jth column, and
ijth entry, respectively. Denote 0 as the zero vector with the
corresponding dimension in the context.

II. PROBLEM FORMULATION

In this section, we introduce the control system we will
study in this work and formulate the optimization problem.
Our goal is to propose a potential way for policy-makers

2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

978-1-6654-5196-3/$31.00 ©2022 AACC 2565

Authorized licensed use limited to: Purdue University. Downloaded on November 21,2022 at 21:06:58 UTC from IEEE Xplore.  Restrictions apply. 



Epidemic Spreading Process

Model Predictive Control

Parameter EstimationControl Input Epidemic States

Epidemic States

Model Parameters

Fig. 1: Learning-Based MPC Framework

to mitigate an epidemic through real-time learning and a
feedback testing strategy. Our framework is shown in Fig.
1. In the framework, we obtain epidemic data sets from the
real spreading process. We leverage the data sets to estimate
the model parameters for the MPC, as illustrated by the arrow
from the top block to the middle block in Fig. 1. We also
leverage the data sets as the state feedback for the controller
design, captured by the right-hand side arrow from the top
block to the bottom block in Fig. 1. We implement the control
polices generated by the MPC framework to the epidemic
spreading process. We perform the process iteratively.
A. Testing for Mitigation

In this subsection, we present the model for the epidemic
control problem. We consider the following closed-loop
Susceptible-Infected-Recovered/Removed (SIR) model:

Ṡ (t) = −βS(t)I(t), (1a)

İ (t) = βS(t)I(t)− (γ + u(t))I(t), (1b)

Ṙ (t) = (γ + u(t))I(t), (1c)

where S(t) ∈ [0, 1], I(t) ∈ [0, 1], R(t) ∈ [0, 1] denote the
susceptible, infected, and removed proportion in the popu-
lation, respectively, at time t, with S(t) + I(t) + R(t) = 1,
∀t ≥ 0. The parameters β > 0 and γ > 0 represent the time-
invariant transmission rate and removal rate, respectively. In
this work, we assume the removal rate captures any processes
that separate the infected group from the whole population,
which include the recovery process, hospitalization, deaths,
etc. We define mitigation as maintaining the infection level
(the proportion of the infected population I(t)) under a
certain threshold through control strategies. The control input
u(t) captures testing strategies that isolate/remove u(t) ×
100% of the detected infected population from the infected
group. The testing strategy is achieved by uniformly ran-
domly sampling u(t)× 100% of population from the mixed
susceptible and infected groups. We assume no sampling bias
nor testing delay, and that the testing is completely accurate.
Through the perfect testing accuracy assumption, we are able
to select u(t)×100% of the infected population to be tested
positive and thus removed from the infected group, captured
by u(t)I(t) in (1). Note that when u(t) = 0, the system in
(1) becomes the classic SIR model [16].
B. Parameter Learning

In order to formulate the epidemic control problem, we
need to learn the model parameters β and γ in (1). Existing
literature studying MPC frameworks for epidemic control
generates model parameters through numerical optimization

methods from data sets. However, none of these works
incorporated the parameter learning process with the MPC
design simultaneously or considered the external control
inputs during the parameter estimation [5]–[11]. In order to
implement online parameter estimation with the impact of
control inputs, we will formulate the parameter estimation
problem for the closed-loop SIR epidemic model as a linear
regression problem [17]. We show how to incorporate control
inputs into the parameter learning process.

C. Model Predictive Control

In this subsection, we introduce the learning-based MPC
framework. Consider the system formulated in (1). The
goal for the epidemic mitigation is to optimally allocate
the testing resources during the pandemic such that the
daily infected population is maintained at/below the desired
infection threshold. In this work, we consider mitigating the
epidemic by minimizing the total number of tests during the
epidemic through the following cost function:

