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Abstract— The paper studies the spread of a virus over a
(possibly) time-varying graph, with the spread being (possibly)
worsened by the presence of a shared resource. We propose
a time-varying susceptible-infected-water-susceptible (SIWS)
model, with the water compartment representing the contam-
ination level in the shared resource. We say that the system
is in the disease-free equilibrium (DFE) if none of the nodes
(representative of sub-populations, such as cities, districts,
etc.) are infected, and the shared resource is contaminant-
free. We identify multiple sufficient conditions for exponential
convergence to the DFE. Based on one of the aforementioned
sufficient conditions, an on/off lockdown strategy that eradicates
the infection spread is proposed. More specifically, we design a
switching rule between lockdown and free (i.e., no lockdown)
modes to guarantee exponential convergence to the DFE.

I. INTRODUCTION

Spreading processes such as epidemics, information in
social networks, etc., have drawn the attention of several
research communities ranging from physics and computer
science to economics and sociology. The earliest work in the
direction of studying epidemic spread is the model for the
smallpox virus formulated and analysed by Daniel Bernouli
[1]. Mathematical epidemiology, as a discipline, advanced
rapidly during the 20th century; see [2]–[5], with [4] being
one of the seminal works. Given that the destruction that
epidemics leave in their wake is often times unprecedented,
the fundamental questions of interest in the aforementioned
works revolves around understanding how a disease spreads,
what causes it to become persistent in the population, how
can the spread be mitigated or eradicated, etc. While there are
several models proposed in the literature, the present paper
focuses on the susceptible-infected-susceptible (SIS) model,
that was originally developed in [6].

Networked SIS models with static graphs (where the
graphs represent the interaction between the various pop-
ulation nodes) have been well-studied; for continuous-time
setting, see [7], [8], whereas for discrete-time setting, see [9],
[10]. Given that modern societies involve mobile agents thus
imposing a time-varying topology on the interconnection
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graph, it is natural to consider networked SIS models that
also account for time-varying graphs. Such models have been
proposed in [11], [12]. The present paper focuses on time-
varying networked SIS models.

A major drawback with traditional epidemic models is that
these assume that the only way an epidemic could spread is
through node-to-node interaction. However, other pathways
also exist, for instance spread of viruses through a shared
resource such as a water distribution network [13], neigh-
borhood supermarkets, infected hospital surfaces [14], etc.
Addressing this gap, a networked continuous-time SIS model
that also accounts for the presence of a shared resource was
first proposed by [15], referred to as susceptible-infected-
water-susceptible (SIWS) model. For the SIWS model, a suf-
ficient condition for asymptotic convergence to the disease-
free equilibrium (DFE) (i.e., the state where each agent is
healthy, and the shared resource is contamination-free) has
been identified in [15], whereas a sufficient condition for
the existence, uniqueness and asymptotic convergence to
the endemic equilibrium (i.e., the state where each agent
has a non-trivial infection level, and the shared resource is
contaminated) has been identified in [16]. Building off of the
SIWS model, a model that accounts for the presence of mul-
tiple shared resources, referred to as the layered networked
SIWS model, has been proposed in [17]. However, both the
SIWS model and the layered networked SIWS model only
account for static interaction graphs, and neither of these
works propose a control scheme that involves manipulating
the weights on the edges between the nodes (the so-called
lockdown approach). The present paper aims to address these
shortcomings.

Our main contributions are as follows:
i) We develop a model that captures the spread of a virus

in a population where the interconnection among the
agents (possibly) are time-varying, and also accounts
for the presence of a shared resource that is accessed
by (possibly) the entire population.

ii) Identify a sufficient condition for global exponential
stability (GES) of the DFE, both for homogeneous
spread, and for heterogeneous spread; see Theorem 1
and Theorem 2, respectively.

iii) Identify a less restrictive sufficient condition, which can
be checked easily, for exponential convergence to the
DFE; see Theorem 3.

iv) Finally, we design a switching rule between lockdown
and free (i.e., no lockdown) modes to control the
infection spreading. To be specific, the overall switching
system satisfies the conditions in the previous item (i.e.,
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item iii)) and consequently, the dynamics, regardless
of the initial condition (i.e., infected or otherwise),
converges to the DFE exponentially fast; see Lemma 2.