J(u(t)) =

ˆ t0+T

t0

u(t)dt, (2)

where [t0, t0 + T ] is the prediction horizon for the MPC
framework. In order to obtain the adaptive testing strategy
that minimizes the total number of tests needed during each
prediction horizon while ensuring that the fraction of infected
individuals remains below a desired threshold, we formulate
the following optimization problem:

min
u(t),t0≤t≤t0+T

J(u(t)) (3a)

s.t. ẋ(t) = f(x(t), u(t)), (3b)
0 ≤ I(t) ≤ Ī , u ≤ u(t) ≤ ū, ∀t ∈ [t0, t0 + T ] (3c)

where the state constraint Ī describes the infection threshold
for the fraction of the infected undetected population. The
control input constraints u and ū define the upper and
lower bounds on the daily testing rates, respectively. The
solution for the optimization problem gives the optimal
testing strategy u(t) for an epidemic that starts from x(t0)
over the prediction horizon [t0, t0 + T ]. We define k ∈ Z>0

such that the prediction horizon [t0, t0+T ] can be partitioned
into k equal intervals. In the MPC framework:

1) Compute the optimal solution over the prediction hori-
zon [t0, t0 + T ] through (3);

2) Implement the testing policy through [t0, t0 + T
k ] to

the closed-loop system in (1) to obtain the final state
x(t0 + T

k ), and update t0 −→ t0 + T
k ;

3) Update the optimization problem in Step 1 by updating
the prediction horizon [t0, t0 + T ] with the updated t0
from Step 2, and the initial condition x(t0) −→ x(t0 +
T
k );

4) Solve the optimization problem and apply the control
input to the system by repeating steps 1) - 3).

D. Goals

In this work, we will focus on applying learning-based
MPC framework for the epidemic mitigation problem. We
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will formulate a parameter learning method for the closed-
loop system in (1). We will illustrate the framework through
numerical simulations. We aim to show that the proposed
learning-based MPC framework provides a potential way
for policy-makers to select the optimal resource allocation
strategy in real-time epidemic mitigation.

III. LEARNING-BASED MPC: PARAMETER LEARNING

In this section, we analyze the parameter estimation part
proposed in the framework shown in Fig.1. We propose
a learning strategy by linear regression to estimate the
epidemic parameters recursively.

Note that closed-loop epidemic spreading dynamics in (1)
are nonlinear with respect to the dynamic states. However,
the equations are linear with respect to the parameters β and
γ, which characterize the spreading behavior [18] and are
what we want to learn from data. Hence, we discretize the
dynamics of the closed-loop SIR model in (1) in order to
construct a group of linear predictor functions for the linear
regression analysis. Define the sample step size as h ∈ R>0.
Then, ∀k ∈ Z>0, the discrete dynamics are given by

Sk = Sk−1 − hβSk−1Ik−1, (4a)
Ik = Ik−1 + hβSk−1Ik−1 − h(γ + uk−1)Ik−1, (4b)
Rk = Rk−1 + h(γ + uk−1)Ik−1. (4c)

The matrix form of (4) is given by Sk
Ik
Rk


︸ ︷︷ ︸

Yk

= Yk−1+h

 −Sk−1Ik−1 0
Sk−1Ik−1 −Ik−1

0 Ik−1


︸ ︷︷ ︸

ϕk−1

[
β
γ

]
︸ ︷︷ ︸

θ

+ huk−1

 0

−Îk−1

Îk−1


︸ ︷︷ ︸

Ĩk−1

.

We define the observed states, ∀k ∈ Z>0, as Ŷk,

Ŷk =

 Ŝk
Îk
R̂k

 =

 Sk
Ik
Rk

+

 εS,k
εI,k
εR,k


︸ ︷︷ ︸

εk

, (5)

where εj,k are the error terms. We make the following
assumptions about the error terms.

Assumption 1. The error terms εS,k, εI,k, εR,k, ∀k ∈ N,
have the following properties:

1) E(εS,k) = E(εI,k) = E(εR,k) = 0;
2) V ar(εS,k) = σ2

s , V ar(εI,k) = σ2
I , V ar(εR,k) = σ2

R;
3) εS,k, εI,k, and εR,k are mutually independent;
4) S2

k

σS
� 1, I2k

σI
� 1, R

2
k

σR
� 1.