Paper Outline

The rest of the paper is organized as follows. We conclude
the present section by listing the notations that will be
used in the sequel. We introduce the model, and formally
present the main problems of interest in Section II. The
main results are spread out across two sections, namely in
Section III we identify sufficient conditions for GES of the
DFE. Building on the aforementioned sufficient conditions, a
control strategy for efficient management of the epidemic is
proposed in Section IV. We illustrate our theoretical findings
in Section V. Finally, we summarize the paper, and highlight
some problems of possible interest to the wider community
in Section VI.

Notation

Let R, R≥0, and N denote the set of real numbers,
nonnegative real numbers, and positive integers, respectively.
For any positive integer n, we have [n] = {1, . . . , n}. Given
a matrix A, supposing its spectrum is real, λ1(A) denotes
the maximum eigenvalue of A; the largest real-valued part
of the eigenvalues of A is denoted by r1(A). We use 0 and
1 to denote the vectors whose entries all equal 0 and 1,
respectively, and use I to denote the identity matrix, while
the sizes of the vectors and matrix are to be understood from
the context. For any two real matrices A,B ∈ Rn×m, we
write A ≥ B if Aij ≥ Bij for all i ∈ [n], j ∈ [m], and
A > B if A ≥ B and A 6= B.

II. MODEL

Consider a population of individuals, divided into n sub-
population nodes in a network, with a resource W that is
shared among (possibly) all of the population nodes. Suppose
that a virus is active in the aforementioned population. The
spread of the virus among the n nodes can be represented by
a (possibly) directed time-varying graph G(t) = {V, E(t)},
where V = {1, 2, . . . , n} are the nodes (which represent
subpopulations), with, at time t, existence of a directed edge
from node j to node i if, at time t, individuals in node j
can infect those in node i. We also assume that not only
does a node get (possibly) infected due to contact with W
but also that W could be contaminated whenever an infected
population node comes in contact with it. Thus, at each t,
each node in G(t) possibly has bidirectional connections with
W .

Each population node i, contains Ni individuals, at time
t, has birth rate µi(t), death rate µ̄i(t), and, at time t, Si(t)
denotes the number of susceptible individuals, while Ii(t)
denotes the number of individuals infected by the virus. For
each node i, at time t ≥ 0, infected individuals have a
recovery rate γi(t). We denote the infection rate of node
i, at time t, as βi(t). Let αij(t)(≥ 0) denote, at time t,
the strength of interconnection (could also be interpreted
as the frequency of interactions) between an individual in

node i and an individual in node j. Clearly, if node j is not
connected to node i at time t, then αij(t) = 0; otherwise,
αij(t) > 0. Let z(t) denote, at time t, the concentration of
the virus in the shared resource W . The rate at which the
virus decays in the shared resource, at time t, is denoted
by δw(t), while the concentration of the virus in the shared
resource W grows at a rate proportional to the sum of Ii(t)
scaled by ζi(t), where ζi(t) denotes, at time t, the rate at
which the resource gets contaminated due to node i. The
resource-to-node infection rate for node i at time t is denoted
by αiw(t).

Given the interactions between different individuals in a
population node (resp. between different individuals in dif-
ferent population nodes), the fraction of infected individuals
in a population node changes with time. More precisely,
the evolution of the number of susceptible and infected
individuals in node i can be represented as follows:

Ṡi(t) =µi(t)Ni − µ̄i(t)Si(t) + γi(t)Ii(t)

−
(
αiw(t)W (t)−

∑n
j=1 βi(t)αij(t)

Ij(t)
Ni

)
Si(t),

İi(t) =− (µ̄i(t) + γi(t))Ii(t)

+
(
αiw(t)W (t) +

∑n
j=1 βi(t)αij(t)

Ij(t)
Ni

)
Si(t),

Ẇ (t) =− δw(t)W (t) +
∑n
j=1 ζj(t)Ij(t).

(1)

We define new variables to simplify the system. Let:

xi(t) =
Ii(t)

Ni
, z(t) =

δw(t)W (t)∑n
j=1 ζj(t)Nj

, δi(t) = γi(t) + µi(t),

βij(t) = βi(t)αij(t)
Nj
Ni
, βiw(t) =

αiw(t)

δw(t)

∑n
j=1 ζj(t)Nj ,

ci(t) =
ζi(t)Ni∑n
j=1 ζj(t)Nj

. (2)

Then, assuming that, at each time t ≥ 0, the birth rates and
the death rates are equal, (1) can be rewritten as:

ẋi(t) = −δi(t)xi(t)
+
(
1− xi(t)

)(
βiw(t)z(t) +

∑n
j=1 βij(t)xj(t)

)
, (3)

ż(t) = δw(t)

(
− z(t) +

∑n
i=1 ci(t)xi(t)

)
. (4)

Observe that assuming that the parameters in system (3)
and (4) are time-independent, we recover the time-invariant
SIWS model proposed in [15]. Likewise, in the absence of
the shared resource (i.e., setting z(t) = 0), we recover the
time-varying SIS networked model studied in [12].