To generate the linear relationship between the parameters
and the observed states, we provide the following derivation
from (4) - (5). First we show that

Ŷk = Yk−1 + hϕk−1θ + huk−1Ĩk−1

+ εk + εk−1 − εk−1 + huk−1ΥI,k−1 − huk−1ΥI,k−1,

= Ŷk−1 + hϕk−1θ + huk−1
ˆ̃Ik−1 + εk − εk−1 − huk−1ΥI,k−1,

where ΥI,k−1 = [0 − εI,k−1 εI,k−1]>, ˆ̃Ik−1 = [0 −
Îk−1 Îk−1]>, and the fact ˆ̃Ik−1 = Ĩk−1 + huk−1ΥI,k−1 is
used. To replace ϕk−1 with ϕ̂k−1, being composed of Ŝk−1

and Îk−1,
ϕ̂k−1

=

 −(Sk−1 + εS,k−1)(Ik−1 + εI,k−1) 0
(Sk−1 + εS,k−1)(Ik−1 + εI,k−1) −(Ik−1 + εI,k−1)

0 (Ik−1 + εI,k−1)


= ϕk−1+ −(Sk−1εI,k−1 + Ik−1εS,k−1 + εS,k−1εI,k−1) 0

Sk−1εI,k−1 + Ik−1εS,k−1 + εS,k−1εI,k−1 −εI,k−1

0 εI,k−1


︸ ︷︷ ︸

∆k−1

.

Then, we have

Ŷk = Ŷk−1+hϕk−1θ + h∆k−1θ − h∆k−1θ

+ huk−1
ˆ̃Ik−1 + εk − εk−1 − huk−1ΥI,k−1

= Ŷk−1+hϕ̂k−1θ + huk−1
ˆ̃Ik−1 + Σk−1,

where the error vector term Σk−1 is defined as

Σk−1 = εk − εk−1 − huk−1ΥI,k−1 − h∆k−1θ.

Therefore, we can construct a group of the following linear
equations at time step k, ∀k ∈ Z>0, as:

Ŷk − Ŷk−1 − huk−1
ˆ̃Ik−1︸ ︷︷ ︸

Ω̂k

= hϕ̂k−1θ + Σk−1. (6)

Note that the observed states and control inputs in Ω̂k capture
the changes for S, I , and R, from time step k − 1 to k,
∀k ∈ Z>0. The observed states from (5) can be formulated
as a group of linear equations with error terms by

Ω̂ = hϕ̂θ + Σ, (7)

where Ω̂ = [Ω̂>1 Ω̂>2 . . . Ω̂>n ]>, ϕ̂ = [ϕ̂>0 ϕ̂>1 . . . ϕ̂>n−1]>,
and Σ = [Σ>0 Σ>1 . . . Σ>n−1]>.

For simplicity, we analyze the n equations from (7) that
contain only β to estimate β̂ while using the n equations
that only include γ̂ to estimate γ. Thus, we have

Ω̂S = hϕ̂Sβ + ΣS , (8)

Ω̂R = hϕ̂Rγ + ΣR, (9)

where Ω̂S = [Ω̂>S,1 . . . Ω̂>S,n]>, Ω̂R = [Ω̂>R,1 . . . Ω̂>R,n]>,
ϕ̂S = [ϕ̂>S,0 . . . ϕ̂>S,n−1]>, ϕ̂R = [ϕ̂>R,0 . . . ϕ̂>R,n−1]>,
ΣS = [Σ>S,0 ... Σ>S,n−1]>, and ΣR = [Σ>R,0 . . .Σ>R,n−1]>.
We formulate the two groups of linear equations to estimate
β̂ and γ̂ separately. Recall from Section II that the goal of the
linear regression is to find β̂ and γ̂ which are the solutions
for the following optimization problems, respectively:

β̂ = arg min
β̂>0

Jβ and γ̂ = arg min
γ̂>0

Jγ ,

where

Jβ =
n∑
k=1

(Ω̂S,k + hβ(Ŝk−1Îk−1))2 = ||Ω̂S + hβẐ||2,

Jγ =
n∑
k=1

(Ω̂R,k − hγÎk−1)2 = ||Ω̂R − hγÎ||2,
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where Ẑ = [Ŝ0Î0 Ŝ1Î1 · · · Ŝn−1În−1]T .
Note that (8) and (9) are errors-in-variables models, where

the input states are corrupted with noise. In addition, the
observation noise ΣS and ΣR are dependent on the noisy
input states ϕ̂S and ϕ̂R, respectively. Hence, to simplify the
regression analysis, we have the following assumption.