The model from (3)-(4) in vector form becomes:

ẋ(t) =
(
−D(t) +B(t)−X(t)B(t)

)
x(t)

+
(
I −X(t)

)
b(t)z(t) (5)

ż(t) = −δw(t)z(t) + c(t)>x(t) , (6)

where D(t) = diag(δi(t)), B(t) = [βij(t)]n×n, X(t) =
diag(x(t)) 1, b(t) is a column vector in Rn with its ith

1When clear from context, for ease of notation, we will drop the time
index, and use X instead of X(t).
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element being βiw(t), and c(t)> is a row vector in Rn whose
ith element is δw(t)ci(t). Defining B̄(t) := diag(βi(t)) and
A(t) := [αij(t)

Nj

Ni
]n×n, we have that B(t) = B̄(t)A(t).

System (5)-(6) can be written more compactly using

y(t) :=

[
x(t)
z(t)

]
, X(y(t)) :=

[
diag(x(t)) 0

0 0

]
,

Bw(t) :=

[
B(t) b(t)
c>(t) 0

]
, and Dw(t) :=

[
D(t) 0

0 δw(t)

]
.

With the new notations in place, system (5)-(6) can be
rewritten as:

ẏ(t) =
(
−Dw(t) + (I −X(y(t)))Bw(t)

)
y(t). (7)

Observe that if x = 0, and z = 0, then none of the nodes
are infected nor is there any contamination in the shared
resource. Furthermore, (0, 0), is an equilibrium of system (7).
Hence, we call this equilibrium the disease-free equilibrium
(DFE).

With the setup as given in (7), the problems being inves-
tigated in this paper are as follows.

i) Assuming the graph G(t) is, for each t, symmetric,
and that βi(t) = β(t) for all i ∈ [n] and for each t,
identify a sufficient condition such that y(t) converges
to 0 exponentially fast.

ii) Accounting also for (possibly) directed graphs G(t),
and also heterogeneous spread, identify a sufficient
condition such that y(t) converges to 0 exponentially
fast.

iii) Ensure that the convergence to the DFE is exponential
even in finite time and not just asymptotic to ensure that
critical health constraints are not violated. Thus, for a
given initial time t0 and y(t0), we want to ensure that

‖y(t)‖ ≤ exp(−λ0(t− t0))γ‖y(t0)‖, (8)

for all t ≥ t1, for some finite t1 ≥ t0 and γ > 0.
We require the following assumptions on the model pa-

rameters.
Assumption 1: Suppose that, for each t ∈ R≥0, δi(t) > 0,

and δw(t) > 0. Suppose that, for each t ∈ R≥0, βij(t) ≥ 0
for all i, j ∈ [n], and βiw(t) > 0, ci(t) > 0, for all i ∈ [n].

Given that we are interested in identifying sufficient con-
ditions for exponential convergence to the DFE, we recall
the following definition.

Definition 1: Consider a system, described as follows:

ẋ(t) = f(t, x(t)), (9)

where f : R≥0 × Rn → Rn is locally Lipschitz. The origin
is a GES equilibrium point of (9) if there exist positive
constants α and η, with 0 ≤ η < 1, such that

‖x(t)‖ ≤ α ‖x(t0)‖ η(t−t0), ∀ t, t0 ≥ 0, ∀ x(t0) ∈ Rn.
Since each xi represents the fraction of infected individ-

uals in group i, it is immediate that the initial value of
xi is in [0, 1], because otherwise the value of xi will lack
physical meaning for the epidemic model considered here.

Similarly, it is also natural to assume that the initial value of z
measured, for instance, in milligrams per litre is nonnegative.
Consequently, we can say that the DFE of system (7) is GES
if the condition in Definition 1 is satisfied for all x0 ∈ [0, 1]n

and z(0) ≥ 0. Hence, we can restrict our analysis to the set:

D := {y(t) : x(t) ∈ [0, 1]n, z(t) ∈ [0,∞)}. (10)

The following lemma establishes that the set D is positively
invariant.