Assumption 2. The estimated states Îk−1 = Ik−1 ∀k ∈
Z>0, i.e., εI,k = 0, ∀k ∈ Z>0.

Recall from Section II we adopt uniform random sampling
to estimate the daily infected population, assume there is no
testing delay, and assume the testing results are accurate.
Therefore, through the testing rate u(k − 1) ∀k ∈ Z>0,
we assume we can obtain accurate daily infected population
measurements with εI,k = 0, ∀k ∈ Z>0, including both
symptomatic and asymptomatic infections. Thus, we have
Assumption 2. Note that, compared to estimating the in-
fected population, estimating the removed and the susceptible
populations is more challenging under the settings in our
framework; thus we keep the corresponding errors for both
groups in our estimation framework nonzero.

In order to select the appropriate least squares estimator
to solve the linear regression problem, we now explore the
properties of the error terms ΣS and ΣR from (8) and (9).

Lemma 1. Under Assumption 1 and 2, E(ΣS) = 0,
E(ΣR) = 0, and E(ΣR|ϕ̂R) = 0.

Proof. We check the kth error terms of E(ΣS,k−1) and
E(ΣR,k−1) by examining E(Σk−1) ∀k ∈ Z>0:

E(Σk−1) = h

 −βIk−1E(εS,k−1)

βIk−1E(εS,k−1)

0

 = 0.

In the above derivation, we use Assumption 1 that the
errors terms εS , εR are mutually independent and zero
mean, and Assumption 2 that εI,k = 0 ∀k ∈ Z>0.
Since E(Σk−1) = 0, ∀k ∈ Z>0, we have E(ΣS) = 0,
and E(ΣR) = 0. Now we check the conditional mean
E(ΣR|ϕ̂R). Based on Assumption 2, the regression model in
(9) has no errors in infection states and thus the observation
error is independent from the infection states. Therefore,
ϕ̂I = ϕI is deterministic, and ΣR,k−1 is independent
from ϕR,k−1 ∀k ∈ Z>0. Hence, E(ΣR,k−1|ϕ̂R,k−1) =
E(ΣR,k−1) = 0, ∀k ∈ Z>0. Further, E(ΣR|ϕ̂R) = 0.

After discussing the (conditional) expectations of the
error terms ΣS and ΣR, we explore the variances of
the error terms at time step k to generate the co-
variance matrices of ΣS and ΣR. Define V ar(Σk) =
[V ar(ΣS,k) V ar(ΣI,k) V ar(ΣR,k)]>, and the covariance
matrices of ΣS and ΣR as C(ΣS) and C(ΣR), respectively.

Lemma 2. Under Assumptions 1 and 2, the
covariance matrices of ΣS and ΣR are given by

C(ΣS)ij =


σ2
S + (hβIi−1 − 1)2σ2

S ,

(hβIi − 1)σ2
S ,

(hβIj − 1)σ2
S ,

0,

i = j,

i− j = 1,

i− j = −1,

otherwise,

C(ΣR)ij =


2σ2

R,

−σ2
R,

−σ2
R,

0,

i = j,

i− j = 1,

i− j = −1,

otherwise,
respectively, and i ∈ N, j ∈ N. The conditional covariance
matrix C(ΣR|ϕ̂R) = C(ΣR).

Proof. The variance of the error terms at time step k − 1 is
given by

V ar(Σk−1) =

 V ar(εS,k + (hβIk−1 − 1)εS,k−1)

V ar(εI,k − hβIk−1εS,k−1)

V ar(εR,k − εR,k−1)



=

 V ar(εS,k) + (hβIk−1 − 1)2V ar(εS,k−1)

V ar(εI,k) − (hβIk−1)2V ar(εS,k−1)

V ar(εR,k) + V ar(εR,k−1)