Lemma 1: Consider system (7) under Assumption 1. If
xi(0) ∈ [0, 1] for all i ∈ [n], and z(0) ≥ 0, then xi(t) ∈ [0, 1]
for all i ∈ [n], and z(t) ≥ 0, ∀t ≥ 0.
Proof: See proof of [18, Lemma 1].

III. CONVERGENCE TO THE DFE

In this section, we identify sufficient conditions for GES
of the DFE. We first consider the case where the spread is
homogeneous (i.e., all agents have the same infection rate,
for all time instants) and the underlying graph is symmetric
and undirected, then we consider the case where the spread
could also be heterogeneous (i.e., not all of the agents
have the same infection rate for all time instants) and the
underlying graph could also be directed.

A. Homogeneous case

We consider the case where each node has the same
infection rate, i.e., βi(t) = β(t) for all i ∈ [n], and for all
t ∈ R≥0. Furthermore, we assume that the interconnection
graph, represented by the matrix A(t), is undirected, and has
symmetric weights, i.e., for each t ∈ R≥0, aij(t) = aji(t).
We have the following result, which is partly inspired from
[12, Theorem 1].

Theorem 1: Consider system (7) under Assumption 1.
Suppose that, for each t ∈ R≥0, βi(t) = β(t) for all i ∈ [n],
A(t), b(t), c(t), D(t) and δw(t) is piecewise continuous in t,
and bounded. Suppose that, for each t ∈ R≥0, A(t) = A(t)>,
and b(t) = c(t). If supt≥0 λ1(−Dw(t) + Bw(t)) < 0, then
the DFE of (7) is GES.
Proof: See proof of [18, Theorem 1].

B. Heterogeneous case

We now consider the case where the infection rates are
not necessarily the same for every node; the interconnection
graph could be directed.. We have the following result.

Theorem 2: Consider system (7) under Assumption 1,
with Bw(t) and Dw(t) to be continuously differentiable.
Suppose that

i) there exists L > 0 such that ‖Bw(t)−Dw(t)‖ ≤ L ∀t;
ii) for some α1 > 0 supt≥0 r1(Bw(t) − Dw(t)) < −α1;

and
iii) there exists κ > 0 such that supt≥0‖ ddt

(
Bw(t) −

Dw(t)
)
‖ < κ.

If κ is sufficiently small, then the DFE of (7) is GES.
Remark 1: The proof technique is closely related to that

of [12, Theorem 2] and [19]; in the interest of completeness,
we provide the details here.
Proof: See proof of [18, Theorem 2].
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Remark 2: Particularized to the setting without a shared
resource, the difference between Theorem 2 and [12, The-
orem 2] is as follows: Theorem 2 does not assume the
existence of a constant that upper bounds the Lyapunov
function V (y, t); it turns out that the existence of such a
constant is a direct consequence of the first two conditions
in Theorem 2 being satisfied. The result [12, Theorem 2],
to the contrary, assumes that such a constant exists and
is well-defined, and together with conditions in Theorem 2
establishes exponential convergence to the DFE. Therefore,
even particularized to the setting without a shared resource,
Theorem 2 is more general than [12, Theorem 2].

Remark 3: The third condition in Theorem 2 could be
slightly relaxed as follows while (assuming that the first two
conditions are fulfilled) still guaranteeing GES [20]:∫ t+T

t

‖Ḃw(s)− Ḋw(s)‖ds ≤ µT + η, ∀t ≥ 0, ∀T ≥ 0,

(11)

where η > 0 is some scalar, and µ depends on L and α1.
Observe that both Theorem 2, and its relaxation in

Remark 3, require Bw(t) and Dw(t) to be continuously
differentiable. For linear time-varying systems, a sufficient
condition for GES that does not insist on the state matrix
being continuously differentiable has been identified in [21,
Theorem 3]. Extending [21, Theorem 3] to also account for
nonlinear time-varying systems of the kind in (7) is beyond
the scope of the present paper, and is left for future work.

Observe that Theorems 1 and 2 insist on the matrix
−Dw(t) + Bw(t) being Hurwitz for each t ≥ 0. Conse-
quently, it becomes extremely hard to verify this condition.
As such, we are interested in seeking less restrictive suffi-
cient condition(s). Towards this end, we need the following
assumption.

Assumption 2: Suppose that
i)

lim
T→∞

1

T

∫ t0+T

t0

‖−Dw(s) +Bw(s)‖ds ≤ α <∞, ∀t0 ≥ 0.

(12)

ii) for some v > 0, there exists an h > 0 such that

‖−Dw(t+ h) +Bw(t+ h) +Dw(t)−Bw(t)‖ ≤ vhγ ,
(13)

for all t ≥ 0, and for some γ such that 0 < γ ≤ 1.
iii)

1

T

∫ t0+T

t0

r1(−Dw(s) +Bw(s))ds ≤ σ̄, (14)

for all t0 ≥ 0, T ≥ T0 and for some σ̄ < 0 and T0 > 0.
Theorem 3: Consider system (7) under Assumptions 1

and 2. The DFE is GES, and

‖y(t)‖ ≤ exp(−λ0(t− t0))γ‖y(t0)‖, (15)

for all t ≥ t1, for some finite t1 ≥ t0 and λ0, γ > 0.
Proof: See proof of [18, Theorem 3].

IV. CONTROL STRATEGIES FOR AN EFFICIENT
LOCKDOWN

We study the case in which the epidemics is controlled
by a lockdown procedure. In its natural state, i.e., without a
lockdown, we consider that the population behaves in such
a way that

sup
t≥t0

r1(Bw(t)−Dw(t)) < σ̄N , (16)

for all t0 ≥ 0, with σ̄N > 0.
On the other hand, during lockdown, the behavior for the

population is such that Assumption 2 is satisfied and

1

T

∫ t0+T

t0

r1(−Dw(s) +Bw(s))ds ≤ σ̄L, (17)

for all t0 ≥ 0, with σ̄L < 0 as long as T ≥ Tmin, with
Tmin > 0 known.

Assuming that switching between the two strategies pre-
serves the properties (12)-(13), our goal is to find a switching
rule which ensures that all the conditions in Assumption 2
are satisfied, and therefore, guarantees the DFE is GES and
the system’s trajectory satisfies (8).

For any given t0, let us first denote the sequence of
switching times by {tk, k ∈ N}. We assume that a switching
to a lockdown mode is done at any t2k, k ∈ N, while
a switching to free (no lockdown) mode is done at any
t2k+1, k ∈ N. We also assume that the lockdown is initiated
at t0 to control the epidemic.

Lemma 2: Assuming (16) and (17) hold true, if the
switching sequence {tk, k ∈ N} is chosen such that t2k+1−
t2k ≥ Tmin, ∀k ∈ N and

K∑
k=0

(σ̄L(t2k+1 − t2k) + σ̄N (t2k+2 − t2k+1)) ≤ σ̄, (18)

for all K ∈ N, then (14) holds true with T0 = Tmin.
Proof: See proof of [18, Lemma 2].

Due to Lemma 2, we can minimize the time spent in
lockdown as well as ensure an exponential convergence to the
disease free equilibrium for all t > t0 + Tmin by selecting a
switching rule that satisfies (18) with the inequality replaced
by an equality. The details on how to do so are left for future
work.

V. SIMULATION

We now illustrate the analysis and control results via
simulations. To capture the time-varying structure of the
model, we model the adjacency matrix as the following:

aij(t) =

{
e−‖χi(t)−χj(t)‖2 , if ‖χi(t)− χj(t)‖ < r

0, otherwise,
(19)

where χi(t) ∈ R2 is the position of node i and can change as
a function of time. We assume that each node has the same
population size, thus implying that Nj

Ni
= 1, for all i, j ∈ [n].

Hence, aij(t) = αij(t) for each t. We also define

[c(t)]i =

{
e−‖χi(t)‖2 , if ‖χi(t)‖ < r

0, otherwise,
(20)
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Fig. 1: Average infection level ( 1
n

∑n
i=1 xi(t)) and z(t) in

illustration of Theorem 1, with β = 1, δ = 3, δw = 0.25,
and z(0) = 0.5.

which is assuming that the location of the shared resource
is fixed and located at (0, 0). We set b(t) = c(t). Also, note
that, from (19), A(t) is symmetric. While these symmetry
assumptions are only needed for Theorem 1, we factor the
infection rates in a similar manner and employ the symmetric
graph structure for simplicity in all the simulations.