 .
Now we have that the diagonal entries of the covariance
matrices C(ΣS) and C(ΣR) are given by C(ΣS)ii =
V ar(ΣS,i−1), C(ΣR)ii = V ar(ΣR,i−1), ∀i ∈ Z>0. It can
be observed that the error terms ΣS,i and ΣS,j (same for
ΣR,i and ΣR,j) are correlated if and only if |i − j| ≤ 1,
∀i, j ∈ Z>0. Hence, for the off-diagonal entries of the
covariance matrices C(ΣS) and C(ΣR), we have C(ΣS)ij =
0, C(ΣR)ij = 0, if |i − j| > 1,∀i, j ∈ Z>0. In addition, if
i− j = 1, ∀i, j ∈ Z>0,

C(ΣS)k+1,k = Cov(ΣS,k,ΣS,k−1) = (hβIk − 1)V ar(εS,k),

C(ΣR)k+1,k = Cov(ΣR,k,ΣR,k−1) = −V ar(εR,k).

Now we have showed the construction of C(ΣS) and C(ΣR)
to prove the lemma. Recall from the proof of Lemma 1 that
there is no correlation between ϕ̂R,k−1 and ΣR,k−1 ∀k ∈
Z>0, and thus C(ΣR|ϕ̂R) = C(ΣR).

Lemma 2 establishes the (conditional) covariance matrix
of the error ΣR. Note that although all the error terms are
independent from Assumption 1, the error terms in ΣS are
correlated, and the same for ΣR. Hence, the ordinary least
square (OLS) estimator for (8) or (9) is not suitable due to the
requirement for the uncorrelated error terms [19]. Hence, we
leverage the generalized least square (GLS) method, where
the correlation of the error terms are allowed [17][pg. 222].

Recall that Ẑ = [Ŝ0Î0 Ŝ1Î1 · · · Ŝn−1În−1]T .

Lemma 3. Under Assumptions 1 and 2, the solutions for
the GLS problem of (8) and (9) with the objective functions
given by Jβ and Jγ are given by

β̂ = − 1

h
(Ẑ>[C(ΣS)]−1Ẑ)−1Ẑ>[C(ΣS)]−1Ω̂S , (10)

γ̂ =
1

h
(Î>[C(ΣR)]−1Î)−1Î>[C(ΣR)]−1Ω̂R, (11)

respectively. Further, E(γ̂|ϕ̂R) = γ.

Proof. Lemma 3 can be obtained by following the result
from GLS [17][Eq. 9.2.10] under the conditions from Lemma
1 and Lemma 2. In particular, since E(ΣR|ϕ̂R) = 0 and
C(ΣR|ϕ̂R) = C(ΣR), we have E(γ̂|ϕ̂R) = γ, and
V ar(γ̂|ϕ̂R) = 1

h (Î>[C(ΣR)]−1Î)−1 [17][Eq. 9.2.13].
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Lemma 3 indicates that the estimated parameter γ̂ obtained
from the GLS is unbiased. However, we cannot guarantee
whether the estimated parameter β̂ is biased or not. There-
fore, we explore the performance of the parameter learning
process in the following section through simulations.

IV. SIMULATIONS

In this section, we illustrate the proposed learning-based
MPC framework through simulations. First, we employ the
learning-based MPC framework on a simulated SIR system
with additive Gaussian measurement noise. Then we imple-
ment the framework using real COVID-19 data from India
to reconstruct the epidemic spreading process and thus to
demonstrate the potential application of the learning-based
MPC framework for real-time epidemic mitigation.
A. Learning-based MPC: Simulation

Consider an epidemic spreading process in (1) with β =
0.035 and γ = 0.010. The goal of the framework is to
minimize the total number of tests used during the epidemic
given by (3) recursively. We maintain each testing policy for
a week (k = 7), under the condition that the daily upper
and lower bounds on the testing rate are 30%

7 and 5%
7 . We

set the infection threshold on the daily infection level as
Ī = 4%. For the MPC framework, we set the prediction
horizon as four weeks (T = 28) when computing the optimal
testing policy. After obtaining the optimal control inputs by
minimizing the total number of tests during the first four-
week prediction horizon, we implement the first-week testing
policy, and continue the process recursively. We implement
the MPC framework through CasADi tools [20].

We assume the observed data is corrupted with additive
Gaussian noise, and the signal-noise ratio is 60dB. From
Fig. 1, the observed data will impact both the recursive
parameter learning and the computation of the control input.
For the epidemic spreading process, the population size is
N = 10000 and the initial conditions are I(0) = 10/N ,
R(0) = 10/N , and S(0) = 1− I(0)−R(0).