For movement of the nodes, we assume piece-wise con-
stant drift, confining the nodes to a fixed region. The posi-
tional dynamics of each node i are given by

χ̇i(t) = φi, (21)

where φi ∈ R2 with

φik =

{
−φik, if zk = zck + l/2 or zk = zck − l/2
φik, otherwise,

(22)

for each dimension k = 1, 2, where zc is the center of a
square that the nodes are bouncing around. In other words,
if an agent arrives at a boundary of the box, the velocity of
the agent in the corresponding dimension changes sign. Note
that the simulation setup follows [12] except with the shared
resource added.

For all the simulations we set r = 10. We assume there are
10 nodes (n = 10) that bounce around a box of dimension
5 × 5, centered at zc = (2.5, 2.5). A randomly infected set
of nodes is initially infected (xi(0) = 1). We assume time-
invariant homogeneous viral spread, that is, the same β and
δ for each node.

We first simulate a scenario that meets the assumptions
of Theorem 1. We set β = 1, δ = 3, and δw = 0.25, and
z(0) = 0.5. The average infection level ( 1

n

∑n
i=1 xi(t)) and

the resource contamination level (z(t)) are plotted in Fig. 1.
The maximum eigenvalue for the simulation is plotted over
time in Fig. 2. Note that the assumptions of Theorem 1
are met, with the largest eigenvalue always remaining below
zero. Consistent with Theorem 1, the virus and the resource
contamination die out quickly; see the blue line and red line,
respectively.

We also simulated a system that violated the assumptions
of all the results. We set β = 2, δ = 2, δw = 0.5, and
z(0) = 0.5. The average infection level and the resource con-
tamination level are plotted in Fig. 3 with the corresponding
maximum eigenvalues plotted over time in Fig. 4. Note that
the eigenvalues are mostly greater than zero and the virus
persists in the system.

0 5 10 15 20 25 30 35 40 45 50
t

-0.25

-0.2

-0.15

-0.1

-0.05

0

1(B
w

(t)
-D

w
(t)

)

Fig. 2: Maximum eigenvalue of the simulation in Fig. 1.
Note that the maximum eigenvalue is always less than zero
and the system converges to the DFE rapidly consistent with
Theorem 1.

0 5 10 15 20 25 30 35 40 45 50
t

0

0.2

0.4

0.6

0.8
Average Infection Level
Contaminated Resource

Fig. 3: Average infection level and z(t) in illustration of
system with β = 2, δ = 2, δw = 0.5, and z(0) = 0.5. The
lack of lockdown measures causes the infection level to rise
rapidly around t = 30.

In order to enact the on/off lockdown control policy
proposed in Section IV, we devise the following social
distancing protocol that is implemented for ten time steps.
While not letting node i leave the square region,

χ̇i(t) =

∑
j,aij(t)>0.001 χi − χj

‖
∑
j,aij(t)>0.001 χi − χj‖

, (23)

forcing the nodes to separate from each other. We implement
this algorithm every 20 time steps, starting at time t = 10, for
the endemic system from Fig. 3. The average infection level
and the resource contamination level are plotted in Fig. 5
with the corresponding maximum eigenvalues plotted over
time in Fig. 6. Note that the eigenvalues are almost always
less than zero, the 20-time step average is always below zero,
and the virus no longer persists in the system, dying out quite
quickly, consistent with the result in Lemma 2.

VI. CONCLUSION

In this paper, we proposed a SIWS model that also
accounts for time-varying interactions between the agents.
We identified several sufficient conditions for exponential
convergence to the DFE; a difficult-to-check condition, and,
an easily checkable one. Both the conditions also account
for heterogeneous spread, and directed graphs. We have also
proposed a control strategy guaranteeing that the DFE is
GES. This control strategy is based on switching between a
lockdown and a free (no-lockdown mode), and maintaining
lockdown measures for sufficiently long time periods of time.
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Fig. 4: Maximum eigenvalue of the simulation in Fig. 3.
Note that the maximum eigenvalue is greater than zero most
of the time and the virus persists in the network (see Fig. 3).
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Fig. 5: Average infection level and z(t) in illustration of the
endemic system from Fig. 3 with the social distancing policy
from (23) every 20 time steps, starting at time t = 10. With
the on/off lockdown strategy implementation added, the virus
in Fig. 3 is eradicated.

We illustrated our theoretical findings using an extensive set
of simulations.
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