Fig. 2 shows the learning process of the transmission and
healing rates. It takes around 20 weeks (20 steps) of data
for |β̂−β|β × 100% < 1.14%. It takes around 40 weeks (40
steps) for |γ̂−γ|γ × 100% < 3%. In order to match the one
week policy updating period, the estimated parameters β̂ and
γ̂ are updated weekly through the learning process for the
learning-based MPC framework.

Fig. 3 shows the results for the epidemic mitigation
problem by leveraging the learning-based MPC framework,
where Î(t) and I(t) represent the observed and true infec-
tion states, respectively. The first row of Fig. 3 illustrates
the infection level is controlled around the 4% infection
threshold throughout the outbreak. Note that Î(t) > 0.04
for several time steps t, which is caused by noisy feedback
data and estimated parameters for the MPC framework. The
oscillation in I(t) is generated by the spikes from the control
inputs, since the parameter learning with the noisy data will
have an impact on the system and the initial conditions when
solving the optimization problem of the MPC framework
given in (3).

Fig. 2: Parameter Learning Process

Fig. 3: Epidemic Mitigation with Learning-Based MPC

B. Learning-based MPC: Case Study

We illustrate the proposed learning-based MPC framework
using COVID-19 data from India [21]. We leverage 420
days of daily recorded infected population, and the total
daily recorded recovered and deceased population collected
from March 20, 2020. We assume that the total population
of India is N = 1.38 × 109. Unlike the simulated SIR
model in the previous section, the true epidemic spreading
process was time-varying, since the transmission and healing
rates were affected by different interventions implemented
over different stages of the pandemic. Hence, in order to
implement the learning-based MPC framework, we assume
that the epidemic spreading process and the estimation error
over a relatively short period were time-invariant [22].

First, we leverage the parameter estimation method pro-
posed in Lemma 3 to estimate the time-varying transmission
rate β̂(t) and removal rate γ̂(t). We assume that the epidemic
spreading process did not change drastically during any four-
week window, and we estimate each pair of time-invariant
parameters over each four-week window. In addition, starting
from day 1 (i.e., March 20, 2020), we move the estimation
window by sliding it for 7 days, iteratively. The parameters of
the epidemic spreading process estimated from the data are
given in Fig. 4. Further, we leverage the estimated parameters
to reconstruct the time-varying epidemic spreading process
through a time-varying SIR model, shown in Fig. 5. In Fig. 5,
the solid lines I(t) and R(t) represent the recorded infected
and removed proportions, respectively. The dashed lines Î(t)
and R̂(t), represent the infected and recovered proportions
reconstructed through-time varying transmission rate β̂(k)
and removal rate γ̂(k) in Fig. 4.
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Fig. 4: Estimated Time-Varying Parameters

After discussing the parameter learning process, now we
consider implementing the learning-based MPC framework.
We assume that the bounds on the testing rate satisfy ū =
30%

7 , u = 5%
7 , and the infection threshold Ī = 5 × 10−6.

For any prediction horizon [t0, t0 + 4 × T ], from (3), the
MPC framework will minimize the total number of tests used
during the four-week prediction horizon. We set the length
of the prediction horizon T = 28 days (i.e., four weeks).

We illustrate the performance of the learning-based MPC
framework, when the parameter estimation and control de-
sign are performed simultaneously and iteratively. The sim-
ulation results in Fig. 6 show that the framework achieves
the goal of maintaining the infection level under Ī . Hence,
we have illustrated the proposed learning-based MPC is a
potential method for real-time epidemic mitigation.

Fig. 5: Fitting SIR Model to Data

Fig. 6: Learning-Based MPC: Case Study

V. CONCLUSION

We proposed a learning-based model predictive control
framework for epidemic mitigation problems. We formulated
the parameter learning process as a linear regression problem
and illustrated the efficiency of the framework through both
simulated and real epidemic data. Future works include ex-
ploring model learning processes to generate more accurate

models, and developing theoretical foundations for learning-
based MPC for real-time epidemic mitigation problems.
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